流体力学 第二章 流体静力学
合集下载
流体力学第二章 流体静力学

第二章 流体静力学
流体静力学:研究流体静止时的力学规律。 主要研究内容:研究静止流体的压强分布以及静止流体对
物体表面的作用力。 意义:流体静力学在工程中有着广泛的应用,设计挡水建
筑物、水工结构、高压容器时。都要应用流体静力学的基 本原理。 静止流体受力情况比较简单,但其分析也同样使用严格的 阿力学分析方法,掌握好这些分析方法,可为学习流体动 力学打下良好的基础。
由曲线积分
d U ( x ,y ,z ) X d x Y d y Z d z
dUUdxUdyUdz x y z
整理ppt
C2 流体静力学
2.2 流体平衡微分方程
一 欧拉平衡微分方程
可得欧拉平衡方程
f
1
p
0
d U ( x ,y ,z ) X d x Y d y Z d z
dUUdxUdyUdz x y z
这样形成在赤道处大气自下向上,然后在高空自赤道流向北极;在 北极大气自上向下,最后沿洋面自北向南吹的大气环流。通常将沿洋面 自北向南吹的风称为贸易风。
整理ppt
C2 流体静力学 五 流体静力学基本方程
2.2 流体平衡微分p 0方程z
• 单位质量流体机械能守恒式:
p z c g c z
x
h2
整理ppt
C2 流体静力学
2.1静止流体中的应力特征
特征一:应力的作用方向为作用面的内法向方向
特征二:流体中某一点的静压强 p(x,y,z) 的大小 与压强的作用面无关。
整理ppt
C2 流体静力学
2.1静止流体中的应力特征
流体特征 1:静止流体不能承受切应力,也不能承受拉应力, 只能承受压应力,即压强,压强的作用 方向为作用面的内法向方向(垂直指向作用面)。
流体静力学:研究流体静止时的力学规律。 主要研究内容:研究静止流体的压强分布以及静止流体对
物体表面的作用力。 意义:流体静力学在工程中有着广泛的应用,设计挡水建
筑物、水工结构、高压容器时。都要应用流体静力学的基 本原理。 静止流体受力情况比较简单,但其分析也同样使用严格的 阿力学分析方法,掌握好这些分析方法,可为学习流体动 力学打下良好的基础。
由曲线积分
d U ( x ,y ,z ) X d x Y d y Z d z
dUUdxUdyUdz x y z
整理ppt
C2 流体静力学
2.2 流体平衡微分方程
一 欧拉平衡微分方程
可得欧拉平衡方程
f
1
p
0
d U ( x ,y ,z ) X d x Y d y Z d z
dUUdxUdyUdz x y z
这样形成在赤道处大气自下向上,然后在高空自赤道流向北极;在 北极大气自上向下,最后沿洋面自北向南吹的大气环流。通常将沿洋面 自北向南吹的风称为贸易风。
整理ppt
C2 流体静力学 五 流体静力学基本方程
2.2 流体平衡微分p 0方程z
• 单位质量流体机械能守恒式:
p z c g c z
x
h2
整理ppt
C2 流体静力学
2.1静止流体中的应力特征
特征一:应力的作用方向为作用面的内法向方向
特征二:流体中某一点的静压强 p(x,y,z) 的大小 与压强的作用面无关。
整理ppt
C2 流体静力学
2.1静止流体中的应力特征
流体特征 1:静止流体不能承受切应力,也不能承受拉应力, 只能承受压应力,即压强,压强的作用 方向为作用面的内法向方向(垂直指向作用面)。
工程流体力学第2章流体静力学

① 沿任意方向 ② 沿外法线方向
有切向分力 流体受拉力
都将破坏流体平衡。
这与静止前提不符,故假设不成立,则原命题成立。
①
②
4
第2章 流体静力学
特性二、静止流体中任何一点上各个方向的静压力大小相等,与作用面方位无关。
证明:采用微元体分析法 ① 取微单元体
在静止流体中,在O点附近取出各边长分别 为dx、dy、dz的微小四面体OABC。相应坐标 轴为x、y、z。
第2章 流体静力学
流体静力学:研究流体在静止状态下的平衡规律及其应用。 静止:流体质点相对于参考系没有运动,质点之间也没有相对运动。 静止状态包括两种情况: 1、绝对静止:流体整体对地球没有相对运动。
2、相对静止:流体整体对地球有运动,但流体各质点之间没有相对运动。
举例:
绝对静止
等加速水平直线运动 等角速定轴转动
2
第2章 流体静力学
§2.1 流体静压力及其特性
1、静压力的概念
(1)静压力:静止流体作用在单位面积上的压力,称为静压力,或静压强。记作“p”
一点的静压力表示方法:
设静止流体中某一点m,围绕该点取一微小作用面积A,其上压力为P,则: 平均静压力: p P
A
m点的静压力:p lim P
单位:
A0 A
m
国际单位:Pa
物理单位:dyn/cm2
工程单位:kgf/m2
混合单位:1大气压(工程大气压) = 1kgf/cm2
(2)总压力:作用在某一面积上的总静压力,称为总压力。记作“P”
单位:N
3
第2章 流体静力学
2、静压力的两个重要特性
特性一、静压力方向永远沿着作用面内法线方向。
工程流体力学 第二章 流体静力学201012

Y = ω 2 r sin α = ω 2 y Z = −g
z ω
1.等压面方程 1.等压面方程
dp = ω 2 xdx + ω 2 ydy − gdz = 0
⇓ 积分
ω 2 x2
2 +
p0
o
m
h z
zs y
ω 2 y2
2
− gz = C
ω 2r 2
2
− gz = C
等压面是一簇绕z轴的旋转抛物面。 等压面是一簇绕z轴的旋转抛物面。 自由液面: 自由液面: x=0 z=0 C=0
z g p0
2
⇒
dp = ρ(Xdx +Ydy + Zdz)
dp = −ρgdz
p2
p1
1
⇒
dp dz + =0 ρg
z1
z2
积分得: 积分得:
p z+ =C ρg
o
p p z1 + 1 = z2 + 2 ρg ρg
基准面
x
2.物理意义 2.物理意义
z+ p =C ρg
总 势 能
3.几何意义 3.几何意义
o y
αr
y x ω2y ω2r
⇓
zs =
ω 2r 2
2g
x
ω2x
二、等角速旋转容器中液体的相对平衡
2. 静压强分布规律
dp = ρ (ω 2 xdx + ω 2 ydy − gdz )
z ω
⇓ 积分
p = ρ(
ω 2x2
2
+
ω 2 y2
2
− gz ) + C
p = ρg (
ω 2r 2
z ω
1.等压面方程 1.等压面方程
dp = ω 2 xdx + ω 2 ydy − gdz = 0
⇓ 积分
ω 2 x2
2 +
p0
o
m
h z
zs y
ω 2 y2
2
− gz = C
ω 2r 2
2
− gz = C
等压面是一簇绕z轴的旋转抛物面。 等压面是一簇绕z轴的旋转抛物面。 自由液面: 自由液面: x=0 z=0 C=0
z g p0
2
⇒
dp = ρ(Xdx +Ydy + Zdz)
dp = −ρgdz
p2
p1
1
⇒
dp dz + =0 ρg
z1
z2
积分得: 积分得:
p z+ =C ρg
o
p p z1 + 1 = z2 + 2 ρg ρg
基准面
x
2.物理意义 2.物理意义
z+ p =C ρg
总 势 能
3.几何意义 3.几何意义
o y
αr
y x ω2y ω2r
⇓
zs =
ω 2r 2
2g
x
ω2x
二、等角速旋转容器中液体的相对平衡
2. 静压强分布规律
dp = ρ (ω 2 xdx + ω 2 ydy − gdz )
z ω
⇓ 积分
p = ρ(
ω 2x2
2
+
ω 2 y2
2
− gz ) + C
p = ρg (
ω 2r 2
流体力学第二章流体静力学

第二章 流体静力学
❖ 流体静力学研究流体的平衡规律,由平衡条 件求静压强分布规律,并求静水总压力。
❖静止是一个相对概念,指流体相对于地球无 运动的绝对平衡和流体相对于地球运动但质点 之间、质点与容器之间无运动的相对平衡。
❖流体质点之间没有相对运动,意味着粘性将 不起作用,所以流体静力学的讨论不须区分流 体是实际流体或理想流体。
pA mhm a
p1左 pA a p1右 mh
2.5.3水银压差计
即使在连通的 静止流体区域中 任何一点的压强 都不知道,也可 利用流体的平衡 规律,知道其中 任何二点的压 差,这就是比压 计的测量原理。
p1左 pA ( z A hm ) p1右 pB mhm zB
面,自由表面上压强为大气压,则液面
以下 h 处的相对压强为 γh ,所以在
液体指定以后,高度也可度量压强,称 为 液 柱 高 , 例 如 : ××m(H2O) , ××mm(Hg) 等。特别地,将水柱高称 为水头。
p=0 h
ph
98 kN/m2=一个工程大气压=10 m(H2O)=736 mm(Hg)
任意形状平面上的静水总压力大 小,等于受压面面积与其形心点 压强的乘积。
2.静水总压力的方向垂直并指 向受压面
3.总压力P的作用点
根据合力矩定理,对x轴
PyD ydP
yy sin dA sin y2dA
p
1 2
p x
dx
dydz
p
1 2
p x
dx
dydz
X
dxdydz
0
化简得:
X 1 p 0
x
Y,z方向可得:
Y Z
1
1
p y p
0
❖ 流体静力学研究流体的平衡规律,由平衡条 件求静压强分布规律,并求静水总压力。
❖静止是一个相对概念,指流体相对于地球无 运动的绝对平衡和流体相对于地球运动但质点 之间、质点与容器之间无运动的相对平衡。
❖流体质点之间没有相对运动,意味着粘性将 不起作用,所以流体静力学的讨论不须区分流 体是实际流体或理想流体。
pA mhm a
p1左 pA a p1右 mh
2.5.3水银压差计
即使在连通的 静止流体区域中 任何一点的压强 都不知道,也可 利用流体的平衡 规律,知道其中 任何二点的压 差,这就是比压 计的测量原理。
p1左 pA ( z A hm ) p1右 pB mhm zB
面,自由表面上压强为大气压,则液面
以下 h 处的相对压强为 γh ,所以在
液体指定以后,高度也可度量压强,称 为 液 柱 高 , 例 如 : ××m(H2O) , ××mm(Hg) 等。特别地,将水柱高称 为水头。
p=0 h
ph
98 kN/m2=一个工程大气压=10 m(H2O)=736 mm(Hg)
任意形状平面上的静水总压力大 小,等于受压面面积与其形心点 压强的乘积。
2.静水总压力的方向垂直并指 向受压面
3.总压力P的作用点
根据合力矩定理,对x轴
PyD ydP
yy sin dA sin y2dA
p
1 2
p x
dx
dydz
p
1 2
p x
dx
dydz
X
dxdydz
0
化简得:
X 1 p 0
x
Y,z方向可得:
Y Z
1
1
p y p
0
流体力学(流体静力学)

f (x)
f (x0 )
f (x0 )(!
)
(
x
x0
)
2
f
(n) (x0 n!
)
(x
x0
)n
按泰勒级数展开,把M、N点旳静压强写成
p 1
1 p
pM
p [(x dx) x] x 2
p 2
dx x
p 1
1 p
pN
p
[(x x
dx) x] 2
p
2
dx x
其中 p 为压力在x方向旳变化率。因为微元体旳面积取得足够小,
p1 p2
证明:从静止状态旳流体中引入直角坐标系中二维流体微元来
阐明。
设 y 方向宽度为1。ds 即表达任意方向微元表面。
分析 z 方向旳力平衡
表面力:
p1dscosθ=p1dx和p2dx两个力 二维流体微元旳体积:
z
dV 1 dxdz 2
质量力:
p1ds
ds dz x
θ dx
p3dz
y
Fz
1 2
dp =ρ1dU dp =ρ2dU 因为ρ1≠ρ2 且都不等于零,所以只有当dp和dU均为零时方程 式才干成立。所以其分界面必为等压面或等势面。
§2-4 流体静力学基本方程
重力作用下压力分布 相对平衡液体旳压力分布
§2—4 流体静力学基本方程
一、重力作用下压强分布
如图所示为一开口容器,其中盛有密度为ρ旳静止旳均匀液体 ,液体所受旳质量力只有重力,又ρ=常数,重度γ=ρg也为常数。 单位质量力在各坐标轴上旳分量为
(1)
Z 1 p 0
z
上式称为流体平衡微分方程式,它是 Euler在1755年首先提出 旳,故又称欧拉平衡方程式。它表达流体在质量力和表面力作用下 旳平衡条件。
流体力学--第二章流体静力学

1 Px p x dydz 2
1 Py p y dxdz 2
1 P p dA Pz pz dydx 2 Y 设 X 、 、Z 分别为沿三个坐标轴方向上的单位
质量力,则沿三个方向上的质量力分别为:
1 1 1 Fx X dxdydz Fy Y dxdydz Fz Z dxdydz 6 6 6
Fx 0, p x
其中
1 dA cos(n, x) dydz 2 1 dA cos(n, y ) dzdx 2 1 dA cos(n, z ) dydx 2
px p y pz p
结论
由于斜平面ABC的方位是任意的,上式即证明 了在同一点处各个方向上的静压强值是相等 的。
pn
静压强
p
α
pt
图2-2
切向压强
假 设: 在静止流体中,流体静压强方向不与作用面 相垂直,与作用面的切线方向成α角 则存在
切向压强pt
法向压强pn
流体流动
与假设静止流体相矛盾
A
B
C
D
E
F
(2)静压强的各向等值性:静止流体内任意一点处 沿各个方向上的静压强大小相等,即
px p y pz p
dA
dAz
dAx
b
z
dA
微小面积上的微压力
dP ghdA
水平总压力
分解
dPx dp cos ghdA cos
dPz dp sin ghdA sin
Px dPx ghdA cos g hdAx ghC Ax
2 2
y
o
A g
x
1 Py p y dxdz 2
1 P p dA Pz pz dydx 2 Y 设 X 、 、Z 分别为沿三个坐标轴方向上的单位
质量力,则沿三个方向上的质量力分别为:
1 1 1 Fx X dxdydz Fy Y dxdydz Fz Z dxdydz 6 6 6
Fx 0, p x
其中
1 dA cos(n, x) dydz 2 1 dA cos(n, y ) dzdx 2 1 dA cos(n, z ) dydx 2
px p y pz p
结论
由于斜平面ABC的方位是任意的,上式即证明 了在同一点处各个方向上的静压强值是相等 的。
pn
静压强
p
α
pt
图2-2
切向压强
假 设: 在静止流体中,流体静压强方向不与作用面 相垂直,与作用面的切线方向成α角 则存在
切向压强pt
法向压强pn
流体流动
与假设静止流体相矛盾
A
B
C
D
E
F
(2)静压强的各向等值性:静止流体内任意一点处 沿各个方向上的静压强大小相等,即
px p y pz p
dA
dAz
dAx
b
z
dA
微小面积上的微压力
dP ghdA
水平总压力
分解
dPx dp cos ghdA cos
dPz dp sin ghdA sin
Px dPx ghdA cos g hdAx ghC Ax
2 2
y
o
A g
x
流体力学-第二章

二、解析法 求解作用在任意平面上的液体总压力
二、解析法 求解作用在任意平面上的液体总压力 作用在dA面积上的液体总压力为 作用在 面积上的液体总压力为 作用在整个受压平面面积为A上的液体总压力为 作用在整个受压平面面积为 上的液体总压力为
作用在任意形状平面上的液体总压力大小, 作用在任意形状平面上的液体总压力大小,等于该平面的淹没 面积与其形心处静压强的乘积, 面积与其形心处静压强的乘积,而形心处的静压强就是整个受 压平面上的平均压强。 压平面上的平均压强。 总压力的方向垂直于平面,并指向平面。 总压力的方向垂直于平面,并指向平面。
ω
旋转
等压面方程
自由表面方程
第五节 一、图解法
作用在平面上的液体总压力来自液体总压力的方向垂直于矩形平面,并指向平面, 液体总压力的方向垂直于矩形平面,并指向平面,液体总压力的 作用线通过静压强分布图体积的重心。 作用线通过静压强分布图体积的重心。液体总压力作用线与矩形 平面相交的作用点D称为压力中心 称为压力中心。 平面相交的作用点 称为压力中心。
三、流体静力学基本方程的物理意义和几何意义 1. 流体静力学基本方程的物理意义
Z:单位重量流体从某一基准面算起所 : 具有的位能,因为是对单位重量而言, 具有的位能,因为是对单位重量而言, 所以称单位位能。 所以称单位位能。
:单位重量流体所具有的压能,称 单位重量流体所具有的压能, 单位压能。 单位压能。
等压面方程
三、等压面 帕斯卡定 律 等压面方程 当流体质点沿等压面移动距离ds时 质量力所作的微功为零。 当流体质点沿等压面移动距离ds时,质量力所作的微功为零。 ds 因为质量力和位移ds都不为零,所以等压面和质量力正交。 ds都不为零 因为质量力和位移ds都不为零,所以等压面和质量力正交。 这是等压面的一个重要特性。 这是等压面的一个重要特性。
流体力学第二章流体静力学

2.2.2 流体平衡微分方程的积分
各式分别乘以dx、dy、dz然后相加
dp ( Xdx Ydy Zdz ) 流体平衡微分方程的综合式
静压强的分布规律完全由单位质量力决定
p gz c
由边界条件确定积分常数c,可得:
p c z g g p z C g
一封闭水箱,自由表上 面气体绝对压强
2 p 0为78kN/m , 求 液 面 下 淹 没 深 度 h为 1.5m
处 点 C的 绝 对 静 水 压 强 , 相对 静 水 压 强 和 真 空 度 。
解:p
abs
p 0 γ w h 78 9.8 1.5
92.7kN/m
2
pr pa b s pa t
静止流体中等压面是水平面。但静止流体中的水平面不一定 都是等压面,静止流体中水平面是等压面必须同时满足静止、同 种流体且相互连通的条件,三个条件缺一不可。
2.3.3 流体静力学基本方程的意义
•
在静水压强分布公式 z p C 中,各项都为长度量纲。
位置水头(水头) : Z 位置势能(位能): Z
法向应力沿内法线方向,即受压的方向
(流体不能受拉),即:流体静压强的方 向总是垂直指向受压面。
•
静压强的大小与作用面的方向无关
在静止流体中取出以M 为顶点的四面体流体微元,它受到的
质量力和表面力必是平衡的,以 y 方向为例,写出平衡方程。
p y d Ay pn d An cos(n, y) Y d V 0
时,注意到质量力比起表面 力为高阶无穷小,即得 pn=py,同理有 pn=px,pn=pz
o
z
py
dz
px pn
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章 流体静力学
流体静力学研究流体在静止状态下的力学 规律.由于静止状态下,流体只存在压应 力,简称压强,因此,流体静力学这一章 以压强为中心,阐述静压强的特性,静压 强的分布规律,以及作用面上总压力的计 算.
1 静止流体中应力的特性 2 流体平衡微分方程
3 重力场中流体静压强的分布规律
4 流体的相对平衡 5 液体作用在平面上的总压力 6 液体作用在曲面上的总压
特性一:应力的方向沿作用面的内法线方 向. 特性二:静压强的大小与作用面方位无关.
p x = p y = p z = pn
1.欧拉方程
X 1 p =0 ρ x
1 p Y =0 ρ y
1 p Z =0 ρ z
2. 全微分方程
dp = ρ( Xdx+ Ydy+ Zdz)
自然界常见的质量力是重力,因此,在 流体平衡一般规律的基础上,研究重力作 用下流体静压强的分布规律,更有实用意 义. 等压面:压强相等的空间点构成的面 性质:
f dl = 0
基本方程: 基本方程 1 p = p 0 + ρgh 2
p z+ =c ρg
气体压强的分布 1.对流层
z p = 101.31 44300
50256
KPa
2. 同温层
11000 z p = 22.6 exp 6334
压强的度量 1.绝对压强和相对压强 绝对压强以无气体分子存在的完全真空为 基准起算的压强. 相对压强是以当地大气压为基准起算的压 强.
Ic y D = yc + yc A
§2.6 液体作用在曲面上的总压
实际的工程曲面,如圆形贮水池壁面, 圆管壁面,弧形闸门以及球形容器等,多 为二向曲线(柱面)或球面.本节着重讨 论液体作用在二向曲面上的总压力.
水平分力 铅垂分力 合力
Px = p c Ax
Pz = ρgV
P = Px2 + Py2
p ρg
p z+ ρg
称为测压管高度或压强水头.
称为测压管水头. 2.真空高度
pv hv = ρg
[例2-2] 密闭容器(图2-9),侧壁上方装 有U形管水银测压计,读值hP=20cm.试 求安装在水面下3.5m处的压力表读值.
[例2-3] 用U形管水银压差计测量水管A,B 两点的压强差(图2-10).已知两测点的 高差△z=0.4m,压差计的读值hP = 0.2 m. 试求A,B两点的压强差和测压管水头差.
p = p abs p a
2.真空度 当绝对压强小于当地大气压,相对压强便 是负值,又称负压,这种状态用真空度来 度量.
p v = p a p abs = p
[例2-1] 立置在水池中的密封罩(如图2-6) 所示,z 称为位置高度或位置水头.
工程上除要确定点压强之外,还需确定 流体作用在受压面上的总压力.对于气体, 因各点的压强相等,总压力的大小等于压 强与受压面面积的乘积.对于液体,因不 同高度压强不等,计算总压力必须考虑压 强的分布.计算液体总压力,实质是求受 压面上分布的合力.
1.总压力的大小和方向
P = pc A
2.总压力的作用点
典型二类问题 1.直线 2.旋转
[例2-4] 水车沿直线等加速度行驶,水箱长 =3m,高H=1.8m,盛水深h=1.2m(图2-11). 试求确保水不溢出,加速度的允许值.
例2-5 如图2-12图所示,一个开口的圆柱 形容器,高为H,底面半径为R,旋转前盛 满水.现以等角速度 ω 绕其铅直轴旋转. 1.证明液体随容器作等角速度旋转时,液体 的等压面是旋转抛物面; 2.当容器停止旋转时,剩余的水的深度仅 为 1 H (n ≥ 2 ) ,求 ω 的值. n
总压力作用线与水平面夹角
Pz θ = arctan Px
压力体
1.实压力体 2.虚压力体 3.混合压力体
�
流体静力学研究流体在静止状态下的力学 规律.由于静止状态下,流体只存在压应 力,简称压强,因此,流体静力学这一章 以压强为中心,阐述静压强的特性,静压 强的分布规律,以及作用面上总压力的计 算.
1 静止流体中应力的特性 2 流体平衡微分方程
3 重力场中流体静压强的分布规律
4 流体的相对平衡 5 液体作用在平面上的总压力 6 液体作用在曲面上的总压
特性一:应力的方向沿作用面的内法线方 向. 特性二:静压强的大小与作用面方位无关.
p x = p y = p z = pn
1.欧拉方程
X 1 p =0 ρ x
1 p Y =0 ρ y
1 p Z =0 ρ z
2. 全微分方程
dp = ρ( Xdx+ Ydy+ Zdz)
自然界常见的质量力是重力,因此,在 流体平衡一般规律的基础上,研究重力作 用下流体静压强的分布规律,更有实用意 义. 等压面:压强相等的空间点构成的面 性质:
f dl = 0
基本方程: 基本方程 1 p = p 0 + ρgh 2
p z+ =c ρg
气体压强的分布 1.对流层
z p = 101.31 44300
50256
KPa
2. 同温层
11000 z p = 22.6 exp 6334
压强的度量 1.绝对压强和相对压强 绝对压强以无气体分子存在的完全真空为 基准起算的压强. 相对压强是以当地大气压为基准起算的压 强.
Ic y D = yc + yc A
§2.6 液体作用在曲面上的总压
实际的工程曲面,如圆形贮水池壁面, 圆管壁面,弧形闸门以及球形容器等,多 为二向曲线(柱面)或球面.本节着重讨 论液体作用在二向曲面上的总压力.
水平分力 铅垂分力 合力
Px = p c Ax
Pz = ρgV
P = Px2 + Py2
p ρg
p z+ ρg
称为测压管高度或压强水头.
称为测压管水头. 2.真空高度
pv hv = ρg
[例2-2] 密闭容器(图2-9),侧壁上方装 有U形管水银测压计,读值hP=20cm.试 求安装在水面下3.5m处的压力表读值.
[例2-3] 用U形管水银压差计测量水管A,B 两点的压强差(图2-10).已知两测点的 高差△z=0.4m,压差计的读值hP = 0.2 m. 试求A,B两点的压强差和测压管水头差.
p = p abs p a
2.真空度 当绝对压强小于当地大气压,相对压强便 是负值,又称负压,这种状态用真空度来 度量.
p v = p a p abs = p
[例2-1] 立置在水池中的密封罩(如图2-6) 所示,z 称为位置高度或位置水头.
工程上除要确定点压强之外,还需确定 流体作用在受压面上的总压力.对于气体, 因各点的压强相等,总压力的大小等于压 强与受压面面积的乘积.对于液体,因不 同高度压强不等,计算总压力必须考虑压 强的分布.计算液体总压力,实质是求受 压面上分布的合力.
1.总压力的大小和方向
P = pc A
2.总压力的作用点
典型二类问题 1.直线 2.旋转
[例2-4] 水车沿直线等加速度行驶,水箱长 =3m,高H=1.8m,盛水深h=1.2m(图2-11). 试求确保水不溢出,加速度的允许值.
例2-5 如图2-12图所示,一个开口的圆柱 形容器,高为H,底面半径为R,旋转前盛 满水.现以等角速度 ω 绕其铅直轴旋转. 1.证明液体随容器作等角速度旋转时,液体 的等压面是旋转抛物面; 2.当容器停止旋转时,剩余的水的深度仅 为 1 H (n ≥ 2 ) ,求 ω 的值. n
总压力作用线与水平面夹角
Pz θ = arctan Px
压力体
1.实压力体 2.虚压力体 3.混合压力体
�