数值分析 第七章作业 曾欢欢 2012014302

合集下载

数值分析作业(完整版)

数值分析作业(完整版)

的逆阵 A ,用左除命令 A \ E 检验你的结果。
clc clear close all A=[1 1 1 1 1;1 2 3 4 5;1 3 6 10 15;1 4 10 20 35;1 5 15 35 70]; fprintf('对上述矩阵进行列主元素分解:\n') for i=1:1:r-1 [mx,ro]=max(abs(A(i:r,i))); % 寻找a阵第i列的最大值 [A(i,:),A(ro+i-1,:)]=exchange(A(i,:),A(ro+i-1,:)); % 进行行与行交换 for j=i+1:1:r A(j,:)=A(j,:)-A(j,i)/A(i,i)*A(i,:); end A End %--矩阵A的逆阵 A1=inv(A) %--左除验证 E=eye(5); A2=A\E % 5x5单位阵 % A阵的逆矩阵 % 输出每次交换后的A
第一章
1、计算积分 I n
Code: clc clear close all n=9; %--梯形积分法 x=0:0.01:1; y=(x.^n).*exp(x-1); In = trapz(x,y); In2=vpa(In,6) % 6位有效数字 %--高精度积分法 F = @(x1)(x1.^n).*exp(x1-1); s = quad(F,0,1); s1=vpa(s,6)
0
0, 0, 0, 0, 0 。
T
if abs(er(:,i-1))<=e fprintf('在迭代 %d 次之后,满足精度要求,x向量的值如下:\n',i); fprintf('x1=%.5f, x2=%.5f, x3=%.5f, x4=%.5f, x5=%.5f\n',x(1,i),x(2,i),x(3,i),x(4,i),x(5,i)); break end end %--绘图 figure(1) plot(1:1:i,x(1,:),'b',1:1:i,x(2,:),'k',1:1:i,x(3,:),'g',1:1:i,x(4,:), 'r',1:1:i,x(5,:),'c') legend('x1','x2','x3','x4','x5') grid on title('Jacobi迭代法——x值随迭代次数变化曲线') figure(2) plot(1:1:i-1,er(1,:),'b',1:1:i-1,er(2,:),'k',1:1:i-1,er(3,:),'g',1:1: i-1,er(4,:),'r',1:1:i-1,er(5,:),'c') legend('△x1','△x2','△x3','△x4','△x5') grid on title('Jacobi迭代法——△x值随迭代次数变化曲线') %% fprintf('\n-------------Gauss-Seidel迭代法---------------------\n'); U=-(A1-D); L=-(A2-D); DL_1=inv(D-L); M1=DL_1*U; b2=DL_1*b; x1(:,1)=M1*x0+b2; for j=2:1:100 x1(:,j)=M1*x1(:,j-1)+b2; er1(:,j-1)=x1(:,j)-x1(:,j-1); if abs(er1(:,j-1))<=e fprintf('在迭代 %d 次之后,满足精度要求,x向量的值如下:\n',j); fprintf('x1=%.5f, x2=%.5f, x3=%.5f, x4=%.5f, x5=%.5f\n',x1(1,j),x1(2,j),x1(3,j),x1(4,j),x1(5,j)); break end end %--绘图 figure(3) plot(1:1:j,x1(1,:),'b',1:1:j,x1(2,:),'k',1:1:j,x1(3,:),'g',1:1:j,x1(4 ,:),'r',1:1:j,x1(5,:),'c') legend('x1','x2','x3','x4','x5')

数值分析习题(含答案)

数值分析习题(含答案)

第一章 绪论姓名 学号 班级习题主要考察点:有效数字的计算、计算方法的比较选择、误差和误差限的计算。

1 若误差限为5105.0-⨯,那么近似数0.003400有几位有效数字?(有效数字的计算) 解:2*103400.0-⨯=x ,325*10211021---⨯=⨯≤-x x 故具有3位有效数字。

2 14159.3=π具有4位有效数字的近似值是多少?(有效数字的计算) 解:10314159.0⨯= π,欲使其近似值*π具有4位有效数字,必需41*1021-⨯≤-ππ,3*310211021--⨯+≤≤⨯-πππ,即14209.314109.3*≤≤π即取(3.14109 , 3.14209)之间的任意数,都具有4位有效数字。

3 已知2031.1=a ,978.0=b 是经过四舍五入后得到的近似值,问b a +,b a ⨯有几位有效数字?(有效数字的计算)解:3*1021-⨯≤-aa ,2*1021-⨯≤-b b ,而1811.2=+b a ,1766.1=⨯b a 2123****102110211021)()(---⨯≤⨯+⨯≤-+-≤+-+b b a a b a b a故b a +至少具有2位有效数字。

2123*****10210065.01022031.1102978.0)()(---⨯≤=⨯+⨯≤-+-≤-b b a a a b b a ab 故b a ⨯至少具有2位有效数字。

4 设0>x ,x 的相对误差为δ,求x ln 的误差和相对误差?(误差的计算) 解:已知δ=-**xx x ,则误差为 δ=-=-***ln ln xx x x x则相对误差为******ln ln 1ln ln ln xxx x xxx x δ=-=-5测得某圆柱体高度h 的值为cm h 20*=,底面半径r 的值为cm r 5*=,已知cm h h 2.0||*≤-,cm r r 1.0||*≤-,求圆柱体体积h r v2π=的绝对误差限与相对误差限。

数值分析第七章实验报告7

数值分析第七章实验报告7

贵州师范大学数学与计算机科学学院学生实验报告课程名称: 数值分析 班级: 实验日期: 2011年12月14日 学号: 姓名: 指导教师: 实验成绩: 一、实验名称实验六: 常微分方程初值问题数值解法 二、实验目的及要求1. 让学生掌握用Euler 法, Runge-Kutta 法求解常微分方程初值问题.2. 培养Matlab 编程与上机调试能力.三、实验环境每人一台计算机,要求安装Windows XP 操作系统,Microsoft office2003、MATLAB6.5(或7.0). 四、实验内容1. 取步长h=0.1,0.05,0.01,,用Euler 法及经典4阶Runge-Kutta 法求解初值问题⎩⎨⎧=≤≤++-=1)0()10(2222'y t t t y y 要求:1) 画出准确解(准确解22t e y t +=-)的曲线,近似解折线;2) 把节点0.1和0.5上的精确解与近似解比较,观察误差变化情况.2. 用 Euler 法,隐式Euler 法和经典4阶R-K 法取不同步长解初值问题⎪⎩⎪⎨⎧=∈-=21)0(],1,0[,50'y x y y 并画出曲线观察稳定性. 注:题1必须写实验报告五、算法描述及实验步骤 Euler 法:输入 000),(,,,),,(y a x x h b a y x f = 输出 Euler 解y 步1 ),,2,1(;m n h n a x ha b m n =⨯+=-⇐步2 对1,,2,1,0-=m n 执行),(1n n n n y x f h y y ⨯+⇐+步3 输出T m y y y y ),,,(21 = 经典4阶R-K 法:输入 000),(,,,),,(y a x x h b a y x f = 输出 4阶R-K 解y 步1 ),,2,1(;m n h n a x ha b m n =⨯+=-⇐步2 对1,,2,1,0-=m n 执行),(1n n y x f K ⇐,)5.0,(15.02hK y x f K n n +⇐+, )5.0,(25.03hK y x f K n n +⇐+,),(314hK y x f K n n +⇐+)22(643211K K K K h y y n n ++++⇐+步3 输出T m y y y y ),,,(21 = 六、调试过程及实验结果 分别取h=0.1,h=0.01 步长h=0.1>> a=0;b=1;h=0.1;y0=1; >> Y1=RK('fun',a,b,y0,h); >> y1=[1,Y1];>> Y2=Euler('fun',a,b,y0,h); >> y2=[1,Y2]; >> t=[0:0.1:1]; >> plot(t,y1,'dk-') >> hold on>> plot(t,y2,'.r--') >> t=0:0.01:1; >> y=exp(-2.*t)+t.^2; >> hold on >> plot(t,y,':')>> legend('y1','y2','y',2)>> title('准确解曲线与近似解折线')>> text(0.15,0.775,'\leftarrowy1=R-K 法') >> text(0.7,0.67,'\leftarrowy2=Euler 法') >> text(0.48,0.78,'y=准确解曲线\rightarrow')>> y=exp(-2.*t)+t.^2; >> t=0.1;>> y;>> Y1(1);>> Y2(2);>> e1=y-Y1(1)>> y=exp(-2.*t)+t.^2; >> t=0.5;>> y;>> Y1(5);>> Y2(5);>> e1=y-Y1(5)e1 =-1.1609e-005>> e2=y-Y2(5)e2 =0.0738e1 =-4.2469e-006>> e2=y-Y2(1)e2 =0.0287步长h=0.01>> a=0;b=1;h=0.01;y0=1;>> Y1=RK('fun',a,b,y0,h); >> y1=[1,Y1];>> Y2=Euler('fun',a,b,y0,h); >> y2=[1,Y2];>> y=exp(-2.*t)+t.^2;>> t=0:0.01:1;>> plot(t,y1,'k-')>> hold on>> plot(t,y2,'r--')>> hold on>> plot(t,y,':')>> t=0.1;>> y=exp(-2.*t)+t.^2;>> y;>> Y1(10);>> Y2(10);>> e1=y-Y1(10)e1 =-3.7457e-010>> e2=y-Y2(10)e2 =0.0026>> t=0.5;>> y=exp(-2.*t)+t.^2;>> y;>> Y1(50);>> Y2(50);>> e1=y-Y1(50)e1 =-1.0308e-009>> e2=y-Y2(50)e2 =0.0069七、总结用1阶的Euler法解初值问题时,若步长过大的话,误差将会较大,其解不可靠,只有控制步长尽量小,在一定误差范围内才可用,大的话精度不高。

数值分析第二版(丁丽娟)答案

数值分析第二版(丁丽娟)答案
第八章答案
练习: 第一章
答案
练习二 练习三
练习四
1、 什么是幂法?它收敛到矩阵 A 的哪个特征向量? 若 A 的按模最大的特征值是单根,用幂法求此特征 值的收敛速度由什么量来决定?怎样改进幂法的收敛速度?
2、 反幂法收敛到矩阵的哪个特征向量? 在幂法或者反ห้องสมุดไป่ตู้法中,为什么每步都要将迭代向量规范化?
,求差商 (2)
例6 设

Hermite 插值多项式 其误差余项。
,满足
例7已知函数 的取值如下,
x
-1
y
-1
y’
4
,求函数
在区间
上的

。并写出
0
1
3
1
3
31
28
求其三次样条插值函数
,并求出
在 -0.5 和2 的近似值。
练习六
1、解:由
由 10(1)解:
第七章答案 得


0
1
0 0.235294 0.400000 0.4800 0.5
16(3)解: 将
代入得

解得:
对于求积公式 有2次代数精确度。

,将
代入不成立,因此公式具
19(1)解:

代入得

代入得

代入得
因此其代数精确度为2次,不是 Gauss 型求积公式。
21、解:三点公式
16.007498295841852 16.002385008517887
16.002177786576915 16.00069286350589
则开根号得 4.000114446266071 4.000272214059553 4.000086607000640

数值分析1.1

数值分析1.1

3. 数值分析的特点 (1)面向计算机,要根据计算机特点 设计切实可行的有效算法. (2) 有可靠的理论分析,能任意逼 近并达到精度要求,对近似计算 要保证收敛性和数值稳定性.
(3) 要有好的计算复杂性,时间复 杂性好是指节省时间,空间复杂 性好是指节省存贮量,这也是建 立算法要研究的问题. (4) 要有数值试验,即任何一个算 法除了从理论上要满足上述三点 外,还要通过数值试验证明是行 之有效的.
2.0001-1.9999
=0.0002 =0.02%
但对应的解为
x1 1 x2 1
x1 3 x 2 1
由此看出系数矩阵完全相同,而常数项矩 阵有微小差别的方程组,其解竟然相差得 很大! 解的最大误差= 2 = 200%
据说,美军 1910 年的一次部队的命令传递是这样的: 营长对值班军官: 明晚大约 8点钟左右,哈雷彗星将可能在这个 地区看到,这种彗星每隔 76年才能看见一次。命令所有士兵着 野战服在操场上集合,我将向他们解释这一罕见的现象。如果下 雨的话,就在礼堂集合,我为他们放一部有关彗星的影片。 值班军官对连长: 根据营长的命令,明晚8点哈雷彗星将在操场 上空出现。如果下雨的话,就让士兵穿着野战服列队前往礼堂, 这一罕见的现象将在那里出现。 连长对排长: 根据营长的命令,明晚8点,非凡的哈雷彗星将身 穿野战服在礼堂中出现。如果操场上下雨,营长将下达另一个命 令,这种命令每隔76年才会出现一次。 排长对班长: 明晚8点,营长将带着哈雷彗星在礼堂中出现,这 是每隔 76年才有的事。如果下雨的话,营长将命令彗星穿上野 战服到操场上去。 班长对士兵: 在明晚8点下雨的时候,著名的76岁哈雷将军将在 营长的陪同下身着野战服,开着他那“彗星”牌汽车,经过操场 前往礼堂。

数值分析作业

数值分析作业

第二章15.方程组的性态和矩阵条件数试验。

设有线性方程组Ax=b ,其中系数矩阵A=(a ij )nXn 分别为a ij =x i j −1(x i =1+0.1i;i,j=1,2…,n)或a ij =1i+j −1(i,j=1,2…,n),右端向量b=( a 1j n j=1, a 2j n j=1,…, a nj nj=1)T .利用MATLAB 中的库函计算:(1)取n=5,10,20,分别系数矩阵的2-条件数,判别他们是否是病态矩阵?随着n 的增大。

矩阵形态的变化如何?(2)分别取n=5,10,20解两个线性方程组,并求的的解与精确解做比较,说明的什么?(3)取n=10,对系数矩阵中的a 22和a nn 增加扰动10-8,求解方程组,解得变化? 程序如下:n=input('n='); for i=1:n; for j=1:n;a(i,j)=1/(i+j-1); end end c=norm(a); d=norm(inv(a)); t=c*d; b=sum(a'); x=inv(a)*b'; disp(t); disp(x')输入n=5时得到t=4.7661e+005 X=1.0000 1.0000 1.0000 1.0000 1.0000 输入n=10时得到t=1.6025e+013 X=1.0000 1.0001 1.0000 1.0000 0.9999 0.9998 0.9991 0.9999 1.0000 1.0001 输入n=20时得到t= 2.3003e+018 X=Columns 1 through 130.2609 9.6667 0.9976 1.1094 0.6875 1.3750 3.3125 2.0000 16.0000 -18.0000 32.0000 -10.0000 8.0000Columns 14 through 20-56.0000 4.0000 24.0000 39.5000 -144.0000 28.0000 -14.0000通过题意可知线性方程组的精确解为x=ones(n,1).通过对条件数t 值计算可知其随n 值增加而增加,n 值变大矩阵变为病态矩阵,病态矩阵的结果偏差较大。

数值分析课后习题答案

习 题 一 解 答1.取3.14,3.15,227,355113作为π的近似值,求各自的绝对误差,相对误差和有效数字的位数。

分析:求绝对误差的方法是按定义直接计算。

求相对误差的一般方法是先求出绝对误差再按定义式计算。

注意,不应先求相对误差再求绝对误差。

有效数字位数可以根据定义来求,即先由绝对误差确定近似数的绝对误差不超过那一位的半个单位,再确定有效数的末位是哪一位,进一步确定有效数字和有效数位。

有了定理2后,可以根据定理2更规范地解答。

根据定理2,首先要将数值转化为科学记数形式,然后解答。

解:(1)绝对误差:e(x)=π-3.14=3.14159265…-3.14=0.00159…≈0.0016。

相对误差:3()0.0016()0.51103.14r e x e x x -==≈⨯有效数字:因为π=3.14159265…=0.314159265…×10,3.14=0.314×10,m=1。

而π-3.14=3.14159265…-3.14=0.00159…所以│π-3.14│=0.00159…≤0.005=0.5×10-2=21311101022--⨯=⨯所以,3.14作为π的近似值有3个有效数字。

(2)绝对误差:e(x)=π-3.15=3.14159265…-3.14=-0.008407…≈-0.0085。

相对误差:2()0.0085()0.27103.15r e x e x x --==≈-⨯有效数字:因为π=3.14159265…=0.314159265…×10,3.15=0.315×10,m=1。

而π-3.15=3.14159265…-3.15=-0.008407…所以│π-3.15│=0.008407……≤0.05=0.5×10-1=11211101022--⨯=⨯所以,3.15作为π的近似值有2个有效数字。

(3)绝对误差:22() 3.141592653.1428571430.0012644930.00137e x π=-=-=-≈-相对误差:3()0.0013()0.4110227r e x e x x--==≈-⨯有效数字: 因为π=3.14159265…=0.314159265…×10, 223.1428571430.3142857143107==⨯,m=1。

数值分析 7


x k 1
易知 f ( x)
6a 0 。故取 x0 (0, a ) 时,迭代收敛。 x4
对于 115 ,取 x0 9 ,迭代计算,得 x1=10.33043478, x4=10.72380529, 故 115 10.72380529 。 x2=10.70242553, x5=10.72380529 x3=10.7237414
故 ( B J ) 2a ,故当
1 1 a 时,雅可比迭代法收敛。 2 2
.
10-6 4.用等节距分段二次插值函数在区间[0,1]上近似函数 ex, 如何估算节点数目使插值误差 1 2 解:考虑子区间[xi-1,xi]二次插值余项
f ( x ) P2 ( x ) f ( 3) ( ) ( x x i )( x x i 1 / 2 )( x x i 1 ) 3! e max ( x x i )( x x i 1 / 2 )( x x i 1 ) 6 x i x x i 1
ak= 3) 4)
( f ,k ) ( k , k )
k 0,1, , n
a ;f[20, 21,…,28]= 0 ;
令 f(x)=ax7+ x4+3x+1, 则 f[20, 21,…,27]=
x (3,0,4,12) T ,则 || x ||1
已知方程组
19
, || x || 2
2 x 1/ 2 x 2 x 2 n x 2h 因此 yn 1 1 2 h 2n x 2n x
n
n
n
2 x 2 n x
e x
(h 0)

数值分析习题集及答案

数值分析习题集(适合课程《数值方法A 》和《数值方法B 》)长沙理工大学第一章 绪 论1. 设x >0,x 的相对误差为δ,求ln x 的误差.2. 设x 的相对误差为2%,求nx 的相对误差.3. 下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指出它们是几位有效数字:4. 利用公式(3.3)求下列各近似值的误差限:********12412324(),(),()/,i x x x ii x x x iii x x ++其中****1234,,,x x x x 均为第3题所给的数.5. 计算球体积要使相对误差限为1%,问度量半径R 时允许的相对误差限是多少?6. 设028,Y =按递推公式1n n Y Y -=( n=1,2,…)计算到100Y .27.982(五位有效数字),试问计算100Y 将有多大误差?7. 求方程25610x x -+=的两个根,使它至少具有四位有效数字27.982).8. 当N 充分大时,怎样求211Ndx x +∞+⎰?9. 正方形的边长大约为100㎝,应怎样测量才能使其面积误差不超过1㎝2? 10. 设212S gt =假定g 是准确的,而对t 的测量有±0.1秒的误差,证明当t 增加时S 的绝对误差增加,而相对误差却减小. 11. 序列{}n y 满足递推关系1101n n y y -=-(n=1,2,…),若0 1.41y =≈(三位有效数字),计算到10y 时误差有多大?这个计算过程稳定吗?12.计算61)f =,1.4≈,利用下列等式计算,哪一个得到的结果最好?13.()ln(f x x =,求f (30)的值.若开平方用六位函数表,问求对数时误差有多大?若改用另一等价公式计算,求对数时误差有多大?14. 试用消元法解方程组{101012121010;2.x x x x +=+=假定只用三位数计算,问结果是否可靠?15. 已知三角形面积1sin ,2s ab c =其中c 为弧度,02c π<<,且测量a ,b ,c 的误差分别为,,.a b c ∆∆∆证明面积的误差s ∆满足第二章 插值法1. 根据(2.2)定义的范德蒙行列式,令 证明()n V x 是n 次多项式,它的根是01,,n x x -,且 101101()(,,,)()()n n n n V x V x x x x x x x ---=--.2. 当x = 1 , -1 , 2 时, f (x)= 0 , -3 , 4 ,求f (x )的二次插值多项式.3.4. ,研究用线性插值求cos x 近似值时的总误差界.5. 设0k x x kh =+,k =0,1,2,3,求032max ()x x x l x ≤≤.6. 设jx 为互异节点(j =0,1,…,n ),求证:7. 设[]2(),f x Ca b ∈且()()0f a f b ==,求证21()()().8max max a x ba xb f x b a f x ≤≤≤≤≤-"8. 在44x -≤≤上给出()xf x e =的等距节点函数表,若用二次插值求xe 的近似值,要使截断误差不超过610-,问使用函数表的步长h 应取多少?9. 若2nn y =,求4n y ∆及4n y δ.10. 如果()f x 是m 次多项式,记()()()f x f x h f x ∆=+-,证明()f x 的k 阶差分()(0)k f x k m ∆≤≤是m k -次多项式,并且()0(m l f x l +∆=为正整数). 11. 证明1()k k k k k k f g f g g f +∆=∆+∆.12. 证明110010.n n kkn n k k k k f gf g f g g f --+==∆=--∆∑∑13. 证明1200.n j n j y y y -=∆=∆-∆∑14. 若1011()n n n n f x a a x a x a x --=++++有n 个不同实根12,,,n x x x ,证明15. 证明n 阶均差有下列性质: i)若()()F x cf x =,则[][]0101,,,,,,n n F x x x cf x x x =;ii) 若()()()F x f x g x =+,则[][][]010101,,,,,,,,,n n n F x x x f x x x g x x x =+.16. 74()31f x x x x =+++,求0172,2,,2f ⎡⎤⎣⎦及0182,2,,2f ⎡⎤⎣⎦.17. 证明两点三次埃尔米特插值余项是并由此求出分段三次埃尔米特插值的误差限.18. 求一个次数不高于4次的多项式()P x ,使它满足(0)(1)P P k =-+并由此求出分段三次埃尔米特插值的误差限. 19. 试求出一个最高次数不高于4次的函数多项式()P x ,以便使它能够满足以下边界条件(0)(0)0P P ='=,(1)(1)1P P ='=,(2)1P =.20. 设[](),f x C a b ∈,把[],a b 分为n 等分,试构造一个台阶形的零次分段插值函数()n x ϕ并证明当n →∞时,()n x ϕ在[],a b 上一致收敛到()f x .21. 设2()1/(1)f x x =+,在55x -≤≤上取10n =,按等距节点求分段线性插值函数()h I x ,计算各节点间中点处的()h I x 与()f x 的值,并估计误差.22. 求2()f x x =在[],a b 上的分段线性插值函数()h I x ,并估计误差.23. 求4()f x x =在[],a b 上的分段埃尔米特插值,并估计误差.试求三次样条插值并满足条件25. 若[]2(),f x C a b ∈,()S x 是三次样条函数,证明 i)[][][][]222()()()()2()()()bbbbaaaaf x dx S x dx f x S x dx S x f x S x dx"-"="-"+""-"⎰⎰⎰⎰;ii) 若()()(0,1,,)i i f x S x i n ==,式中i x 为插值节点,且01n a x x x b =<<<=,则[][][]()()()()()()()()()baS x f x S x dx S b f b S b S a f a S a ""-"="'-'-"'-'⎰.26. 编出计算三次样条函数()S x 系数及其在插值节点中点的值的程序框图(()S x 可用(8.7)式的表达式).第三章 函数逼近与计算1. (a)利用区间变换推出区间为[],a b 的伯恩斯坦多项式.(b)对()sin f x x =在[]0,/2π上求1次和三次伯恩斯坦多项式并画出图形,并与相应的马克劳林级数部分和误差做比较. 2. 求证:(a)当()m f x M ≤≤时,(,)n m B f x M ≤≤. (b)当()f x x =时,(,)n B f x x =. 3. 在次数不超过6的多项式中,求()sin 4f x x =在[]0,2π的最佳一致逼近多项式.4. 假设()f x 在[],a b 上连续,求()f x 的零次最佳一致逼近多项式.5. 选取常数a ,使301max x x ax≤≤-达到极小,又问这个解是否唯一?6. 求()sin f x x =在[]0,/2π上的最佳一次逼近多项式,并估计误差.7. 求()xf x e =在[]0,1上的最佳一次逼近多项式.8. 如何选取r ,使2()p x x r =+在[]1,1-上与零偏差最小?r 是否唯一?9. 设43()31f x x x =+-,在[]0,1上求三次最佳逼近多项式.10. 令[]()(21),0,1n n T x T x x =-∈,求***0123(),(),(),()T x T x T x T x .11. 试证{}*()nT x 是在[]0,1上带权ρ=的正交多项式.12. 在[]1,1-上利用插值极小化求11()f x tg x -=的三次近似最佳逼近多项式.13. 设()xf x e =在[]1,1-上的插值极小化近似最佳逼近多项式为()n L x ,若n f L ∞-有界,证明对任何1n ≥,存在常数n α、n β,使14. 设在[]1,1-上234511315165()128243843840x x x x x xϕ=-----,试将()x ϕ降低到3次多项式并估计误差.15. 在[]1,1-上利用幂级数项数求()sin f x x =的3次逼近多项式,使误差不超过0.005. 16. ()f x 是[],a a -上的连续奇(偶)函数,证明不管n 是奇数或偶数,()f x 的最佳逼近多项式*()n n F x H ∈也是奇(偶)函数.17. 求a 、b 使[]22sin ax b x dx π+-⎰为最小.并与1题及6题的一次逼近多项式误差作比较.18. ()f x 、[]1(),g x C a b ∈,定义 问它们是否构成内积?19. 用许瓦兹不等式(4.5)估计6101x dx x +⎰的上界,并用积分中值定理估计同一积分的上下界,并比较其结果.20. 选择a ,使下列积分取得最小值:1122211(),x ax dx x ax dx----⎰⎰.21. 设空间{}{}10010121,,,span x span x x 1ϕ=ϕ=,分别在1ϕ、2ϕ上求出一个元素,使得其为[]20,1x C ∈的最佳平方逼近,并比较其结果.22. ()f x x =在[]1,1-上,求在{}2411,,span x x ϕ=上的最佳平方逼近.23.sin (1)arccos ()n n x u x +=是第二类切比雪夫多项式,证明它有递推关系()()()112n n n u x xu x u x +-=-.24. 将1()sin 2f x x=在[]1,1-上按勒让德多项式及切比雪夫多项式展开,求三次最佳平方逼近多项式并画出误差图形,再计算均方误差.25. 把()arccos f x x =在[]1,1-上展成切比雪夫级数.26.2y a bx =+.27.用最小二乘拟合求()y f t =.29. 编出用正交多项式做最小二乘拟合的程序框图. 30. 编出改进FFT 算法的程序框图.31. 现给出一张记录{}{}4,3,2,1,0,1,2,3k x =,试用改进FFT 算法求出序列{}k x 的离散频谱{}k C (0,1,,7).k =第四章 数值积分与数值微分1. 确定下列求积公式中的待定参数,使其代数精度尽量高,并指明所构造出的求积公式所具有的代数精度:(1)101()()(0)()hh f x dx A f h A f A f h --≈-++⎰; (2)21012()()(0)()hh f x dx A f h A f A f h --≈-++⎰;(3)[]1121()(1)2()3()/3f x dx f f x f x -≈-++⎰;(4)[][]20()(0)()/1(0)()hf x dx h f f h ah f f h ≈++'-'⎰.2. 分别用梯形公式和辛普森公式计算下列积分:(1)120,84xdx n x =+⎰; (2)1210(1),10x e dx n x --=⎰;(3)1,4n =⎰;(4),6n =.3. 直接验证柯特斯公式(2.4)具有5次代数精度.4. 用辛普森公式求积分10xedx-⎰并计算误差.5. 推导下列三种矩形求积公式:(1)2()()()()()2ba f f x dxb a f a b a 'η=-+-⎰; (2)2()()()()()2ba f f x dxb a f b b a 'η=---⎰;(3)3()()()()()224baa b f f x dx b a f b a +"η=-+-⎰. 6. 证明梯形公式(2.9)和辛普森公式(2.11)当n →∞时收敛到积分()baf x dx⎰.7. 用复化梯形公式求积分()baf x dx⎰,问要将积分区间[],a b 分成多少等分,才能保证误差不超过ε(设不计舍入误差)?8.1x e dx-,要求误差不超过510-.9. 卫星轨道是一个椭圆,椭圆周长的计算公式是S a =θ,这里a 是椭圆的半长轴,c 是地球中心与轨道中心(椭圆中心)的距离,记h 为近地点距离,H 为远地点距离,6371R =公里为地球半径,则(2)/2,()/2a R H h c H h =++=-.我国第一颗人造卫星近地点距离439h =公里,远地点距离2384H =公里,试求卫星轨道的周长.10. 证明等式3524sin3!5!n n nnππππ=-+-试依据sin(/)(3,6,12)n n n π=的值,用外推算法求π的近似值.11. 用下列方法计算积分31dyy ⎰并比较结果.(1) 龙贝格方法;(2) 三点及五点高斯公式;(3) 将积分区间分为四等分,用复化两点高斯公式.12. 用三点公式和五点公式分别求21()(1)f x x =+在x =1.0,1.1和1.2处的导数值,并估计误()f x 第五章 常微分方程数值解法1. 就初值问题0)0(,=+='y b ax y 分别导出尤拉方法和改进的尤拉方法的近似解的表达式,并与准确解bx ax y +=221相比较。

数值分析第四版习题及答案

第一章 绪 论1. 设x >0,x 的相对误差为δ,求ln x 的误差.2. 设x 的相对误差为2%,求nx 的相对误差.3. 下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指出它们是几位有效数字: *****123451.1021,0.031,385.6,56.430,7 1.0.x x x x x =====⨯4. 利用公式(3.3)求下列各近似值的误差限:********12412324(),(),()/,i x x x ii x x x iii x x ++其中****1234,,,x x x x 均为第3题所给的数.5. 计算球体积要使相对误差限为1%,问度量半径R 时允许的相对误差限是多少?6. 设028,Y =按递推公式1n n Y Y -=( n=1,2,…)计算到100Y .27.982(五位有效数字),试问计算100Y 将有多大误差?7. 求方程25610x x -+=的两个根,使它至少具有四位有效数字27.982).8. 当N 充分大时,怎样求211Ndx x +∞+⎰?9. 正方形的边长大约为100㎝,应怎样测量才能使其面积误差不超过1㎝2? 10. 设212S gt =假定g 是准确的,而对t 的测量有±0.1秒的误差,证明当t 增加时S 的绝对误差增加,而相对误差却减小. 11. 序列{}n y 满足递推关系1101n n y y -=-(n=1,2,…),若0 1.41y =≈(三位有效数字),计算到10y 时误差有多大?这个计算过程稳定吗?12.计算61)f =,1.4≈,利用下列等式计算,哪一个得到的结果最好?3--13.()ln(f x x =,求f (30)的值.若开平方用六位函数表,问求对数时误差有多大?若改用另一等价公式ln(ln(x x =-计算,求对数时误差有多大?14. 试用消元法解方程组{101012121010;2.x x x x +=+=假定只用三位数计算,问结果是否可靠?15. 已知三角形面积1sin ,2s ab c =其中c 为弧度,02c π<<,且测量a ,b ,c 的误差分别为,,.a b c ∆∆∆证明面积的误差s ∆满足.s a b cs a b c ∆∆∆∆≤++第二章 插值法1. 根据(2.2)定义的范德蒙行列式,令2000011211121()(,,,,)11n n n n n n n n n x x x V x V x x x x x x x xx x ----==证明()n V x 是n 次多项式,它的根是01,,n x x -,且 101101()(,,,)()()n n n n V x V x x x x x x x ---=--.2. 当x = 1 , -1 , 2 时, f (x)= 0 , -3 , 4 ,求f (x )的二次插值多项式.3.4. 给出cos x ,0°≤x ≤90°的函数表,步长h =1′=(1/60)°,若函数表具有5位有效数字,研究用线性插值求cos x 近似值时的总误差界.5. 设0k x x kh =+,k =0,1,2,3,求032max ()x x x l x ≤≤.6. 设jx 为互异节点(j =0,1,…,n ),求证:i) 0()(0,1,,);nk kj j j x l x xk n =≡=∑ii)()()1,2,,).nk jj j xx l x k n =-≡0(=∑7. 设[]2(),f x C a b ∈且()()0f a f b ==,求证21()()().8max max a x b a x b f x b a f x ≤≤≤≤≤-"8. 在44x -≤≤上给出()x f x e =的等距节点函数表,若用二次插值求x e 的近似值,要使截断误差不超过610-,问使用函数表的步长h 应取多少?9. 若2n n y =,求4n y ∆及4n y δ.10. 如果()f x 是m 次多项式,记()()()f x f x h f x ∆=+-,证明()f x 的k 阶差分()(0)k f x k m ∆≤≤是m k -次多项式,并且()0(m l f x l +∆=为正整数).11. 证明1()k k k k k k f g f g g f +∆=∆+∆. 12. 证明110010.n n kkn n k k k k f gf g f g g f --+==∆=--∆∑∑13. 证明1200.n j n j y y y -=∆=∆-∆∑14. 若1011()n n n n f x a a x a x a x --=++++有n 个不同实根12,,,n x x x ,证明{10,02;, 1.1()n k njk n a k n j jx f x -≤≤-=-=='∑15. 证明n 阶均差有下列性质: i)若()()F x cf x =,则[][]0101,,,,,,n n F x x x cf x x x =;ii) 若()()()F x f x g x =+,则[][][]010101,,,,,,,,,n n n F x x x f x x x g x x x =+.16. 74()31f x x x x =+++,求0172,2,,2f ⎡⎤⎣⎦及0182,2,,2f ⎡⎤⎣⎦.17. 证明两点三次埃尔米特插值余项是(4)22311()()()()/4!,(,)k k k k R x f x x x x x x ++=ξ--ξ∈并由此求出分段三次埃尔米特插值的误差限.18. 求一个次数不高于4次的多项式()P x ,使它满足(0)(1)P P k =-+并由此求出分段三次埃尔米特插值的误差限. 19. 试求出一个最高次数不高于4次的函数多项式()P x ,以便使它能够满足以下边界条件(0)(0)0P P ='=,(1)(1)1P P ='=,(2)1P =.20. 设[](),f x C a b ∈,把[],a b 分为n 等分,试构造一个台阶形的零次分段插值函数()n x ϕ并证明当n →∞时,()n x ϕ在[],a b 上一致收敛到()f x .21. 设2()1/(1)f x x =+,在55x -≤≤上取10n =,按等距节点求分段线性插值函数()h I x ,计算各节点间中点处的()h I x 与()f x 的值,并估计误差.22. 求2()f x x =在[],a b 上的分段线性插值函数()h I x ,并估计误差.23. 求4()f x x =在[],a b 上的分段埃尔米特插值,并估计误差.试求三次样条插值并满足条件 i) (0.25) 1.0000,(0.53)0.6868;S S '='= ii)(0.25)(0.53)0.S S "="=25. 若[]2(),f x C a b ∈,()S x 是三次样条函数,证明 i)[][][][]222()()()()2()()()bbbba a a a f x dx S x dx f x S x dx S x f x S x dx "-"="-"+""-"⎰⎰⎰⎰;ii) 若()()(0,1,,)i i f x S x i n ==,式中i x 为插值节点,且01n a x x x b =<<<=,则[][][]()()()()()()()()()baS x f x S x dx S b f b S b S a f a S a ""-"="'-'-"'-'⎰.26. 编出计算三次样条函数()S x 系数及其在插值节点中点的值的程序框图(()S x 可用(8.7)式的表达式).第三章 函数逼近与计算1. (a)利用区间变换推出区间为[],a b 的伯恩斯坦多项式.(b)对()sin f x x =在[]0,/2π上求1次和三次伯恩斯坦多项式并画出图形,并与相应的马克劳林级数部分和误差做比较. 2. 求证:(a)当()m f x M ≤≤时,(,)n m B f x M ≤≤. (b)当()f x x =时,(,)n B f x x =. 3. 在次数不超过6的多项式中,求()sin 4f x x =在[]0,2π的最佳一致逼近多项式. 4. 假设()f x 在[],a b 上连续,求()f x 的零次最佳一致逼近多项式. 5. 选取常数a ,使301max x x ax≤≤-达到极小,又问这个解是否唯一?6. 求()sin f x x =在[]0,/2π上的最佳一次逼近多项式,并估计误差.7. 求()xf x e =在[]0,1上的最佳一次逼近多项式.8. 如何选取r ,使2()p x x r =+在[]1,1-上与零偏差最小?r 是否唯一?9. 设43()31f x x x =+-,在[]0,1上求三次最佳逼近多项式.10. 令[]()(21),0,1n n T x T x x =-∈,求***0123(),(),(),()T x T x T x T x . 11. 试证{}*()nT x 是在[]0,1上带权ρ=的正交多项式.12. 在[]1,1-上利用插值极小化求11()f x tg x -=的三次近似最佳逼近多项式.13. 设()xf x e =在[]1,1-上的插值极小化近似最佳逼近多项式为()n L x ,若nf L ∞-有界,证明对任何1n ≥,存在常数n α、n β,使11()()()()(11).n n n n n T x f x L x T x x ++α≤-≤β-≤≤14. 设在[]1,1-上234511315165()128243843840x x x x x x ϕ=-----,试将()x ϕ降低到3次多项式并估计误差. 15. 在[]1,1-上利用幂级数项数求()sin f x x =的3次逼近多项式,使误差不超过0.005.16. ()f x 是[],a a -上的连续奇(偶)函数,证明不管n 是奇数或偶数,()f x 的最佳逼近多项式*()n n F x H ∈也是奇(偶)函数.17. 求a 、b 使[]22sin ax b x dx π+-⎰为最小.并与1题及6题的一次逼近多项式误差作比较.18. ()f x 、[]1(),g x C a b ∈,定义 ()(,)()();()(,)()()()();b baaa f g f x g x dxb f g f x g x dx f a g a =''=''+⎰⎰问它们是否构成内积?19. 用许瓦兹不等式(4.5)估计6101x dx x +⎰的上界,并用积分中值定理估计同一积分的上下界,并比较其结果.20. 选择a ,使下列积分取得最小值:1122211(),x ax dx x ax dx----⎰⎰.21. 设空间{}{}10010121,,,span x span x x 1ϕ=ϕ=,分别在1ϕ、2ϕ上求出一个元素,使得其为[]20,1x C ∈的最佳平方逼近,并比较其结果.22. ()f x x =在[]1,1-上,求在{}2411,,span x x ϕ=上的最佳平方逼近.23.sin (1)arccos ()n n x u x +=是第二类切比雪夫多项式,证明它有递推关系()()()112n n n u x xu x u x +-=-.24. 将1()sin 2f x x=在[]1,1-上按勒让德多项式及切比雪夫多项式展开,求三次最佳平方逼近多项式并画出误差图形,再计算均方误差. 25. 把()arccos f x x =在[]1,1-上展成切比雪夫级数.26.2y a bx =+. 27.用最小二乘拟合求.29. 编出用正交多项式做最小二乘拟合的程序框图. 30. 编出改进FFT 算法的程序框图. 31. 现给出一张记录{}{}4,3,2,1,0,1,2,3k x =,试用改进FFT 算法求出序列{}k x 的离散频谱{}k C (0,1,,7).k =第四章 数值积分与数值微分1. 确定下列求积公式中的待定参数,使其代数精度尽量高,并指明所构造出的求积公式所具有的代数精度:(1)101()()(0)()hh f x dx A f h A f A f h --≈-++⎰; (2)21012()()(0)()hh f x dx A f h A f A f h --≈-++⎰;(3)[]1121()(1)2()3()/3f x dx f f x f x -≈-++⎰;(4)[][]20()(0)()/1(0)()hf x dx h f f h ah f f h ≈++'-'⎰.2. 分别用梯形公式和辛普森公式计算下列积分:(1)120,84xdx n x =+⎰; (2)1210(1),10x e dx n x --=⎰;(3)1,4n =⎰;(4),6n =.3. 直接验证柯特斯公式(2.4)具有5次代数精度.4. 用辛普森公式求积分10x e dx-⎰并计算误差. 5. 推导下列三种矩形求积公式:(1)2()()()()()2ba f f x dxb a f a b a 'η=-+-⎰; (2)2()()()()()2ba f f x dxb a f b b a 'η=---⎰;(3)3()()()()()224baa b f f x dx b a f b a +"η=-+-⎰. 6. 证明梯形公式(2.9)和辛普森公式(2.11)当n →∞时收敛到积分()baf x dx⎰.7. 用复化梯形公式求积分()baf x dx⎰,问要将积分区间[],a b 分成多少等分,才能保证误差不超过ε(设不计舍入误差)?8.1x e dx-,要求误差不超过510-.9. 卫星轨道是一个椭圆,椭圆周长的计算公式是S a =θ,这里a 是椭圆的半长轴,c 是地球中心与轨道中心(椭圆中心)的距离,记h 为近地点距离,H 为远地点距离,6371R =公里为地球半径,则(2)/2,()/2a R H h c H h =++=-.我国第一颗人造卫星近地点距离439h =公里,远地点距离2384H =公里,试求卫星轨道的周长. 10. 证明等式3524sin3!5!n nn n ππππ=-+-试依据sin(/)(3,6,12)n n n π=的值,用外推算法求π的近似值.11. 用下列方法计算积分31dyy ⎰并比较结果.(1) 龙贝格方法;(2) 三点及五点高斯公式;(3) 将积分区间分为四等分,用复化两点高斯公式.12. 用三点公式和五点公式分别求21()(1)f x x =+在x =1.0,1.1和1.2处的导数值,并估计误()f x 第五章 常微分方程数值解法1. 就初值问题0)0(,=+='y b ax y 分别导出尤拉方法和改进的尤拉方法的近似解的表达式,并与准确解bx ax y +=221相比较。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档