流体力学第十章
中科大力学教案-第十章流体力学

流体力学研究流体(气体与液体)的宏观运动与平 衡,它以流体宏观模型作为基本假说。 显然,流体的运动取决于每个粒子的运动,但若求 解每个粒子的运动即不可能也无必要。对于宏观问题, 必须在微观与宏观之间建立一座桥梁。 流体宏观模型认为流体是由无数流体元(或称流体 微团)连续地组成的(即连续介质)。所谓流体元指的 是这样的小块流体:它的大小与放置在流体中的实物比 较是微不足道的,但比分子的平均自由程却要大得多, 它包含足够多的分子,能施行统计平均求出宏观参量, 少数分子出入于流体元不会影响稳定的平均值。
变数 t; a,b,c 称为拉格朗日变数。
10.2.1 拉格朗日方法(随体法)
r = r (t ; a , b , c )
在上式中,如果固定 a,b,c 而令 t 改 变,则得某一流体质点的运动规律,该流体 质点的运动轨迹称为迹线。如果固定时间 t 而令 a,b,c 改变,则上式表示某一时刻不 同流体质点的位置分布函数。应该指出,在 拉格朗日观点中,矢径函数 r 的定义区域不 是场,因为它不是空间坐标的函数,而是质 点标号的函数。
10.2.1 拉格朗日方法(随体法)
我们约定采用 a,b,c 三个数的组合来区别流体质 点,不同的 a,b,c 代表不同的质点,于是流体质点的 运动规律可表为下列矢量形式:
r = r (t ; a , b , c )
其中 r 是流体质点的矢径。在直角坐标系中,有分量式:
流体力学-教学大纲

《流体力学》教学大纲一、课程性质与任务1.课程性质:本课程是安全工程专业的主要专业基础课程之一。
该课程的主要任务是使学生掌握流体运动的一般规律和有关的基本概念、基本原理、基本方法和一定的数值计算及实验技能,注意培养学生较好地分析和解决本专业中涉及流体力学问题的能力,为学习专业课程、从事专业技术工作或进行科学研究打下坚实的基础2.课程任务:本课程的目的是为安全工程专业学生提供学习专业课之前的重要的基础理论课程。
通过本课程的学习,要求学生能够掌握流体力学的一些基本原理,并要求能够学会理论联系实际分析和解决工程中各种流体力学方面的有关问题。
二、课程教学内容及要求注重基本理论、基本概念、基本方法的理解和掌握,只有这样才能对专业范围内的流体力学现象做出合乎实际的定性判断,进行足够精确的定量估计,正确地解决专业范围内的流体力学的设计和计算问题。
第一章绪论 (2学时)·流体力学的研究对象、任务和方法,流体力学的发展概况·作用在运动流体上的力,流体的主要力学性质,流体力学模型。
基本要求:掌握质量力、表面力、粘滞力的物理含义,研究流体力学的主要方法,流体力学模型。
重点:粘滞力的物理含义、牛顿内摩擦定律、流体的力学模型。
难点:惯性力是质量力,牛顿内摩擦定律的应用计算。
第二章流体静力学(4学时)·流体的静压强及其特性、流体静压强的分布规律、压强的计算基准和量度单位·流体平衡微分方程、液体的相对平衡·作用于平面的液体压力、作用于曲面的液体压力基本要求:流体静压强的概念、特性、分布规律;两种计算基准、量度单位;液柱测压计;作用在平面上的流体压力;作用在曲面上的流体压力;流体的平衡微分方程和相对平衡。
重点:等压面的概念,流体静压强的计算,作用在平面上的流体压力的计算。
难点:绝对压强和相对压强,作用在平面上的流体压力的计算,流体的平衡微分方程和相对平衡。
第三章流体运动学(2学时)·描述流体运动的两种方法,恒定流动和非恒定流动、流线和迹线、一元流动模型·连续性方程基本要求:描述流体运动的两种方法,基本概念,流动分类;连续性方程,重点:流线和迹线、一元流动模型难点:流线和迹线的区别,第四章流体动力学基础(6学时)流体运动微分方程、元流伯努利方程、总流能量方程及其应用·总水头线和测压管水头线总流动量方程基本要求:连续性方程,能量方程及其应用,动量方程,总水头线和测压管水头线,气流的能量方程,总压线和全压线。
《热工与流体力学基础》课件第十章 流动阻力和能量损失

5.了解非圆管的当量直径概念,了解非圆管的沿程损失计算方法。
6.理解局部损失产生的主要原因,能正确选择局部阻力系数进行局部 损失计算。
7.了解减小流动阻力的措施。
重点与难点
• 本章的重点是雷诺数及流态判断,沿程阻力系数λ的确 定,沿程损失和局部损失计算 。 • 本章的难点在于: 1.层流和湍流的概念较抽象,理解起来有一定难度, 结合雷诺实验增加感性认识,理解起来会容易些。 2.对莫迪图中的阻力分区和沿程阻力系数λ不同计算 公式的应用会有一定难度。对于经验公式只需会用即可,
不必对其来源多加探究,也不必对经验公式死记硬背,能
根据条件选用公式即可。
第一节 沿程损失和局部损失
• 流体在流动过程中受到流动阻力,由此产生能量 损失。流动阻力是造成能量损失的根本原因,而 能量损失则是流动阻力在能量消耗上的反映。 • 影响流动阻力的主要因素:
流体的黏滞性和惯性(内因) 固体边壁形状及壁面的粗糙度的阻碍和扰动作用(外因)
第十章
流动阻力和能量损失
学习导引
实际流体在流动过程中必然要克服流动阻力 而消耗一定的能量,形成能量损失。能量损失的 计算是流体力学计算的重要内容之一,也是本章 要着力解决的基本问题。本章将以恒定流为研究 对象,从介绍流体流动形态入手,分析不同流态 下能量损失产生的规律,最后给出能量损失的常 用计算公式与方法。
两种流态
临界雷诺数Rec:对应于临界流速的雷诺数。
vc d vc d Rec
Rec稳定在2000~2320,一般取Rec2000。 Re≤2000时,是层流流动; Re>2000时,是湍流流动。 雷诺数=
惯性力 ——
黏性力
Re
vd vd
例10-1 某低速送风管道,内径d200mm,风速v3m/s, 空气温度为40℃。求:(1)判断风道内气体的流动状态;
第十章 流体力学 渗流

(4) 非均质 土壤介质 等向土壤 (各向同性土壤)
均质
非等向土壤 (各向异性土壤) 等向土壤——各方向渗流特性相同的土壤。
(5) 渗 流 无压渗流——主要解决渗透流量、地下水面线计算。
有压渗流——解决渗透流量、建筑物底板所受压力, 下游出口处流速分布(校核土壤的渗
透稳定性)。
(6)渗透理论的意义:
本章仅研究 恒定渗流。
§10—2
一、达西定律
渗流基本定律——达西定律
1、装置(如图所示):
A L hw
开口直立的圆筒中,液面保持恒定,
经一段时间后,注入的流量与流出的
流量相同时,筒中的渗流为恒定出流。
2、观测现象: 筒壁上各测压管的液面随位置的降低而降低。 3、达西定律: 即:
hw J l
由于渗流流速较小,故可将测管液面差 看作是两断面的水头损失。
——井的底部在不透水层之上, 且具有自由
浸润面。
(2)自流井(承压井)
——含水层位于两个不透水层之间,且压强大 于大气压。
(3) 完全井(完整井)
——井底直达不透水层的井。
(4) 不完全井(不完整井)
——井底未达不透水层的井。
不完全普通井
不完全自流井
不透水层
不透水层
完全普通井
完全自流井
不透水层
不透水层
第十章
渗 流
重点学习内容:
•渗流定律及井的水力计算; •对渐变渗流水面曲线的定性分析作一 般了解。
简介: (1)渗流——流体在多孔介质中的流动。 (2)多孔介质——由固体骨架分隔成大量密集成群 的微小空隙所构成 的物质。 (3)地下水流动——水在土壤或岩石的空隙中流动, 称地下水流动。 地下水流动是一种复杂的运动,与水在土壤中的 存在状态(例气态水、附着水、薄膜水、毛细水、重 力水)有关,也与土壤介质的渗流特性有关。
电子教案 流体力学与流体机械--赵琴

3. 阻力系数 表面摩擦阻力
翼型阻力 压差阻力
翼型阻力大小与翼型参数、冲角大小、 Re有密切关系。
D
翼型阻力系数:
CD
1 2
v2 b
CL CD
Re CD
CL=0时CD取极小值
为提高流动性能,需特别重视翼型阻力的最小 值。实验表明,t 6% 时,其翼型阻力最小。 由于冲角对翼型阻力的影响很大,因此欲设计 获得一定升力系数而阻力最小的话,应考虑使 用有弯度的翼型。用弯度来提高升力系数所引 起的阻力增加量最小。
1
2i C f (z)dz
柯西留数定理: 假定C是一条封闭曲线,除 了C内的有限个一阶奇点外,函数f(z)在C内 和C上都是解析的。如在那些奇点上的留数 等于r1,r2,…,rn,则留数定理为
C f (z)dz 2i(r1 r2 rn )
5. 柯西公式
假定f(z)在封闭曲线C内和C上都是解析函数, 如有z0是不在C上一个点,柯西公式有:
1
2i
C
f (z) z z0
dz
0, z0在C外
f
(
z
0
),
z
0
在C内
第四节 儒可夫斯基翼型 与保角变换法
一、保角变换法求解平面势流
利用解析的复变函数 z =f(ζ)将ζ平面上的圆域变换
成z平面上的实用域。
Z
y
z
Cz
ζ
η
Cζ
o
V∞z αz
x
V∞ζ
o
αζ
ξ
注意:
保角变换过程中,同一点两个线段的夹角在变换过 程中保持不变。
va 2
e i
v e i (
a2 )
儒可夫斯基变换函数的反函数为
工程流体力学课件第10章:可压缩流体的一维流动

习题十
10311032临界状态1033极限状态104喷管中的等熵流动1041由以上分析可以看出不管当气流自亚音速变为超音速时还是当气流自超音速变为亚音速时都必须使喷管的截面积先收缩后扩大两者均有一个流速等于音速的最小截面这样的喷管称为缩放喷管convergingdivergingduct
第10章可压缩流体的一维流动
10.1 音速和马赫数 10.2 气体一维定常流动的基本方程 10.3 气体一维定常等熵流动的基本特性 10.4 喷管中的等熵流动 10.5 有摩擦等截面管内的绝热流动 10.6 激波及其形成 工程实例
第10章可压缩流体的一维流动
教学提示:气体在高速流动时必须考虑其压缩性,比如 航空航天领域、气压传动、压缩机、喷管等等,本章 重点介绍可压缩气体的一维流动,使读者了解描述可 压缩流体运动的基本知识和方法,有关可压缩气体的 深入分析可参阅有关气体动力学的文献。 教学要求:掌握音速、马赫数、气体一维定常流动的基 本方程、气体一维定常等熵流动等基本概念。
10.1.2 马赫数
a
10.1.3 微弱扰动波的传播
在这一节中,我们将分析微小扰动 (Small perturbation) 在空气中的传播特征,从而进一步说明马赫数在空气 动力学中的重要作用。我们分四种情况进行讨论。 扰动源静止不动(V=0) 微弱扰动波以音速 从扰动源0点向各个方向传播,波面在 空间中为一系列的同心球面,如图10-3所示。 扰动源以亚音速向左运动(V< a ) 当扰动源和球面扰动波同时从0点出发,经过一段时间, 因V< a ,扰动源必然落后于扰动波面一段距离,波面 在空间中为一系列不同心的球面,如图10-4所示。 扰动源以亚音速向左运动( V= a ) 扰动源和扰动波面总是同时到达,有无数的球面扰动波 面在同一点相切,如图10-5所示。在扰动源尚未到达的 左侧区域是未被扰动过的,称寂静区域。
流体力学第十章 相似原理和因次分析
例如: 粘滞力相似:由 Re m Re p 得
vmlm
m
v pl p
m p
p
vm l p 1 v p lm l
重力相似:由 Frm Frp 得
vm g m lm vp g pl p
gm g p
lp vm 1 vp lm l
由此可以看出,有时要想做到完全相似是不可能 的,只能考虑主要因素做近似模型实验。
Fm mVm vm tm 3 1 2 2 l v t l v Fp pVp v p t p
也可写成:
F 1 2 2 l v
令:
F
l v
2 2
Ne
Ne称为牛顿数, 它是作用力与 惯性力的比值。
Ne称为牛顿数,它是某种作用力与惯性 力的比值,是无量纲数。由此可知,模型 与原型的流场动力相似,它们的牛顿数必 相等。
qv g H f
f const 2 时, 2
当重力加速度 g 不变时,三角堰流量与堰
顶水头 H 的关系为:
qv CH ~ H
5 2 5 2
其中 c 只能用实验方法或其他方法确定。
【例】 不可压缩粘性流体在粗糙管内定常流动时,沿管道 的压强降 p 与管道长度 L ,内径 d ,绝对粗糙度 ,流体的平均 流速 v ,密度 和动力粘度 有关。试用瑞利法导出压强降的表 达式。 【解】 按照瑞利法可以写出压强降 p kLa d a a v a a a (b)
第三节
动力相似的准则(模型率)
一.相似准则的提出
相似原理说明两个流动系统相似必须在几何相似、 运动相似和动力相似三个方面都得到满足。 但实际应用中,并不能用定义来检验流动是否相 似,因为通常原型的流动是未知的。这就产生一个问
流体力学完整版课件全套ppt教程
阻力系数 0.4 阻力系数 0.2 阻力系数 0.137
前言
火车站台安全线
本章小结
【学习目标】 1. 理解流体力学的学科定义; 2. 了解流体力学的发展简史; 3. 熟悉流体力学的研究方法 。
工程流体力学
中国矿业大学电力学院
§1.1 流体的定义 §1.2 连续介质假说 §1.3 流体的物理性质
流体在受到外部剪切力作用时会发生变形,其内部相应会 产生对变形的抵抗,并以内摩擦力的形式表现出来。
➢ 粘性的定义
流体的粘性就是阻止发生剪切变形的一种特性,内摩擦力则 是粘性的动力表现。
§1.3 流体的物理性质
➢ 牛顿的平板实验
实验装置:2块平板,平板间充满流体。
实验过程:用力拉动液面上的平板,直 到平板匀速前进。
前言
曹冲(公元196-208年)称象
孙权 曾 致 巨 象 , 太祖欲知其斤重, 访之群下,咸莫能 出其理。冲曰: “置象大船之上, 而刻其水痕所至, 称物以载之,则校 可知矣。”太祖悦, 即施行焉。
前言
都江堰(公元前256年,李冰父子修都江堰)
战国时期,秦国蜀郡太 守李冰和他的儿子,修建 了著名的都江堰水利工程。 都江堰的整体规划是将岷 江水流分成两条,其中一 条引入成都平原,这样既 可以分洪减灾,又可以引 水灌田、变害为利。
前言
二、流体力学的研究方法
2. 实验室模拟
➢ 作用:实验模拟能显示运动特点及其主要趋势,实验结果可 检验理论的正确性。
➢ 优点:能直接解决生产中的复杂问题,能发现流动中的新现 象和新原理,它的结果可以作为检验其他方法是否正确的依 据。
➢ 缺点:对不同情况,需作不同的实验,所得结果的普适性较 差。
前言
第十章紊流
2017/9/30
西安交通大学流体力学课程组
8
时均法运算性质
设 f,
f ,g g 为紊流时均参数,
脉动参数, f , g 为瞬时参数
(1)
f f
1 f T
T 2 T t 2 t
1 fd f T
T 2 T t 2 t
d f
时均值的时均值仍为原时均值
(2) f g f g
ui ui ui ui 2ui 1 p uj uj uj uiuj t x j x j x j x j xi x j x j
2017/9/30 西安交通大学流体力学课程组 21
脉动速度方程
瞬时量方程
ui ui 2 ui 1 p uj t x j xi x j x j
ui u 1 p uj i t x j xi x j ui u u i j x j
fg f g f g
f f x x
u j x j 0
ui ui ui 2 ui 1 p uj uj t x j x j xi x j x j
ui uj ( uiuj ) ui (u iuj ) x j x j x j x j
f f f
如
2017/9/30
u u u
p p p
7
西安交通大学流体力学课程组
紊流的时间平均法
严格来说,时均平均法只适用定常紊流,实际上已推广 用于非定常紊流 定常紊流是指时均特性不随时间变化的紊流流动 将紊流流动分为两部分,即:时均流动和脉动运动
时均流动代表主流,关注的重点是时均流动特性 脉动流动反映紊流的实质,对时均流动一切特性都产生 影响
流体力学第8、10、11章课后习题
第八章 边界层理论基础一、主要内容(一)边界层的基本概念与特征1、基本概念:绕物体流动时物体壁面附近存在一个薄层,其内部存在着很大的速度梯度和漩涡,粘性影响不能忽略,我们把这一薄层称为边界层。
2、基本特征:(1)与物体的长度相比,边界层的厚度很小;(2)边界层内沿边界层厚度方向的速度变化非常急剧,即速度梯度很大; (3)边界层沿着流体流动的方向逐渐增厚;(4)由于边界层很薄,因而可以近似地认为边界层中各截面上压强等于同一截面上边界层外边界上的压强;(5)在边界层内粘性力和惯性力是同一数量级;(6)边界层内流体的流动与管内流动一样,也可以有层流和紊流2种状态。
(二)层流边界层的微分方程(普朗特边界层方程)22100y x x xy y x v pv v v v xy x y py v v x y νρ⎧∂∂∂∂+=-+⎪∂∂∂∂⎪⎪∂⎪=⎨∂⎪⎪∂∂⎪+=∂∂⎪⎩其边界条件为:在0y =处,0x y v v == 在δ=y 处,()x v v x =(三)边界层的厚度从平板表面沿外法线到流速为主流99%的距离,称为边界层的厚度,以δ表示。
边界层的厚度δ顺流逐渐加厚,因为边界的影响是随着边界的长度逐渐向流区内延伸的。
图8-1 平板边界层的厚度1、位移厚度或排挤厚度1δδδδ=-=-⎰⎰1001()(1)x x v v v dy dy v v2、动量损失厚度2δδρρ∞∞=-=-⎰⎰221()(1)x x x x v vv v v dy dy v v v(四)边界层的动量积分关系式δδρρδτ∂∂∂-=--∂∂∂⎰⎰200x x w Pv dy v v dy dx x x x对于平板上的层流边界层,在整个边界层内每一点的压强都是相同的,即P =常数。
这样,边界层的动量积分关系式变为δδτρ∞-=-⎰⎰200w x x d d v dy v v dy dx dx 二、本章难点(一)平板层流边界层的近似计算 根据三个关系式:(1)平板层流边界层的动量积分关系式;(2)层流边界层内的速度分布关系式;(3)切向应力关系式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
H H2 H1
2020/1/2415
A(串联工况点) B d(终点)
C
A2 串联时每台
机器实际运
A1 行状态点
qv
qv
串联运行工况分析:
H
两机串联性能曲线
H1 H1 H
H2 H2 H
说明两机串联运行 时均未发挥出单机 的能力。
H
H'2 HH'2 1
(单机工作点) C
A(串联工作点) B(单机工作点)
2020/1/24 6
五、单机运行时应注意的问题
1、工作点参数满足管路要求;
2、工作点处于最高效率区;
3、工作点处于稳定工作区。
H ,m
~qv
η
H~qv
管路曲线
D
NP
P~qv
2020/1/24 7
qvQ ,m 3 / h
§10-2 泵与风机的联合运行工况
一、并联运行
蒸发器
目的:在压头相同时增加流量。 应用: a、管路流量大,单台泵或风机制造困难或价格昂贵。 b、扩建,原动力设备流量不足。 c、由于外界负荷变化大,流量变化幅度大,需要通过调整 运行台数满足负荷变化。
如在M 3 、M2点,Ⅰ# 流 量为零, Ⅱ#与Ⅰ#机并联后流 量不增加;若Ⅰ# 前无逆止
阀,内产生倒流,并联后管 路流量减少。
R3 R2 M3 M2
R1 M1 Ⅰ + Ⅱ
ⅠⅡ
2020/1/2412
并联电机的选择:
长期并联运行,低负荷只运行一台设备时,应按并联时各 台机的最大流量(1/2qvM)选择设备型号,以保证在最高效率 区工作;为使电机不过载,应按单机运行时的流量(qvC)选 择电机功率。
二、串联运行
H1
H2
H = H1 + H2
目的:是在流量不变情况下增加扬程。
主要用在:
a、制造高压泵或风机比较困难; b、扩建后管路阻力增加,原设备扬程不够。
特点: qv qv1 qv 2
H = H1 + H2
2020/1/2414
串联工作点的确定:
H
两机串联性能曲线
a
b
c
H = H1 + H2
加,扬程增大。
H > H1 , H > H2 两机并联后管路内的流量并不等于每台机单独工作时 管路内的流量和。
2020/1/2410
例1:如图:A阀关闭时,系统内流量为qv2, B阀关闭时,系统内流量为qv1,
判断: 两阀同时打开时,系统内的流量。
1) qv=qv1+qv2
2) qv<qv1+qv2
机器型号按常期运行工况选择;电机按所需电机功率较大的工况配备。
H HB HC P
PC PB
管路
B
M
C
两台并联H~Q
单机H~qv
功率
η
ηB
效率
ηC
qvB qvC qvM
qv
C:单机运行工作点
B:并联运行时每台 机的工作点
单机运行参数:
qvC、HC、PC、ηC
并联时每台机参数:
qvB、HB、PB、ηB
2020/1/2413
H1 qv
管路性能曲线与泵或风机的性能曲线的交点为工作点。
2020/1/24 4
三、工作点的稳定性
当机器性能曲线与管路性能曲线有多个交点时,有的交点为 稳定工作点,有的交点为不稳定工作点。
管路曲线
qv
不稳定 工作区
稳定工作区
判断:若在交点处满足式:
dH管 dH机 dqv dqv
该交点为稳定工况点。
管路性能曲线
H
ED
C ( 并联工况点)
H2
B(单机运行工作点)
H
A(单机运行工作点)
1
qv1 qv2q1 q2
qv
qv
并联运行分析:qv1 q1 qv,qv2 q2 qv 说明两机并联运行时均未
发挥出单机的能力。
qv qv1 qv2 qv q1 q2 并联运行后流量增大,流动损失增
3) qv>qv1+qv2
蒸发器
A B
2020/1/2411
并联运行时应注意的问题: 尽量采用同型号机器并联,且台数不宜过多;
低阻抗管路更适合并联,即;流量增加比较明显;
并联后机器的工作点发生了变化,因此机器的效率发生变 化,所需电机功率也会变化;
并联运行工作点不能超出每台设备的工作范围,否则流量 不但不增加,反而减小。
2020/1/24 8
并联特点:
实际运行参数满足: H = H1 = H2
qv qv1 qv 2
并联工作点的确定:
qv1 qv2 qv
H 单台机器性能曲线
a 始点
H
ED
管路性能曲线
C ( 并联工况点) b 两台机器并联性能曲线 c
2# d
1#
q v1 qv2
qv
qv
2020/1/24 9
H
机部分扬程)。
qvM'
p2
p1
z2 z1 SH qv 2
令
H0
p2
p1
z2 z1
H H0 SHqv2 ——管路的特性方程
2020/1/24 2
开式系统 闭式系统 qv
闭式循环系统,H0=0
2020/1/24 3
二、泵或风机的工作点
H
工作点(D)
管路性能曲线 机器H~qv 性能曲线
串联后机器的工作点发生了变化,因此机器的效率发生变 化,所需电机功率也会变化;
串联运行工作点不能超出每台设备的工作范围,否则扬程
不但不增加,反而减小。
H Ⅰ+Ⅱ
如在M'点,Ⅱ#扬程为零。
若 qv >qvM' 两泵合成扬程小 于Ⅰ#泵扬程(此时若Ⅰ#机
在前,Ⅱ#机将成为Ⅰ#机压
Ⅰ
M
Ⅱ
M'
出管段上的阻力,消耗Ⅰ#
第十章 泵与风机与管路系统的匹配
第一节 管路特性曲线与泵和风机的工作点 第二节 泵谱图和风机的选择性能曲线 第五节 泵与风机的选择 第六节 泵的气蚀与安装
2020/1/24 1
§10-1 管路性能曲线及机器工作点
一、管路性能曲线
H
A2
H1
A1
q1 q2 qv
qv
H H1 H2
两机串联后总扬程 并不等于每台机单 独工作时的扬程之 和。
qv q1 , qv q2
串联运行后总扬程 增大,流量增大。
2020/1/2416
串联运行时应注意的问题:
尽量采用同型号机器串联,且台数不宜过多;
高阻抗管路更适合串联;扬程增加比较明显;
K点为不稳定工作点
qv
D点为稳定工作点
泵与风机应在稳定工作点工作 。
2020/1/24 5
四、工作点的参数 H ,m
~qv A
和额定参数
H~qv
H'
HD
D
管路曲线
P~qv
η
ηηD'
P PPD'
qv' qvD
qv , m 3/h
机器的额定参数——最高效率点A参数(qv ',H ',P ',η') 机器的实际运行参数——工作点D参数(qvD、HD、PD、ηD)