2019年高考文科数学算法初步分类汇编

合集下载

高考文科数学试题分类汇编 六算法初步

高考文科数学试题分类汇编  六算法初步
【答案】C
【解析】执行三次循环, 成立, , , 成立, , , 成立,
, 不成立,输出 ,故选C
(二)填空题
(安徽文)(12)如图所示,程序框图(算法流程图)的输出结果是15.
(湖南文)11.若执行如图2所示的框图,输入 则输出的数等于.
答案:
解析:由框图功能可知,输出的数等于 。
(山东文)14.执行右图所示的程序框图,输入l=2,m=3,n=5,则输出的y的值是
六、算法初步
(一)选择题
(辽宁文)(9)执行右面的程序框图,如果输入的n是4,则输出的P是C
(A)8
(B)5
(C)3
(D)2
(全国新课标文)(5)执行右面的程序框图,如果输入的N是6,那么输出的p是B
(A)120(B)720(C)1440(D)5040
(福建文)5.阅读右图所示的程序框图,运行相应的程序,输出的结果是B
S=(1+2)*2=6,n=3,注意此刻3>3仍然是否,所以还要循环一次
s=(6+3)*3=27,n=4,此刻输出,s=27.
(PS:程序框图的题一直是大家的青睐,就是一个循环计算的过程。2010天津文科卷的第3题,考题与此类似。在我们寒假文科讲义117页的第2题做过与此非常类似的,无非更改些数字。基础是关键!)Aຫໍສະໝຸດ ,0.5B.1C.2 D.4
【答案】C
【解析】当 时, ;
当 时,
当 时, ,
∴ .
(浙江文)(14)某程序框图如图所示,则该程序运行后输出的 的值是_______5______________。
(北京文) (6)执行如图所示的程序框图,若输入A的值为2,则输出的P值为
(A)2
(B)3

2019年高考真题和模拟题分项汇编数学(文):专题01集合与常用逻辑用语(含解析)

2019年高考真题和模拟题分项汇编数学(文):专题01集合与常用逻辑用语(含解析)

.
11.【 2019 年高考江苏】已知集合 A { 1,0,1,6} , B { x | x 0, x R } ,则 A B ▲ .
【答案】 {1,6}
【解析】由题意利用交集的定义求解交集即可
.
由题意知, A B {1,6} .
【名师点睛】本题主要考查交集的运算,属于基础题
.
12.【辽宁省沈阳市 2019 届高三教学质量监测(三)数学】已知集合 的个数为
17.【福建省龙岩市 (漳州市) 2019 届高三 5 月月考数学】 已知集合 A { x | x 1} , B { x | 2x 3 0} ,则 A B
A . [0, )
B . [1, )
3 C. ,
2
3 D . 0,
2
【答案】 B
【解析】因为 B { x | 2x 3 0} ={ x | x 所以 A B [1, ) .
2019 年高考真题和模拟题分项汇编数学(文) 专题 01 集合与常用逻辑用语
1.【 2019 年高考全国Ⅰ卷文数】已知集合 U 1,2,3,4,5,6,7 ,A 2,3,4,5 ,B 2,3,6,7 ,则 B eU A
A . 1,6
B . 1,7
C. 6,7 【答案】 C 【解析】由已知得 eU A 1,6,7 ,
故选 B. 【名师点睛】本题考查充分必要条件,解题的关键是由所给的不等式得到
x 的取值范围 .
8.【 2019 年高考浙江】若 a>0, b>0,则“ a+b≤4”是 “ab≤ 4”的
A .充分不必要条件
B .必要不充分条件
C.充分必要条件 【答案】 A
D .既不充分也不必要条件
【解析】 当 a > 0, b > 0 时, a b 2 ab ,则当 a b 4 时,有 2 ab a b 4 ,解得 ab 4 ,充分性成立;

【高考总动员】2019届高考数学(人教,文)大一轮:第十一章 算法初步、推理与证明、复数第11章-算法初步

【高考总动员】2019届高考数学(人教,文)大一轮:第十一章 算法初步、推理与证明、复数第11章-算法初步

第十一章算法初步、推理与证明、复数第一节算法与程序框图[基础知识深耕]一、算法的含义与程序框图1.算法算法是指按照一定规则解决某一类问题的明确和有限的步骤.2.程序框图程序框图又称流程图,是一种用程序框、流程线及文字说明来表示算法的图形.3.程序框图中图形符号的含义二、三种基本逻辑结构及相应语句【拓展延伸】UNTIL语句与WHILE语句的区别1.计算机的执行顺序不同:UNTIL语句先循环,WHILE 语句先判断条件.2.条件的内容不同:UNTIL语句中满足条件时停止循环,WHILE语句中不满足条件时停止循环.3.对循环体的执行次数不同:UNTIL语句至少执行一次循环体,WHILE语句可能一次也不执行循环体.[基础能力提升]1.下列关于程序框图的说法正确的是()A.程序框图是描述算法的语言B.在程序框图中,一个判断框最多只能有一个退出点C.程序框图虽可以描述算法,但不如用自然语言描述算法直观D.程序框图和流程图不是同一个概念【解析】本题是程序框图概念方面的辨析题.一个判断框可以有多个退出点,所以B不正确;程序框图就是流程图,所以D不正确;程序框图要比自然语言直观、形象,所以C不正确,故选A.【答案】 A2.给出下列命题,其中正确的是()①一个程序框图可以只有顺序结构;②“当型”循环和“直到型”循环都是在条件满足时,退出循环;③输入语句可以给多个变量同时赋值;④在算法语句中,X=X+1是错误的;⑤条件结构中还可以包含条件结构.A.①②③B.①③⑤C.①④D.①③④【解析】由算法基本结构可知①⑤正确,由算法语句可知③正确,故选B.【答案】 B3.阅读如图11-1-1的程序框图,若输入x=2,则输出的y值为()图11-1-1A.0B.1 C.2D.3【解析】∵2>0,∴y=2×2-3=1.【答案】 B4.如图11-1-2所示的程序框图输出的S是126,则①应为()图11-1-2A .n ≤5?B .n ≤6?C .n ≤7?D .n ≤8?【解析】 2+22+…+2n =2(1-2n)1-2=126,∴n =6,∴应填入n ≤6?【答案】B1.一条规律——三种结构间的关系每个算法结构都含有顺序结构,循环结构中必定包含一个条件结构,用于确定何时终止循环体.循环结构和条件结构都含有顺序结构.2.两点注意——赋值语句的形式及循环结构的设计(1)赋值号左边只能是变量(不是表达式),在一个赋值语句中只能给一个变量赋值.(2)利用循环结构表示算法,要明确是利用当型循环结构,还是直到型循环结构.要注意:①选择好累计变量;②弄清在哪一步开始循环,满足什么条件不再执行循环体.第二节合情推理与演绎推理[基础知识深耕]一、合情推理1.归纳推理(1)定义:由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事实概括出一般结论的推理,称为归纳推理(简称归纳).(2)特点:由部分到整体、由个别到一般的推理.2.类比推理(1)定义:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理(简称类比).(2)特点:类比推理是由特殊到特殊的推理.3.合情推理归纳推理和类比推理都是根据已有的事实,经过观察、分析、比较、联想,再进行归纳、类比,然后提出猜想的推理,我们把它们统称为合情推理.【方法技巧】合情推理的过程合情推理的过程概括为从具体问题出发→观察、分析、比较、联想→归纳、类比→提出猜想二、演绎推理1.演绎推理从一般性的原理出发,推出某个特殊情况下的结论,我们把这种推理称为演绎推理.简言之,演绎推理是由一般到特殊的推理.2.“三段论”是演绎推理的一般模式(1)大前提——已知的一般原理;(2)小前提——所研究的特殊情况;(3)结论——根据一般原理,对特殊情况作出的判断.【拓展延伸】演绎推理的可靠性演绎推理是由一般性命题推理出特殊性命题的一种推理模式,是一种必然性推理,演绎推理的前提与结论之间有蕴涵的关系.因而,只要前提是真实的,推理形式是正确的,推出的结论必定是真实的.[基础能力提升]1.给出下列命题:①归纳推理得到的结论不一定正确,类比推理得到的结论一定正确;②由平面三角形的性质推测空间四面体的性质,这是一种合情推理;③在类比时,平面中的三角形与空间中的平行六面体作为类比对象较为合适;④“所有3的倍数都是9的倍数,某数m是3的倍数,则m一定是9的倍数”,这是三段论推理,但其结论是错误的.其中正确的是()A.①③B.②④C.②③D.①④【解析】合情推理仅是一种猜想,其可靠性需做进一步证明,故①错误;由类比推理的定义可知③错误.【答案】 B2.由代数式的乘法法则类比推导向量的数量积的运算法则:①“mn =nm ”类比得到“a·b =b·a ”;②“(m +n )t =mt +nt ”类比得到“(a +b )·c =a·c +b·c ”;③“(m ·n )t =m (n ·t )”类比得到“(a·b )·c =a·(b·c )”; ④“t ≠0,mt =xt ⇒m =x ”类比得到“p ≠0,a·p =x·p ⇒a =x ”;⑤“|m ·n |=|m |·|n |”类比得到“|a·b |=|a |·|b |”;⑥“ac bc =a b ”类比得到“a·c b·c =a b”. 以上式子中,类比得到的结论正确的个数是( )A .1B .2C .3D .4【解析】 只有①②正确,其余均错误.【答案】 B3.命题“有些有理数是无限循环小数,整数是有理数,所以整数是无限循环小数”是假命题,推理错误的原因是()A.使用了归纳推理B.使用了类比推理C.使用了“三段论”,但推理形式错误D.使用了“三段论”,但小前提错误【解析】由“三段论”的推理方式可知,该推理的错误原因是推理形式错误.【答案】 C4.推理“①矩形是平行四边形;②三角形不是平行四边形;③三角形不是矩形”中的小前提是()A.①B.②C.③D.①和②【解析】①是大前提,③是小前提,②是结论.【答案】 C三个注意点——合情推理与演绎推理的注意事项(1)合情推理包括归纳推理和类比推理,所得到的结论都不一定正确,其结论的正确性是需要证明的.(2)在进行类比推理时,要尽量从本质上去类比,不要被表面现象所迷惑;否则只抓住一点表面现象甚至假象就去类比,就会犯机械类比的错误.(3)应用三段论解决问题时,应首先明确什么是大前提,什么是小前提,如果大前提与推理形式是正确的,结论必定是正确的.如果大前提错误,尽管推理形式是正确的,所得结论也是错误的.第三节直接证明与间接证明[基础知识深耕]一、直接证明【拓展延伸】综合法与分析法的关系(1)综合法证明问题是由因导果,分析法证明问题是执果索因.(2)分析法与综合法相辅相成,对较复杂的问题,常常先从结论进行分析,寻求结论与条件、基础知识之间的关系,找到解决问题的思路,再运用综合法证明,或者在证明时将两种方法交叉使用.二、间接证明——反证法1.定义假设原命题不成立(即在原命题的条件下,结论不成立),经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明了原命题成立,这样的证明方法叫做反证法.2.证明步骤(1)反设——假设命题的结论不成立,即假设原结论的反面为真;(2)归谬——把“反设”作为条件,经过一系列正确的推理,得出矛盾;(3)存真——由矛盾结果断定反设错误,从而肯定原结论成立.【拓展延伸】反证法中的“矛盾”所包含的层面:(1)与已知条件矛盾;(2)与假设矛盾;(3)与定义、公理、定理矛盾;(4)与事实矛盾.[基础能力提升]1.给出下列命题:①综合法是直接证明,分析法是间接证明;②分析法是从要证明的结论出发,逐步寻找使结论成立的充要条件;③反证法是指将结论和条件同时否定,推出矛盾;④在解决问题时,常常用分析法寻找解题的思路与方法,再用综合法展现解决问题的过程.其中错误的是()A.①④B.②④C.①②③D.①②④【解析】分析法是直接证明故①错误,同理②③错误,④正确.【答案】 C2.命题“对于任意角θ,cos4θ-sin4θ=cos 2θ”的证明:“cos4θ-sin4θ=(cos2θ-sin2θ)(cos2θ+sin2θ)=cos2θ-sin2θ=cos 2θ”过程应用了()A.分析法B.综合法C.综合法、分析法综合使用D.间接证明法【解析】结合推理及分析法和综合法的定义可知,B 正确.【答案】 B3.设a =lg 2+lg 5,b =ex (x <0),c =⎝ ⎛⎭⎪⎫13-2,则a ,b ,c 的大小关系为( )A .a >b >cB .c >a >bC .a >c >bD .c >b >a【解析】 ∵a =lg 2+lg 5=lg 10=1;b =e x (x <0),∴b<1;c =⎝ ⎛⎭⎪⎫13-2=9>1;∴b <a <c . 【答案】 B4.用反证法证明命题“三角形三个内角至少有一个不大于60°”时,应假设( )A .三个内角都不大于60°B .三个内角都大于60°C .三个内角至多有一个大于60°D .三个内角至多有两个大于60°【答案】 B1.分析法和综合法的特点(1)分析法的特点:从未知看需知,逐步靠拢已知.(2)综合法的特点:从已知看可知,逐步推出未知.(3)分析法和综合法各有优缺点.分析法思考起来比较自然,容易寻找到解题的思路和方法,缺点是思路逆行,叙述较繁;综合法从条件推出结论,较简捷地解决问题,但不便于思考.实际证题时常常两法兼用,先用分析法探索证明途径,然后再用综合法叙述出来.2.利用分析法和反证法证明数学问题时应注意的问题(1)用分析法证明数学问题时,要注意书写格式的规范性,常常用“要证(欲证)…”“即要证…”“就要证…”等分析到一个明显成立的结论.(2)利用反证法证明数学问题时,要假设结论错误,并用假设命题进行推理,没有用假设命题推理而推出矛盾结果,其推理过程是错误的.第四节 数系的扩充与复数的引入[基础知识深耕]一、复数的有关概念1.复数的定义形如a +b i(a 、b ∈R )的数叫做复数,其中实部是a ,虚部是b .2.复数的分类 复数z =a +b i (a ,b ∈R )⎩⎪⎨⎪⎧实数(b =0),虚数(b ≠0)⎩⎪⎨⎪⎧纯虚数(a =0,b ≠0),非纯虚数(a ≠0,b ≠0). 3.复数相等a+b i=c+d i⇔a=c,b=d(a,b,c,d∈R).4.共轭复数a+b i与c+d i共轭⇔a=c,b=-d(a,b,c,d∈R).5.复数的模→的模叫做复数z=a+b i的模,记作|a+b i|或|z|,向量OZ即|z|=|a+b i|=r=a2+b2(r≥0,a、b∈R).二、复数的几何意义1.复平面的概念建立直角坐标系来表示复数的平面叫做复平面.2.实轴、虚轴在复平面内,x轴叫做实轴,y轴叫做虚轴,实轴上的点都表示实数;除原点以外,虚轴上的点都表示纯虚数.3.复数的几何意义图11-4-1【拓展延伸】复数的几何意义除了复数与复平面内的点和向量的一一对应关系外,还要注意(1)|z|=|z-0|=a(a>0)表示复数z对应的点到原点的距离为a;(2)|z-z0|表示复数z对应的点与复数z0对应的点之间的距离.三、复数代数形式的四则运算1.运算法则设z1=a+b i,z2=c+d i(a,b,c,d∈R),则2.复数加法的运算律设z1,z2,z3∈C,则复数加法满足以下运算律:(1)交换律:z1+z2=z2+z1;(2)结合律:(z1+z2)+z3=z1+(z2+z3).【拓展延伸】虚数单位i的周期性计算得i0=1,i1=i,i2=-1,i3=-i,继续计算可知i 具有周期性,且最小正周期为4,故有如下性质(n∈N):(1)i4n=1,i4n+1=i,i4n+2=-1,i4n+3=-i;(2)i4n+i4n+1+i4n+2+i4n+3=0.[基础能力提升]1.给出下列结论:①任何数的平方都不小于0;②已知z=a+b i(a,b∈R),当a=0时复数z为纯虚数;③两个虚数的和还是虚数;④复数的模就是复数在复平面内对应向量的模.其中正确的是()A.②B.④C.②③D.①④【解析】只有④正确,其余均错误.【答案】 B2.若a,b∈R,i为虚数单位,且(a+i)i=b+i,则() A.a=1,b=1 B.a=-1,b=1C.a=-1,b=-1 D.a=1,b=-1【解析】(a+i)i=-1+a i=b+i,故a=1,b=-1.【答案】 D3.在复平面内,复数i(2-i)对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【解析】∵i(2-i)=2i+1,其对应点的坐标为(1,2),故选A.【答案】 A4.若z=1+2ii,则复数z=()A.-2-i B.-2+i C.2-i D.2+i【解析】∵z=1+2ii=(1+2i)i-1=2-i,∴z=2+i.【答案】 D1.三个易错点——复数的概念理解(1)判定复数是实数,仅注重虚部等于0是不够的,还需考虑它的实部是否有意义.(2)利用复数相等a+b i=c+d i列方程时,注意a,b,c,d∈R的前提条件.(3)z2<0在复数范围内有可能成立,例如:当z=3i时z2=-9<0.2.两个运算技巧——复数的运算(1)设z=a+b i(a,b∈R),利用复数相等和相关性质将复数问题实数化是解决复数问题的常用方法.(2)在复数代数形式的四则运算中,加、减、乘法运算按多项式运算法则进行,除法则需分母实数化.3.两条运算性质(1)i4n=1,i4n+1=i,i4n+2=-1,i4n+3=-i,i n+i n+1+i n+2+i n+3=0(各式中n∈N).(2)(1±i)2=±2i,1+i1-i=i,1-i1+i=-i.。

2019编辑2017-2019三年高考 数学(文科)分类汇编 专题13 不等式、推理与证明.doc

2019编辑2017-2019三年高考 数学(文科)分类汇编 专题13 不等式、推理与证明.doc

专题13 不等式、推理与证明1.【2019年高考全国I 卷文数】古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是12.若某人满足上述两个黄金分割比例,且腿长为105 cm ,头顶至脖子下端的长度为26 cm ,则其身高可能是A .165 cmB .175 cmC .185 cmD .190 cm【答案】B【解析】方法一:如下图所示. 依题意可知:11,22AC AB CD BC ==, ① 腿长为105 cm 得,即>105CD ,164.892AC CD =>, 64.89105169.89AD AC CD =+>+=,所以AD >169.89.②头顶至脖子下端长度为26 cm , 即AB <26,42.07BC =<,=+<68.07 AC AB BC,110.15CD=<,+<68.07+110.15=178.22AC CD,所以<178.22AD.综上,169.89<<178.22AD.故选B.方法二:设人体脖子下端至肚脐的长为x cm,肚脐至腿根的长为y cm,则2626105xx y+==+42.07cm, 5.15cmx y≈≈.又其腿长为105cm,头顶至脖子下端的长度为26cm,所以其身高约为42.07+5.15+105+26=178.22,接近175cm.故选B.【名师点睛】本题考查类比归纳与合情推理,渗透了逻辑推理和数学运算素养.采取类比法,利用转化思想解题.2.【2019年高考全国III卷文数】记不等式组6,20x yx y+≥⎧⎨-≥⎩表示的平面区域为D.命题:(,),2p x y D x y∃∈+≥;命题:(,),212q x y D x y∀∈+≤.下面给出了四个命题①p q∨②p q⌝∨③p q∧⌝④p q⌝∧⌝这四个命题中,所有真命题的编号是A.①③B.①②C.②③D.③④【答案】A【解析】根据题中的不等式组可作出可行域,如图中阴影部分所示, 记直线1: 2+9,l y x =-2: =2+12l y x -,由图可知,(,),29,(,),212x y D x y x y D x y ∃∈+∃∈+>…, 所以p 为真命题,q 为假命题, 所以p ⌝为假命题,q ⌝为真命题,所以p q ∨为真命题,p q ⌝∨为假命题,p q ∧⌝为真命题,p q ⌝∧⌝为假命题, 所以所有真命题的编号是①③.故选A.【名师点睛】本题将线性规划和不等式,命题判断综合到一起,解题关键在于充分利用取值验证的方法进行判断.3.【2019年高考北京卷文数】在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足m 2−m 1=52lg 21E E ,其中星等为m k 的星的亮度为E k (k =1,2).已知太阳的星等是−26.7,天狼星的星等是−1.45,则太阳与天狼星的亮度的比值为 A . 1010.1B . 10.1C . lg10.1D . 10–10.1【答案】A【解析】两颗星的星等与亮度满足12125lg 2E m m E -=,令211.45,26.7m m =-=-, ()10.111212222lg( 1.4526.7)10.1,1055E E m m E E =⋅-=-+==. 故选:A .【名师点睛】本题以天文学问题为背景,考查考生的数学应用意识、信息处理能力、阅读理解能力以及指数对数运算.4.【2019年高考天津卷文数】设变量,x y 满足约束条件20,20,1,1,x y x y x y +-≤⎧⎪-+≥⎪⎨-⎪⎪-⎩……,则目标函数4z x y =-+的最大值为 A .2 B .3C .5D .6【答案】D【解析】已知不等式组表示的平面区域如图中的阴影部分. 目标函数的几何意义是直线4y x z =+在y 轴上的截距, 故目标函数在点A 处取得最大值. 由20,1x y x -+=⎧⎨=-⎩,得(1,1)A -,所以max 4(1)15z =-⨯-+=. 故选C.【名师点睛】线性规划问题,首先明确可行域对应的是封闭区域还是开放区域,分界线是实线还是虚线,其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等等,最后结合图形确定目标函数最值或范围.即:一画,二移,三求.5.【2019年高考天津卷文数】设x ∈R ,则“05x <<”是“|1|1x -<”的 A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件【答案】B【解析】11x -<等价于02x <<,故05x <<推不出11x -<; 由11x -<能推出05x <<,故“05x <<”是“|1|1x -<”的必要不充分条件. 故选B .【名师点睛】充要条件的三种判断方法: (1)定义法:根据p ⇒q ,q ⇒p 进行判断;(2)集合法:根据由p ,q 成立的对象构成的集合之间的包含关系进行判断;(3)等价转化法:根据一个命题与其逆否命题的等价性,把要判断的命题转化为其逆否命题进行判断.这个方法特别适合以否定形式给出的问题.6.【2019年高考浙江卷】若实数,x y 满足约束条件3403400x y x y x y -+≥⎧⎪--≤⎨⎪+≥⎩,则32z x y =+的最大值是A . 1-B . 1C . 10D . 12【答案】C【解析】画出满足约束条件的可行域如图中阴影部分所示. 因为32z x y =+,所以3122y x z =-+. 平移直线3122y x z =-+可知,当该直线经过点A 时,z 取得最大值. 联立两直线方程可得340340x y x y -+=⎧⎨--=⎩,解得22x y =⎧⎨=⎩.即点A 坐标为(2,2)A ,所以max 322210z =⨯+⨯=.故选C.【名师点睛】解答此类问题,要求作图要准确,观察要仔细.往往由于由于作图欠准确而影响答案的准确程度,也有可能在解方程组的过程中出错. 7.【2019年高考浙江卷】若0,0ab >>,则“4a b +≤”是 “4ab ≤”的A . 充分不必要条件B . 必要不充分条件C . 充分必要条件D . 既不充分也不必要条件【答案】A【解析】当0, 0a >b >时,a b +≥当且仅当a b =时取等号,则当4a b +≤时,有4a b ≤+≤,解得4ab ≤,充分性成立;当=1, =4a b 时,满足4ab ≤,但此时=5>4a+b ,必要性不成立,综上所述,“4a b +≤”是“4ab ≤”的充分不必要条件.【名师点睛】易出现的错误有,一是基本不等式掌握不熟,导致判断失误;二是不能灵活的应用“赋值法”,通过特取,a b 的值,从假设情况下推出合理结果或矛盾结果.8.【2018年高考北京卷文数】设集合{(,)|1,4,2},A x y x y ax y x ay =-≥+>-≤则A .对任意实数a ,(2,1)A ∈B .对任意实数a ,(2,1)A ∉C .当且仅当a <0时,(2,1)A ∉D .当且仅当32a ≤时,(2,1)A ∉ 【答案】D【解析】点(2,1)在直线1x y -=上,4ax y +=表示过定点(0,4),斜率为a -的直线,当0a ≠ 时,2x ay -=表示过定点(2,0),斜率为1a的直线,不等式2x ay -≤表示的区域包含原点,不等式4ax y +>表示的区域不包含原点.直线4a x y +=与直线2x ay -=互相垂直.显然当直线4a x y +=的斜率0a ->时,不等式4ax y +>表示的区域不包含点(2,1),故排除A ;点(2,1)与点(0,4)连线的斜率为32-,当32a -<-,即32a >时,4ax y +>表示的区域包含点(2,1),此时2x ay -<表示的区域也包含点(2,1),故排除B ;当直线4ax y +=的斜率32a -=-,即32a =时,4ax y +>表示的区域不包含点(2,1),故排除C ,故选D.【名师点睛】本题主要考查线性规划问题,考查考生的数形结合思想、化归与转化思想以及逻辑推理能力和运算求解能力,考查的核心素养是直观想象、数学运算. 9.【2018年高考天津卷文数】设x ∈R ,则“38x >”是“||2x >”的 A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件【答案】A【解析】求解不等式可得,求解绝对值不等式可得或,据此可知:“”是“” 的充分而不必要条件.故选A.【名师点睛】本题主要考查绝对值不等式的解法、充分不必要条件的判断等知识,意在考查学生的转化能力和计算求解能力.10.【2018年高考天津卷文数】设变量,x y 满足约束条件52410x y x y x y y +≤⎧⎪-≤⎪⎨-+≤⎪⎪≥⎩,,,,则目标函数35z x y =+的最大值为A .6B .19C .21D .45【答案】C【解析】绘制不等式组52410x y x y x y y +≤⎧⎪-≤⎪⎨-+≤⎪⎪≥⎩,,,表示的平面区域如图所示,结合目标函数的几何意义可知目标函数在点A 处取得最大值,联立直线方程得51x y x y +=⎧⎨-+=⎩,可得点A 的坐标为()2,3A ,据此可知目标函数的最大值为:max 35325321z x y =+=⨯+⨯=.本题选择C 选项.【名师点睛】求线性目标函数z =ax +by (ab ≠0)的最值,当b >0时,直线过可行域且在y 轴上截距最大时,z 值最大,在y 轴截距最小时,z 值最小;当b <0时,直线过可行域且在y 轴上截距最大时,z 值最小,在y 轴上截距最小时,z 值最大.11.【2017年高考天津卷文数】设x ∈R ,则“20x -≥”是“|1|1x -≤”的A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件【答案】B【解析】由20x -≥,可得2x ≤,由|1|1x -≤,可得111x -≤-≤,即02x ≤≤,因为{}{}022x x x x ≤≤⊂≤,所以“20x -≥”是“|1|1x -≤”的必要而不充分条件,故选B .【名师点睛】判断充要关系的的方法:①根据定义,若,/p q q p ⇒⇒,那么p 是q 的充分而不必要条件,同时q 是p 的必要而不充分条件,若p q ⇔,那么p 是q 的充要条件,若,//p q q p ⇒⇒,那那么p 是q 的既不充分也不必要条件;②当命题是以集合的形式给出时,那就看包含关系,若:p x A ∈,:q x B ∈,若A 是B 的真子集,那么p 是q 的充分而不必要条件,同时q 是p 的必要而不充分条件,若A B =,那么p 是q 的充要条件,若没有包含关系,那么p 是q 的既不充分也不必要条件;③命题的等价性,根据互为逆否命题的两个命题等价,将“p 是q ”的关系转化为“q ⌝是p ⌝”的关系进行判断. 12.【2017年高考天津卷文数】已知奇函数()f x 在R 上是增函数.若0.8221(log ),(log 4.1),(2)5a fb fc f =-==,则a ,b ,c 的大小关系为A .a b c <<B .b a c <<C .c b a <<D .c a b <<【答案】C【解析】由题意可得221(log )(log 5)5a f f =-=,且22log 5log 4.12>>,0.8122<<,所以0.822log 5log 4.12>>,结合函数的单调性,可得0.822(log 5)(log 4.1)(2)f f f >>,即a b c >>,即c b a <<.故选C .【名师点睛】比较大小是高考的常见题型,指数式、对数式的大小比较要结合指数函数、对数函数,借助指数函数和对数函数的图象,利用函数的单调性、奇偶性等进行大小比较,要特别关注灵活利用函数的奇偶性和单调性,数形结合进行大小比较或解不等式.13.【2017年高考全国I 卷文数】设x ,y 满足约束条件33,1,0,x y x y y +≤⎧⎪-≥⎨⎪≥⎩则z =x +y 的最大值为A .0B .1C .2D .3【答案】D【解析】如图,作出不等式组表示的可行域,则目标函数z x y =+经过(3,0)A 时z 取得最大值,故max 303z =+=,故选D .【名师点睛】本题主要考查线性规划问题,首先由不等式组作出相应的可行域,并明确可行域对应的是封闭区域还是开放区域、分界线是实线还是虚线,其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等等,最后结合图形确定目标函数的最值取法或值域范围.14.【2017年高考浙江卷】若x ,y 满足约束条件03020x x y x y ≥⎧⎪+-≥⎨⎪-≤⎩,则2z x y =+的取值范围是A .[0,6]B .[0,4]C .[6,)+∞D .[4,)+∞【答案】D【解析】如图,可行域为一开放区域,所以直线过点(2,1)时取最小值4,无最大值,选D .【名师点睛】本题主要考查线性规划问题,首先由不等式组作出相应的可行域,作图时,可将不等式0Ax By C ++≥转化为y kx b ≤+(或y kx b ≥+),“≤”取下方,“≥”取上方,并明确可行域对应的是封闭区域还是开放区域、分界线是实线还是虚线,其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等等,最后结合图形确定目标函数最值取法、值域范围.15.【2017年高考全国II卷文数】设,x y满足约束条件2+330,2330,30,x yx yy-≤⎧⎪-+≥⎨⎪+≥⎩则2z x y=+的最小值是A.15-B.9-C.1D.9【答案】A【解析】绘制不等式组表示的可行域如图中阴影部分所示,结合目标函数的几何意义可得函数在点()6,3B--处取得最小值,最小值为min 12315z=--=-.故选A.【名师点睛】线性规划的实质是把代数问题几何化,即数形结合的思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大或最小值会在可行域的端点或边界上取得.16.【2017年高考全国II卷文数】甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则A.乙可以知道四人的成绩B.丁可以知道四人的成绩C.乙、丁可以知道对方的成绩D.乙、丁可以知道自己的成绩【答案】D【解析】由甲的说法可知乙、丙一人优秀一人良好,则甲、丁两人一人优秀一人良好,乙看到丙的成绩则知道自己的成绩,丁看到甲的成绩则知道自己的成绩,即乙、丁可以知道自己的成绩.故选D.【名师点睛】合情推理主要包括归纳推理和类比推理.数学研究中,在得到一个新结论前,合情推理能帮助猜测和发现结论,在证明一个数学结论之前,合情推理常常能为证明提供思路与方向.合情推理仅是“合乎情理”的推理,它得到的结论不一定正确.而演绎推理得到的结论一定正确(前提和推理形式都正确的前提下).17.【2017年高考北京卷文数】若,x y 满足3,2,,x x y y x ≤⎧⎪+≥⎨⎪≤⎩则2x y +的最大值为A .1B .3C .5D .9【答案】D【解析】如图,画出可行域,2z x y =+表示斜率为12-的一组平行线,当2z x y =+过点()3,3C 时,目标函数取得最大值max 3239z =+⨯=,故选D.【名师点睛】本题主要考查简单的线性规划.解决此类问题的关键是正确画出不等式组表示的可行域,将目标函数赋予几何意义.求目标函数的最值的一般步骤为:一画、二移、三求.常见的目标函数类型有:(1)截距型:形如z ax by =+.求这类目标函数的最值时常将函数z ax by =+转化为直线的斜截式:a z y xb b =-+,通过求直线的截距zb的最值间接求出z 的最值;(2)距离型:形如()()22z x a y b =-+-;(3)斜率型:形如y b z x a-=-,而本题属于截距形式. 18.【2017年高考山东卷文数】已知x ,y 满足约束条件250302x y x y -+≤⎧⎪+≥⎨⎪≤⎩,则z =x +2y 的最大值是A .-3B .-1C .1D .3【答案】D【解析】画出约束条件250302x y x y -+≤⎧⎪+≥⎨⎪≤⎩表示的可行域,如图中阴影部分所示,平移直线20x y +=,可知当其经过直线250x y -+=与2y =的交点(1,2)-时,2z x y =+取得最大值,为max 1223z =-+⨯=,故选D.【名师点睛】(1)确定二元一次不等式(组)表示的平面区域的方法是:“直线定界,特殊点定域”,即先作直线,再取特殊点,并代入不等式(组).若满足不等式(组),则不等式(组)表示的平面区域为直线与特殊点同侧的那部分区域;否则就对应与特殊点异侧的平面区域.当不等式中带等号时,边界为实线;不带等号时,边界应画为虚线,特殊点常取原点.(2)利用线性规划求目标函数最值的步骤:①画出约束条件对应的可行域;②将目标函数视为动直线,并将其平移经过可行域,找到最优解;③将最优解代入目标函数,求出最大值或最小值.19.【2017年高考山东卷文数】已知命题p :,x ∃∈R 210x x -+≥;命题q :若22a b <,则a <b .下列命题为真命题的是A .p q ∧B .p q ∧⌝C .p q ⌝∧D .p q ⌝∧⌝ 【答案】B【解析】由0x =时210x x -+≥成立知p 是真命题,由221(2),12<->-可知q 是假命题,所以p q∧⌝是真命题,故选B.【名师点睛】判断一个命题为真命题,要给出推理与证明;判断一个命题是假命题,只需举出反例.根据“原命题与逆否命题同真同假,逆命题与否命题同真同假”这一性质,当一个命题直接判断不易进行时,可转化为判断其等价命题的真假.20.【2019年高考全国II 卷文数】若变量x ,y 满足约束条件23603020x y x y y ⎧⎪⎨⎪⎩+-≥+-≤-≤,,,则z =3x –y 的最大值是____________.【答案】9【解析】画出不等式组表示的可行域,如图中阴影部分所示,阴影部分表示的三角形ABC 区域,根据直线30x y z --=中的z 表示纵截距的相反数,当直线3z x y =-过点3,0C ()时,z 取最大值为9.【名师点睛】本题考查线性规划中最大值问题,渗透了直观想象、逻辑推理和数学运算素养.采取图解法,利用数形结合思想解题.搞不清楚线性目标函数的几何意义致误,从线性目标函数对应直线的截距观察可行域,平移直线进行判断取最大值还是最小值.21.【2019年高考全国II 卷文数】中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有________个面,其棱长为_________.(本题第一空2分,第二空3分.)【答案】261【解析】【答案】261【解析】由图可知第一层(包括上底面)与第三层(包括下底面)各有9个面,计18个面,第二层共有8个面,所以该半正多面体共有18826+=个面.如图,设该半正多面体的棱长为x ,则AB BE x ==,延长CB 与FE 交于点G ,延长BC 交正方体棱于H ,由半正多面体对称性可知,BGE △为等腰直角三角形,,21)122BG GE CH x GH x x x ∴===∴=⨯+==,1x ∴==,1.【名师点睛】本题立意新颖,空间想象能力要求高,物体位置还原是关键,遇到新题别慌乱,题目其实很简单,稳中求胜是关键.立体几何平面化,无论多难都不怕,强大空间想象能力,快速还原图形.22.【2019年高考北京卷文数】若x ,y 满足2,1,4310,x y x y ≤⎧⎪≥-⎨⎪-+≥⎩则y x -的最小值为__________,最大值为__________. 【答案】3-;1【解析】根据题中所给约束条件作出可行域,如图中阴影部分所示.设z y x -=,则=+y x z ,求出满足在可行域范围内z 的最大值、最小值即可,即在可行域内,当直线=+y x z 的纵截距最大时,z 有最大值,当直线=+y x z 的纵截距最小时,z 有最小值.由图可知,当直线=+y x z 过点A 时,z 有最大值,联立24310x x y =⎧⎨-+=⎩,可得23x y =⎧⎨=⎩ ,即(2,3)A ,所以max 321z =-=;当直线=+y x z 过点(2,1)B -时,z 有最小值, 所以min 123z =--=-.【名师点睛】本题是简单线性规划问题的基本题型,根据“画、移、解”等步骤可得解.题目难度不大,注重了基础知识、基本技能的考查.23.【2019年高考天津卷文数】设0,0,24x y x y >>+=,则(1)(21)x y xy++的最小值为__________.【答案】92【解析】(1)(21)2212525x y xy y x xy xy xy xy xy++++++===+. 因为0,0,24x y x y >>+=,所以24x y +=≥,2,02xy ≤<≤,当且仅当22x y ==时取等号成立. 又因为192255=22xy +≥+⨯, 所以(1)(21)x y xy ++的最小值为92.【名师点睛】使用基本不等式求最值时一定要验证等号是否能够成立.24.【2019年高考北京卷文数】李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x 元.每笔订单顾客网上支付成功后,李明会得到支付款的80%.①当x =10时,顾客一次购买草莓和西瓜各1盒,需要支付__________元;②在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x 的最大值为__________.【答案】①130 ;②15.【解析】①10x =,顾客一次购买草莓和西瓜各一盒,需要支付()608010130+-=元. ②设顾客一次购买水果的促销前总价为y 元,120y <元时,李明得到的金额为80%y ⨯,符合要求.120y ≥元时,有()80%70%y x y -⨯≥⨯恒成立,即()87,8yy x y x -≥≤,即min158y x ⎛⎫≤= ⎪⎝⎭元. 所以x 的最大值为15.【名师点睛】本题主要考查不等式的概念与性质、数学的应用意识、数学式子变形与运算求解能力,以实际生活为背景,创设问题情境,考查学生身边的数学,考查学生的数学建模素养.25.【2018年高考浙江卷】若,x y 满足约束条件0,26,2,x y x y x y -≥⎧⎪+≤⎨⎪+≥⎩则3z x y =+的最小值是___________,最大值是___________. 【答案】−2 8【解析】作0,26,2x y x y x y -≥⎧⎪+≤⎨⎪+≥⎩表示的可行域,如图中阴影部分所示,则直线3z x y =+过点A (2,2)时z 取最大值8,过点B (4,−2)时z 取最小值−2.【名师点睛】线性规划的实质是把代数问题几何化,即用数形结合的思想解题.需要注意的是: 一、准确无误地作出可行域;二、画目标函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错; 三、一般情况下,目标函数的最大或最小值会在可行域的端点或边界处取得. 26.【2018年高考北京卷文数】若 ,y 满足12x y x +≤≤,则2y − 的最小值是_________.【答案】3【解析】作出可行域,如图,则直线2z y x =-过点A (1,2)时,z 取最小值3.【名师点睛】线性规划的实质是把代数问题几何化,即数形结合的思想.需要注意的是:一、准确无误地作出可行域;二、画目标函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三、一般情况下,目标函数的最大或最小值会在可行域的端点或边界上取得.解本题时,先作出可行域,再根据目标函数与可行域关系,确定最小值取法.27.【2018年高考全国I卷文数】若x,y满足约束条件22010x yx yy--≤⎧⎪-+≥⎨⎪≤⎩,则32z x y=+的最大值为_____________.【答案】6【解析】根据题中所给的约束条件22010x yx yy--≤⎧⎪-+≥⎨⎪≤⎩,画出其对应的可行域,如图所示:由32z x y =+可得3122y x z =-+,画出直线32y x =-,将其上下移动,结合2z的几何意义,可知当直线过点B 时,z 取得最大值, 由220x y y --=⎧⎨=⎩,解得()2,0B ,此时max 3206z =⨯+=,故答案为6.【名师点睛】该题考查的是有关线性规划的问题,在求解的过程中,首先需要正确画出约束条件对应的可行域,之后根据目标函数的形式,判断z 的几何意义,之后画出一条直线,上下平移,判断哪个点是最优解,从而联立方程组,求得最优解的坐标,代入求值,要明确目标函数的形式大体上有三种:斜率型、截距型、距离型,根据不同的形式,应用相应的方法求解.28.【2018年高考全国III 卷文数】(2018新课标Ⅲ文科)若变量x y ,满足约束条件23024020.x y x y x ++≥⎧⎪-+≥⎨⎪-≤⎩,,则13z x y =+的最大值是________.【答案】3【解析】作出约束条件23024020x y x y x ++≥⎧⎪-+≥⎨⎪-≤⎩,,表示的可行域如下图所示.由图可知目标函数在直线240x y -+=与2x =的交点(2,3)处取得最大值3. 故答案为3.【名师点睛】(1)确定二元一次不等式(组)表示的平面区域的方法是:“直线定界,特殊点定域”,即先作直线,再取特殊点,并代入不等式(组).若满足不等式(组),则不等式(组)表示的平面区域为直线与特殊点同侧的那部分区域;否则就对应与特殊点异侧的平面区域.当不等式中带等号时,边界为实线;不带等号时,边界应画为虚线,特殊点常取原点.(2)利用线性规划求目标函数最值的步骤:①画出约束条件对应的可行域;②将目标函数视为动直线,并将其平移经过可行域,找到最优解;③将最优解代入目标函数,求出最大值或最小值.29.【2018年高考全国II 卷文数】若,x y 满足约束条件25023050x y x y x +-≥⎧⎪-+≥⎨⎪-≤⎩,,, 则z x y =+的最大值为__________. 【答案】9【解析】不等式组25023050x y x y x +-≥⎧⎪-+≥⎨⎪-≤⎩,,表示的可行域是以()()()5,4,1,2,5,0A B C 为顶点的三角形区域,如下图所示,目标函数z x y =+的最大值必在顶点处取得,易知当5,4x y ==时,max 9z =.【名师点睛】该题考查的是有关线性规划的问题,在求解的过程中,首先需要正确画出约束条件对应的可行域,之后根据目标函数的形式,判断z 的几何意义,之后画出一条直线,上下平移,判断哪个点是最优解,从而联立方程组,求得最优解的坐标,代入求值,要明确目标函数的形式大体上有三种:斜率型、截距型、距离型,根据不同的形式,应用相应的方法求解.30.【2018年高考天津卷文数】(2018天津文科)已知,a b ∈R ,且360a b -+=,则128ab +的最小值为 . 【答案】【解析】由可知,且,因为对于任意x ,恒成立,结合基本不等式的结论可得:.当且仅当,即时等号成立.综上可得的最小值为.【名师点睛】利用基本不等式求最值时,要灵活运用以下两个公式: ①22,,2a b a b ab ∈+≥R ,当且仅当a b =时取等号;②,a b +∈R ,a b +≥,当且仅当a b =时取等号.解题时要注意公式的适用条件、等号成立的条件,同时求最值时注意“1的妙用”.31.【2018年高考江苏卷】在ABC △中,角,,A B C 所对的边分别为,,a b c ,120ABC ∠=︒,ABC ∠的平分线交AC 于点D ,且1BD =,则4a c +的最小值为___________. 【答案】9【解析】由题意可知,,由角平分线性质和三角形面积公式得,化简得,因此当且仅当时取等号,则的最小值为.【名师点睛】线性规划问题是高考中常考考点,主要以选择或填空的形式出现,基本题型为给出约束条件求目标函数的最值,主要结合方式有:截距型、斜率型、距离型等.32.【2017年高考上海卷】不等式11x x->的解集为________ 【答案】(),0-∞ 【解析】 由题意,不等式11x x ->,得111100x x x->⇒<⇒<, 所以不等式的解集为(),0-∞.【名师点睛】本题考查解不等式,能正确化简不等式是解决该题的关键.33.【2017年高考北京卷文数】能够说明“设a ,b ,c 是任意实数.若a >b >c ,则a +b >c ”是假命题的一组整数a ,b ,c 的值依次为___________. 【答案】−1,−2,−3(答案不唯一)【解析】()123,1233->->--+-=->-,矛盾,所以−1,−2,−3可验证该命题是假命题. 【名师点睛】对于判断不等式恒成立问题,一般采用举反例排除法.解答本题时利用赋值的方式举反例进行验证,答案不唯一.34.【2017年高考北京卷文数】某学习小组由学生和教师组成,人员构成同时满足以下三个条件:(ⅰ)男学生人数多于女学生人数; (ⅱ)女学生人数多于教师人数; (ⅲ)教师人数的两倍多于男学生人数.①若教师人数为4,则女学生人数的最大值为_________. ②该小组人数的最小值为_________. 【答案】6 12【解析】设男生人数、女生人数、教师人数分别为a b c 、、, 则*2,,,c a b c a b c >>>∈N . ①max 846a b b >>>⇒=,②min 3,635,412.c a b a b a b c =>>>⇒==⇒++=【名师点睛】本题主要考查了命题的逻辑分析、简单的合情推理, 题目设计巧妙,解题时要抓住关键,逐步推断,本题主要考查考生分析问题、解决问题的能力,同时注意不等式关系以及正整数这个条件.35.【2017年高考天津卷文数】若,a b ∈R ,0ab >,则4441a b ab++的最小值为___________.【答案】4【解析】44224141144a b a b ab ab ab ab +++≥=+≥=,(前一个等号成立的条件是222a b =,后一个等号成立的条件是12ab =,两个等号可以同时成立,当且仅当2224a b ==时取等号). 【名师点睛】利用均值不等式求最值时要灵活运用以下两个公式:①22,,2a b a b ab ∈+≥R ,当且仅当a b =时取等号;②,a b +∈R ,a b +≥,当且仅当a b =时取等号.解题时要注意公式的适用条件、等号成立的条件,同时求最值时注意“1的妙用”. 36.【2017年高考山东卷文数】若直线1(00)x ya b a b+=>,>过点(1,2),则2a +b 的最小值为___________.【答案】8 【解析】由直线1(00)x ya b a b+=>,> 过点(1,2)可得121a b +=,所以1242(2)()448b a a b a b aba b +=++=++≥+=.当且仅当4b a a b=,即4,2b a ==时等号成立.【名师点睛】应用基本不等式解题一定要注意应用的前提:“一正”“二定”“三相等”.所谓“一正”是指正数,“二定”是指应用基本不等式求最值时,和或积为定值,“三相等”是指满足等号成立的条件.在利用基本不等式求最值时,要根据式子的特征灵活变形,配凑出积、和为常数的形式,然后再利用基本不等式. 37.【2017年高考江苏卷】某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元.要使一年的总运费与总存储费用之和最小,则x 的值是___________. 【答案】30【解析】总费用为600900464()4240x x x x +⨯=+≥⨯=,当且仅当900x x=,即30x =时等号成立.【名师点睛】在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.38.【2017年高考天津卷文数】电视台播放甲、乙两套连续剧,每次播放连续剧时,需要播放广告.已知每次播放甲、乙两套连续剧时,连续剧播放时长、广告播放时长、收视人次如下表所示:。

高考数学按章节分类汇编(人教A必修三):第一章算法初步

高考数学按章节分类汇编(人教A必修三):第一章算法初步

高考数学按章节分类汇编(人教A 必修三)第一章算法初步一、选择题1 .(高考(天津理))阅读右边的程序框图,运行相应的程序,当输入x 的值为25-时,输出x 的值为( )A .1-B .1C .3D .92 .(高考(天津文))阅读右边的程序框图,运行相应的程序,则输出S 的值为( )A .8B .18C .26D .80开 始 输入x|x|>11||-=x x x = 2x+1 输出x 结 束是否3 .(高考(陕西文))下图是计算某年级500名学生期末考试(满分为100分)及格率q 的程序框图,则图中空白框内应填入 ( )( )A .q=N M B .q=M NC .q= N M N +D .q=MM N+4 .(高考(陕西理))右图是用模拟方法估计圆周率π的程序框图,P 表示估计结果,则图中空白框内应填入( )A . 1000NP = B .41000NP =C .1000MP =D .41000MP =5 .(高考(山东文))执行右面的程序框图,如果输入a =4,那么输出的n 的值为 ( )A .2B .3C .4D .56 .(高考(辽宁文))执行如图所示的程序框图,则输出的S 的值是( )A . 4B .32C .23D .-17 .(高考(课标文))如果执行右边的程序框图,输入正整数N (N ≥2)和实数1a ,2a ,,N a ,输出A ,B ,则( )A .A +B 为1a ,2a ,,N a 的和 B .2A B+为1a ,2a ,,N a 的算术平均数 C .A 和B 分别为1a ,2a ,,N a 中的最大数和最小数D .A 和B 分别为1a ,2a ,,N a 中的最小数和最大数8 .(高考(广东文)) (算法)执行如图2所示的程序框图,若输入n 的值为6,则输出s 的值为( )A .105B .16C .15D .19 .(高考(福建文))阅读右图所示的程序框图,运行相应的程序,输出s 值等于( )A .3-B .10-C .0D .2-10 .(高考(北京文))执行如图所示的程序框图,输出的S值为 ( )A .2B .4C .8D .1611 .(高考(安徽文))如图所示,程序框图(算法流程图)的输出结果是 ( ) A .3 B .4C .5D .8k=0,S=1k <3开始 结束 是否k=k+1 输出S S=S ·2k12 .(高考(新课标理))如果执行右边的程序框图,输入正整数(2)N N ≥和实数12,,...,n a a a ,输出,A B ,则( )A .AB +为12,,...,n a a a 的和 B .2A B+为12,,...,n a a a 的算术平均数 C .A 和B 分别是12,,...,n a a a 中最大的数和最小的数 D .A 和B 分别是12,,...,n a a a 中最小的数和最大的数13.(高考(山东理))执行下面的程序图,如果输入4a=,那么输出的n的值为()A.2B.3C.4D.514 .(高考(辽宁理))执行如图所示的程序框图,则输出的S的值是()A.-1 B.23C.32D.415 .(高考(北京理))执行如图所示的程序框图,输出的S 值为( )A .2B .4C .8D .1616 .(高考(安徽理))如图所示,程序框图(算法流程图)的输出结果是( )A .3B .4C .5D .8k=0,S=1k <3 开始 结束是否 k=k+1 输出S S=S ×2k(第4题图)二、填空题17.(高考(浙江文))若某程序框图如图所示,则该程序运行后输出的值是___________.18.(高考(江西文))下图是某算法的程序框图,则程序运行后输入的结果是_________.19.(高考(湖南文))如果执行如图3所示的程序框图,输入4.5x ,则输出的数i = ____.20.(高考(湖北文))阅读如图所示的程序框图,运行相应的程序,输出的结果s=_________.21.(高考(浙江理))若程序框图如图所示,则该程序运行后输出的值是______________.22.(高考(江西理))下图为某算法的程序框图,则程序运行后输出的结果是______________.23.(高考(江苏))下图是一个算法流程图,则输出的k的值是____.x=-,n=3,24.(高考(湖南理))如果执行如图3所示的程序框图,输入1则输出的数S= ____.25.(高考(湖北理))阅读如图所示的程序框图,运行相应的程序,输出的结果s __________.26.(高考(广东理))(算法)执行如图2所示的程序框图,若输入n 的值为8,则输出s 的值为______.第12题开始 输入x , n S =6 i ≥0?是否输出S 结束i =n -1i =i -1 S =S·x +i +1 图327.(高考(福建理))阅读右图所示的程序框图,运行相应地程序,输出的s 值等于_____________________.是 否输入 2,1,1i k s ===输出s 结束开始 i n<第13题图n ()1s i ks ⨯=2i i =+ 1k k =+参考答案一、选择题 1. 【答案】C【命题意图】本试题主要考查了算法框图的读取,并能根据已给的算法程序进行运算. 【解析】根据图给的算法程序可知:第一次=4x ,第二次=1x ,则输出=21+1=3x ⨯.2. 【解析】第一次循环2,2330==-=n S ,第二次循环3,83322==-+=n S ,第三次循环4,2633823==-+=n S ,第四次循环满足条件输出26=S ,选C.3. 解析:及格人数及格率总人数故选D4. 解析:点(,)i i x y 落在单位圆内或圆上,随机产生1000个数,41000MP =,故选D.5. 解析:312,140,00=+==+==q p n ;716,541,11=+==+==q p n ;15114,2145,22=+==+==q p n ,q p n >=,3.答案应选B. 6. 【答案】D【解析】根据程序框图可计算得24,1;1,2;,3;3s i s i s i ===-=== 3,4;4,5;1,6,2s i s i s i =====-=,故选D【点评】本题主要考查程序框图中的循环结构、以及运算求解能力,属于中档题.此类题目如果数值较少也可直接算出结果,如果数值很多需要通过计算确定出周期再根据周期确定最后的结果.此题中数值的周期为4.7. 【命题意图】本题主要考查框图表示算法的意义,是简单题.【解析】由框图知其表示的算法是找N 个数中的最大值和最小值,A 和B 分别为1a ,2a ,,N a 中的最大数和最小数,故选C.8. 解析:C.第一次循环,111s =⨯=,3i =;第二次循环,133s =⨯=,5i =,第三次循环,3515s =⨯=,7i =.此时退出循环,输出s 的值为15.9. 【答案】A【解析】2111,2,22120,3,32033,4S k S k S k =⨯-===⨯-===⨯-=-=,输出3-【考点定位】该题主要考察算法的基本思想、结构和功能,把握算法的基本思想是解决好此类问题的根本.【解析】0,11,12,23,8k s k s k s k s ==⇒==⇒==⇒==,循环结束,输出的S 为8,故选C【考点定位】 本小题主要考查程序框图,涉及到判断循环结束的时刻,以及简单整数指数幂的计算. 11. 【解析】选Bx1 2 4 8y123412. 【解析】选C13. 【解析】当4=a时,第一次1,3,140====n Q P ,第二次2,7,441====n Q P ,第三次3,15,1642====n Q P ,此时Q P <不满足,输出3=n ,选B.14. 【答案】D【解析】根据程序框图可计算得24,1;1,2;,3;3s i s i s i ===-=== 3,4;4,5,2s i s i ====由此可知S 的值呈周期出现,其周期为4,输出时9i =因此输出的值与1i =时相同,故选D【点评】本题主要考查程序框图中的循环结构、数列的周期性以及运算求解能力, 属于中档题.此类题目需要通过计算确定出周期(如果数值较少也可直接算出结果),再根据周期确定最后的结果. 15. 【答案】C【解析】0,11,12,23,8k s k s k s k s ==⇒==⇒==⇒==,循环结束,输出的S 为8,故选C【考点定位】 本小题主要考查程序框图,涉及到判断循环结束的时刻,以及简单整数指数幂的计算. 16. 【解析】选二、填空题 17. 【答案】1120【命题意图】本题主要考查了框图. 【解析】T ,i 关系如下图:T 1 12 16 124 1120i23 4 5 6x 12 4 8 y1 2 3 4【解析】当k=1,a=1,T=1 当k=2,a=0,T=1 当k=3,a=0,T=1 当k=4,a=1,T=2当k=5,a=1,T=3,则此时k=k+1=6所以输出T=3.【考点定位】本题主要考查了当型循环结构,当型循环是先判断后循环,直到型循环是先循环后判断,算法这一模块最重要的类型,其处理的方法是:一分析流程图(或伪代码),从流程图(或伪代码)中即要分析出计算的类型,又要分析出参与计算的数据(如果参与运算的数据比较多,也可使用表格对数据进行分析管理),第二建立数学模型,根据第一步分析的结果,选择恰当的数学模型,第三是解模,属于基础题. 19. 【答案】4【解析】算法的功能是赋值,通过四次赋值得0.5x =,输出4i =.【点评】本题考查算法流程图,考查分析问题解决问题的能力,平时学习时注意对分析问题能力的培养.20. 【解析】由程序框图可知:第一次:a=1,s=0,n=1,s=s+a=1,a=a+2=3,n=1<3满足判断条件,继续循环; 第二次:n=n+1=2,s=s+a=1+3=4,a=a+2=5,n=2<3满足判断条件,继续循环;第三次:n=n+1=3,s=s+a=4+5=9,a=a+2=11,n=3<3不满足判断条件,跳出循环,输出s 的值. 综上,输出的s 值为9.【点评】本题考查程序框图及递推数列等知识.对于循环结构的输出问题,一步一步按规律写程序结果,仔细计算,一般不会出错,属于送分题.来年需注意判断条件的填充型问题.21. 【答案】1120【解析】T ,i 关系如下图:T 1 12 16 124 1120i23 4 5 622. 3【解析】本题考查算法程序框图的应用以及运算求解的能力.由程序框图可知:第一次:T=0,k=1,sin 1sin 002π=>=成立,a=1,T=T+a=1,k=2,2<6,满足判断条件,继续循环;第二次:sin 0sin 12ππ=>=不成立,a=0,T=T+a=1,k=3, 3<6,满足判断条件,继续循环;第三次:3sin 1sin 02ππ=->=不成立,a=0,T=T+a=1,k=4,4<6, 满足判断条件,继续循环;第四次: 3sin 20sin 12ππ=>=-成立,a=1,T=T+a=2,k=5, 满足判断条件,继续循环; 第五次: 5sin1sin 202ππ=>=成立,a=1,T=T+a=2,k=6,6<6不成立,不满足判断条件,跳出循环,故输出T 的值3.【点评】对于循环结构的算法框图问题,要观察什么时候刚好退出循环,,直到循环终止为止.体现考纲中要求理解输出语句,了解算法的含义与思想.来年需要注意判断条件的求解,程序的输出功能等.23. 【答案】5.【考点】程序框图.【分析】根据流程图所示的顺序,程序的运行过程中变量值变化如下表:是否继续循环k 2k 5k 4-+循环前 0 0 第一圈 是 1 0 第二圈 是 2 -2 第三圈 是 3 -2 第四圈 是 4 0 第五圈 是 5 4 第六圈否输出5∴最终输出结果k=5. 24. 【答案】4-【解析】输入1x =-,n =3,,执行过程如下:2:6233i S ==-++=-;1:3(1)115i S ==--++=;0:5(1)014i S ==-++=-,所以输出的是4-.【点评】本题考查算法流程图,要明白循环结构中的内容,一般解法是逐步执行,一步步将执行结果写出,特别是程序框图的执行次数不能出错. 25.考点分析:本题考查程序框图.解析:程序在运行过程中各变量的值如下表示:第一圈循环:当n=1时,得s=1,a=3. 第二圈循环: 当n=2时,得s=4,a=5 第三圈循环:当n=3时,得s=9,a=7,此时n=3,不再循环,所以解s=9 .26.解析:8.第一次循环,()11221s =⨯⨯=,4i =,2k =;第二次循环,()12442s =⨯⨯=,6i =,3k =;第三次循环,()14683s =⨯⨯=,8i =,4k =.此时退出循环,输出s 的值为8. 27. 【答案】3-【解析】2111,2,22120,3,32033,4S k S k S k =⨯-===⨯-===⨯-=-=,输出3- 【考点定位】该题主要考查算法的基本思想、结构和功能,把握算法的基本思想是解好此类问题的根本.。

2019版高考数学(文)第11章 算法初步、复数、推理与证明 第3讲合情推理与演绎推理 Word版含答案

2019版高考数学(文)第11章 算法初步、复数、推理与证明 第3讲合情推理与演绎推理 Word版含答案

第讲合情推理与演绎推理
板块一知识梳理·自主学习
[必备知识]
考点合情推理
考点演绎推理
.定义:从一般性的原理出发,推出某个特殊情况下的结论,我们把这种推理称为演绎推理.
.特点:演绎推理是由一般到特殊的推理.
.模式:“三段论”是演绎推理的一般模式:
[必会结论]
.合情推理的结论是猜想,不一定正确;演绎推理在大前提、小前提和推理形式都正确时,得到的结论一定正确.
.合情推理是发现结论的推理;演绎推理是证明结论的推理.
[考点自测]
.判断下列结论的正误.(正确的打“√”,错误的打“×”)
()归纳推理得到的结论不一定正确,类比推理得到的结论一定正确.()
()在类比时,平面中的三角形与空间中的平行六面体作为类比对象较为合适.()
()在演绎推理中,只要符合演绎推理的形式,结论就一定正确.()
()“所有的倍数都是的倍数,某数是的倍数,则一定是的倍数。

2019年高考文科数学考点梳理之导数的概念及计算和导数的应用汇编

2019年高考文科数学考点梳理之导数的概念及计算和导数的应用汇编

2019年高考文科数学考点梳理之导数的概念及计算和导数的应用汇编考点11 导数的概念及计算1.导数概念及其几何意义 (1)了解导数概念的实际背景. (2)理解导数的几何意义. 2.导数的运算(1)能根据导数定义求函数y =C (C 为常数),21,,y x y x y x===的导数. (2)能利用下面给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数. • 常见基本初等函数的导数公式:1()0();(),n n C C x nx n -+''==∈N 为常数; (sin )cos ;(cos )sin x x x x ''==-;(e )e ;()ln (0,1)x x x x a a a a a ''==>≠且;11(ln );(log )log e(0,1)a a x x a a x x''==>≠且. • 常用的导数运算法则:法则1:()()()()u x v x u x v x ±'⎡⎦'⎤±⎣'=.法则2:()()()()()()·u x v x u x v x u x v x ⎡⎤⎣⎦'''=+.法则3:2()()()()()[](()0)()()u x u x v x u x v x v x v x v x ''-'=≠.一、导数的概念 1.平均变化率函数()y f x =从1x 到2x 的平均变化率为2121()()f x f x x x --,若21x x x ∆=-,2()y f x ∆=-1()f x ,则平均变化率可表示为y x∆∆.2.瞬时速度一般地,如果物体的运动规律可以用函数()s s t =来描述,那么,物体在时刻t 的瞬时速度v 就是物体在t 到t t +∆这段时间内,当t ∆无限趋近于0时,st∆∆无限趋近的常数. 3.瞬时变化率4.导数的概念一般地,函数()y f x =在0x x =处的瞬时变化率是0000()()limlim x x f x +x f x yx x∆→∆→∆-∆=∆∆,我们称它为函数()y f x =在0x x =处的导数,记作0()f x '或0|x x y =',即00()l i mx yf x x ∆→∆'==∆000()()lim x f x +x f x x∆→∆-∆.【注】函数()y f x =在0x x =处的导数是()y f x =在0x x =处的瞬时变化率. 5.导函数的概念如果函数()y f x =在开区间(a ,b )内的每一点都是可导的,则称()f x 在区间(a ,b )内可导.这样,对开区间(a ,b )内的每一个值x ,都对应一个确定的导数()f x ',于是在区间(a ,b )内()f x '构成一个新的函数,我们把这个函数称为函数()y f x =的导函数(简称导数),记为()f x '或y ',即()f x y ''==0()()li mx f x +x f x x∆→∆-∆.二、导数的几何意义函数()y f x =在0x x =处的导数0()f x '就是曲线()y f x =在点00(,())x f x 处的切线的斜率k ,即0000()()()limx f x +x f x k f x x∆→∆-'==∆.【注】曲线的切线的求法:若已知曲线过点P (x 0,y 0),求曲线过点P 的切线,则需分点P (x 0,y 0)是切点和不是切点两种情况求解.(1)当点P (x 0,y 0)是切点时,切线方程为y −y 0=f ′(x 0)(x −x 0); (2)当点P (x 0,y 0)不是切点时,可分以下几步完成:第一步:设出切点坐标P ′(x 1,f (x 1));第二步:写出过P ′(x 1,f (x 1))的切线方程为y −f (x 1)=f ′ (x 1)(x −x 1); 第三步:将点P 的坐标(x 0,y 0)代入切线方程求出x 1;第四步:将x 1的值代入方程y −f (x 1)=f ′(x 1)(x −x 1),可得过点P (x 0,y 0)的切线方程. 三、导数的计算1.基本初等函数的导数公式2.导数的运算法则(1)()()()()u x v x u x v x ±'⎡⎦'⎤±⎣'=.(2)()()()()()()·u x v x u x v x u x v x ⎡⎤⎣⎦'''=+.(3)2()()()()()[](()0)()()u x u x v x u x v x v x v x v x ''-'=≠. 3.复合函数的导数复合函数y=f (g (x ))的导数和函数y=f (u ),u=g (x )的导数间的关系为y x ′=y u ′·u x ′,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.考向一 导数的计算1.导数计算的原则和方法(1)原则:先化简解析式,使之变成能用八个求导公式求导的函数的和、差、积、商,再求导. (2)方法:①连乘积形式:先展开化为多项式的形式,再求导;②分式形式:观察函数的结构特征,先化为整式函数或较为简单的分式函数,再求导; ③对数形式:先化为和、差的形式,再求导; ④根式形式:先化为分数指数幂的形式,再求导;⑤三角形式:先利用三角函数公式转化为和或差的形式,再求导. 2.求复合函数的导数的关键环节和方法步骤 (1)关键环节:①中间变量的选择应是基本函数结构; ②正确分析出复合过程;③一般是从最外层开始,由外及里,一层层地求导; ④善于把一部分表达式作为一个整体; ⑤最后结果要把中间变量换成自变量的函数. (2)方法步骤:①分解复合函数为基本初等函数,适当选择中间变量; ②求每一层基本初等函数的导数;③每层函数求导后,需把中间变量转化为自变量的函数.典例1 求下列函数的导函数:(1)42356y x x x --=+; (2)21y x x=+; (3)2cos y x x =; (4)tan y x =.【名师点睛】熟记基本初等函数的求导公式,导数的四则运算法则是正确求导数的基础.(1)运用基本初等函数求导公式和运算法则求函数()y f x =在开区间(a ,b )内的导数的基本步骤: ①分析函数()y f x =的结构和特征;②选择恰当的求导公式和运算法则求导;③整理得结果.(2)对较复杂的函数求导数时,先化简再求导.如对数函数的真数是根式或分式时,可用对数的性质将真数转化为有理式或整式求解更为方便;对于三角函数,往往需要利用三角恒等变换公式,将函数式进行化简,使函数的种类减少,次数降低,结构尽量简单,从而便于求导.1.已知函数2()22(1(1))f x x x f f ++'=,则()2f '的值为A .2-B .0C .4-D .6-考向二 导数的几何意义求曲线y =f (x )的切线方程的类型及方法(1)已知切点P (x 0, y 0),求y =f (x )过点P 的切线方程:求出切线的斜率f ′(x 0),由点斜式写出方程; (2)已知切线的斜率为k ,求y =f (x )的切线方程:设切点P (x 0, y 0),通过方程k =f ′(x 0)解得x 0,再由点斜式写出方程;(3)已知切线上一点(非切点),求y =f (x )的切线方程:设切点P (x 0, y 0),利用导数求得切线斜率f ′(x 0),再由斜率公式求得切线斜率,列方程(组)解得x 0,最后由点斜式或两点式写出方程.(4)若曲线的切线与已知直线平行或垂直,求曲线的切线方程时,先由平行或垂直关系确定切线的斜率,再由k =f ′(x 0)求出切点坐标(x 0, y 0),最后写出切线方程. (5)①在点P 处的切线即是以P 为切点的切线,P 一定在曲线上.②过点P 的切线即切线过点P ,P 不一定是切点.因此在求过点P 的切线方程时,应首先检验点P 是否在已知曲线上.典例2 已知函数2ln y x x =.(1)求这个函数的图象在1x =处的切线方程;(2)若过点()0,0的直线l 与这个函数图象相切,求直线l 的方程. 【解析】(1)2ln y x x x '=+, 当1x =时,0,1y y '==,∴这个函数的图象在1x =处的切线方程为1y x =-.【规律总结】求切线方程的步骤: (1)利用导数公式求导数. (2)求斜率. (3)写出切线方程.注意导数为0和导数不存在的情形.2.已知函数,则函数的图象在处的切线方程为A .B .C .D .1.函数在处的导数是A .0B .1C .D .2.已知函数的导函数是,且,则实数的值为A .B .C .D .13.设函数的导函数记为,若,则A .-1B .C .1D .34.已知函数的图象如图,是的导函数,则下列数值排序正确的是A .B .C .D .5.已知过曲线e xy =上一点()00,P x y 作曲线的切线,若切线在y 轴上的截距小于0,则0x 的取值范围是A .()0,+∞BC .()1,+∞D .()2,+∞6.已知是函数的导函数,且对任意的实数都有(是自然对数的底数),,则A .B .C .D .7.放射性元素由于不断有原子放射出微粒子而变成其他元素,其含量不断减少,这种现象称为衰变.假设在放射性同位素铯137的衰变过程中,其含量M (单位:太贝克)与时间t (单位:年)满足函数关系:300()2t M t M -=,其中0M 为0t =时铯137的含量,已知30t =时,铯137含量的变化率为10ln 2-(太贝克/年),则(60)M = A .5太贝克 B .75ln 2太贝克 C .150ln 2太贝克 D .150太贝克8.设过曲线(为自然对数的底数)上任意一点处的切线为,总存在过曲线上一点处的切线,使得,则实数的取值范围为 A . B . C .D .9,则(1)f '=__________. 10.已知函数的导函数为,且满足,则_________.11.曲线的切线方程为,则实数的值为_________.12.曲线250xy x y -+-=在点()1,2A 处的切线与两坐标轴所围成的三角形的面积为_________. 13.求下列函数的导数:(1)21cos xy x +=; (2)()3ln xy x x =⋅-.14.已知函数()32f x x bx cx d =+++的图象过点()0,2P ,且在点()()1,1M f --处的切线方程为670x y -+=.(1)求()1f -和()1f '-的值;(2)求函数()f x 的解析式.1.(2018新课标全国Ⅰ文科)设函数()()321f x x a x ax =+-+.若()f x 为奇函数,则曲线()y f x =在点()00,处的切线方程为A .2y x =-B .y x =-C .2y x =D .y x =2.(2016山东文科)若函数y =f (x )的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称y =f (x )具有T 性质.下列函数中具有T 性质的是 A .y =sin x B .y =ln x C .y =e xD .y =x 33.(2016四川文科)设直线l 1,l 2分别是函数f (x )=ln 01,ln ,1x x x x -<<⎧⎨>⎩,图象上点P 1,P 2处的切线,l 1与l 2垂直相交于点P ,且l 1,l 2分别与y 轴相交于点A ,B ,则△PAB 的面积的取值范围是 A .(0,1) B .(0,2) C .(0,+∞)D .(1,+ ∞)4.(2018天津文科)已知函数f (x )=e xln x ,f ′(x )为f (x )的导函数,则f ′(1)的值为__________. 5.(2018新课标全国Ⅱ文科)曲线2ln y x =在点(1,0)处的切线方程为__________.6.(2017天津文科)已知a ∈R ,设函数()ln f x ax x =-的图象在点(1,(1)f )处的切线为l ,则l 在y 轴上的截距为___________.7.(2017北京文科节选)已知函数()e cos x f x x x =-. (Ⅰ)求曲线()y f x =在点(0,(0))f 处的切线方程;8.(2017山东文科节选)已知函数()3211,32f x x ax a =-∈R . (Ⅰ)当a =2时,求曲线()y f x =在点()()3,3f 处的切线方程;9.(2017天津文科节选)设,a b ∈R ,||1a ≤.已知函数32()63(4)f x x x a a x b =---+,()e ()x g x f x =. (Ⅱ)已知函数()y g x =和e x y =的图象在公共点(x 0,y 0)处有相同的切线, (i )求证:()f x 在0x x =处的导数等于0;10.(2017浙江节选)已知函数f (x )=(x e x -(12x ≥). (Ⅰ)求f (x )的导函数;2.【答案】C【解析】∵,∴,∴,又,∴所求切线方程为,即.故选C.1.【答案】C【解析】因为,故选C.2.【答案】B【解析】,选B.3.【答案】D【解析】根据题意,得,由,得,化简可得,即,故选D.4.【答案】C【解析】结合函数的图象可知过点的切线的倾斜角较大,过点的切线的倾斜角较小,又因为过点的切线的斜率,过点的切线的斜率,直线的斜率,故,应选C.5.【答案】C【解析】因为()0e xk f x'==,所以切线方程为()00e xy y x x-=-,即()00e ex xy x x-=-,令0x=得()01e xy x=-,截距小于0时,()01e0xy x=-<,解得1x>,故选C.6.【答案】D【解析】令G (x )=()exf x ,则G ′(x )==2x -2,可设G (x )=x 2+c ,∵G (0)=f (0)=1,∴c =1.∴f (x )=(x 2+1)ex故选D.8.【答案】C【解析】因为切线,的切点分别为而,所以.因为,所以(.因为,所以,因此,选C .9.【答案】12.【解析】 1x =,得()()111f f ='-',解得 10.【答案】【解析】求导得,把代入得,解得.11.【答案】212.【答案】496【解析】由250xy x y -+-=,得()52x y f x x +==+,∴()()232f x x -='+,∴()113f '=-, ∴曲线在点()1,2A 处的切线方程为()1213y x -=--. 令0x =,得73y =;令0y =,得7x =. ∴切线与两坐标轴所围成的三角形的面积为17497236S =⨯⨯=. 13.【解析】(1()()()24sin 1cos 2x x x x x --+⋅=3sin 2cos 2x x x x++=-. (2)()()()3ln 3ln xxy x x x x '⋅⋅''=-+-()13ln3ln 31x x x x x ⎛⎫=⋅⋅-+⋅- ⎪⎝⎭13ln3ln ln31x x x x ⎛⎫=-+- ⎪⎝⎭.14.【解析】(1)∵()f x 在点()()1,1M f --处的切线方程为670x y -+=,故点()()1,1f --在切线670x y -+=上,且切线斜率为6,得()11f -=且()16f '-=.(2)∵()f x 过点()0,2P ,∴2d =,∵()32f x x bx cx d =+++,∴2()32f x x bx c '=++,由()16f '-=得326b c -+=,又由()11f -=,得11b c d -+-+=,联立方程得232611d b c b c d =-+==-+-+⎧⎪⎨⎪⎩,解得332b c d ⎧=-=-=⎪⎨⎪⎩,故()32332f x x x x =--+.1.【答案】D 【解析】因为函数是奇函数,所以,解得,所以,,所以,所以曲线在点处的切线方程为,化简可得,故选D.【名师点睛】该题考查的是有关曲线在某个点处的切线方程的问题,在求解的过程中,首先需要确定函数解析式,此时利用到结论多项式函数中,奇函数不存在偶次项,偶函数不存在奇次项,从而求得相应的参数值,之后利用求导公式求得,借助于导数的几何意义,结合直线方程的点斜式求得结果. 2.【答案】A【解析】当sin y x =时,cos y x '=,cos 0cos 1⋅π=-,所以在函数sin y x =的图象上存在两点,使条件成立,故A 正确;函数3ln ,e ,x y x y y x ===的导数值分别为10,e 0,x y y y x'''=>=>=230x ≥,不符合题意,故选A . 3.【答案】A【解析】设111222(,ln ),(,ln )P x x P x x -(不妨设121,01x x ><<),则由导数的几何意义易得切线12,l l 的斜率分别为121211,.k k x x ==-由已知得12122111,1,.k k x x x x =-∴=∴=∴切线1l 的方程为1111ln ()y x x x x -=-,切线2l 的方程为2221ln ()y x x x x +=--,即1111ln ()y x x x x -=--.分别令0x =得11(0,1ln ),(0,1ln ).A x B x -++又1l 与2l 的交点为2111221121(,ln ).11x x P x x x -+++211122112111,||||1,01211PABA B P PABx x x S y y x S x x +>∴=-⋅=<=∴<<++△△,故选A.4.【答案】e【解析】由函数的解析式可得,则.即的值为e.【名师点睛】本题主要考查导数的运算法则,基本初等函数的导数公式等知识,意在考查学生的转化能力和计算求解能力. 5.【答案】y =2x –2 【解析】由,得.则曲线在点处的切线的斜率为,则所求切线方程为,即.【名师点睛】求曲线在某点处的切线方程的步骤:①求出函数在该点处的导数值即为切线斜率;②写出切线的点斜式方程;③化简整理. 6.【答案】1【解析】由题可得(1)f a =,则切点为(1,)a ,因为1()f x a x'=-,所以切线l 的斜率为(1)1f a '=-,切线l 的方程为(1)(1)y a a x -=--,令0x =可得1y =,故l 在y 轴上的截距为1.【名师点睛】本题考查导数的几何意义,属于基础题型,函数()f x 在点0x 处的导数0()f x '的几何意义是曲线()y f x =在点00(,)P x y 处的切线的斜率,切线方程为000()()y y f x x x '-=-.解题时应注意:求曲线切线时,要分清在点P 处的切线与过点P 的切线的不同,没切点应设出切点坐标,建立方程组进行求解.7.【解析】(Ⅰ)因为()e cos x f x x x =-,所以()e (cos sin )1,(0)0x f x x x f ''=--=. 又因为(0)1f =,所以曲线()y f x =在点(0,(0))f 处的切线方程为1y =.9.【解析】(II )(i )因为()e (()())xx x g'f f 'x =+,由题意知000()e ()exx x x g g'⎧=⎪⎨=⎪⎩,所以0000000()e e e (()())ex x xx f f f x 'x x ⎧=⎪⎨+=⎪⎩,解得00()1()0f 'x x f =⎧⎨=⎩. 所以,()f x 在0x x =处的导数等于0. 10.【解析】(Ⅰ)因为(1x '=,(e )e x x '--=-,所以()(1(x xf x x --'=-1)2xx -=>.考点12 导数的应用1.导数在研究函数中的应用(1)了解函数单调性和导数的关系;能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数一般不超过三次).(2)了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(其中多项式函数一般不超过三次);会求闭区间上函数的最大值、最小值(其中多项式函数一般不超过三次). 2.生活中的优化问题 会利用导数解决某些实际问题.一、导数与函数的单调性一般地,在某个区间(a ,b )内:(1)如果()0f x '>,函数f (x )在这个区间内单调递增; (2)如果()0f x '<,函数f (x )在这个区间内单调递减; (3)如果()=0f x ',函数f (x )在这个区间内是常数函数.注意:(1)利用导数研究函数的单调性,要在函数的定义域内讨论导数的符号;(2)在某个区间内,()0f x '>(()0f x '<)是函数f (x )在此区间内单调递增(减)的充分条件,而不是必要条件.例如,函数3()f x x =在定义域(,)-∞+∞上是增函数,但2()30f x x '=≥.(3)函数f (x )在(a ,b )内单调递增(减)的充要条件是()0f x '≥(()0f x '≤)在(a ,b )内恒成立,且()f x '在(a ,b )的任意子区间内都不恒等于0.这就是说,在区间内的个别点处有()0f x '=,不影响函数f (x )在区间内的单调性. 二、利用导数研究函数的极值和最值 1.函数的极值一般地,对于函数y =f (x ),(1)若在点x =a 处有f ′(a )=0,且在点x =a 附近的左侧()0f 'x <,右侧()0f 'x >,则称x=a 为f (x )的极小值点,()f a 叫做函数f (x )的极小值.(2)若在点x =b 处有()f 'b =0,且在点x=b 附近的左侧()0f 'x >,右侧()0f 'x <,则称x=b 为f (x )的极大值点,()f b 叫做函数f (x )的极大值.(3)极小值点与极大值点通称极值点,极小值与极大值通称极值. 2.函数的最值函数的最值,即函数图象上最高点的纵坐标是最大值,图象上最低点的纵坐标是最小值,对于最值,我们有如下结论:一般地,如果在区间[,]a b 上函数()y f x =的图象是一条连续不断的曲线,那么它必有最大值与最小值.设函数()f x 在[,]a b 上连续,在(,)a b 内可导,求()f x 在[,]a b 上的最大值与最小值的步骤为: (1)求()f x 在(,)a b 内的极值;(2)将函数()f x 的各极值与端点处的函数值()f a ,()f b 比较,其中最大的一个是最大值,最小的一个是最小值.3.函数的最值与极值的关系(1)极值是对某一点附近(即局部)而言,最值是对函数的定义区间[,]a b 的整体而言;(2)在函数的定义区间[,]a b 内,极大(小)值可能有多个(或者没有),但最大(小)值只有一个(或者没有);(3)函数f (x )的极值点不能是区间的端点,而最值点可以是区间的端点; (4)对于可导函数,函数的最大(小)值必在极大(小)值点或区间端点处取得. 三、生活中的优化问题生活中经常遇到求利润最大、用料最省、效率最高等问题,这些问题通常称为优化问题.导数是求函数最值问题的有力工具.解决优化问题的基本思路是:考向一 利用导数研究函数的单调性1.利用导数判断或证明一个函数在给定区间上的单调性,实质上就是判断或证明不等式()0f x '>(()0f x '<)在给定区间上恒成立.一般步骤为: (1)求f ′(x );(2)确认f ′(x )在(a ,b )内的符号;(3)作出结论,()0f x '>时为增函数,()0f x '<时为减函数.注意:研究含参数函数的单调性时,需注意依据参数取值对不等式解集的影响进行分类讨论. 2.在利用导数求函数的单调区间时,首先要确定函数的定义域,解题过程中,只能在定义域内讨论,定义域为实数集R 可以省略不写.在对函数划分单调区间时,除必须确定使导数等于零的点外,还要注意在定义域内的不连续点和不可导点.3.由函数()f x 的单调性求参数的取值范围的方法(1)可导函数在某一区间上单调,实际上就是在该区间上()0f x '≥(或()0f x '≤)(()f x '在该区间的任意子区间内都不恒等于0)恒成立,然后分离参数,转化为求函数的最值问题,从而获得参数的取值范围;(2)可导函数在某一区间上存在单调区间,实际上就是()0f x '>(或()0f x '<)在该区间上存在解集,这样就把函数的单调性问题转化成了不等式问题;(3)若已知()f x 在区间I 上的单调性,区间I 中含有参数时,可先求出()f x 的单调区间,令I 是其单调区间的子集,从而可求出参数的取值范围.4.利用导数解决函数的零点问题时,一般先由零点的存在性定理说明在所求区间内至少有一个零点,再利用导数判断在所给区间内的单调性,由此求解.典例1 已知函数,其中.(1)函数的图象能否与轴相切?若能,求出实数,若不能,请说明理由;(2)讨论函数的单调性.(2)由于,当时,,当时,,单调递增,当时,,单调递减;当时,由得或,①当时,,当时,,单调递增,当时,,单调递减,当,,单调递增;②当时,,单调递增;③当时,,当时,,单调递增,当时,,单调递减,当时,,单调递增.综上,当时,在上是减函数,在上是增函数;当时,在上是增函数,在上是减函数;当时,在上是增函数;当时,在上是增函数,在上是减函数.典例2 设函数2()e ln x f x a x =-.(1)讨论()f x 的导函数()f x '的零点的个数; (2)证明:当0a >时,2()2lnf x a a a≥+. 【解析】(1)()f x 的定义域为(0+),¥,2()=2e (0)x af x x x¢->. 当0a £时,()0f x ¢>,()f x ¢没有零点; 当0a >时,因为2=e x y 单调递增,ay x=-单调递增,所以()f x ¢在(0+),¥上单调递增. 又()0f a ¢>,当b 满足04a b <<且14b <时,()0f b ¢<,故当0a >时,()f x ¢存在唯一零点.(2)由(1),可设()f x ¢在(0+),¥上的唯一零点为0x . 当0(0)x x ,Î时,()0f x ¢<;当0(+)x x ,违时,()0f x ¢>. 故()f x 在0(0)x ,上单调递减,在0(+)x ,¥上单调递增,所以当0x x =时,()f x 取得最小值,最小值为0()f x . 由于0202e=0x a x -,所以02000022()=e ln 2ln 2ln 2xa f x a x ax a a a x a a -=++?(当且仅当0022aax x =,即012x =时,等号成立).故当0a >时,2()2lnf x a a a?.1(1)当1a =时,求()y f x =在0x =处的切线方程;(2)若函数()f x 在[]1,1-上单调递减,求实数a 的取值范围.考向二 利用导数研究函数的极值和最值1.函数极值问题的常见类型及解题策略(1)函数极值的判断:先确定导数为0的点,再判断导数为0的点的左、右两侧的导数符号. (2)求函数()f x 极值的方法: ①确定函数()f x 的定义域. ②求导函数()f x '. ③求方程()0f x '=的根.④检查()f x '在方程的根的左、右两侧的符号,确定极值点.如果左正右负,那么()f x 在这个根处取得极大值;如果左负右正,那么()f x 在这个根处取得极小值;如果()f x '在这个根的左、右两侧符号不变,则()f x 在这个根处没有极值.(3)利用极值求参数的取值范围:确定函数的定义域,求导数()f x ',求方程()0f x '=的根的情况,得关于参数的方程(或不等式),进而确定参数的取值或范围. 2.求函数f (x )在[a ,b ]上最值的方法(1)若函数f (x )在[a ,b ]上单调递增或递减,f (a )与f (b )一个为最大值,一个为最小值. (2)若函数f (x )在区间(a ,b )内有极值,先求出函数f (x )在区间(a ,b )上的极值,与f (a )、f (b )比较,其中最大的一个是最大值,最小的一个是最小值.(3)函数f (x )在区间(a ,b )上有唯一一个极值点时,这个极值点就是最大(或最小)值点. 注意:(1)若函数中含有参数时,要注意分类讨论思想的应用.(2)极值是函数的“局部概念”,最值是函数的“整体概念”,函数的极值不一定是最值,函数的最值也不一定是极值.要注意利用函数的单调性及函数图象直观研究确定. 3.利用导数解决不等式恒成立问题的“两种”常用方法:(1)分离参数法:将原不等式分离参数,转化为不含参数的函数的最值问题,利用导数求该函数的最值,根据要求得所求范围.一般地,()f x a ≥恒成立,只需min ()f x a ≥即可;()f x a ≤恒成立,只需max ()f x a ≤即可.(2)函数思想法:将不等式转化为某含待求参数的函数的最值问题,利用导数求该函数的极值(最值),然后构建不等式求解.典例3 已知函数21()e 2xf x ax x =-+. (1)当1a >-时,试判断函数()f x 的单调性;(2)若1e a <-,求证:函数()f x 在[1,)+∞上的最小值小于12.(2)由(1)知()f 'x 在[1,)+∞上单调递增, 因为1e a <-,所以()e 110f 'a =-+<,所以存在(1,)t ∈+∞,使得()0f 't =,即e 0t t a -+=,即e t a t =-, 所以函数()f x 在[1,)t 上单调递减,在(,)t +∞上单调递增,所以当[1,)x ∈+∞时222min 111()()e e (e )e (1)222t t t t f f t at t t t t t x t ==-+=-+-=-+,令21()e (1)2x h x x x =-+,1x >,则()(1e )0x h'x x =-<恒成立,所以函数()h x 在(1,)+∞上单调递减,所以211()e(11)122h x <-+⨯=, 所以211e (1)22tt t -+<,即当[1,)x ∈+∞时min 1()2x f <, 故函数()f x 在[1,)+∞上的最小值小于12. 典例4 已知函数,.(1)若曲线与曲线在它们的交点处的公共切线为,求,,的值;(2)当时,若,,求的取值范围.【解析】(1)设它们的公共交点的横坐标为,则.,则,①;,则,②.由②得,由①得.将,代入得,∴,.(2)由,得,即在上恒成立,令,则,其中在上恒成立,∴在上单调递增,在上单调递减,则,∴.故的取值范围是.2.已知函数()1 lnf x a x xx=+-,其中a为实常数.(1)若12x=是()f x的极大值点,求()f x的极小值;(2)若不等式1lna xb xx-≤-对任意52a-≤≤,122x≤≤恒成立,求的最小值.考向三(导)函数图象与单调性、极值、最值的关系1.导数与函数变化快慢的关系:如果一个函数在某一范围内导数的绝对值较大,那么函数在这个范围内变化得快,这时函数的图象就比较“陡峭”(向上或向下);反之,函数的图象就“平缓”一些.2.导函数为正的区间是函数的增区间,导函数为负的区间是函数的减区间,导函数图象与x 轴的交点的横坐标为函数的极值点.典例 5 设函数2()f x ax bx c =++(a ,b ,c ∈R ),若函数()e x y f x =在1x =-处取得极值,则下列图象不可能为()y f x =的图象是【答案】D【解析】2()e ()e e [(2)]x x x y f x f x ax a b x b c ''=+=++++,因为函数()e x y f x =在1x =-处取得极值,所以1x =-是2(2)0ax a b x b c ++++=的一个根,整理可得c a =,所以2()f x ax bx a =++,对称轴对于A,由图可得0,(0)0,(1)0a f f >>-=,适合题意; 对于B,由图可得0,(0)0,(1)0a f f <<-=,适合题意;对于C, 对于D, D.3.已知函数的导函数的图象如图所示,则函数A .有极大值,没有最大值B .没有极大值,没有最大值C .有极大值,有最大值D .没有极大值,有最大值考向四生活中的优化问题1.实际生活中利润最大,容积、面积最大,流量、速度最大等问题都需要利用导数来求解相应函数的最大值.若在定义域内只有一个极值点,且在极值点附近左增右减,则此时唯一的极大值就是最大值. 2.实际生活中用料最省、费用最低、损耗最小、最节省时间等问题都需要利用导数求解相应函数的最小值.用料最省、费用最低问题出现的形式多与几何体有关,解题时根据题意明确哪一项指标最省(往往要从几何体的面积、体积入手),将这一指标表示为自变量x的函数,利用导数或其他方法求出最值,但一定要注意自变量的取值范围.典例 6 如图,点为某沿海城市的高速公路出入口,直线为海岸线,,,是以为圆心,半径为的圆弧型小路.该市拟修建一条从通往海岸的观光专线CP PQ-,其中为上异于的一点,与平行,设.(1)证明:观光专线CP PQ-的总长度随的增大而减小;(2)已知新建道路的单位成本是翻新道路CP的单位成本的2倍.当取何值时,观光专线CP PQ-的修建总成本最低?请说明理由.【解析】(1)由题意,,所以π3CPθ=-,又,所以观光专线的总长度为,,因为当时,,所以在上单调递减,即观光专线CP PQ-的总长度随的增大而减小.(2)设翻新道路的单位成本为,则总成本,,,令,得,因为,所以, 当时,;当时,.所以,当时,最小.答:当时,观光专线CP PQ -的修建总成本最低.4.某村庄拟修建一个无盖的圆柱形蓄水池(不计厚度).设该蓄水池的底面半径为r 米,高为h 米,体积为V 立方米.假设建造成本仅与表面积有关,侧面的建造成本为100元/平方米,底面的建造成本为160元/平方米,该蓄水池的总建造成本为12000π元(π为圆周率). (1)将V 表示成r 的函数V (r ),并求该函数的定义域;(2)讨论函数V (r )的单调性,并确定r 和h 为何值时该蓄水池的体积最大.1.已知函数()()2e e ln exf x f x '=-(e 是自然对数的底数),则()f x 的极大值为 A .2e-1 B .C .1D .2ln22.已知函数,则的单调递减区间为A .B .C .和D .和3.函数在闭区间上的最大值,最小值分别是A .B .C .D .4.设定义在上的函数的导函数满足,则 A .B .C .D .5.若函数在上有最小值,则的取值范围为A .B .C .D .6.已知函数()22,2e 2,2x x xx f x x x ⎧+>⎪=⎨⎪+≤⎩,函数有两个零点,则实数的取值范围为A .B .C .D .7.已知函数f (x )=ax 3+bx 2+cx ,其导函数y =f ′(x )的图象经过点(1,0),(2,0),如图所示,则下列说法中不正确的序号是________.①当x =时函数取得极小值; ②f (x )有两个极值点; ③当x =2时函数取得极小值;④当x =1时函数取得极大值.8.已知函数.若函数在定义域内不是单调函数,则实数的取值范围是__________. 9.定义在上的函数满足,则当时,与的大小关系为__________.(其中为自然对数的底数)10.用一张16cm 10cm ⨯的长方形纸片,经过折叠以后,糊成了一个无盖的长方体形纸盒,则这个纸盒的最大容积是_________3cm .11.已知函数3()f x ax bx c =++在2x =处取得极值16c -. (1)求a 、b 的值;(2)若()f x 有极大值28,求()f x 在[3,3]-上的最小值.12.如图,有一块半圆形空地,开发商计划建一个矩形游泳池ABCD 及其矩形附属设施EFGH ,并将剩余空地进行绿化,园林局要求绿化面积应最大化.其中半圆的圆心为O ,半径为R ,矩形的一边AB 在直径上,点C 、D 、G 、H 在圆周上,E 、F 在边CD BOC θ∠=.(1)记游泳池及其附属设施的占地面积为()fθ,求()f θ的表达式;(2)当cos θ为何值时,能符合园林局的要求?13.设函数.(1)讨论函数的单调性; (2)若,且在区间上恒成立,求的取值范围.14.设.(1)在上单调,求的取值范围; (2)已知在处取得极小值,求的取值范围.15.已知函数.(1)若曲线的切线经过点,求的方程;(2)若方程有两个不相等的实数根,求的取值范围.1.(2016四川文科)已知a 为函数()3–12f x x x =的极小值点,则a =A .–4B .–2C .4D .22.(2017浙江)函数y=f (x )的导函数()y f x '=的图象如图所示,则函数y=f (x )的图象可能是3.(2016新课标全国Ⅰ文科)若函数1()sin2sin 3f x x x a x =-+在(,)-∞+∞上单调递增,则a 的取值范围是 A .[1,1]-B .1[1,]3-C .11[,]33-D .1[1,]3--4.(2017浙江)已知函数f (x )=(x e x -(12x ≥). (1)求f (x )的导函数;。

2019年高考复习 第十三章 算法初步含解析

2019年高考复习 第十三章 算法初步含解析

1.算法(1)算法通常是指按照一定规则解决某一类问题的明确和有限的步骤. (2)应用:算法通常可以编成计算机程序,让计算机执行并解决问题.2.程序框图定义:程序框图又称流程图,是一种用程序框、流程线及文字说明来表示算法的图形.3.三种基本逻辑结构(1)输入语句、输出语句、赋值语句的格式与功能第十三章 算法初步(2)①IF -THEN 格式 IF 条件 THEN 语句体 END IF②IF -THEN -ELSE 格式 IF 条件 THEN 语句体1 ELSE 语句体2END IF(3)循环语句的格式 ①WHILE 语句WHILE 条件循环体WEND②UNTIL 语句 DO 循环体LOOP UNTIL 条件5.流程图与结构图(1)由一些图形符号和文字说明构成的图示称为流程图.(2)描述系统结构的图示称为结构图,一般由构成系统的若干要素和表达各要素之间关系的连线(或方向箭头)构成.1、阅读如图所示的程序框图,运行相应的程序,若输入x 的值为1,则输出y 的值为( C )A .2B .7C .8D .1282、我国古代数学典籍《九章算术》“盈不足”中有一道两鼠穿墙问题:“今有垣厚十尺,两鼠对穿,初日各一尺,大鼠日自倍,小鼠日自半,问几何日相逢?”现用程序框图描述,如图所示,则输出结果n =( )A .4B .5C .2D .3解析:该程序框图运行4次,第1次循环,a =1,A =1,S =2,n =1;第2次循环,a =12,A =2,S =92,n=2;第3次循环,a =14,A =4,S =354,n =3;第4次循环,a =18,A =8,S =1358,n =4,此时循环结束,则输出的n =4,故选A 。

3、执行如图所示的程序框图,若输出k 的值为8,则判断框内可填入的条件是( )A .s ≤34?B .s ≤56?C .s ≤1112?D .s ≤2524?解析:执行第1次循环,则k =2,s =12,满足条件.执行第2次循环,则k =4,s =12+14=34,满足条件.执行第3次循环,则k =6,s =34+16=1112,满足条件.执行第4次循环,k =8,s =1112+18=2524,不满足条件,输出k =8,因此条件判断框应填s ≤1112?.选C 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

算法初步
1.【2019年高考天津卷文数】阅读下边的程序框图,运行相应的程序,输出S 的值为
A .5
B .8
C .24
D .29
【答案】B
【分析】根据程序框图,逐步写出运算结果即可.
【解析】1,2S i ==;1
1,1225,3j S i ==+⨯==;8,4S i ==,
结束循环,输出8S =.故选B .
2.【2019年高考北京卷文数】执行如图所示的程序框图,输出的s 值为
A .1
B .2
C .3
D .4
【答案】B
【分析】根据程序框图中的条件逐次运算即可. 【解析】初始:1s =,1k =,
运行第一次,2
212312s ⨯==⨯-,2k =,
运行第二次,2
222322s ⨯==⨯-,3k =,
运行第三次,2
222322
s ⨯==⨯-,结束循环,
输出2s =,故选B .
3.【2019年高考全国Ⅰ卷文数】如图是求1
121
22
+
+的程序框图,图中空白框中应填入
A .1
2A A =+ B .12A A =+
C .1
12A A
=+
D .1
12A A
=+
【答案】A
【分析】本题主要考查算法中的程序框图,渗透阅读、分析与解决问题等素养,认真分析式子结构特征与程序框图结构,即可找出作出选择.。

相关文档
最新文档