第四章液压执行元件

合集下载

液压课后习题

液压课后习题

第一章液压传动概述11. 什么叫液压传动?液压传动有哪两个工作特性?液压传动系统由哪几部分组成?各组成部分的作用是什么?液压传动:以液体为工作介质,主要利用液体压力能来进行能量传输的传动方式。

两个工作特性:液体压力的大小取决于负载,与流量大小无关。

速度或转速的传递按“容积变化相等”原则进行液压系统的组成:1)能源装置(或称动力元件):把机械能转化成液体压力能的装置。

液压泵。

2)执行装置(或称执行元件):把液体压力能转化成机械能的装置。

液压缸和液压马达。

3)控制调节装置(或称控制元件):对液体的压力、流量和流动方向进行控制和调节的装置。

各类控制阀。

4)辅助装置(或称辅助元件):保证系统有效、稳定、持久地工作。

指以上三种组成部分以外的其它装置。

如各种管接件、油管、油箱、过滤器、蓄能器、压力表等。

2. 液压传动与机械传动(以齿轮传动为例)、电传动比较有哪些优点?为什么有这些优点?比较优点:(1)在同等功率情况下,液压执行元件体积小、结构紧凑;(2)液压传动的各种元件,可根据需要方便、灵活地来布置;(3)液压装置工作比较平稳,由于重量轻,惯性小,反应快,液压装置易于实现快速启动、制动和频繁的换向;(4)操纵控制方便,可实现大范围的无级调速(调速范围达2000:1),它还可以在运行的过程中进行调速;(5)一般采用矿物油为工作介质,相对运动面可自行润滑,使用寿命长;(6)容易实现直线运动;(7)既易实现机器的自动化,又易于实现过载保护,当采用电液联合控制甚至计算机控制后,可实现大负载、高精度、远程自动控制。

(8)液压元件实现了标准化、系列化、通用化,便于设计、制造和使用。

3. 试讨论液压传动系统图形符号的特点。

特点:•图形符号仅表示元件的功用,不表示其结构;•图形符号通常按元件地静止位置或零位(初始位置)画出;•图形符号系统图只表示元件间的连接关系,不表示其实际安装位置;•对无规定的元件图形符号可以派生。

•使液压系统图简单明了,便于工程技术的交流。

液压传动执行元件

液压传动执行元件

• 三、相关知识
(一)概述 1、液压缸和摆动液压马达是液压系统中的执行 元件。其职能是将液压能转换为机械能。 2、液压缸的输入量是液体的流量和压力,输出 量是直线速度和力。 3、摆动液压马达的输入量是液体的流量和压力, 输出量是角速度和转矩。 4、液压缸、摆动液压马达和液压马达都是液压 执行元件,且输入量都是流量和压力;不同的是: 前两者具有作往复运动的共性,液压马达则是作连 续旋转运动。
三 梁 四 柱 式 压 力 机
塑料注射成型机
• 二、任务分析
• 分析上述任务可知,主轴要完成的工作所需 的上下运动必须依靠液压传动系统中相关的元件 来带动,这个元件就是液压传动系统中的执行元 件。 • 在液压传动系统中执行元件一般有液压马达和 液压缸两种。液压缸的作用是将压力能转化为直 线运动,从而带动主轴产生上下运动。 • 下面我们一起来认识几种典型的液压缸。
液 压 传 动
黄 朗 宁
模块三
液压执行元件
课题二 压力机执行元件的选择
知识点 1、液压缸的分类与作原理 2、单出杆活塞液压缸的结构特点与工作特点 技能点 液压缸的选用、维护及故障诊断
一、任务的引入
图示为液压压力机、挖掘机及塑料注射成型机的外形图, 压力机主轴工作时产生上下运动,那么在压力机中是由什么元 件带动主轴来完成这一运动的呢?该如何来选择这些元件呢?
2
d2

D2 2d 2
d D d
2
D 2d
结论:当
或 d 0.707D
时,快进、快退速度相等。
D 2d
若往单活塞杆缸的无杆腔中输入压力油,同时将有杆 腔排出的油接回到无杆腔,这种方式叫缸油路的差动连 接,或称差动连接缸。因此,通常把压力进入无杆腔的 情况作为工作行程,把压力进入有杆腔的情况作为空回 行程。

液压缸原理

液压缸原理

F Ap

4
(D2 d 2 ) p
v
q 1 (D 2 d 2 ) 4
式中:p-供油压力;A-活塞有效面积;q-供油量;d-活塞杆 直径;D-活塞直径。
2012-8 东昌学院· 机电工程系 8
2.单活塞杆液压缸
2012-8
东昌学院· 机电工程系
9
(1)结构特点:

这种液压缸的活塞只有一端从缸的端头伸出。其结构组 成与双活塞杆液压缸相似。
27
摆动式液压缸的输出扭矩和转速计算方法如下:
Mt
D 2 d 2
1 D 2 d 2 1 pbrdr pb[( ) ( ) ] pb( D 2 d 2 ) 2 2 2 8
1 pb( D 2 d 2 ) 8
由于存在摩擦, M<Mt
输出角速度:
M 所以机械效率为: Mt

为了实现双向往复运动,即实现两个方向的液压驱动,可 采用双柱塞缸并排安装的方案。
2012-8
东昌学院· 机电工程系
24
(6)柱塞只靠钢套支撑而不与缸体接触,这样缸筒易于加工, 故适于做长行程的液压缸。太长,有时需要加辅助导向机 构。
2012-8
东昌学院· 机电工程系
25
四、摆动式液压缸
摆动式液压缸是一种作往复旋转运动的执行元件。 符号:
1 2 扇形的面积(中心角α )为: F ( D d 2 ) 8
2012-8 东昌学院· 机电工程系 28
则摆动油缸(转子叶片)转过α 角所排出的液体体积为:
1 2 V (D d 2 )b 8
V 1 ( D 2 d 2 )b Qt t 8 t 1 2 ( D d 2 )b 8 Qt 2 ( D d 2 )b

项目四 液压执行元件答案

项目四 液压执行元件答案

项目四液压执行元件一、填空题1.单杆液压缸可采用连接,使其活塞缸伸出速度提高。

(差动)2. 液压缸从结构主要有、和摆三大类,从作用方式有和。

(活塞式、柱塞式、摆动式、单作用式、双作用式)3.当活塞面积一定时,活塞运动速度与进入油缸中液压油的 _______ 多少有关,活塞推力大小与液压油的 ________ 高低有关。

(流量、压力)4.伸缩式液压缸的活塞在向外运动时,按活塞的有效工作面积大小依次动作,有效面积的先动,有效面积的后动。

(大、小)5.在液压缸中,为了减少活塞在终端的冲击,应采取措施。

(缓冲)二、选择题( A )1.当系统的流量增大时,油缸的运动速度就()。

A.变快 B.变慢 C.没有变化( C )2.当工作行程较长时.采用()缸较合适。

A.单活塞杆 B.双活塞杆 C.柱塞(A )3.单杆活塞缸的活塞杆在收回时()。

A.受压力 B.受拉力 C.不受力(A )4.能形成差动连接的液压缸是()。

A.单杆液压缸 B.双杆液压缸 C.柱塞式液压缸( C )5.活塞有效作用面积一定时,活塞的运动速度取决于()。

A.液压缸中油液的压力B.负载阻力的大小C.进入液压缸的流量D.液压泵的输出流量( C )6.下列液压缸中可以进行差动连接的是()。

A.柱塞式液压缸B.摆动式液压缸C.单活塞杆式液压缸D.双活塞杆式液压缸( C)7.差动液压缸,若使其往返速度相等,则活塞面积应为活塞杆面积的()。

A.l倍 B.2倍 C.2倍( B )8.双杆活塞液压缸,当活塞杆固定时,运动所占的运动空间为缸筒有效行程的倍数()。

A.1倍 B.2倍 C.3倍 D.4倍( C)9.双杆液压缸,采用缸筒固定安置,工作台的移动范围为活塞有效行程的()。

A.1倍B.2倍C.3倍D.4倍(B )10.一单杆活塞式液压缸差动连接时,要使V3=V2,则活塞与活塞杆直径之比应为()。

A.1 B.2 C.3 D.2(D)11.双作用多级伸缩式液压缸,外伸时推力和速度的逐级变化,结果是:()A.推力和速度都增大 B.推力和速度都减小C.推力增大,速度减小 D.推力减小,速度增大( B )12.在液压系统的组成中,液压缸是()A. 动力元件. 执行元件 C. 控制元件 D. 传动元件( C )13. 在液压传动中,一定的液压缸的()决定于流量。

常用液压元件的结构及原理分析(图文讲解)

常用液压元件的结构及原理分析(图文讲解)
液力传动则主要是利用液体的动能来传递能量。
液压传动的定义
那么,到底什么是液压传动呢? ?
液压传动(Hydraulics)是以液体为工作介
质,通过驱动装置将原动机的机械能转换为液压 的压力能,然后通过管道、液压控制及调节装置 等,借助执行装置,将液体的压力能转换为机械 能,驱动负载实现直线或回转运动。
液压传动系统的组成
动力元件
传动介质 控制元件 辅助元件
执行元件
液压传动系统的组成
从上图可以看出,液压传动是以液体作为工作介质来进 行工作的,一个完整的液压传动系统由以下几部分组成:
(l)液压泵(动力元件):是将原动机所输出的机械能 转换成液体压力能的元件,其作用是向液压系统提供压力油, 液压泵是液压系统的心脏。
齿轮泵被广泛地应用于采矿设备、冶金设备、建筑机 械、工程机械和农林机械等各个行业。
齿轮泵按照其啮合形式的不同,有外啮合和内啮合两 种,外啮合齿轮泵应用较广,内啮合齿轮泵则多为辅助泵。
2.2.1 外啮合齿轮泵的结构及工作原理
•外啮合齿轮泵的工作原理; •排量、流量; •外啮合齿轮泵的流量脉动; •外啮合齿轮泵的问题和结构特点。
表5.1 不同的“通”和“位”的滑阀式换向阀 主体部分的结构形式和图形符号
名称
结构原理图
图形符号
二位二通
二位三通
二位四通
三位四通
表5.1中图形符号的含义如下:
• 用方框表示阀的工作位置,有几个方框就表示有几 “位”
• 方框内的箭头表示油路处于接通状态,但箭头方向 不一定表示液流的实际方向
• 方框内符号“┻”或“┳”表示该通路不通 • 方框外部连接的接口数有几个,就表示几“通”
图5.11 普通单向阀

液压与气动技术全套课件

液压与气动技术全套课件

目录第一章液压传动基础知识绪论第二章液压动力元件第三章液压执行元件第四章液压控制元件第五章液压辅助元件第六章液压基本回路第七章典型液压传动系统第八章液压伺服和电液比例控制技术第九章液压系统的安装和使用第十章液压系统的故障诊断与排除第十一章气源装置及气动辅助元件第十二章气动执行元件第十三章气动控制元件第十四章气动基本回路第十五章气压传动系统实例一、液压与气压传动的研究对象液压与气压传动是以有压流体(压力油或压缩空气)为工作介质,来实现各种机械的传动和自动控制的传动形式。

液压传动传递动力大,运动平稳,但由于液体粘性大,在流动过程中阻力损失大,因而不宜作远距离传动和控制;而气压传动由于空气的可压缩性大,且工作压力低(通常在1.0MPa以下),所以传递动力不大,运动也不如液压传动平稳,但空气粘性小,传递过程中阻力小、速度快、反应灵敏,因而气压传动能用于远距离的传动和控制。

二、液压与气压传动的工作原理图0-1 液压千斤顶a)液压千斤顶原理图b)液压千斤顶简化模型1-杠杆手柄2-小缸体3-小活塞4、7-单向阀5-吸油管6、10-管道8-大活塞9-大缸体11-截止阀12-通大气式油箱1.力比例关系或(0-1)式中A1、A2分别为小活塞和大活塞的作用面积;F1为杠杆手柄作用在小活塞上的力。

在液压和气压传动中工作压力取决于负载,而与流入的流体多少无关。

2.运动关系或(0-2)式中h1、h2分别为小活塞和大活塞的位移。

●从式(O-2)可知,两活塞的位移和两活塞的面积成反比。

将A1h1=A2h2两端同除以活塞移动的时间t得:即(0-3)式中v1、v2分别为小活塞和大活塞的运动速度。

●从式(0-3)可以看出,活塞的运动速度和活塞的作用面积成反比。

(0-4)如果已知进入缸体的流量q ,则活塞的运动速度为:(0-5)●从式(O-5)可得到另一个重要的基本概念,即活塞的运动速度取决于进入液压(气压)缸(马达)的流量,而与流体压力大小无关。

液压油缸设计手册

液压油缸设计手册第一章:液压油缸概述1.1 液压油缸的定义和作用液压油缸是一种常用的液压执行元件,利用液压油在缸体中的压力变化,产生线性运动或者转动,用于实现各种机械装置的动作控制。

液压油缸广泛应用于冶金、石化、建筑、造船、机械制造等领域。

1.2 液压油缸的结构和工作原理液压油缸通常由缸体、活塞、密封件、进出油口、安装支架等组成。

其工作原理是通过控制油液的流入和流出,使得油缸内部产生一定的压力,从而驱动活塞做直线运动或旋转运动。

第二章:液压油缸设计原理2.1 液压油缸的选型原则在设计液压油缸时,应考虑载荷大小、工作环境、运动速度、活塞行程等因素,选择适合的型号和规格的液压油缸。

2.2 液压油缸的密封性能设计密封性是液压油缸的重要性能指标,设计时应考虑密封件的选择、布局和工作条件,以确保液压油缸的密封可靠性。

2.3 液压油缸的安全性设计在设计液压油缸时,应考虑其在工作过程中可能遇到的过载、压力变化、温度变化等情况,设计相应的安全保护装置和控制系统,以确保液压油缸的安全可靠运行。

第三章:液压油缸的结构设计3.1 缸体和活塞的材料选择液压油缸的缸体和活塞通常由优质碳素钢、合金钢或不锈钢制成,设计时需考虑材料的强度、刚性、耐磨性和耐腐蚀性等性能。

3.2 活塞杆的设计活塞杆是液压油缸的重要部件,设计时需考虑其长度、直径、表面硬度和表面光洁度等参数,以确保活塞杆的工作可靠性和寿命。

3.3 密封件的设计液压油缸的密封件包括活塞密封、杆密封、缸体密封等,设计时需选择适合的密封材料和结构,以确保液压油缸具有良好的密封性能。

第四章:液压油缸的应用和维护4.1 液压油缸的应用范围液压油缸广泛应用于各种工程机械、航空航天、船舶、起重装备、冶金设备等领域,可实现各种复杂机械动作的控制。

4.2 液压油缸的维护和保养液压油缸在使用过程中需要定期检查和维护,包括液压油的更换、密封件的检查、活塞杆的清洁和润滑等,以保证液压油缸的正常工作。

左健民液压与气压传动第五版课后答案1-11章

液压与气压传动课后答案(左健民)第一章液压传动基础知识1-1液压油的体积为331810m -⨯,质量为16。

1kg ,求此液压油的密度。

解: 23-3m 16.1===8.9410kg/m v 1810ρ⨯⨯ 1— 2 某液压油在大气压下的体积是335010m -⨯,当压力升高后,其体积减少到3349.910m -⨯,取油压的体积模量为700.0K Mpa =,求压力升高值。

解: ''33343049.9105010110V V V m m ---∆=-=⨯-⨯=-⨯由0P K V V ∆=-∆知: 643070010110 1.45010k V p pa Mpa V --∆⨯⨯⨯∆=-==⨯ 1- 3图示为一粘度计,若D=100mm ,d=98mm,l=200mm ,外筒转速n=8r/s 时,测得转矩T=40N ⋅cm,试求其油液的动力粘度。

解:设外筒内壁液体速度为0u08 3.140.1/ 2.512/2fu n D m s m s F TA r rlπτπ==⨯⨯===由 dudy du dyτμτμ=⇒= 两边积分得0220.422()()22 3.140.20.0980.10.0510.512a a T l d D p s p s u πμ-⨯-⨯⨯∴===1-4 用恩式粘度计测的某液压油(3850/kg m ρ=)200Ml 流过的时间为1t =153s ,20C ︒时200Ml 的蒸馏水流过的时间为2t =51s,求该液压油的恩式粘度E ︒,运动粘度ν和动力粘度μ各为多少? 解:12153351t E t ︒=== 62526.31(7.31)10/ 1.9810/E m s m s Eν--=︒-⨯=⨯︒21.6810Pa s μνρ-==⨯⋅1—5 如图所示,一具有一定真空度的容器用一根管子倒置一液面与大气相通的水槽中,液体与大气相通的水槽中,液体在管中上升的高度h=1m ,设液体的密度为31000/kg m ρ=,试求容器内真空度。

液压传动考试复习试题总汇(含答案)

液压传动考试复习题总汇(含答案)第一章绪论一、填空1.液压系统由、、、四个主要组成部分。

2.液压传动是以为传动介质,依靠液体的来传递动力。

3.液压系统工作时外界负荷,所需油液的压力也越大,反之亦然,负载为零,系统压力。

4.活塞或工作台的运动速度取决于单位时间通过节流阀进入液压缸中油液的,流量越大,系统的速度,反之亦然。

流量为零,系统速度。

5.液压元件的职能符号只表示元件的、及,不表示元件的、及连接口的实际位置和元件的。

二、判断1.液压传动不易获得很大的力和转矩。

()2.液压传动装置工作平稳。

能方便地实现无级调速,但不能快速起动、制动和频繁换向。

( )3.液压传动适宜在传动比要求严格的场合采用。

( )4.液压系统故障诊断方便、容易。

()5.液压传动适宜于远距离传动。

()第二章液压油和液压流体力学基础一、填空1.油液在外力作用下,液层间作相对运动而产生内摩擦力的性质,叫做油液的,其大小用表示。

常用的粘度有三种:即、和。

2.液体的粘度具有随温度的升高而,随压力增大而的特性。

3.各种矿物油的牌号就是该种油液在40℃时的的平均值,4.当液压系统的工作压力高。

环境温度高或运动速度较慢时,为了减少泄漏。

宜选用粘度较的液压油;当工作压力低,环境温度低或运动速度较大时,为了减少功率损失,宜选用粘度较的液压油。

5.液压系统的工作压力取决于。

6.在研究流动液体时,将既又的假想液体称为理想液体。

7.当液压缸的有效面积一定时,活塞的运动速度由决定。

8.液体的流动状态用来判断,其大小与管内液体的、和管道的有关。

9.在液压元件中,为了减少流经间隙的泄漏,应将其配合件尽量处于状态。

二、判断1.液压传动中,作用在活塞上的推力越大,活塞运动的速度越快。

()2.油液在无分支管路中稳定流动时,管路截面积大的地方流量大,截面积小的地方流量小。

()3.习题图2-1所示的充满油液的固定密封装置中,甲、乙两个用大小相等的力分别从两端去推原来静止的光滑活塞,那么两活塞将向右运动。

左健民液压与气压传动第五版课后答案1-11章

液压与气压传动课后答案(左健民)第一章液压传动基础知识1-1液压油的体积为331810m -⨯,质量为16.1kg ,求此液压油的密度。

解: 23-3m 16.1===8.9410kg/m v 1810ρ⨯⨯ 1-2 某液压油在大气压下的体积是335010m -⨯,当压力升高后,其体积减少到3349.910m -⨯,取油压的体积模量为700.0K Mpa =,求压力升高值。

解: ''33343049.9105010110V V V m m ---∆=-=⨯-⨯=-⨯由0P K V V ∆=-∆知: 643070010110 1.45010k V p pa Mpa V --∆⨯⨯⨯∆=-==⨯ 1- 3图示为一粘度计,若D=100mm ,d=98mm,l=200mm,外筒转速n=8r/s 时,测得转矩T=40N ⋅cm,试求其油液的动力粘度。

解:设外筒内壁液体速度为0u08 3.140.1/ 2.512/2fu n D m s m s F TA r rl πτπ==⨯⨯===由 dudy du dyτμτμ=⇒= 两边积分得0220.422()()22 3.140.20.0980.10.0510.512a a T l d D p s p s u πμ-⨯-⨯⨯∴===1-4 用恩式粘度计测的某液压油(3850/kg m ρ=)200Ml 流过的时间为1t =153s ,20C ︒时200Ml 的蒸馏水流过的时间为2t =51s ,求该液压油的恩式粘度E ︒,运动粘度ν和动力粘度μ各为多少? 解:12153351t E t ︒=== 62526.31(7.31)10/ 1.9810/E m s m s Eν--=︒-⨯=⨯︒ 21.6810Pa s μνρ-==⨯⋅1-5 如图所示,一具有一定真空度的容器用一根管子倒置一液面与大气相通的水槽中,液体与大气相通的水槽中,液体在管中上升的高度h=1m,设液体的密度为31000/kg m ρ=,试求容器内真空度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第4章 液压执行元件 第一节 液压马达 一、液压马达的特点及分类 液压马达是把液体的压力能转换为机械能的装置,从原理上讲,液压泵可以作液压马达用,液压马达也可作液压泵用。但事实上同类型的液压泵和液压马达虽然在结构上相似,但由于两者的工作情况不同,使得两者在结构上也有某些差异。例如: 1.液压马达一般需要正反转,所以在内部结构上应具有对称性,而液压泵一般是单方向旋转的,没有这一要求。 2.为了减小吸油阻力,减小径向力,一般液压泵的吸油口比出油口的尺寸大。而液压马达低压腔的压力稍高于大气压力,所以没有上述要求。 3.液压马达要求能在很宽的转速范围内正常工作,因此,应采用液动轴承或静压轴承。因为当马达速度很低时,若采用动压轴承,就不易形成润滑滑膜。 4.叶片泵依靠叶片跟转子一起高速旋转而产生的离心力使叶片始终贴紧定子的内表面,起封油作用,形成工作容积。若将其当马达用,必须在液压马达的叶片根部装上弹簧,以保证叶片始终贴紧定子内表面,以便马达能正常起动。 5.液压泵在结构上需保证具有自吸能力,而液压马达就没有这一要求。 6.液压马达必须具有较大的起动扭矩。所谓起动扭矩,就是马达由静止状态起动时,马达轴上所能输出的扭矩,该扭矩通常大于在同一工作压差时处于运行状态下的扭矩,所以,为了使起动扭矩尽可能接近工作状态下的扭矩,要求马达扭矩的脉动小,内部摩擦小。 由于液压马达与液压泵具有上述不同的特点,使得很多类型的液压马达和液压泵不能互逆使用。 液压马达按其额定转速分为高速和低速两大类,额定转速高于500r/min的属于高速液压马达,额定转速低于500r/min的属于低速液压马达。 高速液压马达的基本型式有齿轮式、螺杆式、叶片式和轴向柱塞式等。它们的主要特点是转速较高、转动惯量小,便于启动和制动,调速和换向的灵敏度高。通常高速液压马达的输出转矩不大(仅几十牛·米到几百牛·米),所以又称为高速小转矩液压马达。 高速液压马达的基本型式是径向柱塞式,例如单作用曲轴连杆式、液压平衡式和多作用内曲线式等。此外在轴向柱塞式、叶片式和齿轮式中也有低速的结构型式。低速液压马达的主要特点是排量大、体积大、转速低(有时可达每分种几转甚至零点几转),因此可直接与工作机构连接,不需要减速装置,使传动机构大为简化,通常低速液压马达输出转矩较大(可达几千牛顿·米到几万牛顿·米),所以又称为低速大转矩液压马达。 液压马达也可按其结构类型来分,可以分为齿轮式、叶片式、柱塞式和其他型式。 二、液压马达的性能参数 液压马达的性能参数很多。下面是液压马达的主要性能参数: 1.排量、流量和容积效率 习惯上将马达的轴每转一周,按几何尺寸计算所进入的液体容积,称为马达的排量V,有时称之为几何排量、理论排量,即不考虑泄漏损失时的排量。 液压马达的排量表示出其工作容腔的大小,它是一个重要的参数。因为液压马达在工作中输出的转矩大小是由负载转矩决定的。但是,推动同样大小的负载,工作容腔大的马达的压力要低于工作容腔小的马达的压力,所以说工作容腔的大小是液压马达工作能力的主要标志,也就是说,排量的大小是液压马达工作能力的重要标志。 根据液压动力元件的工作原理可知,马达转速n、理论流量qi与排量V之间具有下列关系 qi=nV (4-1) 式中:qi为理论流量(m3/s);n为转速(r/min);V为排量(m3/s)。 为了满足转速要求,马达实际输入流量q大于理论输入流量,则有:

q= qi+Δq (4-2) 式中:Δq为泄漏流量。 ηv=qi/q=1/(1+Δq/qi) (4-3) 所以得实际流量 q=qi/ηv (4-4) 2.液压马达输出的理论转矩 根据排量的大小,可以计算在给定压力下液压马达所能输出的转矩的大小,也可以计算在给定的负载转矩下马达的工作压力的大小。当液压马达进、出油口之间的压力差为ΔP,输入液压马达的流量为q,液压马达输出的理论转矩为Tt,角速度为ω,如果不计损失,液压马达输入的液压功率应当全部转化为液压马达输出的机械功率,即: ΔPq=Ttω (4-5) 又因为ω=2πn,所以液压马达的理论转矩为: Tt=ΔP·V/2π (4-6) 式中:ΔP为马达进出口之间的压力差。 3.液压马达的机械效率 由于液压马达内部不可避免地存在各种摩擦,实际输出的转矩T总要比理论转矩Tt小些,即: T=Ttηm (4-7) 式中:ηm为液压马达的机械效率(%)。 4.液压马达的启动机械效率ηm 液压马达的启动机械效率是指液压马达由静止状态起动时,马达实际输出的转矩T0与它在同一工作压差时的理论转矩Tt之比。即: ηm0=T/Tt (4-8) 液压马达的启动机械效率表示出其启动性能的指标。因为在同样的压力下,液压马达由静止到开始转动的启动状态的输出转矩要比运转中的转矩大,这给液压马达带载启动造成了困难,所以启动性能对液压马达是非常重要的,启动机械效率正好能反映其启动性能的高低。启动转矩降低的原因,一方面是在静止状态下的摩擦因数最大,在摩擦表面出现相对滑动后摩擦因数明显减小,另一方面也是最主要的方面是因为液压马达静止状态润滑油膜被挤掉,基本上变成了干摩擦。一旦马达开始运动,随着润滑油膜的建立,摩擦阻力立即下降, 并随滑动速度增大和油膜变厚而减小。 实际工作中都希望启动性能好一些,即希望启动转矩和启动机械效率大一些。现将不同结构形式的液压马达的启动机械效率ηm0的大致数值列入表4-1中。 表4-1 液压马达的启动机械效率 液压马达的结构形式 启动机械效率ηm0/% 齿轮马达 老结构 0.60~0.80 新结构 0.85~0.88 叶片马达 高速小扭矩型 0.75~0.85 轴向柱塞马达 滑履式 0.80~0.90 非滑履式 0.82~0.92 曲轴连杆马达 老结构 0.80~0.85 新结构 0.83~0.90 静压平衡马达 老结构 0.80~0.85 新结构 0.83~0.90 多作用内曲线马达 由横梁的滑动摩擦副传递切向力 0.90~0.94

传递切向力的部位具有滚动副 0.95~0.98 由表4-1可知,多作用内曲线马达的启动性能最好,轴向柱塞马达、曲轴连杆马达和静压平衡马达居中,叶片马达较差,而齿轮马达最差。 5.液压马达的转速 液压马达的转速取决于供液的流量和液压马达本身的排量V,可用下式计算: nt=qi/V (4-9) 式中:nt为理论转速(r/min)。 由于液压马达内部有泄漏,并不是所有进入马达的液体都推动液压马达做功,一小部分因泄漏损失掉了。所以液压马达的实际转速要比理论转速低一些。 n=nt·ηv (4-10) 式中:n为液压马达的实际转速(r/min);ηv为液压马达的容积效率(%)。 6.最低稳定转速 最低稳定转速是指液压马达在额定负载下,不出现爬行现象的最低转速。所谓爬行现象,就是当液压马达工作转速过低时,往往保持不了均匀的速度,进入时动时停的不稳定状态。 液压马达在低速时产生爬行现象的原因是: (1)摩擦力的大小不稳定。 通常的摩擦力是随速度增大而增加的,而对静止和低速区域工作的马达内部的摩擦阻力,当工作速度增大时非但不增加,反而减少,形成了所谓“负特性”的阻力。另一方面,液压马达和负载是由液压油被压缩后压力升高而被推动的,因此,可用图4-1(a)所示的物理模型表示低速区域液压马达的工作过程:以匀速v0推弹簧的一端(相当于高压下不可压缩的工作介质),使质量为m的物体(相当于马达和负载质量、转动惯量)克服“负特性”的摩擦阻力而运动。当物体静止或速度很低时阻力大,弹簧不断压缩,增加推力。只有等到弹簧压缩到其推力大于静摩擦力时才开始运动。一旦物体开始运动,阻力突然减小,物体突然加速跃动,其结果又使弹簧的压缩量减少,推力减小,物体依靠惯性前移一段路程后停止下来,直到弹簧的移动又使弹簧压缩,推力增加,物体就再一次跃动为止,形成如图4-1(b)所示的时动时停的状态,对液压马达来说,这就是爬行现象。

图4-1液压马达爬行的物理模型 (2)泄漏量大小不稳定。 液压马达的泄漏量不是每个瞬间都相同,它也随转子转动的相位角度变化作周期性波动。由于低速时进入马达的流量小,泄漏所占的比重就增大,泄漏量的不稳定就会明显地影响到参与马达工作的流量数值,从而造成转速的波动。当马达在低速运转时,其转动部分及所带的负载表现出的惯性较小,上述影响比较明显,因而出现爬行现象。 实际工作中,一般都期望最低稳定转速越小越好。 7.最高使用转速液压马达的最高使用转速主要受使用寿命和机械效率的限制,转速提高后,各运动副的磨损加剧,使用寿命降低,转速高则液压马达需要输入的流量就大,因此各过流部分的流速相应增大,压力损失也随之增加,从而使机械效率降低。 对某些液压马达,转速的提高还受到背压的限制。例如曲轴连杆式液压马达,转速提高时,回油背压必须显著增大才能保证连杆不会撞击曲轴表面,从而避免了撞击现象。随着转速的提高,回油腔所需的背压值也应随之提高。但过分的提高背压,会使液压马达的效率明显下降。为了使马达的效率不致过低,马达的转速不应太高。 8.调速范围液压马达的调速范围用最高使用转速和最低稳定转速之比表示,即: i=nmax/nmin (4-11) 三、液压马达的工作原理 常用的液压马达的结构与同类型的液压泵很相似,下面对叶片马达、轴向柱塞马达和摆动马达的工作原理作一介绍。 1.叶片马达 图4-2所示为叶片液压马达的工作原理图。

相关文档
最新文档