2018-2019广州市小学毕业数学总复习小升初模拟训练试卷24-25(共2套)附详细试题答案

合集下载

2019年广州市小升初数学模拟试题(共4套)详细答案3

2019年广州市小升初数学模拟试题(共4套)详细答案3

2019年广州市小升初数学模拟试题(共4套)详细答案3小升初数学综合模拟试卷一、填空题:1.1997+1996-1995—1994+1993+1992—1991—1990+…+9+8—7—6+5+4—3—2+1=______.3.在图中的七个圆圈内各填一个数,要求每一条直线上的三个数中,当中的数是两边两个数的平均数,现在已经填好两个数,那么,x=______4.把1、2、3、4、5填入下面算式的方格内,使得运算结果最大:□+□-□×□÷□那么这个最大结果是_______.5.设上题答数为a,a的个位数字为b,2×b的个位数字为c.如图,积的比是______.6.要把A、B、C、D四本书放到书架上,但是,A不能放在第一层,B不能放在第二层,C不能放在第三层,D不能放在第四层,那么,不同的放法共有______种.7.从一张长2109毫米,宽627毫米的长方形纸片上,剪下一个边长尽可能大的正方形,如果剩下的部分不是正方形,那么在剩下的纸片上再剪下一个边长尽可能大的正方形,按照上面的过程,不断地重复,最后剪得的正方形的边长是______毫米.8.龟兔赛跑,全程5.4千米.兔子每小时跑25千米,乌龟每小时跑4千米,乌龟不停地跑,但兔子却边跑边玩,它先跑1分,然后玩15分,又跑2分,玩15分.再跑3分,玩15分,……,那么先到达终点的比后到达终点的快______分.9.从1,2,3,4,5中选出四个数,填入图中的方格内,使得右边的数比左边的数大,下面的数比上面的数大,那么,共有______种填法.比女生少人.二、解答题:1.小明从甲地到乙地,去时每小时走5千米,回来时每小时走7千米,来回共用4小时,小明去时用了多长时间?2.有一个长方体,它的正面和上面的面积之和是119,如果它的长、宽、高都是质数,那么这个长方体的体积是多少?3.在400米环形跑道上,A、B两点相距100米(如图),甲、乙两人分别从A、B两点同时出发,按逆时针方向跑步,甲每秒跑7米,乙每秒跑5米,他们每人跑100米都停5秒.那么,甲追上乙需要多少秒?4.五年级三班有26个男生,某次考试全班有30人超过85分,那么女生中超过85分的比男生中未超过85分的多几人?答案,仅供参考。

2019年广州市小升初数学模拟试题(共4套)详细答案19

2019年广州市小升初数学模拟试题(共4套)详细答案19

2019年广州市小升初数学模拟试题(共4套)详细答案19小升初数学试卷一、填空.(每空1分,共22分)1、一个九位数,最高位亿位上是最小的奇数,十万位上是最小的质数,万位上是最大的一位数,千位上是最小的合数,其余各位都是0,这个数写作________,改写成用“万”作单位的数是________.2、0.4=2:________=________ 5________%=________折3、如果3a=6b,那么a:b=________。

4、明年二月有________天.5、丽丽比亮亮多a张画片,丽丽给亮亮________张,两人画片张数相等.6、一个直角三角形的两个锐角的度数比是3:2.这两个锐角分别是________度和________度.7、红、黄、蓝三种颜色的球各8个,放到一个袋子里,至少摸________个球,才可以保证有两个颜色相同的球,若任意摸一个球,摸到黄色球的可能性是________.8、一个长为6cm,宽为4cm的长方形,以长为轴旋转一周,将会得到一个底面直径是________cm,高________cm的圆柱体.9、一个面积是________平方米的半圆的周长是15.42米.10、保定市某天中午的温度是零上5℃;记作+5℃;到了晚上气温比中午下降了7℃,这天晚上的气温记作________.11、假设你的计算器的一个键“4”坏了,你怎样计算49×76,用算式表示计算过程________.12、琳琳2014年把500元存入银行,年利率2.25%,2016年到期时可以从银行取出________元.13、甲数=2×2×2×3,乙数=2×2×3,这两个数的最小公倍数是________.14、小明每天上午8时到校,11时30分放学,下午2时到校,4时30分放学,她在校的时间占1天的________.15、如图,正方形的面积是20平方厘米,则圆的面积是________平方厘米.二、判断正误.16、两条永不相交的直线叫做平行线.________(判断对错)17、互为倒数的两个分数中,如果其中一个是真分数,那么另一个一定是假分数.________(判断对错)18、两个分数中,分数值大的那个分数单位也大.()19、平行四边形都可以画出对称轴________.20、一个不为0的数除以真分数,所得的商大于被除数.________三、认真选择.(将正确答案的序号填在括号内)21、两个数是互质数,那么它们的最大公因数是()A、较大数B、较小数C、1D 、它们的乘积22、 3.1 与3. 相比( )A 、3.1 大B 、3. 大C 、一样大23、 男生与女生的人数比是6:5,男生比女生多( )A 、B 、C 、24、 给分数的分母乘以3,要使原分数大小不变,分子应加上( )A 、3B 、7C 、14D 、2125、 车轮的直径一定,所行驶的路程和车轮的转数( )A 、成正比例B 、反比例C 、不成比例四、仔细计算.(5+12+12+4=33分)=________﹣ 27、 脱式计算(能简算的要简算)÷9+ × 12.69﹣4.12﹣5.880.6×3.3+×7.7﹣0.6 ( + )×24× .28、 解方程(比例)2x+3×0.9=24.73:(x+1)=4:7x+ x= .29、列式计算(1)一个数的是60的,求这个数?(2)乘的倒数,所得的积再减去3个,差是多少?五、操作题:(第2题的第(3)小题2分,其余的每题1分,共6分)30、利用﹣= ,﹣= ,﹣= ,﹣= ,这些规律,计算:1﹣+ + + + =________.31、按要求答题:(1)三角形的一个顶点A的位置在________ .(2)三角形的另一个顶点B在顶点A正东方3厘米处,在图中标出B点的位置。

2018年广州市小学毕业小升初模拟数学试题(共6套)附详细答案附答案

2018年广州市小学毕业小升初模拟数学试题(共6套)附详细答案附答案

小升初数学试卷58一、填空题:(每题2分,共20分)1、6公顷80平方米=________平方米,42毫升=________立方厘米=________立方分米,80分=________时.2、奥运会每4年举办一次.北京奥运会是第29届,那么第24届是在________年举办的.3、在横线里填写出分母都小于12的异分母最简分数.=________+________=________+________.4、一个圆柱形的水桶,里面盛有18升水,正好盛满,如果把一块与水桶等底等高的圆锥形实心木块完全浸入水中,这时桶内还有________升水.5、如果a= b,那么a与b成________比例,如果= ,那么x与y成________比例.6、花店里有两种玫瑰花,3元可以买4枝红玫瑰,4元可以买3枝黄玫瑰,红玫瑰与黄玫瑰的单价的最简整数比是________.7、一个四位数4AA1能被3整除,A=________.8、如图,两个这样的三角形可以拼成一个大三角形,拼成后的三角形的三个内角的度数比是________或者________.9、如图,把一张三角形的纸如图折叠,面积减少.已知阴影部分的面积是50平方厘米,则这张三角形纸的面积是________平方厘米.10、有一串数,,,,,,,,,,,,,,,,…,这串数从左开始数第________个分数是.二、选择题:(每题2分,共16分)11、甲、乙两堆煤同样重,甲堆运走,乙堆运走吨,甲、乙两堆剩下的煤的重量相比较()A、甲堆重B、乙堆重C、一样重D、无法判断12、下面能较为准确地估算12.98×7.09的积的算式是()A、12×7B、13×7C、12×8D、13×813、已知a能整除19,那么a()A、只能是19B、是1或19C、是19的倍数D、一定是3814、甲数除以乙数的商是5,余数是3,若甲、乙两数同时扩大10倍,那么余数()A、不变B、是30C、是0.3D、是30015、小圆半径与大圆直径之比为1:4,小圆面积与大圆面积比为()A、1:2B、1:4C、1:8D、1:1616、下面的方框架中,()具有不易变形的特性.A、B、C、D、17、在下面形状的硬纸片中,把它按照虚线折叠,能折成一个正方体的是()A、B、C、D、18、一个长9厘米、宽6厘米、高3厘米的长方体,切割成3个体积相等的长方体,表面积最大可增加()A、36平方厘米B、72平方厘米C、108平方厘米D、216平方厘米三、计算题:(共24分)19、计算下列各题,能简算的要简算:(1)69.58﹣17.5+13.42﹣2.5(2)×(×19﹣)(3)+ + +(4)[1﹣(﹣)]÷ .20、求未知数x的值:(1):x=15%:0.18(2)x﹣x﹣5=18.四、动手操作题:21、如图(1),一个长方形纸条从正方形的左边开始以每秒2厘米的速度沿水平方向向右行驶,如图(2)是运动过程中长方形纸条和正方形重叠部分的面积与运动时间的关系图.(1)运动4秒后,重叠部分的面积是多少平方厘米?(2)正方形的边长是多少厘米?(3)在图(2)的空格内填入正确的时间.五、应用题:(第1题~第4题每题6分,第5题8分,共32分)22、泰州地区进入高温以来,空调销售火爆,下面是两商场的促销信息:文峰大世界:满500元送80元.五星电器:打八五折销售.“新科”空调两商场的挂牌价均为每台2000元;“格力”空调两商场的挂牌价均为每台2470元.问题:如果你去买空调,在通过计算比较一下,买哪种品牌的空调到哪家商场比较合算?23、两辆汽车同时从A地出发,沿一条公路开往B地.甲车比乙车每小时多行5千米,甲车比乙车早小时到达途中的C地,当乙车到达C地时,甲车正好到达B地.已知C地到B地的公路长30千米.求A、B 两地之间相距多少千米?24、盒子里有两种不同颜色的棋子,黑子颗数的等于白子颗数的.已知黑子颗数比白子颗数多42颗,两种棋子各有多少颗?25、一个长方体的木块,它的所有棱长之和为108厘米,它的长、宽、高之比为4:3:2.现在要将这个长方体削成一个体积最大的圆柱体,这个圆柱体体积是多少立方厘米?26、甲、乙、丙三人合作完成一项工程,共得报酬1800元,三人完成这项工程的情况是:甲、乙合作8天完成工程的,接着乙、丙又合作2天,完成余下的,然后三人合作5天完成了这项工程,按劳付酬,各应得报酬多少元?答案解析部分一、<b >填空题:(每题2</b><b >分,共20</b><b>分)</b>1、【答案】60080;42;0.042;1【考点】时、分、秒及其关系、单位换算与计算,面积单位间的进率及单位换算,体积、容积进率及单位换算【解析】【解答】解:(1)6公顷80平方米=60080平方米;(2)42毫升=42立方厘米=0.042立方分米(3)80分=时.故答案为:60080,42,0.042,.【分析】(1)把6公顷乘进率10000化成80000平方米再与80平方米相加.(2)立方厘米与毫升是等量关系二者互化数值不变;低级单位立方厘米化高级单位立方分米除以进率1000.(3)低级单位分化高级单位时除以进率60.2、【答案】1988【考点】日期和时间的推算【解析】【解答】解:29﹣24=5(届),4×5=20(年),2008﹣20=1988(年).答:第24届汉城奥运会是在1988年举办的.故答案为:1988.【分析】要求第24届奥运会是在那年举办,要先求出24届与29届相差几届,根据每4年举办一次,相差几届,就是几个4年,然后用2008减去相差的时间,即得到24届的举办时间.3、【答案】;;;【考点】最简分数【解析】【解答】解:故答案为:、、、.【分析】根据要求,把写成分母都小于12的异分母最简分数,把分子11写成9+2,变成,然后约分即可,再把11写成8+3,变成进行约分.4、【答案】12【考点】关于圆锥的应用题【解析】【解答】解:18×(1﹣)=18×=12(升)答:这时桶内还有12升水.【分析】把一块与水桶等底等高的圆锥形实心木块完全浸入水中,说明圆锥占据的体积是里面水的体积的,那桶内的水是原来的(1﹣),根据分数乘法的意义,列式解答即可.5、【答案】正;反【考点】正比例和反比例的意义【解析】【解答】解:因为a=b,所以a:b= (一定)是比值一定;所以a与b成正比例;因为=,所以xy=15×8=120(一定)所以x与y成反比例.故答案为:正,反.【分析】判断两个相关联的量成什么比例,就看这两种量是对应的比值一定,还是对应的乘积一定,如果是比值一定,就成正比例,如果是乘积一定,就成反比例,由此逐一分析即可解答.6、【答案】9:16【考点】求比值和化简比【解析】【解答】解:红玫瑰:3÷4=0.75(元)黄玫瑰:4÷3=(元)0.75:=(0.75×12):(×12)=9:16;答:甲、乙两种铅笔的单价的最简整数比是9:16.故答案为:9:16.【分析】根据“总价÷数量=单价”,分别求出红玫瑰与黄玫瑰的单价,再作比化简即可.7、【答案】2或5或8【考点】2、3、5的倍数特征【解析】【解答】解:当和为9时:4+A+A+1=9,A=2,当和为12时:4+A+A+1=12,A=3.5,当和为15时:4+A+A+1=15,A=5,当和为18时:4+A+A+1=18,A=6.5,当和为21时:4+A+A+1=121,A=8.故答案为:2或5或8.【分析】能被3整除,说明各个数位上的数相加的和能被3整除,4+A+A+1的和一定是3的倍数,因为A 是一个数字,只能是0、1、2、3、…、9中的某一个整数,最大值只能是9.若A=9,那么4+A+A+1=23,23<24,那么它们的数字和可能是6,9,12,15,18,21,当和为6时,A=0.5不行;当和等于9时,A=2,可以;当和为12时,A=3.5不行;当和为15时,A=5可以;当和为18时,A=6.5不行;当和为21时,A 等于8可以.8、【答案】1:1:1;1:1:4【考点】图形的拼组【解析】【解答】解:(1)当以长直角边为公共边时,如图它的三个角的度数的比是:(30°+30°):60°:60°=60°:60°:60°=1:1:1;(2)当以短直角边时,如图它的三个角的度数的比是30°:30°:(60°+60°)=30°:30°:120°=1:1:4.故答案位:1:1:1或者1:1:4.【分析】两个这样的三角形拼成一个大三角形的方法有两种,一种是以长直角边为公共边,另一种是以短直角边为公共边,然后根据各个角的度数,算出它们之间的比,据此解答.9、【答案】200【考点】简单图形的折叠问题【解析】【解答】解:因为折叠后面积减少,所以阴影部分的面积占三角形纸的面积的:1﹣﹣=,所以角形纸的面积:50÷=200(平方厘米).答:张三角形纸的面积是200平方厘米.故答案为:200.【分析】根据面积减少,先求出阴影部分面占三角形纸的面积的份数,即1﹣﹣=,然后用阴影部分面积除以所占的份数计算即可得解.10、【答案】111【考点】数列中的规律【解析】【解答】解:分母是11的分数一共有;2×11﹣1=21(个);从分母是1的分数到分母是11的分数一共:1+3+5+7+ (21)=(1+21)×11÷2,=22×11÷2,=121(个);还有10个分母是11的分数;121﹣10=111;是第111个数.故答案为:111.【分析】分母是1的分数有1个,分子是1;分母是2的分数有3个,分子是1,2,1;分母是3的分数有5个,分子是1,2,3,2,1;分母是4的分数有7个;分子是1,2,3,4,3,2,1.分数的个数分别是1,3,5,7…,当分母是n时有2n﹣1个分数;由此求出从分母是1的分数到分母是11的分数一共有多少个;分子是自然数,先从1增加,到和分母相同时再减少到1;所以还有10个分母是11的分数,由此求解.二、<b >选择题:(每题2</b><b >分,共16</b><b>分)</b>11、【答案】D【考点】分数的意义、读写及分类【解析】【解答】解:由于不知道这两堆煤的具体重量,所以无法确定哪个剩下的多.故选:D.【分析】由于不知道这两堆煤的具体重量,所以无法确定哪个剩下的多:如果两堆煤同重1吨,第一堆用去它的,即用了1×= 吨,即两堆煤用的同样多,则剩下的也一样多;如果两堆煤重量多于1吨,第二堆用的就多于吨,则第一堆剩下的多;如果两堆煤重量少于1吨,第二堆的就少于堆,则第二堆剩下的多;据此即可解答.12、【答案】B【考点】数的估算【解析】【解答】解:因为12.98×7.09≈13×7,所以较为准确地估算12.98×7.09的积的算式是B.故选:B.【分析】根据小数乘法的估算方法:把相乘的因数看成最接近它的整数来算.12.98最接近13,7.09最接近7,所以较为准确地估算12.98×7.09的积的算式是B.13、【答案】B【考点】整除的性质及应用【解析】【解答】解:因为a能整除19,所以19÷a的值是一个整数,因为19=1×19,所以a是1或19.故选:B.【分析】若a÷b=c,a、b、c均是整数,且b≠0,则a能被b、c整除,或者说b、c能整除a.因为a能整除19,所以19÷a的值是一个整数,所以a是1或19.14、【答案】B【考点】商的变化规律【解析】【解答】解:甲数除以乙数商是5,余数是3,如果甲数和乙数同时扩大10倍,那么商不变,仍然是5,余数与被除数和除数一样,也扩大了10倍,应是30.例如;23÷4=5…3,则230÷40=5…30.故选:B.【分析】根据商不变的性质“被除数和除数同时扩大或缩小相同的倍数(0除外),商不变”,可确定商仍然是5;但是余数变了,余数与被除数和除数一样,也扩大了10倍,由此确定余数是30.15、【答案】B【考点】比的意义,圆、圆环的面积【解析】【解答】解:设小圆半径为x,则大圆直径为4x,由题意得:小圆面积:πx2大圆面积:π(4x÷2)2=4πx2所以小圆面积与大圆面积比:πx2:4πx2=1:4故选:B.【分析】设小圆半径为x,则大圆直径为4x,利用圆的面积=πr2,分别计算得出大圆与小圆的面积即可求得它们的比.16、【答案】A【考点】三角形的特性【解析】【解答】解:因为三角形具有不易变形的特点,平行四边形具有容易变形的特点,图中只有A中有三角形,所以选择A.故选:A.【分析】根据三角形和平行四边形的知识,知道三角形具有不易变形的特点,平行四边形具有容易变形的特点,图中只有A中有三角形,据此判断.17、【答案】B【考点】正方体的展开图【解析】【解答】解:根据正方体展开图的特征,选项A、C、D不能折成正方体;选项B能折成一个正方体.故选:B.【分析】根据正方体展开图的11种特征,选项A、C、D都不是正方体展开图,不能折成正方体;只有选项B属于正方体展开图的“1﹣4﹣1”型,能折成一个正方体.18、【答案】D【考点】简单的立方体切拼问题【解析】【解答】解:9×6×4=216(平方厘米),答:表面积最大可增加216平方厘米.故选:D.【分析】根据长方体切割小长方体的特点可得:要使切割后表面积增加的最大,可以平行于原长方体的最大面,即9×6面,进行切割,这样表面积就会增加4个原长方体的最大面;据此解答.三、<b >计算题:(共24</b><b >分)</b>19、【答案】(1)解:69.58﹣17.5+13.42﹣2.5=(69.58+13.42)﹣(17.5+2.5)=83﹣20=63;(2)解:×(×19﹣)= × ×(19﹣1)= × ×18=9(3)解:+ + += ×(﹣+ ﹣+ ﹣+ ﹣)= ×(﹣)= ×= ;(4)解:[1﹣(﹣)]÷=[1﹣]÷= ÷=1【考点】运算定律与简便运算,分数的四则混合运算【解析】【分析】(1)利用加法交换律与减法的性质简算;(2)利用乘法分配律简算;(3)把分数拆分简算;(4)先算小括号里面的减法,再算中括号里面的减法,最后算除法.20、【答案】(1)解::x=15%:0.1815%x=0.18×15%x=0.2715%x÷15%=0.27÷15%x=1.8;(2)解:x﹣x﹣5=18x﹣5=18x﹣5+5=18+5x=23x×3=23×3x=69【考点】方程的解和解方程,解比例【解析】【分析】(1)先根据比例的基本性质:两内项的积等于两外项的积,把方程转化为15%x=0.18×,再依据等式的性质,方程两边同除以15%求解;(2)先化简方程得x﹣5=18,再依据等式的性质,方程两边同加上5再同乘上3求解.四、<b >动手操作题:</b>21、【答案】(1)解:长方形的长是:2×4=8(厘米),宽是2厘米,重叠的面积是:8×2=16(平方厘米);答:运行4秒后,重叠面积是16平方厘米。

2018年广州市小学毕业小升初模拟数学试题(共6套)附详细答案

2018年广州市小学毕业小升初模拟数学试题(共6套)附详细答案

小升初数学试卷一、填空题(共6小题,每小题2分,满分12分)1、生产的90个零件中,有10个是废品,合格率是90%.________(判断对错).2、真分数除以假分数的商一定比1小.________(判断对错)3、大圆周长与直径的比值大于小圆周长与直径的比值.________(判断对错)4、一个长方形的长增加50%,宽减少,长方形的面积不变.________(判断对错)5、一根木料锯成4段要4分钟,锯成7段要7分钟.________(判断对错)6、甲、乙两数是正整数,如果甲数的恰好是乙数的,则甲、乙两数和的最小值是13.________(判断对错)二、选择题(共10小题,每小题3分,满分30分)7、甲数是a,比乙数的3倍少b,表示乙数的式子是________ .8、的分子扩大3倍,要使分数大小不变,分母应加上________ .9、已知M=4322×1233,N=4321×1234,下面结论正确的是________10、小明上学期期末考试语文86分,数学比语文、数学两科的平均分高6分,则数学期末考试的分数是________ .11、盒子里有8个黄球,5个红球,至少摸________ 次一定会摸到红球.12、甲步行每分钟行80米,乙骑自行车每分钟200米,二人同时同地相背而行3分钟后,乙立即调头来追甲,再经过________ 分钟乙可追上甲.13、某砖长24厘米,宽12厘米,高5厘米,用这样的砖堆成一个正方体,用砖的块数可以为________ .14、小华从A到B,先下坡再上坡共有小时,如果两地相距24千米,下坡每小时行4千米,上坡每小时行3千米,那么原路返回要________ 小时.15、已知× <+ ,且a、b、c都是不等于0的自然数,则有________ .16、同一宿舍住着小花、小朵、小美、小丽四名学生,正在听音乐,她们中有一个人在修指甲,一人在做头发,一人在化妆,一人在看书,已知:、小花不在修指甲,也不在看书(2)小朵不在化妆,也不在修指甲(3)如果小花不在化妆,那么小美就不在修指甲(4)小丽不在看书,也不在修指甲,下列说法正确的是()A、小花在化妆B、小朵在做头发C、小丽在化妆三、解答题(共6小题,满分12分)17、一座城市地图中两地图上距离为10cm,表示实际距离30km,该幅地图的比例尺是________.18、在边长为a厘米的正方形上剪下一个最大的圆,这个圆与正方形的周长比是________.19、一辆汽车的速度是每小时59千米,现有一块每5小时慢10分钟的表,若用该表计时,则测得这辆汽车的速度是________千米/小时.20、如图是一个棱长4厘米的正方体,在正方体上面正中向下挖一个棱长是2厘米的正方体小洞,接着在小洞的底面正中再向下挖一个棱长是1厘米正方体小洞,最后得到的立方体图形的表面积是多少平方厘米?21、在生活中,经常把一些同样大小的圆柱管如图捆扎起来,下面我们来探索捆扎时绳子的长度,图中,每个圆的直径都是8厘米,当圆柱管放置放式是“单层平放”时,捆扎后的横截面积如图所示:那么,当圆柱管有100个时需要绳子________厘米(π取3)22、有一个10级的楼梯,某人每次能登上1级或2级,现在他要从地面登上第10级,有________种不同的方式.四、解方程23、解方程:①3.2x﹣4×3=52②8(x﹣2)=2(x+7)五、计算题24、计算题.①② +(4 )③3.14×43+7.2×31.4﹣150×0.314④1+3 +5 .六、解决问题25、请根据下面的统计图回答下列问题.(1)________月份收入和支出相差最小.(2)9月份收入和支出相差________万元.(3)全年实际收入________万元.(4)平均每月支出________万元.(5)你还获得了哪些信息?26、一项工程,甲独做10天完成,乙独做12天完成,现两人合做,完成后共得工资2200元,如果按完成工程量分配工资,甲、乙各分得多少元?27、一块长方形铁皮利用图中阴影部分刚好能做成一个圆柱形油桶,(如图)(接头处忽略不计),这个桶的容积是________ 立方分米.(单位:分米)28、两个顽皮的孩子逆着自动扶梯行驶的方向行走,从扶梯的一端到达另一端,男孩走了100秒,女孩走了300秒.已知在电梯静止时,男孩每秒走3米,女孩每秒走2米.则该自动扶梯长________米.29、甲、乙两人合作清理400米环形跑道上的积雪,两人同时从同一地点背向而行各自进行清理,最初甲清理的速度比乙快,后来乙用了10分钟去调换工具,回来继续清理,但工作效率比原来提高了一倍,结果从甲、乙开始清理时算起,经过1小时,就完成了清理积雪工作,并且两人清理的跑道一样长,问乙换工具后又工作了多少分钟?30、底边长为6厘米,高为9厘米的等腰三角形20个,迭放如图:每两个等腰三角形有等距离的间隔,底边迭合在一起的长度是44厘米.回答下列问题:(1)两个三角形的间隔距离?(2)三个三角形重迭(两次)部分的面积之和是多少?(3)只有两个三角形重迭(一次)部分的面积之和是多少?(4)迭到一起的总面积是多少?答案解析部分一、<b >填空题(共6</b><b >小题,每小题2</b><b>分,满分12</b><b>分)</b>1、【答案】错误【考点】百分率应用题【解析】【解答】解:合格产品的个数:90﹣10=80(个),合格率:×100%≈0.889=88.9%;答:合格率是88.9%.故答案为:错误.【分析】首先理解合格率,合格率是指合格产品的个数占产品总个数的百分之几,进而用:×100%=合格率,由此列式解答后再判断.2、【答案】正确【考点】分数大小的比较,分数除法【解析】【解答】解:举例:÷= <1;÷= <1;÷= <1;而且找不出反例,所以真分数除以假分数的商一定比1小.故答案为:正确.【分析】首先要理解真分数和假分数的概念,真分数是分子比分母小的分数,即真分数都小于1;假分数是分子等于或大于分母的数,假分数大于等于1,举例进行验证.3、【答案】错误【考点】圆的认识与圆周率【解析】【解答】解:任意一个圆的周长与它的直径的比值是一个固定的数,我们把它叫做圆周率.一般用“π”表示.即周长÷直径=π(一定),所以大圆周长与直径的比值和小圆周长与直径的比值相等.故答案为:错误.【分析】根据圆周率的意义,任意一个圆的周长与它的直径的比值是一个固定的数,我们把它叫做圆周率.由此解答即可.4、【答案】正确【考点】长方形、正方形的面积【解析】【解答】解:原来的面积:ab;后来的面积:[a×(1+50%)]×[b×(1﹣)],=1.5a× b,=ab;故长方形的面积不变.故答案为:正确.【分析】设长方形原来的长和宽分别是a和b;根据“长方形的面积=长×宽”计算出原来的长方形的面积;然后根据一个数乘分数的意义,分别计算出后来长方形的长和宽,并根据长方形的面积计算公式计算出后来的面积,进行比较,得出结论.5、【答案】错误【考点】植树问题【解析】【解答】解:4÷(4﹣1)×(7﹣1)=4÷3×6=8(分钟)答:锯成7段要8分钟.故答案为:错误.【分析】根据题意,分成4段,截的次数是4﹣1=3次,那么可以求出截一次的时间;分7段,截的次数是7﹣1=6次,乘上截每次的时间即可.6、【答案】正确【考点】最大与最小【解析】【解答】解:把乙数看做单位“1”,则甲数是÷ = ,所以甲乙两个数的和是1+= ,因为甲、乙两数是自然数,要使甲乙两数之和也是自然数,让它最小,乙只能是10,从而甲数是3,和为13.答:甲、乙两数和的最小值是13.故答案为:正确.【分析】把乙数看做单位“1”,则甲数是÷ = ,所以甲乙两个数的和是1+ = ,因为甲、乙两数是自然数,要使甲乙两数之和也是自然数,让它最小,乙只能是10,从而甲数是3,和为13.二、<b >选择题(共10</b><b >小题,每小题3</b><b>分,满分30</b><b>分)</b>7、【答案】(a+b)÷3【考点】用字母表示数【解析】【解答】解:乙数=(a+b)÷3,【分析】甲数加上b是乙数的3倍,再除以3就是乙数.8、【答案】24【考点】分数的基本性质【解析】【解答】解:的分子扩大3倍,要使分数大小不变,分母也应扩大3倍;12×3=36,36﹣12=24;分母应加上24.【分析】根据分数的基本性质:分数的分子和分母同时扩大或缩小相同的倍数(0除外),分数的大小不变;由此即可得出答案.9、【答案】M<N【考点】比较大小【解析】【解答】解:N=4321×1234=(4322﹣1)×(1233+1)=4322×1233+4322﹣1233﹣1=M+3088,所以M<N.【分析】N=4321×1234=(4322﹣1)×(1233+1)=4322×1233+4322﹣1233﹣1=M+3088,所以M<N,据此判断即可.10、【答案】98【考点】平均数的含义及求平均数的方法【解析】【解答】解:86+6×2=86+12=98(分)答:数学期末考试的分数是98分.【分析】根据“语文86分,数学比语文、数学两科的平均分高6分,”知道数学数学期末考试的分数是比语文多6×2分,由此即可得出答案.11、【答案】9【考点】抽屉原理【解析】【解答】解:8+1=9(次),答:至少需要摸9次一定会摸到红球.【分析】考虑最坏情况:摸出8次,都是摸出的黄球,则再摸出一个一定是红球,据此即可解答.12、【答案】7【考点】追及问题【解析】【解答】解:(80+200)×3÷(200﹣80),=280×3÷120,=840÷120,=7(分);答:再经过7分钟乙可追上甲.【分析】先求出二人同时同地相背而行3分钟走的路程,再根据路程差÷速度差=追及时间,即可解答.13、【答案】1200【考点】简单的立方体切拼问题【解析】【解答】解:24、12、5的最小公倍数是120,120÷24=5(块),120÷12=10 (块),120÷5=24(块),所以一共需要:5×10×24=1200(块),【分析】先求出24、12、5的最小公倍数为120,即堆成的正方体的棱长是120厘米,由此求出正方体每条棱长上需要的小长方体的个数,即可解决问题.14、【答案】【考点】简单的行程问题【解析】【解答】解:设小华从A到B上坡路程为x千米,则下坡路程为24﹣x千米,根据题意可得方程:4x+72﹣3x=2×434x﹣3x=86﹣72x=1424﹣14=10(千米)那么可得返回时上坡路为10千米,下坡路为14千米:(10÷3)+(14÷4)===(小时)答:返回时用的时间是小时.【分析】①要求原路返回所用的时间,需要求出,上坡路的距离和下坡路的距离分别是多少;所以这里可以根据题干先求出去时的上坡路程和下坡路程;②根据题干,设小华从A到B上坡路程为x千米,则下坡路程为24﹣x千米,根据速度、时间和路程的关系,利用上坡路用的时间+下坡路用的时间=总时间,即可列出方程求得去时的上坡路程和下坡路程,从而得出返回时的上坡路程和下坡路程,即可解决问题.15、【答案】a+b>c【考点】分数大小的比较【解析】【解答】解:× = ,+ = = ,即<,所以:c×c<c(a+b).则a+b>c.故选:A.【分析】由于× = ,+ = = ,即<,c×c<c(a+b).由于在乘法算式中,其中一个因数相同,另一个因数越大,则即就越大,所以a+b>c.16、【答案】【考点】逻辑推理【解析】【解答】解:根据条件(1)小花不在修指甲,也不在看书(2)小朵不在化妆,也不在修指甲(4)小丽不在看书,也不在修指甲,可以得出只有小美在修指甲,再由条件(3)如果小花不在化妆,那么小美就不在修指甲推知小花一定在化妆.故选:A.【分析】由条件(1)小花不在修指甲,也不在看书(2)小朵不在化妆,也不在修指甲(4)小丽不在看书,也不在修指甲,可以得出只有小美在修指甲,再由条件(3)如果小花不在化妆,那么小美就不在修指甲推知小花一定在化妆,据此解答即可.三、<b >解答题(共6</b><b >小题,满分12</b><b>分)</b>17、【答案】1:300000【考点】比例尺【解析】【解答】解:因为,30km=3000000cm,所以,10cm:3000000cm=1:300000;故答案为:1:300000.【分析】根据比例尺的意义知道,图上距离与实际距离的比就是比例尺,由此先把实际距离30千米换算成以厘米做单位,再写出对应比,化简即可.18、【答案】π:4【考点】用字母表示数,比的意义【解析】【解答】解:aπ:4a=π:4;答:这个圆与正方形的周长比是π:4.故答案为:π:4.【分析】根据题意可知在边长a厘米的正方形中剪下一个最大的圆,该圆的直径为a厘米,再根据圆的周长公式:C=πd,和正方形的周长公式,计算即可求解.19、【答案】61【考点】简单的行程问题【解析】【解答】解:正常表走5小时,慢表只走了:5×60﹣10=300﹣10=290(分)= (小时)这辆汽车的速度是:59×5÷=295÷≈61(千米/小时)答:测得这辆汽车的时速约61千米/小时.故答案为:61.【分析】由题意可知:正常表走5小时,慢表走的时间是5×60﹣10=290分,然后再根据速度=路程÷时间进行解答.20、【答案】解:42×6+22×4+12×4,=96+16+4,=116(平方厘米)答:最后得到的立方体图形的表面积是116平方厘米.【考点】长方体和正方体的表面积【解析】【分析】把棱长是2厘米的正方体的底面向上平移,把棱长是1厘米的正方体底面向上平移,则容易看出:求最后得到的立方体图形的表面积,即棱长为4厘米的正方体的表面积与棱长为2厘米的正方体四个侧面和棱长为1厘米的正方体四个侧面的面积之和;根据“正方体的表面积=棱长2×6”求出棱长为4厘米的正方体的表面积,根据“正方体的侧面积=棱长2×4”分别求出棱长为2厘米的正方体四个侧面和棱长为1厘米的正方体四个侧面的面积,然后相加即可.21、【答案】1608【考点】数与形结合的规律【解析】【解答】解:8×3+16×(100﹣1)=24+1584=1608(厘米);故答案为:1608.【分析】如图,把绳子的长度分解:1个圆柱体时,绳子的长度就是底面圆的周长;2个圆柱体时,绳子的长度就是一个底面圆的周长加上2个圆的直径;3个圆柱体,绳子的长度就是一个底面圆的周长加上4个圆的直径;100个圆柱体,绳子的长度就是一个底面圆的周长加上99个圆的直径.22、【答案】89【考点】排列组合【解析】【解答】解:当跨上1级楼梯时,只有1种方法,当跨上2级楼梯时,有2种方法,当跨上3级楼梯时,有3种方法,当跨上4级楼梯时,有5种方法,…以此类推;最后,得出数列1、2、3、5、8、13、21、34、55、89;发现从第三个数开始,每个数都是前面两个数的总和;这样,到第10级,就有89种不同的方法.答:从地面登上第10级,有89种不同的方法.故答案为:89.【分析】这是一道菲波那契数列的应用题目,解答时,可以采用化繁为简的方法,用列举的方法先找出登上级数少的1级、2级、3级、4级各有几种方法,再在此基础上运用找规律的方法得出结果.[因为每次跨到n级,只能从(n﹣1)或(n﹣2)级跨出.根据加法原理得到跨到第1、2、3、4、5、6、7、8、9、10级的方法依次为:1、2、3、5、8、13、21、34、55、89.四、<b >解方程</b>23、【答案】解:①3.2x﹣4×3=523.2x﹣12=523.2x﹣12+12=52+123.2x=643.2x÷3.2=64÷3.2x=20②8(x﹣2)=2(x+7)8x﹣16=2x+148x﹣16﹣2x=2x+14﹣2x6x﹣16+16=14+166x=306x÷6=30÷6x=5【考点】方程的解和解方程【解析】【分析】(1)先化简方程的左边,变成3.2x﹣12=52,然后方程的两边同时加上12,再同时除以3.2即可;(2)先根据乘法分配律化简方程的左右两边,再根据等式的性质解这个方程即可.五、<b >计算题</b>24、【答案】解:①==② +(4 )= + ×= +2=2③3.14×43+7.2×31.4﹣150×0.314=3.14×43+72×3.14﹣15×3.14=3.14×(43+72﹣15)=3.14×100=314④1+3 +5=(1+3+5+7+9+11+13+15+17+19)+()=(1+19)×10÷2+()=90+()=100+=100【考点】分数的巧算【解析】【分析】(1)从左往右依次运算;(2)先算括号内的,再算括号外的除法,最后算加法;(3)运用乘法分配律简算;(4)把分数拆成整数与分数相加的形式,然后再把分数拆成两个分数相减的形式,通过加减相互抵消,求得结果.六、<b >解决问题</b>25、【答案】(1)4(2)30(3)740(4)30(5)得出:7月份收入和支出相差最大【考点】平均数的含义及求平均数的方法,复式折线统计图,从统计图表中获取信息【解析】【解答】解:(1)由图示得出:4月份收入和支出相差最小;(2)70﹣40=30(万元).答:9月份收入和支出相差30万元.(3)40+60+30+30+50+60+80+70+70+80+90+80=740(万元).答:全年实际收入740万元.(4)(20+30+10+20+20+30+20+30+40+50+40+50)÷12=360÷12=30(万元).答:平均每月支出30万元.故答案为:(1)4;(2)30;(3)740;(4)30.【分析】(1)同一个月份收入和支出的点最接近的相差最小;(2)用9月份收入减支出即可;(3)把12个月的收入相加即可;(4)用12个月的总支出除以12即可;(5)从图中获得正确信息即可.26、【答案】解:甲乙两人工作量的比是::=6:5,甲分的钱是:2200×,=2200× ,=1200(元),乙分的钱是:2200× ,=2200× ,=1000(元).答:甲分1200元,乙分1000元。

2019年广州市小升初数学模拟试题(共8套)详细答案【精品试卷】

2019年广州市小升初数学模拟试题(共8套)详细答案【精品试卷】

2019年广州市小升初数学模拟试题(共8套)详细答案【精品试卷】名校小升初数学模拟试题一、填空题 (8 × 3′= 24′)1、 电梯上升3层记作“+3”层,则“-5”层表示 .2、等腰三角形的一个锐角是58°,则另一个锐角是 .3、找规律填数:9,10,12,15, ,24.4、一个分数化简后是75,原分数的分子与分母之和是72,则原分数是 . 5、一个长方体的高减少2厘米后,表面积减少48平方厘米成为一个正方体,则正方体的体积是 立方厘米.6、下图是可自由转动的转盘,指针停止后指向阴影部分的可能性是 .题图 第7题图7、如图中阴影部分面积占长方形面积的 .8、算式中的□和△各表示一个数,已知(△+□)×0.3=4.2,□÷0.4=12,则△= . 二、选择题(6×3′=18′)1、和你跑步速度最接近的是每秒( )A 、0.75千米 B 、75米 C 、7.5米 D 、750毫米2、用长4厘米,宽3厘米的长方形纸片拼正方形,最少要用该长方形纸片( )张. A 、8 B 、10 C 、16 D 、123、小邓用木棒搭房子,他搭3间房子用了13根木棒,像这样搭5间房子要用( )根木棒.A 、20B 、21C 、22D 、23 4、甲数的25%等于乙数的52,甲数与乙数的比是( ) A 、5:8 B 、8:5 C 、5:4 D 、4:55、某商场准备用一些钱采购200套西装,由于降价,用同样多的钱采购了250套,这种西装降价( ) A 、20% B 、25% C 、12.5% D 、30%6、如果3111=+B A ,158111=++C B A ,则C 等于( ) A 、3 B 、4 C 、 5D 、6三、计算题(3 × 4′= 12′) 1、计算: %5.12414125.075.281+⨯+⨯ 2、求未知数x 的值. 24201143=⨯-x3、列式计算:一个数减去它的61后再减去6,结果是4,这个数是多少?四、应用题(5′+ 6′+ 6′+ 8′+ 9′= 34′)1、一件工作,甲单独做要用6小时,乙单独做要用4小时,甲做完31后,两人合做,还需要几小时才能做完?2、小王从家骑自行车到县城去办事,每小时行16千米,回来时乘汽车,每小时行40千米,乘汽车比骑自行车少用1.8小时。

2018年广州市小学毕业小升初模拟数学试题(共6套)附详细答案附答案

2018年广州市小学毕业小升初模拟数学试题(共6套)附详细答案附答案

小升初数学试卷64一、判断题1、甲数比乙数少,乙数比甲数多.________(判断对错)2、分针转180°时,时针转30°________(判断对错)3、一个圆的周长小,它的面积就一定小.________(判断对错)4、495克盐水,有5克盐,含盐率为95%.________.(判断对错)5、一根木棒截成3段需要6分钟,则截成6段需要12分钟________(判断对错)6、要剪一个面积是9.42cm2的圆形纸片,至少要11cm2的正方形纸片.()(判断对错)二、选择题加填空题加简答题7、定义前运算:○与?已知A○B=A+B﹣1,A?B=A×B﹣1.x○(x?4)=30,求x.()A、B、C、8、一共有几个三角形________.9、一款东西120元,先涨价30%,再打8折,原来(120元),利润率为50%.则现在变为________%.10、水流增加对船的行驶时间()A、增加B、减小C、不增不减D、都有可能11、教室里有红黄蓝三盏灯,只有一个拉环,拉一次红灯亮,拉两次亮红灯和黄灯,拉三次三灯全亮,拉四次全部灭,现有编号1到100的同学,每个同学拉开关拉自己编号次灯.比如第一个同学拉一次,第二个同学拉两次,照此规律一百个同学拉完灯的状态是________.12、跳蚤市场琳琳卖书,两本每本60元,一本赚20%,一本亏20%,共()A、不亏不赚B、赚5元C、亏2元D、亏5元13、一张地图比例尺为1:30000000,甲、乙两地图上距离为6.5cm,实际距离为________千米.14、一个长方形的长和宽都为整数厘米,面积160有几种可能?15、环形跑道400米,小百、小合背向而行,小百速度是6米/秒,小合速度是4米/秒,当小百碰上小合时立即转向跑,小合不改变方向,小百追上小合时也立即转向跑,小合仍不改变方向,问两人第11次相遇时离起点多少米?(按较短距离算,追上和迎面都算相遇)16、甲、乙、丙合作一项工程,4天干了整个工程的,这4天内,除丙外,甲又休息了2天,乙休息了3天,之后三人合作完成,甲的效率是丙的3倍,乙的效率是丙的2倍.问工程前后一共用了多少天?17、以BD为边时,高20cm,以CD为边时,高14cm,▱ABCD周长为102厘米,求面积?18、100名学生去离学校33公里的地方,只有一辆载25人的车,车每小时行驶55公里,学生步行速度5km/h,求最快要多久到目的地?19、A、B、C、D四个数,每次计算三个数的平均值,这样计算四次,得出的平均数分别为29、28、32、36(未确定),求四个数的平均值.20、一根竹竿,一头伸进水里,有1.2米湿了,另一头伸进去,现没湿部分是全长的一半少0.4米,求没湿部分的长度.21、货车每小时40km,客车每小时60km,A、B两地相距360km,同时同向从甲地开往乙地,客车到乙地休息了半小时后立即返回甲地,问从甲地出发后几小时两车相遇?22、欢欢与乐乐月工资相同,欢欢每月存30%,乐乐月开支比欢欢多10%,剩下的存入银行1年(12个月)后,欢欢比乐乐多存了5880元,求欢欢、乐乐月工资为多少?23、小明周末去爬山,他上山4千米/时,下上5千米/时,问他上下山的平均速度是多少?24、一个棱长为1的正方体,按水平向任意尺寸切成3段,再竖着按任意尺寸切成4段,求表面积.25、一个圆柱和一个圆锥底面积比为2:3,体积比为5:6,求高的比.三、计算题26、计算题.0.36:8=x:2515÷[()]﹣0.591× ﹣1÷13×100+9× +11 ÷11[22.5+(3 +1.8+1.21× )]+ + + +…+答案解析部分一、<b >判断题</b>1、【答案】错误【考点】分数的意义、读写及分类【解析】【解答】解:把乙数看作5份数,甲数就是5﹣3=2份数(5﹣2)÷2= .答:乙数比甲数多.故答案为:错误.【分析】甲数比乙数少,把乙数看作5份数,那么甲数就是5﹣3=2份数;要求乙数比甲数多几分之几,需把甲数看作单位“1”,也就是求乙数比甲数多的部分占甲数的几分之几,列式计算后再判断得解.2、【答案】错误【考点】角的概念及其分类【解析】【解答】解:180÷6×0.5=30×0.5=15(度)答:分针转180°时,时针转15度.故答案为:错误.【分析】1分钟分针旋转的度数是6度,依此先求出分针转180度需要的时间,时针1分钟旋转的度数是0.5度,乘以求出的分钟数,即可得到时针旋转的度数.3、【答案】正确【考点】圆、圆环的周长,圆、圆环的面积【解析】【解答】解:半径确定圆的大小,周长小的圆,半径就小,所以面积也小.所以原题说法正确.故答案为:正确.【分析】圆的半径的大小确定圆的面积的大小;半径大的圆的面积就大;圆的周长=2πr,周长小的圆,它的半径就小.由此即可判断.4、【答案】错误【考点】百分率应用题【解析】【解答】解:5÷495×100%≈1%答:含盐率约是1%.故答案为:错误.【分析】495克盐水,有5克盐,根据分数的意义可知,用含盐量除以盐水总量即得含盐率是多少.5、【答案】错误【考点】整数四则混合运算,整数、小数复合应用题,比例的应用【解析】【解答】解:6÷(3﹣1)=6÷2=3(分钟)3×(6﹣1)=3×5=15(分钟)15>12故答案为:错误.【分析】截成3段需要需要截2次,需要6分钟,由此求出截一次需要多少分钟;截成6段,需要截5次,再乘截一次需要的时间就是截成6段需要的时间,然后与12分钟比较即可.6、【答案】错误【考点】长方形、正方形的面积,圆、圆环的面积【解析】【解答】解:小正方形的面积(半径的平方):9.42÷3.14=3(平方厘米),大正方形的面积:3×4=12(平方厘米);答:至少需要一张12平方厘米的正方形纸片.故答案为:错误.【分析】要剪一个面积是9.42平方厘米的圆形纸片,需要的正方形纸片的边长是圆的直径,知道圆的面积可以求半径的平方,把正方形用互相垂直的圆的两个直径分成4个小正方形,则每个小正方形的面积都为圆的半径的平方,进而可求大正方形的面积.二、<b >选择题加填空题加简答题</b>7、【答案】B【考点】定义新运算【解析】【解答】解:x○(x?4)=30x○(4x﹣1)=30x+4x﹣1﹣1=305x=32x= .故选:B.【分析】根据题意可知,A○B=A+B﹣1,表示两个数的和减1,A?B=A×B﹣1表示两个数的积减1;根据这种新运算进行解答即可.8、【答案】37【考点】组合图形的计数【解析】【解答】解:根据题干分析可得:顶点O在上面的三角形,一共有5+4+3+2+1=15(个)顶点O在左边的三角形一共有6+5+4+3+2+1=21(个)15+21+1=37(个)答:一共有37个三角形.故答案为:37.【分析】先看顶点O在上面的三角形,一共有5+4+3+2+1=15个三角形,再看顶点O在左边的三角形一共有6+5+4+3+2+1=21个,据此加起来,再加上大三角形即可解答问题.9、【答案】56【考点】百分数的实际应用【解析】【解答】解:120×(1+30%)×80%=120×130%×80%=124.8(元)120÷(1+50%)=120÷150%=80(元)(124.8﹣80)÷80=44.8÷80=56%答:现在利润率是56%.故答案为:56.【分析】将原价当作单位“1”,则先涨价30%后的价格是原价的1+30%,再打八折,即按涨价后价格的80%出售,则此时价格是原价的(1+30%)×80%,又原来利润是50%,则原来售价是进价的1+50%,则进价是120÷(1+50%)=80元,又现在售价是120×(1+30%)×80%=124.8元,则此时利润是124.8﹣80元,利润率是(124.8﹣80)÷80.10、【答案】D【考点】简单的行程问题【解析】【解答】解:分三种情况:1.小船船头垂直于河岸时,小船行驶时间不增不减,所以C正确;2.当小船顺水而下时,船速加快,时间减少,所以B正确;3.当小船逆水而上时,船速减慢,时间增加,所以A正确;故选:D.【分析】此题分几种情况:1.小船船头垂直于河岸时,由于船的实际运动与沿船头指向的分运动同时发生,时间相等,故水流速度对小船的渡河时间无影响,2.当小船顺水而下时,船速等于静水速度加水速,速度加快,路程不变时,时间减少,3.当小船逆水而上时,船速等于静水时速度减水速,所以船速减慢,时间增加.所以三种情况都可能出现,据此解答.11、【答案】第100个同学拉之前,灯不可能全灭.应该是总次数1+2+3+.+100=5050 5050÷4=1262.2就是第二次的状态,红灯和黄灯亮【考点】奇偶性问题【解析】【解答】解:第100个同学拉之前,灯不可能全灭.应该是总次数1+2+3+.+100=5050,5050÷4=1262(次)…2,就是第二次的状态,红灯和黄灯亮.故答案为:第100个同学拉之前,灯不可能全灭.应该是总次数1+2+3+.+100=5050 5050÷4=1262.2就是第二次的状态,红灯和黄灯亮.【分析】把按4次看成一次操作,这一次操作中按第一次第一盏灯亮,按两次第二盏灯亮,按三次两盏灯全亮,再按一次两盏灯全灭;求出100里面有几个这样的操作,还余几,然后根据余数推算.12、【答案】D【考点】百分数的实际应用【解析】【解答】解:设两本书的原价分别为x元,y元则:x(1+20%)=60y(1﹣20%)=60解得:x=50y=75所以两本书的原价和为:x+y=125元而售价为2×60=120元所以她亏了5元【分析】两本每本卖60元,一本赚20%,一本亏20%,要求出两本书的原价.13、【答案】1950【考点】比例尺【解析】【解答】解:6.5÷ =195000000(厘米),195000000厘米=1950千米;答:实际距离是19500千米.故答案为:1950.【分析】要求实际距离是多少千米,根据“图上距离÷比例尺=实际距离”,代入数值计算即可.14、【答案】解:因为160=1×160=2×80=4×40=5×32=8×20=16×10,所以这个长方形的长与宽有6种可能.答:面积是160有6种可能.【考点】长方形、正方形的面积【解析】【分析】根据长方形的面积公式S=长×宽,长×宽=160,根据160=1×160=2×80=4×40=5×32=8×20=16×10,据此即可解答问题.15、【答案】解:400÷(6+4)=400÷10=40(秒)40×4×11÷400=160×11÷400=1760÷400=4(圈)…160(米)答:第11次相遇时离起点160米.【考点】相遇问题【解析】【分析】根据题意可知小合一直是沿同一方向前进,每一次相遇用的时间根据时间=路程÷速度和可求出,再乘小合的速度信相遇次数,可知小合共行的路程,再除以环形跑道的长度,看余数可求出离起点的距离,据此解答.16、【答案】解:× ÷4 = ÷4= ,×3= ,×2= ,4+2+3+[1﹣﹣×(2+3)﹣×3﹣×2]÷(+ + )=9+[1﹣﹣﹣﹣]÷=9+5=14(天)答:完成这项工程前后需要14天【考点】工程问题【解析】【分析】由于甲的效率是丙的3倍,乙的效率是丙的2倍,将丙的工作效率当作单位“1”,则甲、乙、丙三人的效率比是3:2:1,又4天干了整个工程的,则丙完成了这4天内所做工程的= ,即完成了全部工程的× = ,所以丙每天能完成全部工作的÷4= ,则甲每天完成全部工程的×3= ,丙每天完成全部工程的×2= .又然后除丙外,甲休息了2天,乙休息了3天,则这2+3=5天内,丙完成了全部工程的×5= ,甲完成了全部工程的×3= ,乙完成全部工作的×2= ,此时还剩下全部的1﹣﹣﹣﹣,三人的效率和是+ + ,所以此后三人合作还需要(1﹣﹣﹣﹣)÷(+ + )天完成,则将此工程前后共用了4+2+3+(1﹣﹣﹣﹣)÷(+ + )天.17、【答案】解:CD边上的高与BD边上的高的比是:14:20= ;平行四边形的底CD为:102÷(1 )÷2=102=102×=30(厘米);平行四边形的面积为:30×14=420(平方厘米);答:平行四边形的面积是420平方厘米【考点】组合图形的面积【解析】【分析】平行四边形的对边平行且相等,平行四边形的面积=底×高,由CD边上的高与BD边上的高的比等于CD与BD的反比,已知周长求出平行四边形的底,再利用面积公式解答.18、【答案】解:(33÷9)×3÷5+(33÷9)×6÷55 = += (小时)答:最快要小时到目的地【考点】简单的行程问题【解析】【分析】如图:AB是两地距离33公里,100个人被分成4组,每组是25人,第一组直接从A开始上车被放在P1点;汽车回到C2接到第2组放在了P2点;下面都是一样,最后一组是在C4接到的,直接送到B点;我们知道,这4组都是同时达到B点,时间才会最短;那么其4个组步行的距离都是一样的;当第一组被送到P1点时,回到C2点这段时间,另外三个组都步行到了C2,根据速度比=路程之比=55:5=11:1;我们把接到每组之间的步行距离看作单位1,那么汽车从出发到返回P2就是11个单位;那么出发点A到P1就是(11+1)÷2=6个单位;因为步行的距离相等,所以2段对称;(例如第一组:步行的距离是P1到B点3份,最后一组是A到C4也是三段距离是3份);所以以第一组为例,它步行了后面的3份,乘车行了前面的6份,可见全程被分为9份,每份是33÷9=千米,步行速度是5千米每小时,时间就是(3×)÷5=小时;乘车速度是55千米每小时,时间就是(6× )÷55= 小时;合计就是小时.19、【答案】解:A、B、C、D四个数的和的3倍:29×3+28×3+32×3+36×3=87+84+96+108=375A、B、C、D四个数的和:375÷3=125;四个数的平均数:125÷4=31.25.答:4个数的平均数是31.25【考点】平均数问题【解析】【分析】根据余下的三个数的平均数:29、28、32、36,可求出A、B、C、D四个数的和的3倍,再除以3得A、B、C、D四个数的和,再用和除以4即得4个数的平均数.20、【答案】解:设这根竹竿长x米.则有x﹣1.2×2=﹣=2,则x=4,没浸湿的部分是:4÷2﹣0.4=1.6(米);答:这根竹竿没有浸湿的部分长1.6米【考点】整数、小数复合应用题【解析】【分析】设这根竹竿长x米,则两次浸湿部分都应是1.2米,两次共浸湿了1.2×2=2.4米,没浸湿的部分是(x﹣2.4)米;再由“没有浸湿的部分比全长的一半还少0.4米”可知,没浸湿的部分是(﹣0.4)米,没浸湿的部分是相等的,据此可得等式:x﹣2.4=﹣0.4,解出此方程,问题就得解.21、【答案】解:客车从甲地出发到达乙地后再停留半小时,共用的时间:360÷60+0.5=6+0.5=6.5(小时)(360﹣40×6.5)÷(60+40)=(360﹣260)÷100=100÷100=1(小时)6.5+1=7.5(小时)答:从甲地出发后7.5小时两车相遇。

2018-2019广州市小学毕业数学总复习小升初模拟训练试卷21-23(共3套)附详细试题答案

小升初数学综合模拟试卷21一、填空题:2.某班学生参加一次考试,成绩分为优、良、及格、不及格四等.已知人数不超过60人,则该班不及格的学生有______人.3.六个自然数的平均数是7,其中前四个数的平均数是8,第4个数是11,那么后三个数的平均数是______.4.在两位自然数的十位与个位中间插入0~9中的一个数码,这个两位数就变成了三位数.某些两位数中间插入某个数码后变成的三位数,是原来两位数的9倍.这样的两位数共有______个.5.10个连续偶数的和是从1开始的10个连续奇数和的3.5倍,其中最大的偶数是______.6.一堆草,可以供3头牛或4只羊吃14天,或者供4头牛和15只羊吃7天.将这堆草供给6头牛和7只羊吃,可以吃______天.7.将一根长为1997厘米的铁丝截成199厘米和177厘米两种长度的铁丝,剩余部分最少是______厘米.8.如图,在长方形ABCD中,AB=6厘米,BC=8厘米,四边形EFHG的面积是3平方厘米,阴影部分的面积和是______平方厘米.9.分子小于6,而分母小于60的不可约真分数有______个.10.在一条马路上,小明骑车与小光同向而行,小明骑车速度是小光速度的3倍,每隔10分有一辆公共汽车超过小光,每隔20分有一辆公共汽车超过小明,如果公共汽车从始发站每次间隔同样的时间发一辆车,那么相邻两车间隔______分.二、解答题:2.一个分数,分母是901,分子是一个质数,现在有下面两种方法:(1)分子和分母各加一个相同的一位数;(2)分子和分母各减一个相同的一位数.子.3.1997个数排成一行,除两头的两个数之外,其余每数的3倍恰好等于与它相邻前后两数之和,这一行数最左边的几个数是:0,1,3,8,…,问最右边那个数除以6余几?4.有一个蓄水池装有9根水管,其中1根为进水管,其余8根为相同的出水管.开始进水管以均匀的速度不停地向这个蓄水池蓄水.池内注入了一些水后,有人想把出水管也打开,使池内的水再全部排光.如果把8根出水管全部打开,需要3小时可将池内的水排光;而若仅打开3根出水管,则需要18小时.问如果想要在8小时内将池中的水全部排光,最少要打开几根出水管?答案一、填空题:1.42.1根据题意可知,该班人数应是2、3、7的公倍数.由于该班人数不超过60,所以该班人数为42.不及格人数为3.7后三个数的和为11+(7×6-8×4)=21所以后三个数的平均数为7.4.4可将原题转化为数字谜问题:其中A、B可以取相同的数字,也可以取不同的数字.显然B只能取5,A×9+4后必须进位,所以A=1,2,3,4.两位数分别是15、25、35、45.5.44从1开始的10个连续奇数的和是100,10个连续偶数的和是(100×3.5=)350,最大的偶数是350÷10+9=44根据题意,3头牛、4只羊吃14天,可推出6头牛、8只羊吃7天.对比4头牛、15只羊吃7天,可知2头牛与7只羊吃草量相同,即1头牛相当于3.5只羊的吃草量.所以4头牛、15只羊吃7天相当于3.5×4+15=29(只)羊吃7天,6头牛、7只羊相当于3.5×6+7=28(只)羊,可以吃7.6长度为199厘米的铁丝最少截1根,最多截9根,列表计算.8.15平行四边形面积为(6×8=)48平方厘米,三角形BEC面积为(48÷2=)24平方厘米,三角形BHC面积为(48÷4=)12平方厘米.因为S△BDC=S△BEC,所以S△DGC=S△BEG同理,S△ABF=S△FCE因此S阴=S△BEC-S△HBC+S四边形EFHG=24-12+3=15(平方厘米)9.197以分子为1、2、3、4、5分类计算.(1)分子是1的分数有58个;(2)分子是2的分数有29个;(3)分子是3的分数有38个;(4)分子是4的分数有28个;(5)分子是5的分数有44个.共有58+29+38+28+44=197(个)10.8设汽车速度为a,小光的速度为b,则小明的速度为3b,因为汽车之间的间隔相等,所以可列方程(a-b)×10=(a-3b)×20即a-b=(a-3b)×2整理后有a=5b这说明汽车的速度是小光速度的5倍.所以在相同的距离中,小光所用时间是汽车所用时间的5倍.即小光走10分,汽车行2分.由于每10分有一辆车超过小光,所以汽车间隔(10-2=)8分钟.二、解答题:1.82.487因为901=13×69+4,所以可分两种情况讨论:(1)分母加9后是13的倍数,此时分子为7×(69+1)-9=481但481=13×37不是质数,舍.(2)分母减4后是13的倍数,此时分子为7×69+4=487由于487是质数,所以487为所求.3.3设相邻的三个数为a n-1,a n,a n+1.根据题设有3a n=a n-1+an+1,所以an+1=3a n-a n-1.设a n=6q1+r1,a n-1=6q2+r2.则a n+1=3×(6q1+r1)-6q2+42=6(3q1-q2)+(3r1-r2)由此可知,a n+1除以6的余数等于(3r1-r2)除以6的余数.所以这一行数中被6除的余数分别为:0,1,3,2,3,1,0,5,3,4,3,5,0,可以发现,12个数为一个循环,所以1997÷12=166 (5)由此可知第 1997个数除以 6余 3.4.5根设1根出水管每小时的排水量为1份,则8根出水管3小时的排水量为(8×3=)24份, 3根出水管18小时的排水量为(3×18=)54份.所以进水管每小时的进水量为(54-24)÷(18-3)=2(份)蓄水池原有水最为24-2×3=18(份)要想在8小时放光水,应打开水管18÷8+2=4.25(根)所以至少应打开5根排水管.小升初数学综合模拟试卷22一、填空题:2.设A=30×70×110×170×210,那么不是A的约数的最小质数为______.3.一张试卷共有15道题,答对一道题得6分,答错一道题扣4分,小明答完了全部的题目却得了0分,那么他一共答对了______道题.4.一行苹果树有16棵,相邻两棵间的距离都是3米,在第一棵树旁有一口水井,小明用1只水桶给苹果树浇水,每棵浇半桶水,浇完最后一棵时,小明共走了______米.5.有一个四位数,它的个位数字与千位数字之和为10,且个位既是偶数又是质数,去掉个位数字和千位数字,得到一个两位质数,又知道这个四位数能被72整除,则这个四位数是______·6.甲、乙二人分别以每小时3千米和5千米的速度从A、B两地相向而行.相遇后二人继续往前走,如果甲从相遇点到达B地共行4小时,那么A、B两地相距______千米.7.如图,在△ABC中,DC=3BD,DE=EA,若△ABC面积是2,则阴影部分的面积是______.8.小朋从1997年的日历中抽出14张,是从5月14日到5月27日连续14天的.这14天的日期数相加是287.小红也抽出连续的14天的日历14张,这14天的日期数虽然与小明的不相同,但相加后恰好也是287.小红抽出的14张是从______月______日到______月______日的.9.今有五个自然数,计算其中任意三个数的和,得到了10个不同的自然数,它们是:15、16、18、19、21、22、23、26、27、29,这五个数的积是______.10.某工厂的记时钟走慢了,使得标准时间每70分钟分针与时针重合一次.李师傅按照这慢钟工作8小时,工厂规定超时工资要比原工资多3.5倍,李师傅原工资每小时3元,这天工厂应付给李师傅超时工资______元.二、解答题:1.计算问参加演出的男、女生各多少人?3.国际象棋比赛的奖金总数为10000元,发给前五名.每一名次的奖金都不一样,名次在前的钱数是比名次在后的钱数多,每份奖金钱数都是100元的整数倍.现在规定,第一名的钱数是第二、三名两人之和,第二名的钱数是第四、五名两人之和,那么第三名最多能得多少元?4.在一条公路上,甲、乙两地相距600米,小明和小强进行竞走训练,小明每小时行走4千米,小强每小时行走5千米.9点整,他们二人同时从甲、乙两地出发相向而行,1分后二人都调头反向而行,又过3分,二人又都调头相向而行,依次按照1、3、5、7、…(连续奇数)分钟数调头行走,那么二人相遇时是几点几分?答案一、填空题:1.1002.13根据A=30×70×110×170×210,可知2,3,5,7,11都是A的约数,而13不是A的约数.3.6因为小明答完了全部题目后得0分,所以他答对的题数与答错的题数之比为4∶6=2∶3,小明答对了15÷(2+3)×2=6(道)4.339(3+9+15+21+27+33+39)×2+45=339(米)能被8和9整除(8×9=72).因此8+a+b+2=10+a+b是9的倍数,由此可知a+b=8或a+b=17.53三种可能.若a+b=17,根据8+9=17,只有89一种可能.在四位数8172,8712,8532,8892中只有8712能被8整除,所以8712为所求.6.19.2因为甲、乙二人的速度比是3∶5,所以甲、乙二人在相同路程上所用的时间比是5∶3,因此A、B两地相距连结FD,由AE=ED可知:S△AFE=S△EFD,S△AEC=S△DCE由DC=3BD,可知:S△DCF=3S△BDF.因此S△ABC=(1+3+3)×S△BDF=7S△BDF8.2月16日,3月1日14+15+16+…+27=287,如果再找出14个连续的自然数之和为287是不可能的.需要调整,找出另外14个数的和为287,试验:(1)如果前面去掉14日,后面增加28日,显然和大于287;(2)如果前面去掉14、15日,后面增加2天,和为29,只能增加28日、 1日,这说明这个月的最后一天为28日.(3)如果前面去掉三天或三天以上,无论后面如何排,其和都不是287.所以小红抽出的14张是从2月16日到3月1日.9.5184因为计算其中任意三个数的和,所以每个数都使用了6次,因此这六个数的总和为(15+16+18+19+21+22+23+26+27+29)÷6=36设五个数从小到大依次为A、B、C、D、E,则所以 C=15+29-36=8.根据A+B+D=16,C=8,可推出D=9.所以E=29-(C+D)=12.根据B+D+E=27,可推出B=27-(D+E)=6.所以A=15-(B+C)=1.这五个数的乘积为1×6×8×9×12=5184.10.10.5走时正常的钟时针与分针重合一次需要慢钟走8小时,实际上是走所以应付超时工资二、解答题:1.22.男生16人,女生30人.因此女生人数为(46-16=)30人.3.1700为叙述方便,将100元作为计算单位,10000元就是100.根据题目条件可知五个人的奖金实际上是3个第二名与2个第三名的奖金之和.取偶数,因此第三名至多是(100-22×3)÷2=174.9点24分.如果不掉头行走,二人相遇时间为600÷[(4+5)×1000÷60]=4(分)两人相向行走1分后,掉头背向行走3分,相当于从出发地点背向行走(3-1=)2分;两人又掉头行走5分,相当于从出发地点相向行走(5-2=)3分;两人又掉头行走7分,相当于从出发地点背向行走(7-3=)4分;两人又掉头行走9分,相当于从出发地点相向行走(9-4=)5分.但在行走4分时二人就已经相遇了.因此共用时间1+3+5+7+8=24(分)相遇时间是9点24分.小升初数学综合模拟试卷23一、填空题:2.以正方形的4个顶点和正方形的中心(共5个点)为顶点,可以套出______种面积不等的三角形.3.某校组织不到200名同学外出参观,集合时,他们排成了一个正方形的队伍,乘车时,由于每人都要有座位,因此需要每辆有60个座位的大轿车至少4辆.那么参加活动的共有______人.4.服装厂的工人每人每天可以生产4件上衣或7条裤子,一件上衣和一条裤子为一套服装.现有66名工人生产,每天最多能生产______套.6.一列客车从甲站开往乙站,每小时行65千米,一列货车从乙站开往甲站,每小时行60千米,已知货车比客车早开出5分,两车相遇的地点距甲乙两站中点10千米,甲乙两站之间的距离是______千米.7.55道数学题,分给甲、乙、丙三人计算。

2018-2019广州市小学毕业数学总复习小升初模拟训练试卷20-22(共3套)附详细试题答案

小升初数学综合模拟试卷20一、填空题:1.13×99+135×999+1357×9999=______.2.一个两位数除以13,商是A,余数是B,A+B的最大值是_______.3.12345678987654321除本身之外的最大约数是______.4.有甲、乙两桶油,甲桶油比乙桶油多174千克,如果从两桶中各取5.图中有两个正方形,这两个正方形的面积值恰好由2、3、4、5、6、7这六个数字组成,那么小正方形的面积是______,大正方形的面积是______.6.如图,E、F分别是平行四边形ABCD两边上的中点,三角形DEF的面积是7.2平方厘米,平行四边形ABCD的面积是_______平方厘米.7.一辆公共汽车由起点到终点站共有10个车站,已知前8个车站共上车93人,除终点外前面各站共计下车76人.从前8个车站上车且在终点站下车的共有______人.9.某人以分期付款的方式买一台电视机,买时第一个月付款750元,以后每月付150元;或者前一半时间每月付300元,后一半时间每月付100元.两种付款方式的付款总数及时间都相同,这台电视机的价格是______元.10.一辆长12米的汽车以每小时36千米的速度由甲站开往乙站,上午9点40分,在距乙站2000米处遇到一行人,1秒后汽车经过这个行人,汽车到达乙站休息10分后返回甲站,汽车追上那位行人的时间是______.二、解答题:2.小明拿一些钱到商店买练习本,如果买大练习本可以买8本而无剩余;如果买小练习本可以买12本而无剩余,已知每个大练习本比小练习本贵0.32元,小明有多少元钱?3.某工厂的一只走时不够准确的计时钟需要69分(标准时间)时针与分钟才能重合一次,工人每天的正常工作时间是8小时,在此期间内,每工作1小时付给工资4元,而若超出规定时间加班,则每小时付给工资6元,如果一个工人照此钟工作8小时,那么他实际上应得到工资多少元?4.某次比赛中,试题共六题,均为是非题.正确的画“+ ”,错误的画“-”,记分方法是:每题答对的得2分,不答的得1分,答错的得0分,已知赵、钱、孙、李、周、吴、郑七人的答案及前六个人的得分记录如下表所示,请计算姓郑的得分.答案一、填空题:1.13704795原式=1300-13+135000-135+13570000-1357=13706300-1505=137047952.18因为余数最大是12,且99÷13=7…8,所以90÷13=6…12,A+B=6+12=18.3.4115226329218107因为12345678987654321除去1以外的最小约数是3,则12345678987654321的最大约数为12345678987654321÷3=4115226329218107174×3+4=526(千克)因此两桶油共重526+(526-174)=878(千克)5.273,546根据图形可以看出,大正方形面积是小正方形面积的2倍.经试验可知:273×2=546,所以小正方形面积为273,大正方形的面积为546.6.19.27.17因为在第9个车站上车的人,决不会在第9站下车,因此除终点外前面各站下车的76人都是在前8个车站上车的,所以从前8个车站上车且在终点下车的共有93-76=17(人)8.153因为总人数应是18,7,4的公倍数,而18,7,4的最小公倍数是252,所以参加考试的人数为252人.9.2400750+150x-150=200x50x=600x=12所以电视机的价格是根据题意可知,汽车的速度是每秒10米.行人的速度是每秒(12÷1-10=)2米.汽车到达乙站,休息10分后,行人又走了2×(2000÷10+60×10)=1600(米)汽车追上行人共需时间2000÷10+60×10+(2000+1600)÷(10-2)=1250(秒)=20分5秒9点40分+20分5秒=10点05秒.二、解答题:1.12.7.68元根据题意可知,如果买8个小练习本会剩下(0.32×8=)2.56元,而这2.56元正好可以再买4个小练习本,所以小明共有2.56×(12÷4)=7.68(元)正常钟表的时针和分针重合一次需要不准确的钟表走8小时,实际上是走应得工资为=32+2.6=34.6(元)4.8分从周做5题得9分可以看出,周做对了4道题,下面分别讨论:(1)假设第一题错,则第二、三、四、六题对,此时赵无法得到7分.(2)假设第二题错,则第一、三、四、六题对,此时赵无法得到7分.(3)假设第三题错,则第一、二、四、六题对,此时吴无法得到7分.(4)假设第四题错,则第一、二、三、六题对.此时第5题若填“十”,则赵、吴都可得到7分,钱、孙、李可得5分,由此推出郑得8分.(5)假设第六题错,则第一、二、三、四题对,则赵、吴无法同时得到7分.所以只有(4)满足条件.小升初数学综合模拟试卷21一、填空题:2.某班学生参加一次考试,成绩分为优、良、及格、不及格四等.已知人数不超过60人,则该班不及格的学生有______人.3.六个自然数的平均数是7,其中前四个数的平均数是8,第4个数是11,那么后三个数的平均数是______.4.在两位自然数的十位与个位中间插入0~9中的一个数码,这个两位数就变成了三位数.某些两位数中间插入某个数码后变成的三位数,是原来两位数的9倍.这样的两位数共有______个.5.10个连续偶数的和是从1开始的10个连续奇数和的3.5倍,其中最大的偶数是______.6.一堆草,可以供3头牛或4只羊吃14天,或者供4头牛和15只羊吃7天.将这堆草供给6头牛和7只羊吃,可以吃______天.7.将一根长为1997厘米的铁丝截成199厘米和177厘米两种长度的铁丝,剩余部分最少是______厘米.8.如图,在长方形ABCD中,AB=6厘米,BC=8厘米,四边形EFHG的面积是3平方厘米,阴影部分的面积和是______平方厘米.9.分子小于6,而分母小于60的不可约真分数有______个.10.在一条马路上,小明骑车与小光同向而行,小明骑车速度是小光速度的3倍,每隔10分有一辆公共汽车超过小光,每隔20分有一辆公共汽车超过小明,如果公共汽车从始发站每次间隔同样的时间发一辆车,那么相邻两车间隔______分.二、解答题:2.一个分数,分母是901,分子是一个质数,现在有下面两种方法:(1)分子和分母各加一个相同的一位数;(2)分子和分母各减一个相同的一位数.子.3.1997个数排成一行,除两头的两个数之外,其余每数的3倍恰好等于与它相邻前后两数之和,这一行数最左边的几个数是:0,1,3,8,…,问最右边那个数除以6余几?4.有一个蓄水池装有9根水管,其中1根为进水管,其余8根为相同的出水管.开始进水管以均匀的速度不停地向这个蓄水池蓄水.池内注入了一些水后,有人想把出水管也打开,使池内的水再全部排光.如果把8根出水管全部打开,需要3小时可将池内的水排光;而若仅打开3根出水管,则需要18小时.问如果想要在8小时内将池中的水全部排光,最少要打开几根出水管?答案一、填空题:1.42.1根据题意可知,该班人数应是2、3、7的公倍数.由于该班人数不超过60,所以该班人数为42.不及格人数为3.7后三个数的和为11+(7×6-8×4)=21所以后三个数的平均数为7.4.4可将原题转化为数字谜问题:其中A、B可以取相同的数字,也可以取不同的数字.显然B只能取5,A×9+4后必须进位,所以A=1,2,3,4.两位数分别是15、25、35、45.5.44从1开始的10个连续奇数的和是100,10个连续偶数的和是(100×3.5=)350,最大的偶数是350÷10+9=44根据题意,3头牛、4只羊吃14天,可推出6头牛、8只羊吃7天.对比4头牛、15只羊吃7天,可知2头牛与7只羊吃草量相同,即1头牛相当于3.5只羊的吃草量.所以4头牛、15只羊吃7天相当于3.5×4+15=29(只)羊吃7天,6头牛、7只羊相当于3.5×6+7=28(只)羊,可以吃7.6长度为199厘米的铁丝最少截1根,最多截9根,列表计算.8.15平行四边形面积为(6×8=)48平方厘米,三角形BEC面积为(48÷2=)24平方厘米,三角形BHC面积为(48÷4=)12平方厘米.因为S△BDC=S△BEC,所以S△DGC=S△BEG同理,S△ABF=S△FCE因此S阴=S△BEC-S△HBC+S四边形EFHG=24-12+3=15(平方厘米)9.197以分子为1、2、3、4、5分类计算.(1)分子是1的分数有58个;(2)分子是2的分数有29个;(3)分子是3的分数有38个;(4)分子是4的分数有28个;(5)分子是5的分数有44个.共有58+29+38+28+44=197(个)10.8设汽车速度为a,小光的速度为b,则小明的速度为3b,因为汽车之间的间隔相等,所以可列方程(a-b)×10=(a-3b)×20即a-b=(a-3b)×2整理后有a=5b这说明汽车的速度是小光速度的5倍.所以在相同的距离中,小光所用时间是汽车所用时间的5倍.即小光走10分,汽车行2分.由于每10分有一辆车超过小光,所以汽车间隔(10-2=)8分钟.二、解答题:1.82.487因为901=13×69+4,所以可分两种情况讨论:(1)分母加9后是13的倍数,此时分子为7×(69+1)-9=481但481=13×37不是质数,舍.(2)分母减4后是13的倍数,此时分子为7×69+4=487由于487是质数,所以487为所求.3.3设相邻的三个数为a n-1,a n,a n+1.根据题设有3a n=a n-1+an+1,所以an+1=3a n-a n-1.设a n=6q1+r1,a n-1=6q2+r2.则a n+1=3×(6q1+r1)-6q2+42=6(3q1-q2)+(3r1-r2)由此可知,a n+1除以6的余数等于(3r1-r2)除以6的余数.所以这一行数中被6除的余数分别为:0,1,3,2,3,1,0,5,3,4,3,5,0,可以发现,12个数为一个循环,所以1997÷12=166 (5)由此可知第 1997个数除以 6余 3.4.5根设1根出水管每小时的排水量为1份,则8根出水管3小时的排水量为(8×3=)24份, 3根出水管18小时的排水量为(3×18=)54份.所以进水管每小时的进水量为(54-24)÷(18-3)=2(份)蓄水池原有水最为24-2×3=18(份)要想在8小时放光水,应打开水管18÷8+2=4.25(根)所以至少应打开5根排水管.小升初数学综合模拟试卷22一、填空题:2.设A=30×70×110×170×210,那么不是A的约数的最小质数为______.3.一张试卷共有15道题,答对一道题得6分,答错一道题扣4分,小明答完了全部的题目却得了0分,那么他一共答对了______道题.4.一行苹果树有16棵,相邻两棵间的距离都是3米,在第一棵树旁有一口水井,小明用1只水桶给苹果树浇水,每棵浇半桶水,浇完最后一棵时,小明共走了______米.5.有一个四位数,它的个位数字与千位数字之和为10,且个位既是偶数又是质数,去掉个位数字和千位数字,得到一个两位质数,又知道这个四位数能被72整除,则这个四位数是______·6.甲、乙二人分别以每小时3千米和5千米的速度从A、B两地相向而行.相遇后二人继续往前走,如果甲从相遇点到达B地共行4小时,那么A、B两地相距______千米.7.如图,在△ABC中,DC=3BD,DE=EA,若△ABC面积是2,则阴影部分的面积是______.8.小朋从1997年的日历中抽出14张,是从5月14日到5月27日连续14天的.这14天的日期数相加是287.小红也抽出连续的14天的日历14张,这14天的日期数虽然与小明的不相同,但相加后恰好也是287.小红抽出的14张是从______月______日到______月______日的.9.今有五个自然数,计算其中任意三个数的和,得到了10个不同的自然数,它们是:15、16、18、19、21、22、23、26、27、29,这五个数的积是______.10.某工厂的记时钟走慢了,使得标准时间每70分钟分针与时针重合一次.李师傅按照这慢钟工作8小时,工厂规定超时工资要比原工资多3.5倍,李师傅原工资每小时3元,这天工厂应付给李师傅超时工资______元.二、解答题:1.计算问参加演出的男、女生各多少人?3.国际象棋比赛的奖金总数为10000元,发给前五名.每一名次的奖金都不一样,名次在前的钱数是比名次在后的钱数多,每份奖金钱数都是100元的整数倍.现在规定,第一名的钱数是第二、三名两人之和,第二名的钱数是第四、五名两人之和,那么第三名最多能得多少元?4.在一条公路上,甲、乙两地相距600米,小明和小强进行竞走训练,小明每小时行走4千米,小强每小时行走5千米.9点整,他们二人同时从甲、乙两地出发相向而行,1分后二人都调头反向而行,又过3分,二人又都调头相向而行,依次按照1、3、5、7、…(连续奇数)分钟数调头行走,那么二人相遇时是几点几分?答案一、填空题:1.1002.13根据A=30×70×110×170×210,可知2,3,5,7,11都是A的约数,而13不是A的约数.3.6因为小明答完了全部题目后得0分,所以他答对的题数与答错的题数之比为4∶6=2∶3,小明答对了15÷(2+3)×2=6(道)4.339(3+9+15+21+27+33+39)×2+45=339(米)能被8和9整除(8×9=72).因此8+a+b+2=10+a+b是9的倍数,由此可知a+b=8或a+b=17.53三种可能.若a+b=17,根据8+9=17,只有89一种可能.在四位数8172,8712,8532,8892中只有8712能被8整除,所以8712为所求.6.19.2因为甲、乙二人的速度比是3∶5,所以甲、乙二人在相同路程上所用的时间比是5∶3,因此A、B两地相距连结FD,由AE=ED可知:S△AFE=S△EFD,S△AEC=S△DCE由DC=3BD,可知:S△DCF=3S△BDF.因此S△ABC=(1+3+3)×S△BDF=7S△BDF8.2月16日,3月1日14+15+16+…+27=287,如果再找出14个连续的自然数之和为287是不可能的.需要调整,找出另外14个数的和为287,试验:(1)如果前面去掉14日,后面增加28日,显然和大于287;(2)如果前面去掉14、15日,后面增加2天,和为29,只能增加28日、 1日,这说明这个月的最后一天为28日.(3)如果前面去掉三天或三天以上,无论后面如何排,其和都不是287.所以小红抽出的14张是从2月16日到3月1日.9.5184因为计算其中任意三个数的和,所以每个数都使用了6次,因此这六个数的总和为(15+16+18+19+21+22+23+26+27+29)÷6=36设五个数从小到大依次为A、B、C、D、E,则所以 C=15+29-36=8.根据A+B+D=16,C=8,可推出D=9.所以E=29-(C+D)=12.根据B+D+E=27,可推出B=27-(D+E)=6.所以A=15-(B+C)=1.这五个数的乘积为1×6×8×9×12=5184.10.10.5走时正常的钟时针与分针重合一次需要慢钟走8小时,实际上是走所以应付超时工资二、解答题:1.22.男生16人,女生30人.因此女生人数为(46-16=)30人.3.1700为叙述方便,将100元作为计算单位,10000元就是100.根据题目条件可知五个人的奖金实际上是3个第二名与2个第三名的奖金之和.取偶数,因此第三名至多是(100-22×3)÷2=174.9点24分.如果不掉头行走,二人相遇时间为600÷[(4+5)×1000÷60]=4(分)两人相向行走1分后,掉头背向行走3分,相当于从出发地点背向行走(3-1=)2分;两人又掉头行走5分,相当于从出发地点相向行走(5-2=)3分;两人又掉头行走7分,相当于从出发地点背向行走(7-3=)4分;两人又掉头行走9分,相当于从出发地点相向行走(9-4=)5分.但在行走4分时二人就已经相遇了.因此共用时间1+3+5+7+8=24(分)相遇时间是9点24分.。

2018-2019广州市小学毕业数学总复习小升初模拟训练试卷28-29(共2套)附详细试题答案

小升初数学综合模拟试卷28一、填空题:2.有一些数字卡片,上面写的数都是2的倍数或3的倍数,其中2的卡片共有______张.3.A、B、C、D、E、F六个点在同一圆周上,任取其中三点,以这三点为顶点组成一个三角形,在这样的三角形中,以A、B两点中至少一点为顶点的三角形共有______个.中点.则阴影部分的面积是______平方厘米.6.甲、乙两人分别从A、B两地同时出发,相向而行,甲的速度是乙的速度的2倍。

两个相遇后继续往前走,各自到达B、A后立即返回.已知两人第二次相遇的地点距第一次相遇地点是12千米,那么A、B两地相距______千米.7.下面是按规律排列的三角形数阵:那么第1997行的左起第三个数是______.8.分子和分母相乘的积是2100的最简真分数共有______个.9.有一块长36厘米,宽16厘米的长方形材料,要剪截成小长方形(不能接拼).现有两种方案,方案甲:都截成长10厘米,宽4厘米的小长方形;方案乙:都截成长10厘米,宽6厘米的小长方形.采用方案______可使余下材料的面积最小,余下材料的面积是______平方厘米,请画出你的剪截方案.10.用0到3可以组成许多没有重复数字的四位数,则所有这些四位数的平均数是______.二、解答题:2.三个数分别是189,456,372,请再写一个比996大的三位数,使这四个数的平均数是一个整数,则所写的三位数是多少?4.有甲、乙、丙三个足球队,两两比赛一场,共比赛了三场球,每个队的比赛结果如图所示,那么这三场球赛的具体比分是多少?答案一、填空题:1.36=38-2=362.30由于2、3的最小公倍数是6,所以2、3的倍数的卡片里都包含了6所以卡片总数是3.16以A为顶点,但不包括B为顶点的三角形共有3+2+ 1= 6个,同理,以B为顶点,但不包括A为顶点的三角形也是6个;以A、B为顶点的三角形是4个,所以以A、B两点中至少一点为顶点的三角形共有:6×2+ 4= 16(个)5.5又因为F是AD的中点,连结FC,所以(平方厘米)于是S△EFC=(S△ABF+S△AFC)-S△ABE=6-4=2(平方厘米)而S△DFC=S△AEF+S△EFC=1+2=3(平方厘米)所以S阴影=S△EFC+S△DFC=2+3=5(平方厘米)6.18设甲、乙第一次相遇地点是C,第二次相遇地点是D.由于甲的速度是乙的速度的2倍,在相同时间里,甲行的路程是乙行的路程的2倍.设AB 为x,BC+BD=2(AC+AD)即 2BC+CD=2(2AC-CD)x=187.1991010第三行左起第三个数是1第四行左起第三个数是3=1+2第五行左起第三个数是6=1+2+3第六行左起第三个数是10=1+2+3+4……所以第1997行左起第三个数是:1+ 2+ 3+ 4+ …+ 1995= 19910108.8因为2100= 22×3×52×7,所以分子和分母乘积是2100的最简真分9.方案乙,余下材料36平方厘米,剪截方案如图.采用方案乙可使余下的材料的面积最小,最小面积是:36×16-10×6×9=36(平方厘米).10.2148首位是1的四位数有6个,它们是:1023,1032,1203,1230,1302,1320;同样首位是2或3的四位数各有6个,有:2013,2031,2103,2130,2301,2310;3012,3021,3102,3120,3201,3210.所有这些四位数的平均数是:[(1+ 2+ 3)×6×1000+(1+ 2+ 3)×4×100+ (1+ 2+ 3)×4×10+(1+2+3)×4]÷18=[36000+6×444] ÷18=38664÷18=2148二、解答题:1. a=1722.所写的三位数是999.要使这四个数的平均数是一个整数,则这四个数的和必是4的倍数.因为189+456+372=1017,1017÷4=254…1.只有找出比996大且被4除余3的三位数,才能符合题目要求,由于999÷4=249 (3)这时有189+ 456+ 372+ 999= 2016,4|2016.所以所写的三位数是999.3.剩下的数是1.=1所以最后剩下的数是1.4.甲与乙,乙与丙,甲与丙都是3∶1甲队失2球,不会全失于乙队,如果是,由于乙队一共进4球,另外2个球是胜丙的,而丙队进2球,所以乙与丙成2∶2平局,与已知矛盾,甲队失2球,也不全失于丙队,如果是,乙进的4个球全是胜丙队,乙队与丙队是4∶0,这样丙队还有2个球是失甲队,甲队与丙队变成2∶2平局,与已知矛盾,所以甲队各失1球于乙、丙.乙共进4个球,另外3个球是胜丙,丙进2个球,另一球是胜乙的,所以乙与丙是3∶1.丙共失6个球,失了乙队3个,另3个失给甲队,所以甲与丙是3∶1.乙队失4个球,一球失于丙队,另三个球失于甲队,所以甲与乙是3∶1.小升初数学综合模拟试卷29一、填空题:2.3支铅笔和8支圆珠笔的价钱是11.9元,7支铅笔和6支圆珠笔的价钱是11.3元,一支铅笔和一支钢笔的价钱是______元.3.比较下面两个积的大小:A=9.5876×1.23456,B=9.5875×1.23457,则A______B.第______个分数.5.从1,2,3,4,…,1997这些自然数中,最多可以取______个数,能使这些数中任意两个数的差都不等于8.6.用1至9这九个数字每个数字各一次,组成三个能被9整除的三位数,要求这三个数的和尽可能大,这三个数分别是______.7.如图,AD=DE=EC,F是BC中点,G是FC中点,如果三角形ABC的面积是24平方厘米,则阴影部分是______平方厘米.8.某次考试,A、B、C、D、E五人的平均成绩是90分,A、B两人的平均成绩是96分,C、D两人的平均成绩是92.5分,A、D两人的平均成绩是97.5分,且C比D得分少15分,则B的分数是______.9.某年级学生人数在200至250之间,若列队4人一排余1人,5人一排余3人,6人一排余5人,则这个年级有______名学生.10.商店用相同的费用购进甲、乙两种不同的糖果.已知甲种糖果每公斤18元,乙种糖果每公斤12元,如果把这两种糖果混在一起成为什锦糖,那么这种糖每公斤的成本是______元.二、解答题:1.有一个棱长是10厘米的正方体木块,在它的上、左、前三个面中心分别穿一个3厘米见方的孔,直至对面.求穿孔后木块的体积.2.分母是964的最简真分数共有多少个?3.一个城市交通道路如图,数字表示各段路的路程(单位:千米),求出图中从A到F的最短路程.4.两名运动员在长为30米的游泳池里来回游泳,甲的速度是每秒游1米,乙的速度每秒0.6米,他们同时分别从游泳池的两端出发,来回共游了10分,如果不计转身时间,那么这段时间内共相遇多少次?答案一、填空题:2.1.8由3支铅笔+8支圆珠笔=11.9元7支铅笔+ 6支圆珠笔=11.3元得21支铅笔+ 56支圆珠笔= 83.3元21支铅笔+ 18支圆珠笔=33.9元(56- 18)支圆珠笔=83.3-33.91支圆珠笔= 1.3元所以1支铅笔= (11.9- 1.3×8)÷3=0.5(元)故1支铅笔和1支钢笔的价钱是1.8元.3.>A=9.5875×1.23456+0.0001×1.23456B=9.5875×1.23456+9.5875×0.00001因为 0.0001×1.23456>9.5875×0.00001所以A>B.将分母相同的分成一组,第1组1个数,第2组3个数,第3组5个数,……,从第2组起每一组比前一组多2个数,每一组分子的规律从1开始逐项加1,和倒数第6个分数,在这串数中是5.1000每16个连续自然数中,最多可以取8个数,使得每两个数的差不等于8.1997÷16=124 (13)把1至1997的自然数分成每16个连续自然数一组,最后剩13个数为一组,共组成125组.即1,2,3,4, (16)17, 18, 19, 20,…, 32;33,34,35,36, (48)…1969,1967,1968, (1984)1985,1986, (1997)每一组中取前8个数,共取出8×125=1000(个)使得其中任意两个数的差都不等于8.6.954、873、6211+ 2+ 3+ …+ 9= 45= 9×5,有5个9,由于每个三位数的各个数位上的数字之和不会超过3个9,所以这三个三位数的每一个数位上数字之和只能分别是9、 18、 18(合起来是5个9).要使这三个三位数的和尽可能大,各个数位上的数字之和是9的最大三位数是621,另两个数只能由9、8、7、5、4、3组成,显然百位应尽可能大,得到954、873.所以这三个数分别是954、873、621.7.14因为AD= DE= EC,所以又因为BF=FC,所以由于FG=GC,所以S阴影面积=S△ABD+S△DFE+S△GCE=8+4+2=14(平方厘米)8.97E得分是:90 × 5-96 × 2-92.5 × 2=73(分);C得分是:(92.5×2-15)÷2=85(分);D得分是:85+15=100(分);A得分是:97.5×2-100=95(分);B得分是:96×2-95=97(分).9.233人被4除余1的自然数有5,9,13,17,21,25,…,其中被5除余3的自然数有13,33,53,73,…,(相邻两数后一个数比前一个多20),其中被6除余5的自然数有53,…,且53是被4除余1,被5除余3,被6除余5的最小的一个,又4、5、6的最小公倍数是60,符合上述条件的任意整数写成60n+53,n是整数,所以这个年级的人数为:n=3,60×3+53=233(人)10.14.412、18的最小公倍数是36.为了解题方便,假设分别用36元购进甲、乙两种糖果,可购进甲种糖果36÷18=2公斤,购进乙种糖果36÷12=3公斤,两种糖果混合后总价是36×2元,总重量2+3公斤,得到什锦糖的成本是:36×2÷(2+3)=14.4(元)二、解答题:1.穿孔后木块的体积是784立方厘米.穿一个孔的体积是3×3×10=90立方厘米,穿三个孔时,体积应是:90×3-3×3×3×2=216(立方厘米)所以穿孔后木块的体积是:10×10×10-216=784(立方厘米)2.分母是964的最简真分数有480个.因为964=22×241.所以分母是964的最简真分数中不能有偶数及241的倍数,小于964的偶数有964÷2-1=481个,是241的倍数有3个,其中482是偶数,分母是964的最简真分数有:963-481-3+1=480(个)3.从A到F的最短路程是13千米从A到F有许多条路,要确定一条最短的路线,可以采用排除的方法,逐步去掉比较长的道路,最后确定一条由A到F的最短路线,根据图中给出的路程的长度,有些明显较长的路可以不去考虑.从A出发到F,有三条路线相对较短,沿AIHGF路线走,它的长度是:7+1+5+2=15(千米)沿ABCEF路线走,它的长度是.5+2+5+2=14(千米)沿AJKGF路线走,它的长度是:5+4+2+2=13(千米)所以从A到F的最短路程是13千米.4.10分钟内共相遇20次甲游30米需要30÷1=30秒,乙游30米需要30÷0.6=50秒,经过150秒,甲、乙两人同时游到两端,每隔150秒他们相遇的情况重复出现.如图,实线表示甲,虚线表示乙,两线的交点就是甲、乙相遇的地点(游泳池的两端用两条线段表示),可以看出经过150秒,甲游了5个30米,乙游了3个30米,共相遇了5次.以150秒为一个周期,10分钟是600秒,600÷150=4,有4个150秒,所以在10分钟内相遇的次数是:5×4=20(次).。

2018-2019广州市小学毕业数学总复习小升初模拟训练试卷25-27(共3套)附详细试题答案

小升初数学综合模拟试卷25一、填空题:2.三个不同的三位数相加的和是2993,那么这三个加数是______.3.小明在计算有余数的除法时,把被除数472错看成427,结果商比原来小5,但余数恰巧相同.则该题的余数是______.4.在自然数中恰有4个约数的所有两位数的个数是______.5.如图,已知每个小正方形格的面积是1平方厘米,则不规则图形的面积是______.6.现有2克、3克、6克砝码各一个,那么在天平秤上能称出______种不同重量的物体.7.有一个算式:五入的近似值,则算式□中的数依次分别是______.8.某项工作先由甲单独做45天,再由乙单独做18天可以完成,如果甲乙两人合作可30天完成。

现由甲先单独做20天,然后再由乙来单独完成,还需要______天.9.某厂车队有3辆汽车给A、B、C、D、E五个车间组织循环运输。

如图所示,标出的数是各车间所需装卸工人数.为了节省人力,让一部分装卸工跟车走,最少安排______名装卸工保证各车间的需要.10.甲容器中有纯酒精340克,乙容器有水400克,第一次将甲容器中的一部分纯酒精倒入乙容器,使酒精与水混合;第二次将乙容器中的一部分混合液倒入甲容器,这时甲容器中纯酒精含量70%,乙容器中纯酒精含量为20%,则第二次从乙容器倒入甲容器的混合液是______克.二、解答题:1.有红黄两种玻璃球一堆,其中红球个数是黄球个数的1.5倍,如果从这堆球中每次同时取出红球5个,黄球4个,那么取了多少次后红球剩9个,黄球剩2个?2.小明一家四口人的年龄之和是147岁,爷爷比爸爸大38岁,妈妈比小明大27岁,爷爷的年龄是小明与妈妈年龄之和的2倍,问小明一家四口人的年龄各是多少岁?3.A、B、C、D、E五人在一次满分为100分的考试中,A得94分,B是第一名,C得分是A与D的平均分,D得分是五人的平均分,E比C多2分,是第二名,则B得了多少分?4.甲乙两人以匀速绕圆形跑道相向跑步,出发点在圆直径的两端.如果他们同时出发,并在甲跑完60米时第一次相遇,乙跑一圈还差80米时俩人第二次相遇,求跑道的长是多少米?小升初数学综合模拟试卷26一、填空题:1.(4.16×84-2.08×54-0.15×832)÷(0.3)2=______.2.如果两个自然数相除,商是16,余数是13,被除数、除数、商与余数的和是569,那么被除数是______.3.某项工作,甲单独干15天可完成.现甲做了6天后另有任务,剩下的工作由乙完成,用了8天.若这项工作全部由乙单独完成需______天.4.小刚晚上9点整将手表对准,可早晨7点起床时发现手表比标准时间慢了15分,那么小刚的手表每小时慢______分.5.如图,四边形ABCD的面积是42平方厘米,其中两个小三角形的面积分别是3平方厘米和4平方厘米,那么最大的一个三角形的面积是______平方厘米.的差最大是______.7.从1到1000的自然数中,有______个数出现2或4.8.小红与小丽在一次校运动会上,预测她们年级四个班比赛结果,小红猜测是3班第一名,2班第二名,1班第三名,4班第四名.小丽猜测的名次顺序是2班、4班、3班、1班.结果只有小丽猜到4班是第二名是正确的.这次运动会第一名是______班.9.将17分成几个自然数的和,再求出这些数的乘积,要使得到的乘积尽可能大,这个乘积是______.10.小于5且分母为12的最简分数有______个;这些最简分数的和是______.二、解答题:1.买6个足球和4个排球共需322元,如果每个足球比每个排球贵7元,每个足球与排球各是多少元?2.一批苹果装箱.如果已装了42箱,剩下的苹果是这批苹果的70%;如果装了85箱,则还剩下1540个苹果.这批苹果共有多少个?3.某旅游团安排住宿,若有5个房间,每间住4人,其余的3人住一间,则剩5人;若有2个房间,每间住4人,其余的5人住一间,则正好分完.求有多少个房间?旅游团有多少人?4.如图,将1.8,5.6,4.7,2.8,6.9分别填在五个○内,再在每个□中填上和它相连的三个○中的数的平均值,再把三个□中的数的平均值填在△中.找出一种填法,使三角内的数尽可能大,那么△中填的数是多少?答案一、填空题:1.1248原式=4.16×(84-4.16×27-15×2×4.16)÷0.09=4.16×(84-27-30)÷0.09=4.16×27÷0.09=4.16×300=12482.509设被除数是a,除数是b,则a=16b+13a+b+16+13=569有16b+13+b+16+13=56917b=527b=31所以被除数是a=16×31+13=5093.20设手表1小时时针转动一格为路程单位.小刚手表从晚9点到第二天早7点共转了10个格,标准时间应走时间为:所以小刚手表的时针每小时转动:5.20因为△DEC和△CEB等高,所以DE∶EB=S△DEC∶S△CEB=3∶4同理,△ADE与△EAB等高,所以S△ADE∶S△EAB=DE∶EB=3∶4又 S△ADB=42-3-4=35(平方厘米)=20(平方厘米)6.367.488从1到99含有数字2的数,一是个位数字是2的有2,12,22,32,…,92,共10个,二是十位数字是2的有20,21,22,…,29,共10个;同理1到99含有数字4的数共20个,其中22、24、42、44被重复计算,所以1到99的自然数中共有20×2-4=36个数出现2或4.从100到199、300到399、500到599、600到699、700到799、800到899、900到999情况与1到99完全相同,而从200到299这100个数的百位上全是2,从400到499这100个数的百位上全是4,而1000既不含2也不含4,所以1到1000含有数字2或4的自然数个数是:36×8+100×2=4888.1班是第一名已知4班是第二名,小红猜3班是第一名,小丽猜3班是第三名都不对,所以3班只能是第四名.小红猜2班第二名,小丽猜2班第一名也不对,2班应是第三名(如表),所以1班是第一名.9.486将17拆成n个自然数且乘积最大,拆的个数尽可能多,但不要拆成1,且拆成的数不要大于4,例如6拆成3与3比拆成4与2的两数之积要大,因此大于4的数尽可能拆,并且拆成的数2的个数不要超过2个,若多于2个,比如4个2,2+2+2+2=8=3+3+2,显然有3×3×2>2×2×2×2,所以尽可能多拆出3来,这样有17=3+3+3+3+3+2所以这个乘积是 3×3×3×3×3×2=48610.最简分数是20个,和为50.其中n=0,1, 2, 3, 4; r=1,5,7,11;且(12,r)=1.所以小于5且分母是12的最简分数共有5×4=20个这些最简分数的和是二、解答题:1.每个足球35元,每个排球28元.由于每个足球比每个排球贵7元,6个足球比 6个排球贵 7×6=42元,用总钱数 322元减去42元,相当于6+4=10个排球的价钱,得到每个排球的价钱是:(322-7×6)÷(6+4)=28(元)每个足球的价钱是:28+7=35(元)2.这批苹果共3920个已装箱的42箱苹果相当于这批苹果的1-70%=30%,所以这批苹果共装箱数:42÷(1-70%)=140(箱)剩下的1540个苹果恰好装满140-85=55箱,所以每箱苹果个数是1540÷(140-85)=28(个)这批苹果的总数是28×140=3920(个)3.房间6间,旅游团有28人“有5个房间,每间住4人,其余的3人住一间,则剩5人”转化成“每间住3人,还剩5+(4-3)×5=10人”;“有2个房间,每间住4人,其余的5人住一间,则正好分完”转化成“每间住5人,还差(5-4)×2=2人”.对比这两个条件知,每个房间相差5-3=2人,几个房间才能相差10+2=12人,可以求出房间数:[5+(4-3)×5+(5-4)×2]÷(5-3)=12÷2=6(间)旅游团的人数是4×2+5×(6-2)=28(人)或4×5+3×(6-5)+5=28(人)4.△中填5.1要使三角中的数尽可能大,就要使三个方框中的三个数的和尽可能大.为了便于说明,不妨设五个○中的数依次为 a、 b、 c、 d、 e,三个□中的数依次为x、y、z,△中的数为A.则有3x=a+b+c,3y=b+c+d,3z=c+d+e三个□里的数的 3倍之和,中间○中c算了 3次,两端○中的a、e各算1次,其余两个数各算2次,应将最大数放在中间○内,把最小和次小的数填在两端○内,剩下的两个数放在剩下的○内.所以3x+3y+3z=6.9×3+5.6×2+4.7×2+1.8+2.8=45.9x+y+z=45.9÷3=15.3A=(x+y+z)÷3=15.3÷3=5.1答案一、填空题:1.648原式=7.2×61.3+(61.3+12.5)×2.8=(7.2+2.8)×61.3+12.5×2.8=613+35=648由于2993÷3=997…2,这三个加数必然接近997,显然997、998、998的和是2993,但由于所求三个加数不同,经过调整应为996、998、999.3.4在这两种除法计算中,除数与余数没变,只是商比原来小5.设除数是a,余数是r,则472=a×商+r427=a×(商-5)+r有472-427=a×5,a=(472-427)÷5=9472÷9=52 (4)所以余数r=4.4.30因为4=1×4=2×2,有4个约数的数一定能表示成a3或ab,a、b是质数.对于a3,只有a=3时,a3=27是两位数,即有1个数符合条件.对于ab,当a=2,b=5、7、11、13、17、19、23、29、31、37、41、43、47时符合条件,有13个;当a=3,b取大于3且小于37的质数时,符合条件,有9个;同理当a=5时有5个;a=7时有2个.则自然数中恰有4个约数的所有两位数的个数是:1+13+9+5+2=30(个)5.19平方厘米所求图形是不规则图形,通过分割可以很容易求出图中标出1、2、3、4、5、6、7图形的面积,用整个大长方形面积减去这7个图形的面积即为所求,所以不规则图形面积为:8×6-3×2÷2×3-(1+3)×3÷2-2×4÷2-(2+4)×1÷2-(3+4)×2÷2=(19平方厘米)6.10这道题没有限制砝码只能放在天平的同一秤盘上,因此天平两边的秤盘上都可以放砝码,尽管只有2克、3克、6克砝码各一个,但是如果天平一边是2克,另一边是3克,就可称出1克重的物体,如果它俩放在同一边又可称出5克重的物体.同理,2克与6克砝码可称出4克或8克重的物体;3克与6克砝码可称出3克或9克重的物体,其中3克重物体可以直接用3克砝码称出;用2克、3克和6克可称出7克、5克、1克、11克重的物体;所以用这三个砝码可称出1、2、3、4、5、6、7、8、9、11克共10种不同重量的物体.7.1,3,3于是有150.15≤55×□+22×□+10×□≤151.14由于□里的数是整数,所以55×□+22×□+10×□=151只有 55×1+22×3+10×3=151所以□里数字依次填1,3,3.8.38由题意知甲乙两人合作30天可以完成这项工作.甲做45天,比30天多15天,乙可少做30-18=12(天)说明甲做15天相当于乙做12天.现在甲做20天,比30天少10天,这10天的工作量让乙来完成,需要天数:乙还需要单独做:30+8=38(天)9.21每个车间抽出3名装卸工,共抽出3×5=15人,每辆车上有3人,共需3×3=9人,这样可节约15-9=6(人).这时A有3人,B有2人,C有4人,D有0人,E有5人.再从A、B、C、E各抽出2人,每车上2人,这样又可省去2×4-2×3=2人.这样每辆车跟5人,共15人,A有1人,B有0人,C有2人,E 有3人,D还是0人.共需装卸工:5×3+1+2+3=21(人)第二次从乙容器里倒出一部分给甲容器,并不改变乙容器的酒精浓度,所以乙容器里酒精浓度是第一次甲容器倒入一部分纯酒精而得到的,因此乙容器中酒精与水之比是:20%∶(1-20%)=1∶4那么第一次从甲容器里倒出100克给乙容器,则乙容器中纯酒精与水之比恰好是:100∶400=1∶4第二次倒后,甲容器里酒精与水之比是70%∶(1-70%)=7∶3设第二次从乙容器中倒出x克酒精溶液,则第二次倒后,甲容器有纯酒所以第二次从乙容器里倒入甲容器的混合溶液是144克.二、解答题:1.取了6次后,红球剩9个,黄球剩2个.设取了x次后,红球剩9个,黄球剩2个.5x+9=(4x+2)×1.55x+9=6x+3x=6所以取6次后,红球剩9个,黄球剩2个.2.小明5岁,妈妈32岁,爸爸36岁,爷爷74岁妈妈与小明年龄之和:(147+38)÷(2×2+1)=37(岁)小明的年龄:(37-27)÷2=5(岁)妈妈的年龄:37-5=32(岁)爷爷的年龄: 37×2=74(岁)爸爸的年龄:74-38=36(岁)3.B得98分由D得分是五人的平均分知,D比A得分高,否则D成为五人中得分最低的,就不能是五人的平均分,由此得到五人得分从高到低依次是B、E、D、C、A.由C得分是A与D的平均分,因为A是94分,94是偶数,所以D的得分也应是偶数,但D不能得100分,否则B得分超过100分;D=98分,则C=96分,E=98分,B=98×5-(98+96+94+98)=104分,超过100分,不可能;所以D=96分,C=95分,E=97分,B得分是96×5-(97+96+95+94)=98(分)4.跑道长是200米第一次相遇甲、乙共跑了半圈,其中甲跑了60米.设半圈跑道长为x米,乙在俩人第一次相遇时跑了x-60米.从出发到甲乙第二次相遇共跑了3个半圈长,由于他俩匀速跑步,在3个半圈长里乙应跑3(x-60)米,而这个距离恰好是乙跑一圈还差80米,即2x-80米,所以3(x-60)=2x-803x-180=2x-80x=1002x=2×100=200(米)故圆形跑道的长是200米.小升初数学综合模拟试卷27一、填空题:3.将1个棱长是5厘米的正方体分割成若干个小的正方体,这些小正方体的棱长必须是整厘米数.如果这些小正方体的体积不要求都相等,那么最少可以分割成______个小正方体.4.A、B两数都只含有质因数3和4,它们的最大公约数是36.已知A有12个约数,B有8个约数,那么A+B=______.5.正方形的一组对边增加6厘米,另一组对边减少4厘米,结果得到的长方形与原正方形面积相等,原正方形的面积是______平方厘米.6如图,图中有18个小方格,要把3枚硬币放在方格里,使每行、每列只出现一枚硬币,共有______种放法.个数是______.8.1997名同学排成一排,从排头到排尾1至4报数;再从排尾向排头1至5报数,那么两次报数都报3的共有______人.9.把一个大长方体木块表面涂满红色后,分割成若干个同样大小的小长方体,其中只有两个面涂上红色的小正方体恰好是16块,那么至少要把这个大长方形分割成______个小长方体.10.有一个长方形,长有420个小方格,宽有240个小方格.如果把每个小方格的顶点称为格点,连结这个长方形的对角线共经过______个格点(包括对角线两端).二、解答题:1.某沿海地区甲、乙两码头,已知一艘船从甲到乙每天航行300千米,从乙到甲每天航行360千米,如果这艘船在甲、乙两码头间往返航行4次共22天,那么甲、乙两码头间的距离是多少千米?2.有8盏灯,从1到8编号,开始时3、6、7编号的灯是亮的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小升初数学综合模拟试卷24一、填空题:2.将1、2、3、4、5、6、8、9这八个数组成两个四位数,使这两个数的差最小,这个差是______.3.如图,将它折成一个正方体,相交于同一顶点的三个面上的数之和最大是______.4.将1至9这九个数分别填在下面九个方框中,使等式成立:5.如图,平行四边形ABCD的一边AB=8厘米,AB上的高等于3厘米,四边形EFOG的面积等于2平方厘米,则阴影部分的面积与平行四边形的面积之比是______.6.200个连续自然数的和是32300,取出其中所有的第偶数个数(第2个,第4个,……,第200个),将它们相加,则和是______.7.某人从甲地到乙地,如果每分钟走75米,迟到8分,如果每分钟走80米,迟到6分,他应以每分钟走______米的速度走才能准时到达.8.快慢两列火车的长分别是200米、300米,它们相向而行.坐在慢车上的人见快车通过此人窗口的时间是8秒,则坐在快车上的人见慢车通过此人窗口所用的时间是______秒.9.至少有一个数字是0,且能被4整除的四位数有______个.10.如图,九个小正方形内各有一个一位数,并且每行、每列及两条对角线上的三个整数的和相等,那么x=______.二、解答题:2.甲、乙、丙三人,甲每五天去李老师家,乙每四天去李老师家,丙每六天去李老师家。

三人在1997年元旦去了李老师家,下一次三人在李老师家相聚是几月几日?3.编号为1至7的7个盘子,每盘都放有玻璃球,共放有80个,其中第1号盘里放有18个,并且编号相邻的三个盘里的玻璃球数的和相等,问第6个盘中玻璃球最多可能是多少个?已知他骑车每小时行8千米,乘车每小时行16千米,则此人从家到单位的距离是多少千米?答案一、填空题:2.137要使差最小,被减数与减数应该尽量接近.被减数的千位与减数千位的差是1,它们的末三位数,被减数应该最小,是123,减数应该最大,是986,这样得到被减数是5123,减数是4986,差等于137.3.相交于同一顶点三个面上的数之和是13.6+3+4=134.73把4234分解质因数,然后进行计算和调整,有:4234=2×29×73=58×73=29×146所以最大的两位数是73.5.1∶3因为O是AC、BD的中点,所以S△AEF+S△BGE=S△AOB-S四边形EFOG=6-2=4(平方厘米)S阴影=S平ABCD-(S△AEF+S△BGE)=12-4=8(平方厘米)S阴影∶S平ABCD=8∶24=1∶36.16200连续自然数相邻两数之差是1,所以第2个数比第1个数大1,第4个数比第3个数大1,…,第200个数比第199个数大1,100个取出的数比没取出的100个数总共多100,因此所有的第偶数个数之和是(32300+100)÷2=162007.100设从甲地出发准时到达乙地需x分,则75×(x+8)=80×(x+6)80x-75x=600-480x=24甲、乙两地距离是:80×(24+6)=2400(米)从甲地准时到达乙地这人的速度是每分走:2400÷24=100(米)8.坐在慢车上的人见快车通过此人窗口时,两列火车共行了200米,用了8秒,得到两列火车的速度和是200÷8=(25米/秒),坐在快车上的人见慢车通过此人窗口时,两列火车共行了300米,所用时间是:300÷25=12(秒).9.792个一个数能被4整除的特征是末两位数能被4整除.末两位数应是00、04、08、12、16、20、 (92)96,共25个,其中含有数字0的有7个(00、 04、 08、 20、 40、 60、 80),其余 18个末两位都不含有数字0.一个四位数的末两位含有数字0,那么它的千位可以是1至9的任意一个,百位是0至9的任意一个,这个四位数的前两位数字共9×10=90个,则末两位含有数字0且能被4整除的四位数共有:90×7=630(个)如果末两位不含有数字0,那么要求四位数的百位是0,千位是1至9的任意一个,共有9个,则末两位不含数字0,前两位含有数字0,且能被4整除的四位数共有:9×18=162(个)所以至少有一个数字0,且能被4整除的四位数有 630+162=792(个).10. x=5如图所示,a+x+f=9+x+1,有a+f=10;同理d+x+c=9+x+1得d+c=10;所以 a+f+d+c=20又 a+9+d=9+x+1,得a+d=x+1;c+1+f=9+x+1,得c+f==x+9,则 a+d+c+f=2x+10.所以 2x+10=20,x=5.二、解答题:1.厂里现有工人120名所以厂里现有工人120名.2.3月1日[5,4,6]=60,60-(31+28)=1所以下一次三人在李老师家相聚是3月1日.3.第6个盘中的玻璃球最多是12个.由于相邻三个盘中的玻璃球相等,有编号为1、4、7的盘中玻璃球均相等,等于18个,于是2、3盘中的玻璃球数的和与5、6盘中的玻璃球数的和相等,所以5、6盘中玻璃球数之和是:(80-18×3)÷2=13(个)要使第6盘中的玻璃球数最多,第5盘至少是1个(每盘都有玻璃球),所以第6盘最多可能是12个.4.此人家到单位的距离是78千米.设此人家到单位的距离是s千米,他从单位回家用了t小时,则13t=12t+6t=6S=13×6=78(千米)所以此人家到单位的距离是78千米.小升初数学综合模拟试卷25一、填空题:2.三个不同的三位数相加的和是2993,那么这三个加数是______.3.小明在计算有余数的除法时,把被除数472错看成427,结果商比原来小5,但余数恰巧相同.则该题的余数是______.4.在自然数中恰有4个约数的所有两位数的个数是______.5.如图,已知每个小正方形格的面积是1平方厘米,则不规则图形的面积是______.6.现有2克、3克、6克砝码各一个,那么在天平秤上能称出______种不同重量的物体.7.有一个算式:五入的近似值,则算式□中的数依次分别是______.8.某项工作先由甲单独做45天,再由乙单独做18天可以完成,如果甲乙两人合作可30天完成。

现由甲先单独做20天,然后再由乙来单独完成,还需要______天.9.某厂车队有3辆汽车给A、B、C、D、E五个车间组织循环运输。

如图所示,标出的数是各车间所需装卸工人数.为了节省人力,让一部分装卸工跟车走,最少安排______名装卸工保证各车间的需要.10.甲容器中有纯酒精340克,乙容器有水400克,第一次将甲容器中的一部分纯酒精倒入乙容器,使酒精与水混合;第二次将乙容器中的一部分混合液倒入甲容器,这时甲容器中纯酒精含量70%,乙容器中纯酒精含量为20%,则第二次从乙容器倒入甲容器的混合液是______克.二、解答题:1.有红黄两种玻璃球一堆,其中红球个数是黄球个数的1.5倍,如果从这堆球中每次同时取出红球5个,黄球4个,那么取了多少次后红球剩9个,黄球剩2个?2.小明一家四口人的年龄之和是147岁,爷爷比爸爸大38岁,妈妈比小明大27岁,爷爷的年龄是小明与妈妈年龄之和的2倍,问小明一家四口人的年龄各是多少岁?3.A、B、C、D、E五人在一次满分为100分的考试中,A得94分,B是第一名,C得分是A与D的平均分,D得分是五人的平均分,E比C多2分,是第二名,则B得了多少分?4.甲乙两人以匀速绕圆形跑道相向跑步,出发点在圆直径的两端.如果他们同时出发,并在甲跑完60米时第一次相遇,乙跑一圈还差80米时俩人第二次相遇,求跑道的长是多少米?答案一、填空题:1.648原式=7.2×61.3+(61.3+12.5)×2.8=(7.2+2.8)×61.3+12.5×2.8=613+35=648由于2993÷3=997…2,这三个加数必然接近997,显然997、998、998的和是2993,但由于所求三个加数不同,经过调整应为996、998、999.3.4在这两种除法计算中,除数与余数没变,只是商比原来小5.设除数是a,余数是r,则472=a×商+r427=a×(商-5)+r有472-427=a×5,a=(472-427)÷5=9472÷9=52 (4)所以余数r=4.4.30因为4=1×4=2×2,有4个约数的数一定能表示成a3或ab,a、b是质数.对于a3,只有a=3时,a3=27是两位数,即有1个数符合条件.对于ab,当a=2,b=5、7、11、13、17、19、23、29、31、37、41、43、47时符合条件,有13个;当a=3,b取大于3且小于37的质数时,符合条件,有9个;同理当a=5时有5个;a=7时有2个.则自然数中恰有4个约数的所有两位数的个数是:1+13+9+5+2=30(个)5.19平方厘米所求图形是不规则图形,通过分割可以很容易求出图中标出1、2、3、4、5、6、7图形的面积,用整个大长方形面积减去这7个图形的面积即为所求,所以不规则图形面积为:8×6-3×2÷2×3-(1+3)×3÷2-2×4÷2-(2+4)×1÷2-(3+4)×2÷2=(19平方厘米)6.10这道题没有限制砝码只能放在天平的同一秤盘上,因此天平两边的秤盘上都可以放砝码,尽管只有2克、3克、6克砝码各一个,但是如果天平一边是2克,另一边是3克,就可称出1克重的物体,如果它俩放在同一边又可称出5克重的物体.同理,2克与6克砝码可称出4克或8克重的物体;3克与6克砝码可称出3克或9克重的物体,其中3克重物体可以直接用3克砝码称出;用2克、3克和6克可称出7克、5克、1克、11克重的物体;所以用这三个砝码可称出1、2、3、4、5、6、7、8、9、11克共10种不同重量的物体.7.1,3,3于是有150.15≤55×□+22×□+10×□≤151.14由于□里的数是整数,所以55×□+22×□+10×□=151只有 55×1+22×3+10×3=151所以□里数字依次填1,3,3.8.38由题意知甲乙两人合作30天可以完成这项工作.甲做45天,比30天多15天,乙可少做30-18=12(天)说明甲做15天相当于乙做12天.现在甲做20天,比30天少10天,这10天的工作量让乙来完成,需要天数:乙还需要单独做:30+8=38(天)9.21每个车间抽出3名装卸工,共抽出3×5=15人,每辆车上有3人,共需3×3=9人,这样可节约15-9=6(人).这时A有3人,B有2人,C有4人,D有0人,E有5人.再从A、B、C、E各抽出2人,每车上2人,这样又可省去2×4-2×3=2人.这样每辆车跟5人,共15人,A有1人,B有0人,C有2人,E 有3人,D还是0人.共需装卸工:5×3+1+2+3=21(人)第二次从乙容器里倒出一部分给甲容器,并不改变乙容器的酒精浓度,所以乙容器里酒精浓度是第一次甲容器倒入一部分纯酒精而得到的,因此乙容器中酒精与水之比是:20%∶(1-20%)=1∶4那么第一次从甲容器里倒出100克给乙容器,则乙容器中纯酒精与水之比恰好是:100∶400=1∶4第二次倒后,甲容器里酒精与水之比是70%∶(1-70%)=7∶3设第二次从乙容器中倒出x克酒精溶液,则第二次倒后,甲容器有纯酒所以第二次从乙容器里倒入甲容器的混合溶液是144克.二、解答题:1.取了6次后,红球剩9个,黄球剩2个.设取了x次后,红球剩9个,黄球剩2个.5x+9=(4x+2)×1.55x+9=6x+3x=6所以取6次后,红球剩9个,黄球剩2个.2.小明5岁,妈妈32岁,爸爸36岁,爷爷74岁妈妈与小明年龄之和:(147+38)÷(2×2+1)=37(岁)小明的年龄:(37-27)÷2=5(岁)妈妈的年龄:37-5=32(岁)爷爷的年龄: 37×2=74(岁)爸爸的年龄:74-38=36(岁)3.B得98分由D得分是五人的平均分知,D比A得分高,否则D成为五人中得分最低的,就不能是五人的平均分,由此得到五人得分从高到低依次是B、E、D、C、A.由C得分是A与D的平均分,因为A是94分,94是偶数,所以D的得分也应是偶数,但D不能得100分,否则B得分超过100分;D=98分,则C=96分,E=98分,B=98×5-(98+96+94+98)=104分,超过100分,不可能;所以D=96分,C=95分,E=97分,B得分是96×5-(97+96+95+94)=98(分)4.跑道长是200米第一次相遇甲、乙共跑了半圈,其中甲跑了60米.设半圈跑道长为x米,乙在俩人第一次相遇时跑了x-60米.从出发到甲乙第二次相遇共跑了3个半圈长,由于他俩匀速跑步,在3个半圈长里乙应跑3(x-60)米,而这个距离恰好是乙跑一圈还差80米,即2x-80米,所以3(x-60)=2x-803x-180=2x-80x=1002x=2×100=200(米)故圆形跑道的长是200米.。

相关文档
最新文档