3-酰胺基-4-吲哚马来酰亚胺化合物及其制备方法和应用
不对称催化氢化反应

C=N双键(主要是亚胺)的不对称氢化 反应,不如C=C双键和C=O双键的不对 称氢化反应研究的那样多、那样深入。 原因是对大多数催化体系,前手性亚胺 的不对称氢化反应只给出中等的光学产 率,而且反应的转化率往往也较低。
这是因为亚胺的不对称氢化反应比烯 烃和酮的不对称氢化反应更复杂,除了 催化剂本身的选择性外,还存在着亚胺 Z、E异构化的问题。
近年来,Noyori发现了由Ru-BINAP— 手性二胺-KOH组成的三元催化体系,它对 各种不具官能团的简单酮的不对称氢化反 应有很好的效果。
最近报道了由RuBICP-手性二胺KOH组成的催化体系,它对芳香酮及其 他芳基烷基酮有很好的反应活性和较好 的对映选择性。特别是在2-乙酰基噻吩 及其衍生物的不对称氢化反应中,得到 了93%e.e.的对映选择性。
1、 α-乙酰胺基丙烯酸及其衍生物的不 对称氢化反应:
α- 乙酰胺基丙烯酸 及其衍生物是最早 进行不对称催化氢 化反应并获得成功 R 的烯烃底物。 化学结构见右图:
COOR1
NHAc
(1)基本化学反应:
C O O R 1 H 2 C O O H
R
性 铑 催 化 剂R N H A c 手 — ( 酰 氨 基 ) 丙 烯 酸 衍 生 物 的 不 对 称 氢 化
(2)α-氨基酮的不对称氢化反应:
α-氨基酮的不对称氢化反应生成具有 光学活性的氨基醇。例如:在(R,S)BPPFOH-Rh配合物手性催化剂催化下, 3,4-二羟基苯基-N-甲基甲胺基酮发生不 对称氢化反应,生成肾上腺素,e.e. 达到 95%。
( 3 ) α- 和 β- 羰基羧酸衍生物的不对称氢化 反应:
src激酶抑制剂综述

Src(sarcoma gene)受体激酶家族抑制剂研究综述药学0703班U200717953周俊Src(sarcoma gene)受体激酶家族抑制剂研究综述摘要;本文介绍了src的组成,作用以及与相关疾病的作用,总结了近几年研究src激酶家族的方向,以src激酶家族作为靶点寻找抗癌药物中的一些进展和成果,并逐一分析比较有代表性的药物,如喹啉衍生物,嘧啶衍生物等等化合物,最后总结近期成果,指出现有工作的不足和未来的研究方向。
关键词鸡肉瘤病毒基因(src)酪氨酸蛋白激酶抑制因子A TP结合位点引言:sarcoma gene(鸡肉瘤病毒基因,以下简称src)的组成Src是一类癌基因,其表达产物主要是酪氨酸蛋白激酶类。
Src在许多组织细胞中表达,在癌症发病机制中处于重要的地位,是肿瘤,癌症分子表达途径的重要的激酶。
Src家族是研究最早最深入的家族,包括Blk, Brk, Fgr, Frk,Fyn, Hck, Lck, Lyn, c-Src, Srm,c-Yes等成员。
根据氨基酸序列,可以分为两个亚族:一族是Src, Fyn, Yes and Fgr并且广泛在不同的组织中表达,Lck, Blk, Lyn and Hck和造血细胞有关.研究表明,Src与其他众多酶类可联合在一起促进多个细胞反应进程。
Src 与多种激酶受体偶联,包括酪氨酸激酶受体,整合单白受体,G蛋白偶联受体等。
.通过偶联作用影响细胞生长,发育,乃至转移扩散。
最好的例子就是与EGFR(一种有关细胞生长的受体)的结合,Src可以使EGFR自身磷酸化,降低EGFR 的中间体的调节与胞吞作用。
除了牵涉到细胞内的反应,Src可能也在初级肿瘤细胞的转移中扮演着一个重要的角色。
实际上Src转移细胞的存在减少了ECM反应以及组织反应的损失。
分子调节这些过程的机理建立在Src和FAK的反应的基础上。
Src与粘附分子有关。
Src的磷酸化使得在粘附分子上的整联蛋白受体接收的黏着性与转移信号得以传播。
药化

(1).简述用于抗高血压的拟肾上腺素药物。
1.中枢α肾上腺素受体激动剂,可抑制交感神经冲动的输出,导致血压下降。
可乐定是中枢β2受体激动剂,通过神经节减少外周交感神经末梢去甲肾上腺素的释放产生降压作用。
类似的药物还有莫索尼定和胍那苄。
这些药物现有人认为是通过兴奋中枢侧网状核的咪唑啉受体I亚型来实现的。
咪唑啉受体I亚型的分布与中枢β2受体的分布相似。
用于抗高血压的拟肾上腺素药物还有甲基多巴,也是中枢α2体激动剂。
(2).简述硝酸异山梨酯药物特性。
2.本品加水和硫酸会水解生成硝酸,缓缓加入硫酸亚铁试液,接界面显棕色。
硝酸异山梨酯为血管扩张药,用于缓解和预防心绞痛,也用于充血性心力衰竭。
本品扩张血管平滑肌的作用,效果比硝酸甘油更显著,且持续时间长,能明显地增加冠脉流量,降低血压。
本品口服约30分钟见效,持续约5小时;舌下含服后约5分钟见效,持续2小时。
常见的不良反应为头晕、面部潮红、灼热、恶心等,长期服用可产生药物耐受性,与其他硝酸酯有交叉耐药性。
(3).简述乙酰胆碱药物特性。
3.乙酰胆碱是躯体神经、交感神经节前神经元和全部副交感神经的化学递质。
药物可通过影响乙酰胆碱与受体的相互作用和乙酰胆碱的代谢等环节,达到增强或减弱乙酰胆碱作用的结果,调节胆碱能神经系统兴奋低下和过度兴奋的病理状态,用于治疗的目的。
(4).异环磷酰胺的理化性质及用途。
4.类别:氮芥类抗肿瘤药。
作用特点和用途:本品为前体药物,在体内经酶代谢活化后发挥作用。
虽然它的代谢途径和环磷酰胺基本相同,但异环磷酰胺经代谢可产生单氯乙基环磷酰胺而产生神经毒性。
异环磷酰胺的抗瘤谱与环磷酰胺不完全相同,临床用于骨及软组织肉瘤、非小细胞肺癌、乳腺癌、头颈部癌、子宫颈癌、食管癌的治疗。
由于主要毒性为骨髓抑制、出血性膀胱炎等肾脏毒性、尿道出血等,须和尿路保护剂美司纳一起使用,以降低毒性。
(5).丙酸睾酮的化学名、理化性质和用途。
5.类别:雄甾烷类。
理化性质:白色或类白色结晶性粉末,在氯仿中易溶,乙醇中溶解,植物油中略溶,在水中不溶,mp.118-123℃,[α]25D+84 °+90°。
有机胺

有机胺有机胺一般是指有机类物质与氨发生化学反应生成的有机类物质。
分为七大类,脂肪胺类、醇胺类、酰胺类、脂环胺类、芳香胺类、萘系胺类、其它胺类等。
具体如表中所述。
聚乙烯亚胺羟胺絮凝剂理论基础是;“聚并”理论,絮凝剂主要是带有正电(负)性的基团中和一些水中带有负(正)电性难于分离的一些粒子或者叫颗粒,降低其电势,使其处于不稳定状态,并利用其聚合性质使得这些颗粒,集中,并通过物理或者化学方法分离出来。
一般为达到这种目的而使用的药剂,称之为絮凝剂。
絮凝剂主要应用于给水各污水处理领域。
絮凝剂按照其化学成分总体可分为无机絮凝剂和有机絮凝剂两类。
其中无机絮凝剂又包括无机凝聚剂和无机高分子絮凝剂;有机絮凝剂又包括合成有机高分子絮凝剂、天然有机高分子絮凝剂和微生物絮凝剂。
[编辑本段]无机絮凝剂按其分子量的大小可分为低分子絮凝剂和高分子絮凝剂两大类。
低分子絮凝剂价格低、货源充足、但因其用量大、残渣多、效果差,故无机絮凝剂的发展已经基本上完成了低分子向高分子的转变。
现常用的无机高分子絮凝剂有聚合铝类絮凝剂、聚合铁类絮凝剂和活性硅酸类絮凝剂以及复合絮凝剂四大类。
(1)聚合铝类絮凝剂(如聚合氯化铝,硫酸铝等)聚合铝水解产生高价离子,形成各种类型的羟基多核络合物。
它们通过羰基式桥联作用,处于亚稳定状态。
而OH-与Al3+的比值[2](一般称盐基度或碱基度)对絮凝效果影响很大。
通常盐基度越高,絮凝效果越强,但过高则本身易生成难溶的氢氧化铝沉淀,导致絮凝效果降低。
研究表明,盐基度在75%-85%时最佳,此时絮凝体产生快,颗粒大而重,沉淀性能好。
聚合铝具有投药量少、沉降速度快、颗粒密实、除浊、除色效果明显等特点。
在工业水处理中得到广泛的应用[3]。
值得注意的是铝,尤其是活性铝,毒性较大,同时聚合铝制备方法不完善,致使较多水解铝的微细颗粒存在于溶液中,这在一定程度上限制了聚合铝的使用。
通过改善混凝反应条件,延长慢速混凝时间,能有效降低水中铝的含量。
分子蒸馏的原理

分子蒸馏的原理分子蒸馏是一种特殊的液--液分离技术,它不同于传统蒸馏依靠沸点差分离原理,而是靠不同物质分子运动平均自由程的差别实现分离。
这里,分子运动自由程(用λ表示)是指一个分子相邻两次碰撞之间所走的路程。
当液体混合物沿加热板流动并被加热,轻、重分子会逸出液面而进入气相,由于轻、重分子的自由程不同,因此,不同物质的分子从液面逸出后移动距离不同,若能恰当地设置一块冷凝板,则轻分子达到冷凝板被冷凝排出,而重分子达不到冷凝板沿混合液排出。
这样,达到物质分离的目的。
分子蒸馏技术的特点分子蒸馏技术作为一种与国际同步的高新分离技术,具有其它分离技术无法比拟的优点:1、操作温度低(远低于沸点)、真空度高(空载≤1Pa)、受热时间短(以秒计)、分离效率高等,特别适宜于高沸点、热敏性、易氧化物质的分离;2、可有效地脱除低分子物质(脱臭)、重分子物质(脱色)及脱除混合物中杂质;3、其分离过程为物理分离过程,可很好地保护被分离物质不被污染,特别是可保持天然提取物的原来品质;4 、分离程度高,高于传统蒸馏及普通的薄膜蒸发器。
分子蒸馏技术工业化应用产品A氨基酸酯阿魏酸三萜醇酯B丙烯酸酯丙二醇酯苯乙烯-丙烯腈丙交酯薄荷酯白术挥发油苯基马来酰亚胺柏木油菠萝酮苯甲酸C12~C15醇酯C长链二元酸(C9-C18)粗石蜡除草剂柴胡挥发油茶树油苍术油川芎提取物蚕蛹油D单甘酯(单硬脂酸甘油酯单月桂酸甘油脂等)(牛油及猪油等)脱胆固醇大蒜油丁三醇当归提取物2-丁基辛醇独活提取物豆甾醇独活提取物多糖酯多不饱和脂肪酸对苯二甲酸二乙酯脱除多氯联苯E二十八烷醇(米糠蜡、蜂蜡、蔗蜡)二聚酸二十碳五烯酸(EPA)二十二碳六烯酸(DHA)二十二烷内酯二异氰酸酯三聚体F废油再生番茄红素辅酶Q蜂蜡呋喃脂酚醛树脂防风提取物氟油(全氟烃、氟氯碳油、全氟聚醚)G高碳醇固化剂(脱除TDI、MDI、HDI等)共轭亚油酸果糖酯硅油(聚硅氧烷或聚硅醚)谷甾醇谷维素桂皮油香茅油香根油橄榄油广藿香油(广藿香醇、广藿香酮)癸二酸二辛酯光稳定剂H花生四烯酸(ARA)胡椒基丁醚β-胡萝卜素及类胡萝卜素(棕榈油柑橘油甜橙油桔皮油螺旋藻等)海狗油(双酚A及F型)环氧树脂花椒籽油红花籽油互叶白千层油J聚甘油酯聚酯聚醚聚烯烃聚乙二醇(酯)聚氨酯聚戊烯醇聚四氢呋喃姜油树脂姜辣素姜烯酚焦油角鲨烯结构酯芥酸酰胺碱金属精炼甲基庚烯酮间甲基苯甲酸3-甲基吲哚激素缩体姜樟油鲸醇K葵花籽油糠蜡矿物油渣脱蜡奎宁衍生物扩散泵油天然抗氧化剂L沥青脱蜡辣椒油树脂辣椒红色素辣椒碱氯菊酯磷酸酯连翘挥发油邻苯二甲酸二辛酯M玫瑰油米槁精油没食子酸醛类衍生物毛油脱酸(高酸值米糠油、小麦胚芽油、花椒籽油等)米糠蜡茉莉精油煤焦油酶解脂肪酸N萘甲醛柠檬醛P PET再生(聚对苯二甲酸乙二醇酯)葡萄糖衍生物天然苹果香精帕罗西汀硼酸乙二醇醚Q 茄尼醇(废次烟叶、马铃薯叶)3-羟基丙腈(HPN)R (矿物及合成)润滑油(聚α-烯烃、石蜡氯化合成油、烷基苯合成油、聚异丁烯合成油)L-乳酸松香酯肉桂醛(肉桂油)山苍子油S 生物柴油(脂肪酸甲酯或乙酯)三烯生育酚三氯新(三氯-2羟基二苯醚)三甘醇三十烷醇三聚酸双甘油酯鼠尾草抗氧剂石油渣油(精制或脱除)杀虫剂食用油脱酸缩水甘油基化合物羧酸二酯(润滑油)蒜素鲨烯(三十碳六烯酸)十二烷内酯双-β-羟乙基对苯二甲酸酯酸性氯化物生物碱衍生物四唑-1-乙酸三聚甲醛回收(天然及合成)生育酚T碳氢化合物萜烯烃(酯)桃醛塔尔油(妥尔油)W(天然及合成)脂溶性维生素(A、D、E、K)烷基糖苷(烷基苷烷基多苷烷基多糖苷烷基聚糖苷烷基葡萄糖苷)烷基酚微晶蜡戊二醛维生素E醋酸酯肟类X小麦胚芽油新洋茉莉醛香附子烯α-香附酮香芝麻蒿挥发油香叶醇香紫苏内酯Y亚麻酸油酸酰胺(深海及发酵)鱼油鱼肝油燕麦油羊毛脂羊毛醇异氰酸酯预聚物岩兰草油月桂二酸氧化乐果(聚)乙二醇酯油酸二乙醇酰胺月桂酸二乙酰胺乙醛酸乙酰氨基苯乙酸乙酯异构体亚麻籽油同位素铀浓缩依托芬那酯乙氧基脂肪醇乙氧脂肪酸液化煤乙烯基吡咯烷酮玉米油乙酰柠檬酸酯腰果油异丙烯二羧酸酯Z植物甾醇植物蜡芝麻素真空泵油制动液中碳链甘油三酯(MCT)脂肪酸及其衍生物增塑剂增效醚甾醇酯蔗糖酯紫罗兰酮酯类油(双酯、多元醇酯、复酯)植物油脱臭馏出物紫苏籽油蔗蜡棕蜡镇静剂棕榈油分子蒸馏与传统蒸馏的不同可由下表看出:由上述对比看出,分子蒸馏较传统蒸馏具有明显的技术及经济优势:1、产品质量高。
芳纶纤维的改性应用

鲁东大学学报(自然科学版)Jopreai of Ludong University(Naturai Science Edition)2421,37(5:62—72芳纶纤维的改性应用袁悦,董建华,赵新迪,刘洁,孙昌梅(鲁东大学化学与材料科学学院,山东烟台264039)摘要:芳纶(PPTA)纤维是一种重要的高性能纤维。
本文从芳纶结构特点出发,综述了近年来芳纶纤维的化学改性和物理改性的方法,对芳纶表面活性化及表面接枝等化学改性的原理、特点及应用进行了阐述。
其中化学改性方法主要包括芳纶的表面刻蚀、硝化还原反应、氯磺化反应、芳纶金属化、异氰酸酯接枝反应、生物酶催化接枝等;物理改性方法主要括表面涂层技术、等离子体技术、超声浸渍改性、高能射线、深冷处理、热处理、超临界C04改性、络合改性等。
并对芳纶纤维在当今社会中的应用和前景进行了展望。
关键词:芳纶;表面改性;化学改性;物理改性;应用中图分类号:TQ342.7文献标志码:A文章编号聚对苯二甲酰对苯二胺(PPTA、纤维,又称对位芳族聚酰胺纤维,自从1077年以来,由于其高强度,高模量以及卓越的物理性能,化学性能和热稳定性而被广泛用于军事和航空航天工业[]。
众所周知,优异的界面结合强度是芳纶纤维增强复合材料综合力学性能的必要条件之一。
但是,由于芳族聚酰胺聚合物分子结构中缺乏极性官能团,而且这种纤维的表面拥有很高的结晶度、化学惰性以及光滑度,因此芳族聚酰胺纤维与树脂基体之间的界面粘结强度相当差,极大地限制了它的进一步应用⑵。
所以,有必要采用改性芳纶的方法来增强纤维与树脂体系之间的界面结合能力,从而使制得的芳纶复合材料能够拥有更好地力学和机械性能。
目前,人们已经掌握了多种用来改性芳族聚酰胺纤维的方法。
本文综述了近些年对芳纶的化学改性与物理改性方法。
化学改性是从PPTA的化学结构出发,利用一些化学试剂来处理芳纶,使其表面发生刻蚀反应,破坏芳纶表层的结晶物质,使芳纶纤维表面粗化;或者利用酰胺基上发生的异氧酸酯接枝反应和金属化反应来提高纤维的亲水性、界面粘结性等;或者采用生物酶催化处理对芳纶纤维进行改性。
高中化学选择性必修三教案讲义:胺、酰胺(教师版)
胺酰胺1.认识胺的结构和性质及命名;2.认识酰胺的结构特征及主要性质;一、胺1.胺的定义、结构与分类(1)定义:氨分子中的氢原子被烃基取代而形成的一系列的衍生物称为胺。
(2)结构:胺的分子结构与氨气相似,都是三角锥形。
(3)分类:①根据氢原子被烷基取代的数目,可以将胺分为一级胺(伯胺)RNH 2、二级胺(仲胺)R 2NH 和三级胺(叔胺)R 3N 。
一级胺:一个氮原子连接两个氢原子和烃基,如甲胺(CH 3NH 2)、苯胺(C 6H 5NH 2),通式:RNH 2。
二级胺:一个氮原子连接一个氢原子和两个烃基,如二甲胺[(CH 3)2NH ]、吡咯烷(),通式:R 2NH 。
三级胺:一个氮原子连接三个烃基,如三甲胺[(CH 3)3N ]、通式:R 3N 。
②根据胺分子中含有氨基的数目,还可以将胺分为一元胺、二元胺、三元胺等。
③根据胺中的烃基R 的不同,分为为脂肪胺,如乙胺CH 3CH 2NH 2、芳香胺,如苯胺C 6H 5NH 2。
2.胺类化合物的命名普通命名法结构简单的胺常在烃基后直接加“胺”、如CH 3NH 2:甲胺、CH 3NHCH 3:二甲胺、C 6H 5NH 2:苯胺等。
名称书写需注意①表示基团用“氨”;②表示氨的烃类衍生物时用“胺”;③表示胺的盐用“铵”。
伯、仲、叔胺的意义伯、仲、叔胺中分别含有氨基(—NH 2)、亚氨基(—NH—)和次氨基()3.胺的物理性质(1)状态:低级脂肪胺,如甲胺、二甲胺和三甲胺等,在常温下是气体,丙胺以上是液体,十二胺以上为固体。
芳香胺是无色高沸点的液体或低熔点的固体,并有毒性。
(2)溶解性:低级的伯、仲、叔胺都有较好的水溶性,随着碳原子数的增加,胺的水溶性逐渐下降。
4.胺的化学性质:具有碱性(1)电离方程式:RNH2+H 2O RNH +3+OH-(2)胺与酸反应转化为铵①胺具有碱性,可与酸反应生成类似的铵盐。
乙胺与盐酸:CH 3CH 2NH 2+HCl→CH 3CH 2N H +3Cl -。
第五章 蛋白质的修饰
(7)突变基因的鉴定。从选出的噬菌斑中制备DNA,用 Sanger方法测定突变部位序列,与预定序列相符合的就 是所需的突变基因。
2、盒式诱变 合成两套分别与靶DNA的两条链互补的寡核苷酸 (10~25bp)。其中一套由单一的一种与野生型靶DNA 一条链的序列精确互补的寡聚核苷酸组成,另一套由 一系列互补于另一条链同一位置带有目标突变的简并 的寡聚核苷酸组成。这样,在有利于形成错配杂交的 条件下将两条互补的寡聚核苷酸混合,则生成1个短 的双链DNA片段,可在片段的两端设计合适的突变末 端,直接插入到重组质粒中以置换同源的野生型序列。
试剂首先与活性部位发生特异性结合;
然后试剂中的活性基团与活性部位中的侧链基团发 生化学反应,将标记基团共价连接于活性部位上。 修饰有两个明显的特点: (1)底物、竞争性抑制剂或配体对修饰有保护作用; (2)修饰反应是定量定点的修饰。
(2)Kcat型的不可逆抑制剂
是根据酶催化过程设计的,这类抑制剂 具有和底物类似的结构,具有被酶结合和催 化的性质,此外,还有一个潜伏反应基团, 在酶对它进行催化反应时,这个潜伏的反应 基团被酶催化而活化,对活性部位起不可逆 抑制作用。这类抑制剂的专一性很高,常被 人们称为“自杀性底物”。
部位,如酶的活性部位、膜蛋 白质上的激素结合部位等位点 的专一性——亲和标记
1、亲和标记
亲和标记:试剂对蛋白质分子中被修饰的部 位的专一性修饰,称为亲和标记或专一性的 不可逆抑制作用。 亲和标记试剂,不仅具有对被作用基团 的专一性,而且具有对被作用部位的专一性, 即试剂作用于被作用部位的某一基团,而不 与被作用部位以外的同类基团发生作用。这 类修饰试剂也被称为位点专一性抑制剂。
第五章 蛋白质的修饰
蛋白质的修饰主要包括两个方面:
9蛋白质的化学修饰
可被光活化试剂.
间隔基团
同型双功能试剂 (CH2)n,长度可变 异型双功能试剂 (-S--(CH2)n-)2
OH O ( CH C )2
亚氨酯
N S S
可被硫醇裂解 长度可变
Hale Waihona Puke 可被高碘酸裂解OH N3
N C
光活化双功能试剂
能与胺反 应的基团 能与巯基反 应的基团
C O N
O C Cl
CF3
(一)同型双功能试剂
由于这两种试剂 的结构与ATP相 似,才看作是内 生亲和试剂。
ATP的烷基卤化衍生物
二、外生亲和试剂 (一)将卤代烷基衍生物通过腺嘌呤的N-6连到腺嘌呤 上,则可形成有效的外生亲和试剂。
NH CH N N O P O CH2 O O O N N NH CO CH2Br
OH OH
N-6-对-溴乙酰胺-苄基-ADP
N ENZ
O N C OCH2CH3
焦碳酸二乙酯
CH3CH2OH +CO2
+
焦碳酸二乙酯能使咪唑环上的一个氮原子羧乙基化.
应注意 的问题
该试剂在水介质、高pH下不稳定,迅速水解为CO2和乙醇。 试剂大大过量时可与咪唑环上的两个氮都作用,形成双取代 衍生物。
羟胺可使反应可逆进行,回收组氨酸。
N ENZ
对氯硫硝基苯
带硝基苯取代基的硫基卤化物的专一性与锍盐类似,但能产生单 一产物,避免了锍盐修饰产物的不均一性,而且产物的光谱性质 可用来定量测定色氨酸。
七、酪氨酸酚基的修饰
四硝基甲烷在温和条件下可高度专一地硝化酪氨酸残基,产生可 电离的发色基团3-硝基酪氨酸。
ENZ CH
OH + C(NO2)4 四硝基甲烷