§7.3双正态总体参数的假设检验
概率统计第七章1-2

P(|U|>u1-α/2)=α
φ(x)
U检验
α/2
- u1-αΒιβλιοθήκη 2 u1-α/2接受域α/2
X
否定域
否定域
双侧统计检验
该检验用 u 检验统计量,故称为u 检验。
② H0:μ≤μ0(已知); H1:μ>μ0 (右侧检验) 1) 提出原假设和备择假设: H0:μ≤μ0; H1:μ>μ0, X 0 在H0下有 2) 对统计量: U / n X 0 X , / n / n X 0 X 对给定的α有 { u1 } { u1 } / n / n X 0 X 所以 P( u1 ) P( u1 ) / n / n 3) 故 拒绝条件为U> u1-α
c u u0.05 1.645
由
X 110 4/5
1.645
X 108.648
即区间( ,108.648 ) 为检验的拒绝域 称 X 的取值区间 (108.648,+) 为检验的接受域
四、作出判断
在有了明确的拒绝域后,根据样本观测值 我们可以做出判断: 当 x 108.684 或 u 1.645 时,则拒绝H 0 即接收 H1 ;
H 0 : p 4%
vs
H1 : p 4%
二、选择检验统计量 由样本对原假设进行判断总是通过一 个统计量完成的,该统计量称为检验统计 量。 找出在原假设 H 0 成立条件下,该统计量 所服从的分布。
三、选择显著性水平,给出拒绝域形式 小概率原理中,关于“小概率”的值通常根据实 际问题的要求而定,如取α =0.1,0.05,0.01等, α 为检验的显著性水平(检验水平). 根据所要求的显著性水平α ,描写小概率事件的 统计量的取值范围称为该原假设的拒绝域(否定 域),一般用W表示;一般将 W 称为接受域。 拒绝域的边界称为该假设检验的临界值.
两个总体参数的检验

三、两个总体参数的检验
一、 两个总体均值之差的检验
在研究中,往往需要比较两个总体的差异, 如甲、乙两种不同的生产方法对产品的平均产量 是否有显著性差异,新、旧药品治疗病人的平均 治愈率是否有显著性差异,等等。根据样本获得 方式的不同及方差是否已知,两个总体均值的检 验可分为方差已知和未知两种情形,同时也要参数的检验
在方差相等的情况下,独立样本T检验的结 果应看“假设方差相等”一行,相应的双尾检测概 率“Sig.(双侧)”为0.077,在显著性水平为0.05 的情况下,t统计量的概率P>0.05,故不应拒绝 原假设,因此认为两个样本的均值是相等的,在 本例中,不能认为新、旧两种施肥方案对产量有 显著性的影响。
单击“继续”按钮返回“独立样本T检验”对话框,再单击“确定 ”按钮,运行结果如图6-18和图6-19所示。
图6-18 独立样本T检验的基本描述统计量
图6-19 独立样本T检验结果
三、两个总体参数的检验
图6-18所示为独立样本T检验的基本描述统计量,包括两个 样本的均值、标准差和均值的标准误差。图6 19给出了两种T检 验的结果,分别为在样本方差相等情况下的一般T检验结果和在 样本方差不相等情况下的校正T检验结果。两种T检验结果到底应 该选择哪一个取决于图6-19中的“方差方程的Levene 检验”一 项,即方差齐性检验结果。对于齐性,这里采用的是F检验,表 中第二列是F的值,为0.108,第三列是对应的概率P值,为0.746 。如果显著性水平为0.05,由于概率P值大于0.05,因而可以认 为两个总体方差无显著性差异,即方差具备齐性。
三、两个总体参数的检验
3. 两个总体均值样本匹配的情形
检验两个总体均值之差时,有时两个样本不是独立的而是成 对的,如比较同一组工人使用两种操作方法的生产效率是否相 同,比较同一批消费者对两个不同品牌的评分有何差异,等等 。这类假设检验问题可以转化为一个样本的均值检验问题,其 方法是:先计算出每一对样本数据的差值:di=xi- xj(i,j=1,2,…,n);然后将这n个差值看作一个样本,把(μ1-μ2)看 作待检验的一个总体参数(成对差值的总体均值,记为d),原来 的检验问题就转化为根据一个样本去检验d是否等于(或小于、 大于)假设值d0。为了简便,通常取d0≥0。
数理统计17:正态总体参数假设检验

数理统计17:正态总体参数假设检验现在,我们对正态分布的参数假设检验进⾏讨论,这也是本系列的最后⼀部分内容。
由于本系列为我独⾃完成的,缺少审阅,如果有任何错误,欢迎在评论区中指出,谢谢!⽬录Part 1:基本步骤正态总体N (µ,σ2)参数的假设检验不外乎遵循以下的步骤:找到合适的统计量,⽤统计量的取值范围设计拒绝域。
假定原假设为真,考虑这个条件下统计量的分布。
根据统计量的分布,根据检验的⽔平要求设置拒绝域的边界值。
设计检验的核⼼在于假定原假设为真,这是因为检验的⽔平是基于弃真概率定义的,也就是说,要在第三步中写出检验的⽔平,就必须在H 0成⽴的情况下找出⼩概率事件的发⽣条件。
⽐如,对于均值的检验⼀共有三种:1.H 0:µ=µ0↔H 1:µ≠µ0;2.H 0:µ≥µ0↔H 1:µ<µ0;3.H 0:µ≤µ0↔H 1:µ>µ0.每⼀种⼜可以细分为⽅差σ2已知和⽅差σ2未知两种情况,但显然不论⽅差是否已知,最核⼼的统计量都应该是¯X,如果⽅差未知可能还要⽤到⽅差的替代:S 2。
以下,对于这三种问题,拒绝域分别应该是这样的:如果H 0被接受,则¯X 既不应该太⼤,也不应该太⼩,拒绝域的基础形式应该是{¯X >c 1}∪{¯X <c 2}.如果H 0被接受,则¯X 不应该太⼩,⽆论多⼤都可以,拒绝域的基础形式应该是{¯X <c }.如果H 0被接受,则¯X 不应该太⼤,⽆论多⼩都可以,拒绝域的基础形式应该是{¯X>c }.当然,这只是拒绝域的基础形式,实际情况下可能不⽌使⽤¯X,但基本思想应该是这样的。
对于⽅差的检验,则将检验统计量换成了S 2,或者均值已知情况下的离差平⽅和Q 2,步骤也和上⾯的差不多。
正态分布均值的假设检验

VS
详细描述
在单样本均值假设检验中,我们首先需要 确定一个期望的均值,然后计算样本的均 值。通过比较这两个值,我们可以判断样 本均值是否显著地偏离了期望的均值。常 用的统计量包括z分数和t分数,用于评估 样本均值与已知期望值之间的差异是否具 有统计学上的显著性。
双样本均值的假设检验
总结词
双样本均值的假设检验是检验两个独立样本的均值是否存在显著差异。
详细描述
在双样本均值假设检验中,我们需要比较两个独立样本的均值。通过计算两组样本的均值,并比较这两个值,我 们可以判断两个样本的均值是否存在显著差异。常用的统计量包括t检验和z分数,用于评估两个样本均值之间的 差异是否具有统计学上的显著性。
配对样本均值的假设检验
总结词
配对样本均值的假设检验是检验两个相关样本的均值是否存在显著差异。
Part
0(H0)
样本数据来自的总体均值等于某一固 定值。
备择假设(H1)
样本数据来自的总体均值不等于该固 定值。
选择合适的检验统计量
• 常用的检验统计量有t统计量、Z统计量等,根据具体情况选择合适的统计量。
确定显著性水平
• 显著性水平(α):在假设检验中,原假设为真但被拒绝 的概率,通常取值在0.01至0.05之间。
正态分布在统计学中的重要性
基础性
正态分布是统计学中最重要的概 率分布之一,许多统计方法和理 论都基于正态分布。
广泛应用性
正态分布在自然和社会科学领域 都有广泛的应用,如生物学、医 学、经济学、心理学等。
理论依据
正态分布在统计学中提供了理论 依据,许多统计推断和决策方法 都基于正态分布的性质和假设。
1 2
判断假设是否成立
通过假设检验,可以判断一个假设是否成立,从 而为进一步的研究或决策提供依据。
参数的假设检验

目录
• 参数假设检验的基本概念 • 参数假设检验的类型 • 参数假设检验的实例 • 参数假设检验的注意事项 • 参数假设检验的应用领域 • 参数假设检验的发展趋势与展望
01
参数假设检验的基本概 念
参数假设检验的定义
参数假设检验是在统计推断中,根据 样本数据对总体参数是否符合某种假 设进行检验的方法。
总结词
正态性检验是检验数据是否符合正态分 布的统计方法。
VS
详细描述
正态分布的参数检验包括峰度系数、偏度 系数、直方图和P-P图等,通过这些方法 可以判断数据是否符合正态分布,从而为 后续统计分析提供依据。
方差分析的参数检验
总结词
方差分析是检验不同组别之间是否存在显著差异的统计方法 。
详细描述
方差分析通过比较不同组别之间的方差,判断它们是否具有 统计学上的显著差异。这种方法广泛应用于实验设计和数据 分析中,用于比较不同处理或不同条件下的结果差异。
做出推断
根据检验统计量的值和临界值,做出关于 假设的推断。
选择检验统计量
根据假设和数据特征,选择合适的统计量 进行检验。
计算检验统计量的值
根据样本数据和选择的统计量,计算检验 统计量的值。
确定临界值
根据统计量的性质和误差概率,确定临界 值。
02
参数假设检验的类型
单侧假设检验
总结词
只考虑参数大于或小于某个值的情况。
详细描述
在单侧假设检验中,我们只考虑参数大于或小于某个值的情况,而不需要同时考虑两个方向。例如, 在检验某药物是否有效时,我们只关心该药物是否比对照组效果好,而不关心它是否比对照组差。
双侧假设检验
总结词
同时考虑参数大于和小于某个值的情况。
《概率论与数理统计》第七章假设检验.

《概率论与数理统计》第七章假设检验.第七章假设检验学习⽬标知识⽬标:理解假设检验的基本概念⼩概率原理;掌握假设检验的⽅法和步骤。
能⼒⽬标:能够作正态总体均值、⽐例的假设检验和两个正态总体的均值、⽐例之差的假设检验。
参数估计和假设检验是统计推断的两种形式,它们都是利⽤样本对总体进⾏某种推断,然⽽推断的⾓度不同。
参数估计是通过样本统计量来推断总体未知参数的取值范围,以及作出结论的可靠程度,总体参数在估计前是未知的。
⽽在假设检验中,则是预先对总体参数的取值提出⼀个假设,然后利⽤样本数据检验这个假设是否成⽴,如果成⽴,我们就接受这个假设,如果不成⽴就拒绝原假设。
当然由于样本的随机性,这种推断只能具有⼀定的可靠性。
本章介绍假设检验的基本概念,以及假设检验的⼀般步骤,然后重点介绍常⽤的参数检验⽅法。
由于篇幅的限制,⾮参数假设检验在这⾥就不作介绍了。
第⼀节假设检验的⼀般问题关键词:参数假设;检验统计量;接受域与拒绝域;假设检验的两类错误⼀、假设检验的基本概念(⼀)原假设和备择假设为了对假设检验的基本概念有⼀个直观的认识,不妨先看下⾯的例⼦。
例7.1 某⼚⽣产⼀种⽇光灯管,其寿命X 服从正态分布)200 ,(2µN ,从过去的⽣产经验看,灯管的平均寿命为1550=µ⼩时,。
现在采⽤新⼯艺后,在所⽣产的新灯管中抽取25只,测其平均寿命为1650⼩时。
问采⽤新⼯艺后,灯管的寿命是否有显著提⾼?这是⼀个均值的检验问题。
灯管的寿命有没有显著变化呢?这有两种可能:⼀种是没有什么变化。
即新⼯艺对均值没有影响,采⽤新⼯艺后,X 仍然服从)200 ,1550(2N 。
另⼀种情况可能是,新⼯艺的确使均值发⽣了显著性变化。
这样,1650=X 和15500=µ之间的差异就只能认为是采⽤新⼯艺的关系。
究竟是哪种情况与实际情况相符合,这需要作检验。
假如给定显著性⽔平05.0=α。
在上⾯的例⼦中,我们可以把涉及到的两种情况⽤统计假设的形式表⽰出来。
第二节 正态总体均值的假设检验

σ
~ N(0,1)
n
(σ 2 已知)
原假设 备择假设 检验统计量及其在 H0为真时的分布 H0 H1
=0 ≠0
X 0 T= ~ T(n 1) S n
接受域
x 0 s n
≤ tα
(σ 2未知)
2
待估参数
枢轴量及其分布 置信区间
X 0 T= ~ T(n 1) S n
( x tα
2
= 0 ≥ 0 ≤ 0
≠ 0 < 0 > 0
U=
X 0
σ
U ≥ zα
2
n
U ≤ zα
N(0,1)
U ≥ zα
未知) T 检验法 (σ2 未知) 原假设 备择假设 检验统计量及其 H0 H1 H0为真时的分布 拒绝域
= 0 ≥ 0 ≤ 0
≠ 0 < 0 > 0
X 0 T= S n ~ t(n 1)
(2)关于 σ
2
χ2检验法 的检验
拒绝域
原假设 备择假设 检验统计量及其在 H1 H0为真时的分布 H0
σ
2=σ 2 0
σ
2≠σ 2 0
χ =
2
∑(X )
i=1 i
n
χ ≤ χ (n)
2 2 1α 2
2
或 χ 2 ≥ χα2 (n)
2
σ 2≥σ 02 σ 2<σ 02
σ
2 0
~ χ (n)
2
χ ≤ χ (n)
(1) 关于均值差 1 – 2 的检验
原假设 备择假设 检验统计量及其在 H0为真时的分布 H0 H1
1 – 2 = δ 1 – 2 ≠ δ 1 – 2 ≥ δ 1 – 2 < δ 1 – 2 ≤ δ 1 – 2 > δ
正态总体均值的假设检验

即认为元件的平均寿 命不大于 225小时。
二、两个正态总体均值差的检验(t 检验N)o:
Image
设X1,X2,,Xn1是 来 自 正 态 总 体 N(m1,s2)的 样 本Y;1,Y2,,Yn2是 来 自 正 态 总 体 N(m2,s2)的 样 本 , 且 设 两 样 立本 。独 又 分 别 记 它 们
1)
s
2 2
10 10 - 2
= 2.775,
t0.05 (18) = 1.7341,
故拒绝域为:
T = X -Y
Sp
11 10 10
- t 0.05 (18 ) = -1.7341 ,
可算得 T = -4.295 < -1.7341 , 故拒绝 H 0 ,
即 认为新方法能提高得率。
已知总 例体服从2正态某分布地,且区方差大高致相考同,负由抽样责获得人资料想如下:知道某年来自城市中学考生
当H0成 立 时T,~ t(n1 n2 -2), 对 于 给 定 a 的
P{|T |>ta/2(n1 n2 -2)}=a,
故 拒 绝 域 为|T |>t a/2(n1 n2 -2).
说明: 1. 对于单侧检验 “ H0 : m1 - m2 ≤ m0 ” 和 “ H0 : m1- m2 ≥ m0 ”, 可以类似地讨论。 常用的是 m0 = 0。 2. 对于两个正态总体的方差均为已知时,
的 样 本 均 值 X,Y为, 样 本 方 差 S12为 ,S22, 并 设 m1,m2,s2 均未知。
检验H: 0:m1-m2 =m0,H1:m1-m2 m0,
取统2
其
中
S2p
=
(n1
-1)S12 (n2 -1)S22 n1 n2 -2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§7.3 双正态总体参数的假设检验 设样本1,,1nXX取自正态总体211(,)N,样本2,,1nYY取自总体
222(,)N
,两样本相互独立,它们的样本均值分别为1111niiXnX,2121njjYnY,
样本方差分别为112121)(11niiXXnS,212222)(11njjYYnS。 一、 关于两个正态总体方差比的假设检验 以双侧检验:2221122210::HH 为例
选用检验统计量2221SSF,它在原假设0H成立的条件下服从F分布
)1,1(21nnF;记2221ssfO表示检验统计量F的样本观测值,则检验的P值为
1),/1/1(21),(222212221OOOOffFPffFPP如果如果
这种检验方法通常称为“F检验”。 例7.3.1 甲乙两台车床分别加工某种轴,轴的直径分别服从正态分布),(211N, ),(222N,从各自加工的轴中分别抽取若干根,测得其直径如下表所示:
总体 样本容量n 直径 X(甲机床) 8 20.5 19.8 19.7 20.4 20.1 20.0 19.9 19.9
Y(乙机床) 7 20.7 19.8 19.5 20.8 20.4 19.6 20.2
试问在显著性水平05.0下,两台车床加工的精度是否有显著差异? 解:(1)依题意,考虑假设检验问题 2221122210::HH
(2)用F检验,检验统计量为)6,7(~02221FSSFH或)7,6(~/102122FSSFH; (3)由样本观测值可得2164.021s,2729.022s,检验统计量的值为793.0/2221ssfO。故检验的P值为
76.038.02)793.0/1/1(22221FPP。
(4) 因为05.0P,所以不拒绝原假设0H,即没有充分理由认为两种机床所加工轴的精度有显著差异。 二、 关于两个正态总体均值的假设检验 以双侧检验:211210::HH 为例
1.当两总体方差相等(即2221)时,我们使用检验统计量 2
21)11(wSnnYXt
(其中)1()1()1()1(212222112nnSnSnSw),它在原假设0H成立的条件下服从分布)2(21nnt,因而检验的P值为 )||(20HttPPO,这里
2
21)11(wOsnnyxt
表示检验统计量t的样本观测值。 2.当2221时,人们常使用检验统计量222121//nSnSYXt,它在原假设0H
成立的条件下近似服从t分布)(lt,其中))1(())1(()(22242121412222121nnSnnSnSnSl(四舍五入取整)。因而检验的P值近似为)||(20HttPPO,其中222121nsnsyxtO表示检验统计量t的样本观测值。 这种检验方法通常称为Welch近似t检验。 3.2009年,我们提出一种新的近似方法,即利用最常见的正态逼近进行假设检验,检验统计量为Score检验统计量:222121/~/~/)(nnYXZ,其中)(~~2XYtX,2*1222*121~~StS,2*1222*222)~1(~StS,
21112*1/)1(SnnS,22222*2/)1(SnnS,22*12)(YXS,t~为下面三元一次
方程在区间)1,0(中使条件对数似然函数211222222212221211)(21)2ln(2)(21)2ln(2lnnjjniiynxnL达到最大
的实数解:0)()2()(2*122*1212*122*212212*123212*12SntSnSnSntnnStnnS。在0H成立的条件下,当21,nn较大时,Z近似服从标准正态分布。因而检验的P值为 |))(|1(2)||(20OOzHzZPP,这里222121/~/~/)(nnyxzO表示
检验统计量Z的样本观测值。具体细节请参见附录二。 例7.3.2 某灯泡厂在采用一种新工艺的前后,分别抽取10个灯泡进行寿命(单位:小时)检测,计算得到:采用新工艺前灯泡寿命的样本均值为2460,样本标准差为56;采用新工艺后灯泡寿命的样本均值为2550,样本标准差为48。设灯泡的寿命服从正态分布,是否可以认为采用新工艺后灯泡的平均寿命有显著提高(取显著性水平=0.01)?
解:设采用新工艺前、后灯泡的寿命分别为),(~211NX、),(~222NY。 法一:1.(1)因为未知21及22,为此先检验假设 2221122210::HH
(2) 用F检验,检验统计量为)9,9(~02221FSSFH或)9,9(~/102122FSSFH; (3) 由于检验统计量的观测值为36.148/56/222221ssfO。故F检验的P值为 654.0327.02)36.1(22221FPP。
(4) 因为1.0P,所以不拒绝原假设0H,可认为21与22无显著差异。 2.(1)下面在假定2221的条件下检验假设
211210::HH
(2) 选用检验统计量 )18(~)11(1`221tSnnYXtw;
(3) 由样本观测值计算得272018489569222ws,从而检验统计量t的观测值为86.32720)101101(25502460Ot,所以t检验的P值为
00057.0)86.3(21tPP。
(4) 因为01.0P,有充分理由拒绝原假设0H,接受备择假设1H,即在显著性水平α=0.01下,可认为采用新工艺后灯泡的平均寿命有显著提高。 法二:(1)直接利用Welch近似t检验检验假设 211210::HH
(2) 选用检验统计量 )(~//1`222121ltnSnSYXt, 其中 186.17)910(48)910(56)10481056(2424222l; (3) 检验统计量t的观测值为86.310/4810/562550246022Ot,所以Welch近似t检验的P值为00057.0)86.3(21tPP。 (4) 检验的P值与法一相同,结论自然也与法一相同:有充分理由拒绝原假设0H。 法三:(1)利用近似Z检验检验假设 211210::HH
(2) 选用检验统计量 )1,0(~/~/~/)(1`222121NnnYXZ; (3) 不难求出,725.0~t为方程0174.0802.05.123ttt在区间)1,0(中的唯一实根,所以7080)25502460(725.05610/9~~2222*1222*121sts,
2686)25502460()275.01(4810/9)~1(~2222*1222*222sts,
检验
统计量Z的观测值为88.210/268610/708025502460Oz,所以我们的近似Z检验的P
值为00199.0)88.2()88.2(21ZPP。 (4) 因为01.0P,有充分理由拒绝原假设0H,结论与法一、法二相同。 对于原始数据,我们可以直接利用Excel中的统计函数进行t检验。 例7.3.3 某地某年高考后随机抽得15名男生、12名女生的物理考试成绩如下: 男生 49 48 47 53 51 43 39 57 56 46 42 44 55 44 40
女生 46 40 47 51 43 36 43 38 48 54 48 34
从这27名学生的成绩能说明这个地区男女生的物理考试成绩不相上下吗? (05.0). 解:经过§7.5介绍的分布的正态性检验,可以认为该地区男女生的物理考试成绩分别服从正态分布:),(~211NX,),(~222NY,于是问题归结为双侧检验:
211210::HH。
法一:1.先检验两总体未知方差是否相等,即检验假设 2221122210::HH。
将数据导入Excel区域B2:P3,再在单元A4中输入函数“=FTEST(B2:P2,B3:M3)”,回车即得F检验的P值为05.0831.0。故可认为21与22无显著差异。 2.再在假定2221的条件下检验假设211210::HH。 在单元B4中输入函数“=TTEST(B2:P2,B3:M3,2,2)”,回车即得t检验的P值为05.0130.0。没有充分理由认为这个地区男女生的物理考试成绩有差异。
法二:直接利用Welch近似t检验检验假设211210::HH。