平面向量典型例题

平面向量典型例题
平面向量典型例题

平面向量典型例题

平面向量经典例题:

1.

已知向量a =(1,2),b =(2,0),若向量λa +b 与向量c =(1,-2)共线,则实数λ等于( ) A .-2 B .-13

C .-1

D .-23

[答案] C

[解析] λa +b =(λ,2λ)+(2,0)=(2+λ,2λ),∵λa +b 与c 共线,∴-2(2+λ)-2λ=0,∴λ=-1. 2.

(文)已知向量a =(3,1),b =(0,1),c =(k ,3),若a +2b 与c 垂直,则k =( ) A .-1 B .- 3 C .-3 D .1 [答案] C

[解析] a +2b =(3,1)+(0,2)=(3,3),

∵a +2b 与c 垂直,∴(a +2b )·c =3k +33=0,∴k =-3.

(理)已知a =(1,2),b =(3,-1),且a +b 与a -λb 互相垂直,则实数λ的值为( ) A .-611

B .-116

C.611

D.116 [答案] C

[解析] a +b =(4,1),a -λb =(1-3λ,2+λ), ∵a +b 与a -λb 垂直,

∴(a +b )·(a -λb )=4(1-3λ)+1×(2+λ)=6-11λ=0,∴λ=6

11.

3.

设非零向量a 、b 、c 满足|a |=|b |=|c |,a +b =c ,则向量a 、b 间的夹角为( ) A .150°

B .120°

C .60°

D .30° [答案] B

[解析] 如图,在?ABCD 中,

∵|a |=|b |=|c |,c =a +b ,∴△ABD 为正三角形,∴∠BAD =60°,∴〈a ,b 〉=120°,故选B.

(理)向量a ,b 满足|a |=1,|a -b |=3

2

,a 与b 的夹角为60°,则|b |=( ) A.12 B.13 C.14 D.15 [答案] A [解析] ∵|a -b |=

32,∴|a |2+|b |2-2a ·b =34

,∵|a |=1,〈a ,b 〉=60°, 设|b |=x ,则1+x 2-x =34,∵x >0,∴x =1

2

.

4.

若AB →·BC →+AB →2=0,则△ABC 必定是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .等腰直角三角形

[答案] B

[解析] AB →·BC →+AB →2=AB →·(BC →+AB →)=AB →·AC →=0,∴AB →⊥AC →, ∴AB ⊥AC ,∴△ABC 为直角三角形. 5.

若向量a =(1,1),b =(1,-1),c =(-2,4),则用a ,b 表示c 为( ) A .-a +3b B .a -3b C .3a -b D .-3a +b [答案] B

[解析] 设c =λa +μb ,则(-2,4)=(λ+μ,λ-μ), ∴??? λ+μ=-2λ-μ=4,∴???

λ=1μ=-3

,∴c =a -3b ,故选B. 在平行四边形ABCD 中,AC 与BD 交于O ,E 是线段OD 的中点,AE 的延长线与CD 交于点F ,若AC →=a ,BD →=b ,则AF →

等于( )

A.14a +12b

B.23a +1

3b C.12a +14

b D.13a +23b [答案] B

[解析] ∵E 为OD 的中点,∴BE →=3ED →, ∵DF ∥AB ,∴

|AB ||DF |=|EB |

|DE |

∴|DF |=13|AB |,∴|CF |=23|AB |=2

3|CD |,

∴AF →=AC →+CF →=AC →+23CD →=a +23(OD →

OC →)=a +23(12b -12a )=23a +1

3b .

6.

若△ABC 的三边长分别为AB =7,BC =5,CA =6,则AB →·BC →的值为( ) A .19 B .14 C .-18 D .-19 [答案] D

[解析] 据已知得cos B =72+52-622×7×5=1935,故AB →·BC →=|AB →|×|BC →|×(-cos B )=7×5×()

-1935=-19.

7.

若向量a =(x -1,2),b =(4,y )相互垂直,则9x +3y 的最小值为( ) A .12 B .2 3 C .3 2 D .6 [答案] D

[解析] a ·b =4(x -1)+2y =0,∴2x +y =2,∴9x +3y =32x +3y ≥232x +

y =6,等号在x =12,y =1时成立.

8.

若A ,B ,C 是直线l 上不同的三个点,若O 不在l 上,存在实数x 使得x 2OA →+xOB →+BC →

=0,实数x 为( ) A .-1 B .0 C.

-1+5

2

D.1+5

2

[答案] A

[解析] x 2OA →+xOB →+OC →-OB →=0,∴x 2OA →+(x -1)OB →+OC →

=0,由向量共线的充要条件及A 、B 、C 共线知,1-x -x 2=1,∴x =0或-1,当x =0时,BC →

=0,与条件矛盾,∴x =-1. 9.

(文)已知P 是边长为2的正△ABC 边BC 上的动点,则AP →·(AB →+AC →

)( ) A .最大值为8 B .最小值为2 C .是定值6 D .与P 的位置有关

[答案] C

[解析] 以BC 的中点O 为原点,直线BC 为x 轴建立如图坐标系,则B (-1,0),C (1,0),A (0,3),AB →+AC →

=(-1,-3)+(1,-3)=(0,-23),

设P (x,0),-1≤x ≤1,则AP →

=(x ,-3),

∴AP →·(AB →+AC →)=(x ,-3)·(0,-23)=6,故选C.

(理)在△ABC 中,D 为BC 边中点,若∠A =120°,AB →·AC →=-1,则|AD →

|的最小值是( )

A.12

B.32

C. 2

D.22

[答案] D

[解析] ∵∠A =120°,AB →·AC →=-1,∴|AB →|·|AC →

|·cos120°=-1, ∴|AB →|·|AC →|=2,∴|AB →|2+|AC →|2≥2|AB →|·|AC →|=4,∵D 为BC 边的中点,

∴AD →=12(AB →+AC →),∴|AD →|2=14(|AB →|2+|AC →|2+2AB →·AC →)=14(|AB →|2+|AC →|2-2)≥14(4-2)=12,

∴|AD →|≥2

2

.

10. 如图,一直线EF 与平行四边形ABCD 的两边AB ,AD

分别交于E 、F 两点,且交其对角线于K ,其中AE →=13AB →

AF →=12

AD →,AK →=λAC →

,则λ的值为( )

A.15

B.14

C.13

D.12

[答案] A

[解析] 如图,取CD 的三等分点M 、N ,BC 的中点Q ,则EF ∥DG ∥BM ∥NQ ,易知AK →=15AC →,∴λ=1

5

.

11. 已知向量a =(2,3),b =(-1,2),若ma +4b 与a -2b 共线,则m 的值为( )

A.1

2 B .2 C .-2 D .-12

[答案] C

[解析] ma +4b =(2m -4,3m +8),a -2b =(4,-1), 由条件知(2m -4)·(-1)-(3m +8)×4=0,∴m =-2,故选C.

12. 在△ABC 中,C =90°,且CA =CB =3,点M 满足BM →=2MA →,则CM →·CB →等于( )

A .2

B .3

C .4

D .6 [答案] B

[解析] CM →·CB →=(CA →+AM →)·CB →

=(CA →+13AB →)·CB →=CA →·CB →+13

AB →·CB →

=13|AB →|·|CB →|·cos45°=13×32×3×22

=3. 13. 在正三角形ABC 中,D 是BC 上的点,AB =3,BD =1,则AB →·AD →

________. [答案]

15

2

[解析] 由条件知,|AB →|=|AC →|=|BC →|=3,〈AB →,AC →

〉=60°, 〈AB →,CB →〉=60°,CD →=23

CB →,

∴AB →·AD →=AB →·(AC →+CD →)=AB →·AC →+AB →·23CB →=3×3×cos60°+23×3×3×cos60°=152.

14. 已知向量a =(3,4),b =(-2,1),则a 在b 方向上的投影等于________.

[答案] -255。[解析] a 在b 方向上的投影为a ·b |b |=-25=-25

5.

15. 已知向量a 与b 的夹角为

3

,且|a |=1,|b |=4,若(2a +λb )⊥a ,则实数λ=________. [答案] 1

[解析] ∵〈a ,b 〉=

2π3,|a |=1,|b |=4,∴a ·b =|a |·|b |·cos 〈a ,b 〉=1×4×cos 2π3

=-2,∵(2a +λb )⊥a ,∴a ·(2a +λb )=2|a |2+λa ·b =2-2λ=0,∴λ=1.

16. 已知:|OA →|=1,|OB →|=3,OA →·OB →=0,点C 在∠AOB 内,且∠AOC =30°,设OC →=mOA →+nOB →

(m ,

n ∈R +

),则m n

=________.

[答案] 3

[解析] 设mOA →=OF →,nOB →=OE →,则OC →=OF →+OE →

∵∠AOC =30°,∴|OC →|·cos30°=|OF →|=m |OA →

|=m , |OC →|·sin30°=|OE →|=n |OB →|=3n ,

两式相除得:m 3n =|OC →

|cos30°|OC →|sin30°

=1tan30°=3,∴m

n =3.

17. (文)设i 、j 是平面直角坐标系(坐标原点为O )内分别与x 轴、y 轴正方向相同的两个单位向量,且OA →

-2i +j ,OB →

=4i +3j ,则△OAB 的面积等于________. [答案] 5

[解析] 由条件知,i 2=1,j 2=1,i ·j =0,∴OA →·OB →=(-2i +j )·(4i +3j )=-8+3=-5,又OA →·OB →=|OA →

|·|OB →|·cos 〈OA →,OB →〉=55cos 〈OA →,OB →〉,

∴cos 〈OA →,OB →〉=-55,∴sin 〈OA →,OB →〉=25

5,

∴S △OAB =12|OA →|·|OB →|·sin 〈OA →,OB →〉=12×5×5×25

5

=5.

(理)三角形ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,能得出三角形ABC 一定是锐角三角形的条件是________(只写序号)

①sin A +cos A =15 ②AB →·BC →

<0 ③b =3,c =33,B =30° ④tan A +tan B +tan C >0.

[答案] ④

[解析] 若A 为锐角,则sin A +cos A >1,∵sin A +cos A =15,∴A 为钝角,∵AB →·BC →<0,∴BA →·BC →

>0,

∴∠B 为锐角,由∠B 为锐角得不出△ABC 为锐角三角形;由正弦定理b sin B =c sin C 得,3sin30°=33

sin C

,∴sin C =

32,∴C =60°或120°,∵c ·sin B =332,3<33

2

<33,∴△ABC 有两解,故①②③都不能得出△ABC 为锐角三角形.

④由tan A +tan B +tan C =tan(A +B )(1-tan A tan B )+tan C =-tan C (1-tan A tan B )+tan C =tan A tan B tan C >0,及A 、B 、C ∈(0,π),A +B +C =π知A 、B 、C 均为锐角,

∴△ABC 为锐角三角形.

18. 已知平面向量a =(1,x ),b =(2x +3,-x ).

(1)若a ⊥b ,求x 的值. (2)若a ∥b ,求|a -b |.

[解析](1)若a⊥b,

则a·b=(1,x)·(2x+3,-x)=1×(2x+3)+x(-x)=0,

整理得x2-2x-3=0,解得x=-1或x=3.

(2)若a∥b,则有1×(-x)-x(2x+3)=0,则x(2x+4)=0,解得x=0或x=-2,当x=0时,a=(1,0),b=(3,0),

∴|a-b|=|(1,0)-(3,0)|=|(-2,0)|=(-2)2+02=2,

当x=-2时,a=(1,-2),b=(-1,2),

∴|a-b|=|(1,-2)-(-1,2)|=|(2,-4)|=22+(-4)2=2 5.

19.已知向量a=(sin x,-1),b=(3cos x,-1

2),函数f(x)=(a+b)·a-2.

(1)求函数f(x)的最小正周期T;

(2)将函数f(x)的图象向左平移π

6上个单位后,再将所得图象上所有点的横坐标伸长为原来的3倍,得到

函数g(x)的图象,求函数g(x)的解析式及其对称中心坐标.

[解析](1)f(x)=(a+b)·a-2=a2+a·b-2=sin2x+1+3sin x cos x+1

2-2

=1-cos2x

2+

3

2sin2x-

1

2=

3

2sin2x-

1

2cos2x=sin(2x-

π

6),

∴周期T=2π

2=π.

(2)向左平移π

6个单位得,y=sin[2(x+

π

6)-

π

6]=sin(2x+

π

6),横坐标伸长为原来的3倍得,

g(x)=sin(2

3x+π

6),令

2

3x+

π

6=kπ得对称中心为(

3kπ

2-

π

4,0),k∈Z.

20.(文)三角形的三个内角A、B、C所对边的长分别为a、b、c,设向量m=(c-a,b-a),n=(a+b,

c),若m∥n.

(1)求角B的大小;

(2)若sin A+sin C的取值范围.

[解析](1)由m∥n知c-a

a+b

b-a

c,

即得b2=a2+c2-ac,据余弦定理知cos B=1

2,得B=

π

3.

(2)sin A+sin C=sin A+sin(A+B)=sin A+sin(A+π3)

=sin A+1

2sin A+

3

2cos A=

3

2sin A+

3

2cos A=3sin(A+

π

6),

∵B=π

3,∴A+C=

3,∴A∈(0,

3),

∴A+π

6∈(

π

6,

6),∴sin(A+

π

6)∈(

1

2,1],

∴sin A+sin C的取值范围为(

3

2,3].

(理)在钝角三角形ABC中,a、b、c分别是角A、B、C的对边,m=(2b-c,cos C),n=(a,cos A),且m∥n.

(1)求角A的大小;

相关主题
相关文档
最新文档