软件无线电技术
软件无线电技术

第四代移动通信技术之软件无线电技术【摘要】软件无线电是目前无线通信领域在固定至移动、模拟至数字之后的最新革命,其正朝着产业化、全球化的方向发展,将在4G系统中得到广泛应用。
本文主要研究软件无线电技术对通信传输的改善以及4G系统中软件无线技术的应用特点等。
一、引言软件无线电提供了一条满足未来个人通信需要的思路。
软件无线电突破了传统的无线电台以功能单一、可扩展性差的硬件为核心的设计局限性,强调以开放性的最简硬件为通用平台,尽可能地用可升级、可重配置不同的应用软件来实现各种无线电功能的设计新思路。
其中心思想是:构造一个具有开放性、标准化、模块化的通用硬件平台,将各种功能,如工作频段、调制解调类型、数据格式、加密模式、通信协议等用软件来完成,并使宽带A/D和D/A转换器尽可能靠近天线,以研制出具有高度灵活性、开放性的新一代无线通信系统。
图一、软件无线电原理框图 1二、简介软件无线电(SWR)技术是近年来提出的一种实现无线通信的新的体系结构,它的基本概念是把硬件作为无线通信的基本平台,而把尽可能多的无线通信及个人通信功能用软件实现。
1、WLAN与蓝牙融入广域网近年来各国都在积极进行4G的技术研究,从欧盟的WINNER项目到我国的“FuTURE计划”都是直接面向4G的研究。
日本对4G技术的研究在全球范围内一直处于领先地位,早在2004年,运营商NTTdocomo就进行了1Gbit/s传输速率的试验。
目前还没有4G的确切定义,但比较认同的解释是:4G采用全数字技术,支持分组交换,将WLAN、蓝牙技术等局域网技术融入广域网中,具有非对称的和超过100Mbit/s的数据传输能力,同时,因为采用高度分散的IP网络结构,使得终端具有智能和可扩展性。
4G系统将融合现有的各种无线接入技术,包括蜂窝、卫星、WLAN、蓝牙、Ad-hoc、DAB/DVB(数字音频和视频广播)、WAP等。
这些技术的融合将使4G成为一个无缝连接的统一系统,实现跨系统的全球漫游及业务的可携带性。
基于软件无线电技术的通信信号接收与数据采集系统研究

基于软件无线电技术的通信信号接收与数据采集系统研究近年来,随着移动通信技术的快速发展,软件无线电技术成为了通信技术领域的一种重要技术手段。
软件无线电技术利用数字信号处理和计算机技术对无线电信号进行处理和解码,使得通信系统的灵活性和可控性大大提高。
在这其中,通信信号接收与数据采集系统是软件无线电技术的核心。
本文将介绍基于软件无线电技术的通信信号接收与数据采集系统的研究。
一、系统概述基于软件无线电技术的通信信号接收与数据采集系统,是由无线电信号接收模块、信号解码模块和数据采集模块三部分组成的。
其中,无线电信号接收模块主要负责接收各种无线电信号,信号解码模块则将接收到的模拟信号转化为数字信号,实现信号的解码与处理,数据采集模块则用于将处理后的数据存储和分析。
二、系统原理基于软件无线电技术的通信信号接收与数据采集系统,其原理主要基于无线电波的传输和数字信号处理技术。
无线电信号接收模块通过使用射频前端芯片,将接收到的信号转换成中频信号,再通过模数转换器将中频信号转换成数字信号。
信号解码模块分为信号解调和解码两个部分。
信号解调部分是将数字信号解调为基带信号,解码部分是将基带信号进行解码,生成有用的信息。
数据采集模块将解码后的数据进行存储和分析,实现数据的处理和应用。
三、系统特点基于软件无线电技术的通信信号接收与数据采集系统,具有以下特点:1、适用范围广。
该系统可适用于几乎所有的通信信号接收及数据采集,包括载波、数字信号等。
2、信号采集高精度。
系统采用高速、高精度的采样器,能够对信号进行高效率的采集和处理。
3、软件调控灵活。
系统的控制软件采用模块化设计,可以方便地进行扩展和修改,以适应各种不同的应用场景。
四、应用领域基于软件无线电技术的通信信号接收与数据采集系统,其应用领域非常广泛。
例如,可以用于气象探测、地震监测、无线电侦听等领域。
同时,也可以在航空航天、通信、军事等领域中得到广泛的应用。
总之,基于软件无线电技术的通信信号接收与数据采集系统,是一种具有广泛应用前景的新兴技术。
软件定义无线电技术及其应用研究

软件定义无线电技术及其应用研究导言在现代科技的发展中,无线电技术的应用越来越广泛。
软件定义无线电技术是一种利用计算机软件实现无线电信号的接收、处理和发射的技术,在军事、民用、科研等各领域中得到了广泛应用。
本文将从软件定义无线电技术的基本原理、优势以及应用场景三个方面进行阐述,并且探讨软件定义无线电技术未来可能的发展方向。
一、软件定义无线电技术的基本原理软件定义无线电技术是一种软硬件相结合的无线电通信技术。
与传统的无线电通信技术相比,软件定义无线电技术更加智能化、灵活化。
其基本原理是利用计算机软件来实现对无线电信号的接收、处理、发射等功能。
具体而言,它是通过把模拟信号转换成数字信号来实现的。
软件定义无线电技术的关键技术包括数字信号处理技术、通信协议栈技术、软件无线电技术、射频前端技术等。
其中,软件无线电技术是软件定义无线电技术的核心技术,它是实现软件定义无线电技术的重要手段。
二、软件定义无线电技术的优势相比较传统的无线电技术,软件定义无线电技术有着明显的优势。
首先,软件无线电技术可以实现“万能无线电”:只需要用一种硬件设备,通过软件调节可以完成多个无线电通信系统的通信。
其次,软件定义无线电技术能够更加有效地利用频谱资源。
通过软件调节和规划频谱,可以减少频谱碎片化,提高频谱利用率,实现更高的频谱效率。
再次,软件定义无线电技术可以提高无线电通信系统的灵活性。
由于软件的可编程性,可以快速实现新的无线电通信方案,同时也能够快速响应市场需求。
最后,软件定义无线电技术适应性强,无论是在军事、民用、科研等领域都有极其广泛的应用前景。
三、软件定义无线电技术在应用中的场景1.军事领域在军事领域,软件定义无线电技术无疑要比传统的无线电技术更优越。
其可以大大降低军事通信系统的开发成本和时间,同时提供更高的安全性和机密性,更好的适应不同场景下的作战需求。
另外,软件定义无线电技术可以很好的满足多标准通信要求。
在多机协同作战中,高度的频谱资源利用效率和均衡分配可以有效提高部队协作的效率。
浅析软件无线电发展现状及关键技术的研究报告

浅析软件无线电发展现状及关键技术的研究报告软件无线电是基于计算机软件的数字信号处理技术,实现无线电通信的新型技术。
与传统的硬件无线电相比,它具有灵活性、可扩展性、可重构性、可编程性等优点,可以适应不同频段、不同协议的要求,为无线电通信技术发展提供了全新的思路。
目前,软件无线电技术已经得到了广泛的应用,包括通信、雷达、导航等领域。
在通信领域,软件无线电技术可以实现无线网络的优化和管理、卫星通信、无线电广播等应用。
在雷达领域,软件无线电技术可以实现目标探测、跟踪和识别等功能。
在导航领域,软件无线电技术可以实现精确定位和导航功能。
当前,软件无线电技术的瓶颈主要在于以下几个方面:1. 软件无线电系统的复杂度:软件无线电实现的功能越多,所需软件的复杂性就越高。
因此,研发一个较为复杂的软件无线电系统需要投入大量的人力、物力和时间。
2. 实时处理:软件无线电处理过程中,需要较高的实时性和稳定性。
但是当软件无线电系统的计算量增大时,会出现处理速度慢、处理延迟高等问题。
3. 带宽限制:软件无线电处理数据的速度和处理带宽在一定程度上受到计算机硬件配置和通信网络带宽的限制。
为了突破这些瓶颈,目前的软件无线电技术研究主要集中在以下几个方面:1. 基于并行计算的设计:通过在不同的计算机上分别运行软件无线电处理模块,可以缓解计算量大、处理速度慢的问题。
2. 优化算法的设计:研究新的处理算法,能够在保证处理速度的同时,保证数据处理的精度和可靠性。
3. 增加硬件对软件无线电的支持:将计算机和无线电硬件模块相结合,提高软件无线电系统的实时性和可靠性。
4. 引入人工智能技术:采用人工智能技术,增强软件无线电系统的自适应能力和自学习能力,提高系统性能和可靠性。
总之,软件无线电技术发展的趋势是不断完善和优化软件算法、结合计算机和硬件模块的设计、增强自适应能力和自学习能力以及跨平台技术的发展。
随着软件无线电技术不断的完善和优化,将会有更多的应用场景被开发出来,它的发展前景非常广阔。
软件定义无线电技术的发展趋势

软件定义无线电技术的发展趋势随着无线电技术的不断发展,软件定义无线电技术正成为未来无线通信的重要发展趋势。
软件定义无线电技术基于软件定义网络(SDN)和网络功能虚拟化(NFV)的原理,通过可编程硬件和软件端口来实现的无线电通信方式。
与传统的硬件电路不同,软件定义无线电技术采用可编程的硬件和通用软件,能够适应不同的无线电通信需求,实现快速部署和更新,具有极高的灵活性和可扩展性。
近年来,软件定义无线电技术在军事、航空航天、公共安全和商业通信等领域得到广泛应用。
例如,在军事通信领域,软件定义无线电技术能够实现全频段、全模式覆盖,支持多种业务和多种协议,具有较高的隐蔽性和干扰抵抗能力,能够满足复杂多变的战场通信需求。
在商业通信领域,软件定义无线电技术也具有广阔的应用前景。
目前,物联网的快速发展使得对无线通信的要求越来越高。
软件定义无线电技术能够实现智能、高速、低能耗的无线通信,为物联网提供了高效、可靠的通信手段。
未来,软件定义无线电技术的发展趋势将表现为以下几个方面:一、高频带无线电通信技术的发展。
随着无线电通信频段的逐渐增加,软件定义无线电技术将逐渐扩展到高频率范围。
尤其是毫米波通信、太赫兹通信等高频带通信技术的兴起,将进一步推动软件定义无线电技术的发展。
二、无线电通信系统的整合。
现有的无线电通信系统由多个不同的系统构成,互相之间没有统一的标准和协议。
软件定义无线电技术能够实现不同无线电通信系统之间的互相衔接和整合,提供无缝通信服务,为通信系统的智能化、自动化提供必要的技术支持。
三、无线电通信技术的安全保障。
无线电通信的安全保障一直是行业关注的热点。
软件定义无线电技术采用数字信号处理、加密算法等技术手段,能够防止非法入侵和信息泄露,提供高度安全的无线电通信保障。
四、应用场景的多样化。
软件定义无线电技术将逐渐应用于更多的应用场景,如智能家居、智慧城市、智能交通等。
与传统的无线电通信相比,软件定义无线电技术能够实现更加丰富、便捷、高效的通信服务,为现代化社会的建设和发展提供重要支持。
浅析软件无线电的体系结构及应用

浅析软件无线电的体系结构及应用软件无线电(Software Defined Radio,简称SDR)是一种通过软件控制硬件进行射频信号处理的无线电通信技术。
它基于微处理器、数字信号处理器和专用的软件,能够实现对无线电信号的调制、解调、滤波、编码、解码等处理过程。
软件无线电的体系结构主要由前端硬件、信号采集模块、信号处理模块和应用软件等组成,并广泛应用于无线通信、雷达、千兆以太网等领域。
软件无线电的体系结构由以下几个主要部分组成:1. 前端硬件:包括天线、射频前端(RF front-end)和模数转换器(ADC)。
天线负责接收或发射无线信号,射频前端进行信号放大、滤波、混频等处理,模数转换器将模拟信号转换为数字信号,为后续的数字信号处理做准备。
2. 信号采集模块:主要由模数转换器、FPGA(Field Programmable Gate Array)和时钟同步电路组成。
模数转换器负责将模拟信号转换为数字信号,FPGA用来对数字信号进行处理和控制,时钟同步电路用于保证各个模块之间的同步性。
3. 信号处理模块:由软件、FPGA和DSP(Digital Signal Processor)组成。
软件用于控制信号处理流程和参数,FPGA和DSP分别负责实现硬件的信号处理算法和信号处理运算。
4. 应用软件:为用户提供图形界面或命令行界面,实现与用户交互和数据展示。
用户可以通过应用软件选择信号处理算法、调节参数等。
软件无线电的应用非常广泛,主要有以下几个方面:1. 无线通信:软件无线电可以实现无线通信中的调制解调、滤波、编码解码等过程,可应用于手机、卫星通信、无线电对讲机等通信设备中。
由于软件无线电的可编程性,可灵活适应不同的通信标准和频谱资源分配,提高通信系统的灵活性和性能。
2. 雷达:软件无线电可以应用于雷达系统中,实现信号处理、目标识别和目标跟踪等功能。
由于雷达系统的复杂性和变化性,软件无线电可以根据需要进行灵活的信号处理和算法调整,提供更强大的雷达能力。
软件无线电第6章软件无线电体系结构
可移植性。
高效的编译器和优化技术也是提高软件 无线电性能的重要手段,能够将高级语
言代码转换为高效执行的机器码。
高速数据传输与处理
01
02
03
软件无线电需要具备高 速数据传输和处理的能 力,以支持实时信号处
理和高数据吞吐量。
高速数据传输通常采用 并行处理和分布式处理 技术,以提高数据处理
3
软件体系结构需要具备良好的可扩展性和可维护 性,以适应不断变化的无线通信需求和技术发展。
标准化与开放性
软件无线电的标准化和开放性是其重要特点之 一,它促进了不同厂商和组织之间的协作和互 操作性。
标准化组织如OMA、3GPP等制定了统一的软 件无线电标准和规范,使得不同厂商的设备能 够实现互操作和兼容。
成为无线电通信领域的研究热点。
软件无线电的优势与挑战
优势
灵活性、可扩展性、通用性、互操作 性、低成本等。
挑战
技术难度大、标准化程度低、软件可 靠性问题等。
02
软件无线电体系结构
体系结构概述
软件无线电是一种基于标准化、 模块化的硬件平台,通过软件 实现无线通信功能的开放体系
结构。
它通过将硬件与软件分离, 实现了通信系统的灵活性和 可重构性,能够适应不同的 无线通信环境和业务需求。
软件无线电第6章:软件 无线电体系结构
• 软件无线电概述 • 软件无线电体系结构 • 软件无线电的关键技术 • 软件无线电的应用场景 • 软件无线电的未来展望
01
软件无线电概述
软件无线电的定义
软件无线电是一种无线电通信技术, 通过将硬件模块化、标准化和软件编 程化,实现不同无线电通信系统之间 的灵活转换和通信。
软件无线电技术
紧张等问题, 提出了软件无线电技术, 简要介绍了软件无线电的概念和特点, 并对其关键 技术进行了分析。 关键词: 软件无线电; 数字信号处理; 智能天线; A B C 和 C B A 转换器 中图分类号: 文献标识码: $DEF A
(J:<).(9& Q(’+:,, 软件无线电 简称 JaQ) 技术是近年来提出的一种实 现无线通信的新的体系结构。 它是针对现有无线通信领域存在的如多种通 信体系共存、 各种标准竞争激烈、 频率资源紧张等等一些问题, 尤其是个人 无线通信系统的发展, 使得新的系统层出不穷, 产品生存周期越来越短, 原 有的以硬件为主的无线通信体制难以适应新形势的需要应运而生的。
!
软件无线电的概念
软件无线电是指构造一个通用的、可重复编程的硬件平台,使其工
作频段、 调制解调方式、 业务种类、 数据速率与格式、 控制协议等都可以 进行重构和控制, 选用不同的软件模块就可以实现不同类型和功能的无 线电台。 其核心思想是在尽可能靠近天线的地方, 使用宽带 C B A 和 A B C 变换器, 并利用软件来定义无线功能 。
<9/ 5.
0?;@A0+@: N1 574 )(@75 32 574 :>3+)4&/ 40(/5(1@ (1 ;=>>415 C(>4)4// ;3&&=1(;’5(31 2(4)8 /=;7 ’/ 574 ;3 % 40(/541;4 32 9’>(3=/ ;3&&=1(;’5(31 /H/54&/A 574 /7’>: ;3&:45(5(31 32 9’>(3=/ /5’18’>8/A 574 /73>5’@4 32 574 2>4<=41;H >4/3=>;4/A 45;.A 57(/ :’:4> :=5/ 23>C’>8 574 /325C’>4 >’8(3/ 54;71(<=4A ’18 (15>38=;4/ 574 ;31;4:5 ’18 24’5=>4/ 32 /325C’>4 >’8(3/, ’18 ’1’)H?4/ (5/ B4H 54;71(<=4/. BCD 24AE;: UVWK XUYK (154))(@415 ’15411t;
软件无线电技术.正式版PPT文档
❖ 目前,采用开放式系统体系结构(OSA),一种 非专利、层次化的体系结构,每个层次公开且有 明确定义的接口和标准
(6)开放性
3、已开发和正在开发的软件无线电系统
(1)SPEAKeasy
(2)JTRS(联合战术无线电系统) 目标: 支持的工作频率范围最初为:2MHz-2GHz; 可以通过波形软件进行重构; 支持话音、视频和数据的应用; 在软件和硬件方面都可扩展; 利用商业现货组件; 能够与不同的波形、传统的装备以及为不同环境而设 计的无线电系统进行互操作。 应用环境:机载、固定/舰载、车载、背负、手持
软件无线电技术
§7.1 软件无线电概述
1、软件无线电的由来
无线通信被广泛应用于商业、气象、军事、民用等领 域。军方:大量不兼容的协议降低了联合作战的能力。 (固定、机载、车载、背负。。。不同公司的产品)
❖ “沙漠风暴”行动和格林纳冲突,美军各种通信设备的不 兼容性暴露无疑,不得不借助许多额外的无线电台,才能 保障高效的通信联络。
(6)CHARIOT(适于互操作通信的可变高级无线电系统)
弗吉尼亚工学院开发, 国防高级研究计划局的全球 移动信息系统计划的一部分,集中发展3个前沿技术: 自适应天线阵、多用户基站和自适应移动接收机。通过 创建形式化的结构,在运行环境中使用可重构的硬件实 现软件无线电系统,采用3种先进思想:自定义计算是一个无线电系统系列,共享通用的SCA(软 件通信体系结构),SCA强调开放式系统体系结构和 广泛使用的面向对象的方法。
软件定义无线电技术在通信中的应用
软件定义无线电技术在通信中的应用随着科技的不断发展和网络的不断普及,通信技术也逐渐成为人们日常生活中不可或缺的一部分。
而软件定义无线电技术(Software Defined Radio,简称SDR)的出现,为通信技术的发展带来了新的可能。
SDR技术可以将通信中的硬件部分转化为一个可编程的软件部分,从而使传统通信设备拥有更高的灵活性和可扩展性。
它可以在同一硬件平台上实现不同频段、不同协议的通信,同时还能够通过软件升级来更新通信协议。
因此,SDR技术被广泛应用于卫星通信、军事通信、航空交通管制等高端领域。
在普通人的日常生活中,SDR技术也有着广泛的应用。
比如,很多手机都采用了SDR芯片,使得它们在通信信号处理方面拥有更高的性能和灵活性。
同时,SDR技术也可以被用于智能家居系统中,实现不同设备之间的联通。
除此之外,SDR技术在无线电爱好者和业余无线电社区中也有着广泛的应用。
使用SDR设备,爱好者可以轻松地收听不同频段的无线电信号,并利用SDR软件进行信号处理分析,甚至可以模拟不同的通信协议。
此外,SDR还可以帮助用户实现无线电通信中的加密和解密。
传统的无线电设备可能存在被监听和窃听的风险,而SDR技术可
以在软件层面上加强通信的安全性,有效地保护通信的隐私。
总之,软件定义无线电技术在通信领域中的应用越来越广泛,
而随着技术不断发展,SDR技术在未来也将会有更多的应用场景。
无论是在高端领域还是在日常生活中,它都可以为人们带来更高效、更便捷、更安全的通信体验。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四代移动通信技术之软件无线电技术 【摘要】软件无线电是目前无线通信领域在固定至移动、模拟至数字之后的最新革命,其正朝着产业化、全球化的方向发展,将在4G系统中得到广泛应用。本文主要研究软件无线电技术对通信传输的改善以及4G系统中软件无线技术的应用特点等。
一、 引言 软件无线电提供了一条满足未来个人通信需要的思路。软件无线电突破了传统的无线电台以功能单一、可扩展性差的硬件为核心的设计局限性,强调以开放性的最简硬件为通用平台,尽可能地用可升级、可重配置不同的应用软件来实现各种无线电功能的设计新思路。其中心思想是:构造一个具有开放性、标准化、模块化的通用硬件平台,将各种功能,如工作频段、调制解调类型、数据格式、加密模式、通信协议等用软件来完成,并使宽带A/D和D/A转换器尽可能靠近天线,以研制出具有高度灵活性、开放性的新一代无线通信系统 。
图一、软件无线电原理框图 1 二、简介 软件无线电(SWR)技术是近年来提出的一种实现无线通信的新的体系结构,它的基本概念是把硬件作为无线通信的基本平台,而把尽可能多的无线通信及个人通信功能用软件实现。 1、WLAN与蓝牙融入广域网 近年来各国都在积极进行4G的技术研究,从欧盟的WINNER项目到我国的“FuTURE计划”都是直接面向4G的研究。 日本对4G技术的研究在全球范围内一直处于领先地位,早在2004年,运营商NTTdocomo就进行了1Gbit/s传输速率的试验。目前还没有4G的确切定义,但比较认同的解释是:4G采用全数字技术,支持分组交换,将WLAN、蓝牙技术等局域网技术融入广域网中,具有非对称的和超过100Mbit/s的数据传输能力,同时,因为采用高度分散的IP网络结构,使得终端具有智能和可扩展性。 4G系统将融合现有的各种无线接入技术,包括蜂窝、卫星、WLAN、蓝牙、Ad-hoc、DAB/DVB(数字音频和视频广播)、WAP等。这些技术的融合将使4G成为一个无缝连接的统一系统,实现跨系统的全球漫游及业务的可携带性。 目前,MIMO在吸收TD-SCDMA设计思想的TD-LTE(TD-SCDMALongTermEvolution)系统中处于重要位置,与TDD(Time Division Duplexing)时分双工技术和基于OFDM的多址接入技术并称为TD-LTE三项关键技术,已成为3G-LTE以及未来4G中重要的底层技术,但在4G众多关键技术之中,软件无线电技术是通向未来4G的桥梁。
图二 2、软件无线电对通信传输的改善 软件无线电(SWR,SoftWareRadio),是用现代化软件来操纵、控制传统“纯硬件电路”的无线通信。基本思想就是将宽带模数变换器(A/D)及数模变换器(D/A)尽可能地靠近射频天线,建立一个具有“A/D-DSP-D/A”模型的通用的、开放的硬件平台,在硬件平台上尽量利用软件技术来实现无线电的各种功能模块。例如:使用宽带模数变换器(ADC)通过可编程数字滤波器对信道进行分离;使用数字信号处理器(DSP)技术;通过软件编程来实现频段(如HF、VHF、UHF和SHF)的选择;通过软件编程来完成信息抽样、量化、编码/解码、运算处理和变换,实现射频电台的收发功能等。软件无线电技术是计算密集型、软件化的操作形式。 在国内,我国提出的3G方案TD-SCDMA就是利用软件无线电技术完成设计。软件无线电与现代通信技术、微电子技术和计算机技术三者结合在一起,形成一个中长期的研究项目,其利用数字信号处理技术识别用户信号到达方向,形成天线主波束,并引入空分多址(SDMA)方式,根据用户信号不同的空间传播方向,提供不同的空间信道;采用数字方法对阵元接收信号进行加权处理,形成多个波束赋形,每一个波瓣对应于一个特别的手机用户,波束也可以动态追踪用户,使主波束对准用户信号方向;在干扰信号方向上,形成天线方向图零陷或功率增益较低,从而达到抑制干扰的目的。 图三 3、4G系统中的软件无线电应用特点 在国外,软件无线电技术迅速发展,军用软件无线电技术以美国的军用“易通话”计划为代表,处于世界软件无线电技术领域的前沿。继而,在美国防部计划的推动下,其它一些国防电子公司也纷纷展开了多频段多模式电台研制工作。在欧共体的ACTSFIRST项目中,软件无线电技术用在设计多频/多模可编程手机中,可自动检测接入不同的网络信号,能满足不同接续时间要求;可用不同软件实现不同无线电设备的各种功能;可任意改变信道调制方式和接入方式,利用不同软件即可适应不同标准,构成多功能基站和多模手机,且具备高度灵活性。 4、 可以预见,基于软件无线电的4G通信将会具有以下特点: ●有自动漫游能力,并能在不同系统间进行智能切换;
●在同一硬件平台上,能兼容不同系统; ●可下载公用软件,并能进行自身系统的升级; ●可支持语音、数据、图像和传真等多种业务,并能根据业务流量,信道质量等情况,自动选择合适的传输信道;
●可自动选择通信模式,并能采用合适的通信协议和信号格式实现远端通信。 除此之外,软件无线电出现了一些新的发展趋势,主要表现在体系结构分层化、结构数学分析化、软件模块化、计算机化、面向对象化、网络化以及安全化方面。 软件无线电技术是适应产品多样性的基础。它不仅能减少开发风险,还更易于开发多系列多类型的产品。此外,它能够减少硅芯片的容量,从而削减运算器件的价格,其开放的结构也有利于多方运营商的介入;同时,数字信号处理DSP技术的使用,也弥补了廉价RF(RadioFrequency)所造成的不足。在实际应用中,RF部分是昂贵而缺乏灵活性的,宽带的RF是非线性的,而软件无线电技术可弥补其在灵活性上的不足 图四 三、软件无线电的产生 软件无线电的概念是1992年作为与军事有关的技术被首次提出的。1992年5月,在美国电信系统会议上,MITRE公司的JEO MI-TOLA首次明确提出了软件无线电的概念,之后软件无线电技术即被美国军方用于研制多频段、多模式电台,该电台是美军为保证不同设备间的互通性,使各军种间实现高效、可靠的协同通信而研制的三军通用软件无线电台——基于可编程数字信号处理(DSP)芯片的多频段、多方式电台——易通话(speakeasy),其工作频段覆盖2~2000MHz,其目标是与现在15种军用电台兼容。1995年美国国防高级研究计划局(DAPRA)的易通话一期工程的技术工作者对软件无线电的军事应用进行了较系统、全面的论述。1995年5月IEEE Communication Magazine发表了一期软件无线电专刊,系统全面地介绍了软件无线电的体系结构,其中包括与数字无线电的区别、硬件和软件的实现方法、性能分析及其功能性结构。该专刊还较为系统地介绍了软件无线电中有关取样、A/D和D/A变换的基本理论、DSP处理器的结构特点及现有DSP芯片清单、软件无线电中多处理器间相互通信的一些理论基础,所有这些为软件无线电的一些关键技术的研究(如开放式总线结构、宽频段/多频段天线及射频前端技术、高速高精度A/D和D/A技术及高速DSP及ASIC的实现通信协议的标准化、模块化提供了理论基础,至此以后,人们便尝试着将软件无线电技术应用于商业领域。1996年,易通话二期计划促进了多功能模块化信息传输系统(MMTIS)论坛的发展最近,MMTIS论坛改名为软件无线电论坛,它预示着软件无线电开放式结构标准开始从军用转向商用。1996年10月,软件无线电技术被中国列入国家“863”计划的通信研究项目。近年来,软件无线电的技术被广泛地应用于陆地移动通信、卫星移动通信与全球通信系统,软件无线电成为解决数字移动通信中多种不同标准问题的最佳选择方式。
四、4G软件无线电技术的基本思想 软件无线电的基本思想是以一个通用、标准、模块化的硬件平台为依托,通过软件编程来实现无线电台的各种功能,从基于硬件、面向用途的电台设计方法中解放出来。功能的软件化实现势必要求减少功能单一、灵活性差的硬件电路,尤其是减少模拟环节,把数字化处理(A/D和D/A变换)尽量靠近天线。软件无线电强调体系结构的开放性和全面可编程性,通过软件更新改变硬件配置结构,实现新的功能。软件无线电采用标准的、高性能的开放式总线结构,以利于硬件模块的不断升级和扩展。 软件无线电(software radio)在一个开放的公共硬件平台上利用不同可编程的软件方法实现所需要的无线电系统。简称SWR。理想的软件无线电应当是一种全部可软件编程的无线电,并以无线电平台具有最大的灵活性为特征。全部可编程包括可编程射频(RF)波段、信道接入方式和信道调制。 一般说来,SWR就是宽带模数及数模变换器(A/D及D/A)、大量专用/通用处理器、数字信号处理器(Digital Signal Proicesser,DSP)构成尽可能靠近射频天线的一个硬件平台。在硬件平台上尽量利用软件技术来实现无线电的各种功能模块并将功能模块按需要组合成无线电系统。例如:利用宽带模数变换器(Analog Digital Converter,ADC),通过可编程数字滤波器对信道进行分离;利用数字信号处理技术在数字信号处理器(DSP)上通过软件编程实现频段(如短波、超短波等)的选择,完成信息的抽样、量化、编码/解码、运算处理和变换,实现不同的信道调制方式及选择(如调幅、调频、单边带、跳频和扩频等),实现不同的保密结构、网络协议和控制终端功能等。 在目前的条件下可实现的软件无线电,称做软件定义的无线电(Software Defined Radio,SDR)。SDR被认为仅具有中频可编程数字接入能力。 发展历史 无线电的技术演化过程是:由模拟电路发展到数字电路;由分立器件发展到集成器件;由小规模集成到超大规模集成器件;由固定集成器件到可编程器件;由单模式、单波段、单功能发展到多模式、多波段、多功能;由各自独立的专用硬件的实现发展到利用通用的硬件平台和个性的编程软件的实现。 20世纪70~80年代,无线电由模拟向数字全面发展,从无编程向可编程发展,由少可编程向中等可编程发展,出现了可编程数字无线电(PDR)。由于无线电系统,特别是移动通信系统的领域的扩大和技术复杂度的不断提高,投入的成本越来越大,硬件系统也越来越庞大。为了克服技术复杂度带来的问题和满足应用多样性的需求,特别是军事通信对宽带技术的需求,提出在通用硬件基础上利用不同软件编程的方法。20世纪80年代初开始的软件无线电的革命,将把无线电的功能和业务从硬件的束缚中解放出来。 1992年5月在美国通信系统会议上,Jeseph Mitola(约瑟夫·米托拉)首次提出了“软件无线电”(Software Radio,SWR)的概念。1995年IEEE通信杂志(Communication Magazine)出版了软件无线电专集。当时,涉及软件无线电的计划有军用的SPEAKEASY(易通话),以及为第三代移动通信(3G)开发基于软件的空中接口计划,即灵活可互操作无线电系统与技术(FIRST)。 1996年3月发起“模块化多功能信息变换系统”(MMITS)论坛,1999年6月改名为“软件定义的无线电”(SDR)论坛。 1996年至1998年间,国际电信联盟(ITU)制订第三代移动通信标准的研究组对软件无线电技术进行过讨论,SDR也将成为3G系统实现的技术基础。 从1999年开始,由理想的SWR转向与当前技术发展相适应的软件无线电,即软件定义的无线电(Software Defined Radio,SDR)。1999年4月IEEE JSAC杂志出版一期关于软件无线电的选集。同年,无线电科学家国际联合会在日本举行软件无线电会议。同年还成立亚洲SDR论坛。1999年以后,集中关注使SDR的3G成为可能的问题。