算法初步统计与概率》试题别解与感悟
高考数学概率与统计题型解析与答题技巧

高考数学概率与统计题型解析与答题技巧在高考数学中,概率与统计是一个重要的板块,它不仅考查学生的数学知识和技能,还培养学生的数据分析和推理能力。
对于很多同学来说,这部分内容既有一定的挑战性,又充满了得分的机会。
下面我们就来详细解析高考数学中概率与统计的常见题型以及相应的答题技巧。
一、概率题型1、古典概型古典概型是概率中最基础的题型之一。
它的特点是试验结果有限且等可能。
例如,从装有若干个红球和白球的袋子中摸球,计算摸到某种颜色球的概率。
答题技巧:首先,确定总的基本事件数和所求事件包含的基本事件数。
然后,利用古典概型的概率公式 P(A)=所求事件包含的基本事件数÷总的基本事件数进行计算。
2、几何概型几何概型与古典概型不同,它的试验结果是无限的。
常见的有长度型、面积型、体积型几何概型。
比如,在一个区间内随机取一个数,求满足某个条件的概率。
答题技巧:对于几何概型,关键是要正确确定几何度量。
例如,长度型就计算长度,面积型就计算面积,体积型就计算体积。
然后,按照几何概型的概率公式 P(A)=构成事件 A 的区域长度(面积或体积)÷试验的全部结果所构成的区域长度(面积或体积)进行求解。
3、条件概率条件概率是指在事件 B 发生的条件下,事件 A 发生的概率。
题目中通常会给出一些条件,让我们计算在这些条件下的概率。
答题技巧:利用条件概率公式 P(A|B)= P(AB)÷P(B),先求出 P(AB)和 P(B),再计算条件概率。
4、相互独立事件与互斥事件相互独立事件是指一个事件的发生与否对另一个事件的发生概率没有影响;互斥事件则是指两个事件不能同时发生。
答题技巧:对于相互独立事件,它们同时发生的概率用乘法计算,即 P(AB)= P(A)×P(B);对于互斥事件,它们至少有一个发生的概率用加法计算,即 P(A∪B)= P(A)+ P(B)。
二、统计题型1、抽样方法包括简单随机抽样、分层抽样和系统抽样。
数学一轮复习第十章算法初步统计与统计案例10.1算法与算法框图学案理

第十章算法初步、统计与统计案例10。
1算法与算法框图必备知识预案自诊知识梳理1.算法的含义在解决某些问题时,需要设计出一系列可操作或可计算的,通过实施这些来解决问题,通常把这些称为解决这些问题的算法。
2。
算法框图在算法设计中,算法框图可以准确、清晰、直观地表达解决问题的思想和步骤,算法框图的三种基本结构:、、。
3.三种基本逻辑结构(1)顺序结构:按照步骤的一个算法,称为具有“顺序结构”的算法,或者称为算法的顺序结构.其结构形式为(2)选择结构:需要,判断的结果决定后面的步骤,像这样的结构通常称作选择结构。
其结构形式为(3)循环结构:指从某处开始,按照一定条件反复执行某些步骤的情况.反复执行的处理步骤称为.其基本模式为4.基本算法语句任何一种程序设计语言中都包含五种基本的算法语句,它们分别是:、输出语句、、条件语句和.5。
赋值语句(1)一般形式:变量=表达式。
(2)作用:将表达式所代表的值赋给变量。
6.条件语句(1)If—Then—Else语句的一般格式为:If条件Then语句1Else语句2End If(2)If—Then语句的一般格式是:If条件Then语句End If7.循环语句(1)For语句的一般格式:For循环变量=初始值To终值循环体Next(2)Do Loop语句的一般格式:Do循环体Loop While 条件为真考点自诊1.判断下列结论是否正确,正确的画“√",错误的画“×”.(1)一个算法框图一定包含顺序结构,但不一定包含选择结构和循环结构。
()(2)算法只能解决一个问题,不能重复使用。
()(3)选择结构的出口有两个,但在执行时,只有一个出口是有效的。
()(4)循环结构中给定条件不成立时,执行循环体,反复进行,直到条件成立为止。
()(5)输入框只能紧接开始框,输出框只能紧接结束框.()2。
某地区打的士收费办法如下:不超过2公里收7元,超过2公里时,每车收燃油附加费1元,并且超过的里程每公里收2。
专题十一《概率与统计》

专题十一概率与统计概率统计抛开了数学中的“确定性”,以“不确定”的视角做出量化的、不确定性的推测,是不同与其它数学知识的重要特征.未来的众多社会规律,也都需要利用概率统计的方法去探究,所以概率统计对社会的良性和稳定发展必将起到至关重要的作用.高考以更加贴近学生日常生活的概率统计背景加强对概率统计知识的考查,也说明了高考改革的方向将更加生活化和理性化,更加贴合学生的日常.这也是提醒我们要自觉养成用“不确定性”眼光去研究生活、看待世界的习惯.一、真题再现(一)统计部分1.(2019年新课标Ⅱ理科)演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是()A.中位数B.平均数C.方差D.极差【分析】根据题意,由数据的数字特征的定义,分析可得答案.【解答】解:根据题意,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分,7个有效评分与9个原始评分相比,最中间的一个数不变,即中位数不变,故选:A.【点评】本题考查数据的数字特征,关键是掌握数据的平均数、中位数、方差、极差的定义以及计算方法,属于基础题.2.(2019年新课标Ⅰ文科)某学校为了解1000名新生的身体素质,将这些学生编号1,2,…,1000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是()A.8号学生B.200号学生C.616号学生D.815号学生【分析】根据系统抽样的特征,从1000名学生从中抽取一个容量为100的样本,抽样的分段间隔为10,结合从第4组抽取的号码为46,可得第一组用简单随机抽样抽取的号码.【解答】解:∵从1000名学生从中抽取一个容量为100的样本,∴系统抽样的分段间隔为=10,∵46号学生被抽到,则根据系统抽样的性质可知,第一组随机抽取一个号码为6,以后每个号码都比前一个号码增加10,所有号码数是以6为首项,以10为公差的等差数列,设其数列为{a n},则a n=6+10(n﹣1)=10n﹣4,当n=62时,a62=616,即在第62组抽到616.故选:C.【点评】本题考查了系统抽样方法,关键是求得系统抽样的分段间隔.3.(2019年江苏)已知一组数据6,7,8,8,9,10,则该组数据的方差是.【分析】先求出一组数据6,7,8,8,9,10的平均数,由此能求出该组数据的方差.【解答】解:一组数据6,7,8,8,9,10的平均数为:=(6+7+8+8+9+10)=8,∴该组数据的方差为:S2=[(6﹣8)2+(7﹣8)2+(8﹣8)2+(8﹣8)2+(9﹣8)2+(10﹣8)2]=.故答案为:.【点评】本题考查一组数据的方差的求法,考查平均数、方差等基础知识,考查运算求解能力,是基础题.4.(2019年新课标Ⅲ文理科)《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该学校学生总数比值的估计值为()A.0.5B.0.6C.0.7D.0.8【分析】作出维恩图,得到该学校阅读过《西游记》的学生人数为70人,由此能求出该学校阅读过《西游记》的学生人数与该学校学生总数比值的估计值.【解答】解:某中学为了了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,作出维恩图,得:∴该学校阅读过《西游记》的学生人数为70人,则该学校阅读过《西游记》的学生人数与该学校学生总数比值的估计值为:=0.7.故选:C.【点评】本题考查该学校阅读过《西游记》的学生人数与该学校学生总数比值的估计值的求法,考查维恩图的性质等基础知识,考查推理能力与计算能力,属于基础题.5.(2019年新课标Ⅱ文科)某行业主管部门为了解本行业中小企业的生产情况,随机调查了100个企业,得到这些企业第一季度相对于前一年第一季度产值增长率y的频数分布表.y的分组[﹣0.20,0)[0,0.20)[0.20,0.40)[0.40,0.60)[0.60,0.80)企业数22453147(1)分别估计这类企业中产值增长率不低于40%的企业比例、产值负增长的企业比例;(2)求这类企业产值增长率的平均数与标准差的估计值(同一组中的数据用该组区间的中点值为代表).(精确到0.01)附:≈8.602.【分析】(1)根据频数分布表计算即可;(2)根据平均值和标准差计算公式代入数据计算即可.【解答】解:(1)根据产值增长率频数表得,所调查的100个企业中产值增长率不低于40%的企业为:=0.21=21%,产值负增长的企业频率为:=0.02=2%,用样本频率分布估计总体分布得这类企业中产值增长率不低于40%的企业比例为21%,产值负增长的企业比例为2%;(2)企业产值增长率的平均数(﹣0.1×2+0.1×24+0.3×53+0.5×14+0.7×7)=0.3=30%,产值增长率的方差s2==[(﹣0.4)2×2+(﹣0.2)2×24+02×53+0.22×14+0.42×7]=0.0296,∴产值增长率的标准差s=≈0.17,∴这类企业产值增长率的平均数与标准差的估计值分别为0.30,0.17.【点评】本题考查了样本数据的平均值和方差的求法,考查运算求解能力,属基础题.6.(2019年新课标Ⅲ文理科)为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成A、B两组,每组100只,其中A组小鼠给服甲离子溶液,B 组小鼠给服乙离子溶液.每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如图直方图:记C为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P(C)的估计值为0.70.(1)求乙离子残留百分比直方图中a,b的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).【分析】(1)由频率分布直方图的性质列出方程组,能求出乙离子残留百分比直方图中a,b.(2)利用频率分布直方图能估计甲离子残留百分比的平均值和乙离子残留百分比的平均值.【解答】解:(1)C为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P(C)的估计值为0.70.则由频率分布直方图得:,解得乙离子残留百分比直方图中a=0.35,b=0.10.(2)估计甲离子残留百分比的平均值为:=2×0.15+3×0.20+4×0.30+5×0.20+6×0.10+7×0.05=4.05.乙离子残留百分比的平均值为:=3×0.05+4×0.1+5×0.15+6×0.35+7×0.2+8×0.15=6.00.【点评】本题考查频率、平均值的求法,考查频率分布直方图的性质等基础知识,考查推理能力与计算能力,属于基础题.7.(2019年新课标Ⅰ文科)某商场为提高服务质量,随机调查了50名男顾客和50名女顾客,每位顾客对该商场的服务给出满意或不满意的评价,得到下面列联表:满意不满意男顾客4010女顾客3020(1)分别估计男、女顾客对该商场服务满意的概率;(2)能否有95%的把握认为男、女顾客对该商场服务的评价有差异?附:K2=.P(K2≥k)0.0500.0100.001 k 3.841 6.63510.828【分析】(1)由题中数据,结合等可能事件的概率求解;(2)代入计算公式:K2=,然后把所求数据与3.841进行比较即可判断.【解答】解:(1)由题中数据可知,男顾客对该商场服务满意的概率P==,女顾客对该商场服务满意的概率P==;(2)由题意可知,K2==≈4.762>3.841,故有95%的把握认为男、女顾客对该商场服务的评价有差异.【点评】本题主要考查了等可能事件的概率求解及独立性检验的基本思想的应用,属于基础试题.(二)概率部分1.(2019年江苏)从3名男同学和2名女同学中任选2名同学参加志愿者服务,则选出的2名同学中至少有1名女同学的概率是.【分析】基本事件总数n==10,选出的2名同学中至少有1名女同学包含的基本事件个数m=+=7,由此能求出选出的2名同学中至少有1名女同学的概率.【解答】解:从3名男同学和2名女同学中任选2名同学参加志愿者服务,基本事件总数n==10,选出的2名同学中至少有1名女同学包含的基本事件个数:m=+=7,∴选出的2名同学中至少有1名女同学的概率是p=.故答案为:.【点评】本题考查概率的求法,考查古典概型、排列组合等基础知识,考查运算求解能力,考查数形结合思想,是基础题.2.(2019年新课标Ⅲ文科)两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是()A.B.C.D.【分析】利用古典概型求概率原理,首先用捆绑法将两女生捆绑在一起作为一个人排列找出分子,再全部排列找到分母,可得到答案.【解答】解:方法一:用捆绑法将两女生捆绑在一起作为一个人排列,有A33A22=12种排法,再所有的4个人全排列有:A44=24种排法,利用古典概型求概率原理得:p==,方法二:假设两位男同学为A、B,两位女同学为C、D,所有的排列情况有24种,如下:(ABCD)(ABDC)(ACBD)(ACDB)(ADCB)(ADBC)(BACD)(BADC)(BCAD)(BCDA)(BDAC)(BDCA)(CABD)(CADB)(CBAD)(CBDA)(CDAB)(CDBA)(DABC)(DACB)(DBAC)(DBCA)(DCAB)(DCBA)其中两位女同学相邻的情况有12种,分别为(ABCD)、(ABDC)、(ACDB)、(ADCB)、(BACD)、(BADC)、(BCDA)、(BDCA)、(CDAB)、(CDBA)、(DCAB)、(DCBA),故两位女同学相邻的概率是:p==,故选:D.【点评】本题考查排列组合的综合应用.考查古典概型的计算.3.(2019年新课标Ⅰ理科)我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“”和阴爻“”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是()A.B.C.D.【分析】基本事件总数n=26=64,该重卦恰有3个阳爻包含的基本个数m==20,由此能求出该重卦恰有3个阳爻的概率.【解答】解:在所有重卦中随机取一重卦,基本事件总数n=26=64,该重卦恰有3个阳爻包含的基本个数m==20,则该重卦恰有3个阳爻的概率p===.故选:A.【点评】本题考查概率的求法,考查古典概型、排列组合等基础知识,考查运算求解能力,是基础题.4.(2019年新课标Ⅱ文科)生物实验室有5只兔子,其中只有3只测量过某项指标.若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为()A.B.C.D.【分析】本题根据组合的概念可知从这5只兔子中随机取出3只的所有情况数为,恰有2只测量过该指标是从3只侧过的里面选2,从未测的选1,组合数为.即可得出概率.【解答】解:法一:由题意,可知:根据组合的概念,可知:从这5只兔子中随机取出3只的所有情况数为,恰有2只测量过该指标的所有情况数为.∴p==.法二:设其中做过测试的3只兔子为a,b,c,剩余的2只为A,B,则从这5只中任取3只的所有取法有{a,b,c},{a,b,A},{a,b,B},{a,c,A},{a,c,B},{a,A,B},{b,c,A},{b,c,B},{b,A,B},{c,A,B}10种,其中恰好有两只做过测试的取法有{a,b,A},{a,b,B},{a,c,A},{a,c,B},{b,c,A},{b,c,B}6种,故恰有两只做过测试的概率为=.故选:B.【点评】本题主要考查组合的相关概念及应用以及简单的概率知识,本题属基础题.5.(2019年新课标Ⅰ理科)甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以4:1获胜的概率是0.18.【分析】甲队以4:1获胜包含的情况有:①前5场比赛中,第一场负,另外4场全胜,②前5场比赛中,第二场负,另外4场全胜,③前5场比赛中,第三场负,另外4场全胜,④前5场比赛中,第四场负,另外4场全胜,由此能求出甲队以4:1获胜的概率.【解答】解:甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,甲队以4:1获胜包含的情况有:①前5场比赛中,第一场负,另外4场全胜,其概率为:p1=0.4×0.6×0.5×0.5×0.6=0.036,②前5场比赛中,第二场负,另外4场全胜,其概率为:p2=0.6×0.4×0.5×0.5×0.6=0.036,③前5场比赛中,第三场负,另外4场全胜,其概率为:p3=0.6×0.6×0.5×0.5×0.6=0.054,④前5场比赛中,第四场负,另外4场全胜,其概率为:p4=0.6×0.6×0.5×0.5×0.6=0.054,则甲队以4:1获胜的概率为:p=p1+p2+p3+p4=0.036+0.036+0.054+0.054=0.18.故答案为:0.18.【点评】本题考查概率的求法,考查相互独立事件概率乘法公式等基础知识,考查运算求解能力,是基础题.6.(2019年上海)某三位数密码,每位数字可在0﹣9这10个数字中任选一个,则该三位数密码中,恰有两位数字相同的概率是.【分析】分别运用直接法和排除法,结合古典概率的公式,以及计数的基本原理:分类和分步,计算可得所求值.【解答】解:方法一、(直接法)某三位数密码锁,每位数字在0﹣9数字中选取,总的基本事件个数为1000,其中恰有两位数字相同的个数为C C=270,则其中恰有两位数字相同的概率是=;方法二、(排除法)某三位数密码锁,每位数字在0﹣9数字中选取,总的基本事件个数为1000,其中三位数字均不同和全相同的个数为10×9×8+10=730,可得其中恰有两位数字相同的概率是1﹣=.故答案为:.【点评】本题考查古典型概率的求法,注意运用直接法和排除法,考查排列组合数的求法,以及运算能力,属于基础题.7.(2019年新课标Ⅱ理科)11分制乒乓球比赛,每赢一球得1分,当某局打成10:10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方10:10平后,甲先发球,两人又打了X个球该局比赛结束.(1)求P(X=2);(2)求事件“X=4且甲获胜”的概率.【分析】(1)设双方10:10平后的第k个球甲获胜为事件A k(k=1,2,3,…),则P (X=2)=P(A1A2)+P()=P(A1)P(A2)+P()P(),由此能求出结果.(2)P(X=4且甲获胜)=P(X=4且甲获胜)=P()+P()=P(A1)P()P(A3)P(A4)+P()P(A2)P(A3)P(A4),由此能求出事件“X=4且甲获胜”的概率.【解答】解:(1)设双方10:10平后的第k个球甲获胜为事件A k(k=1,2,3,…),则P(X=2)=P(A1A2)+P()=P(A1)P(A2)+P()P()=0.5×0.4+0.5×0.6=0.5.(2)P(X=4且甲获胜)=P()+P()=P(A1)P()P(A3)P(A4)+P()P(A2)P(A3)P(A4)=0.5×0.6×0.5×0.4+0.5×0.4×0.5×0.4=0.1.【点评】本题考查概率的求法,考查相互独立事件概率乘法公式等基础知识,考查推理能力与计算能力,是中档题.8.(2019年天津文科)2019年,我国施行个人所得税专项附加扣除办法,涉及子女教育、继续教育、大病医疗、住房贷款利息或者住房租金、赡养老人等六项专项附加扣除.某单位老、中、青员工分别有72,108,120人,现采用分层抽样的方法,从该单位上述员工中抽取25人调查专项附加扣除的享受情况.(Ⅰ)应从老、中、青员工中分别抽取多少人?(Ⅱ)抽取的25人中,享受至少两项专项附加扣除的员工有6人,分别记为A,B,C,D,E,F.享受情况如表,其中“〇”表示享受,“×”表示不享受.现从这6人中随机抽取2人接受采访.A B C D E F子女教育〇〇×〇×〇继续教育××〇×〇〇大病医疗×××〇××住房贷款利息〇〇××〇〇住房租金××〇×××赡养老人〇〇×××〇(i)试用所给字母列举出所有可能的抽取结果;(ii)设M为事件“抽取的2人享受的专项附加扣除至少有一项相同”,求事件M发生的概率.【分析】(Ⅰ)根据分层抽样各层所抽比例相等可得结果;(Ⅱ)(i)用列举法求出基本事件数;(ii)用列举法求出事件M所含基本事件数以及对应的概率;【解答】解:(Ⅰ)由已知,老、中、青员工人数之比为6:9:10,由于采用分层抽样从中抽取25位员工,因此应从老、中、青员工中分别抽取6人,9人,10人;(Ⅱ)(i)从已知的6人中随机抽取2人的所有可能结果为{A,B},{A,C},{A,D},{A,E},{A,F},{B,C},{B,D},{B,E},{B,F},{C,D},{C,E},{C,F},{D,E},{D,F},{E,F},共15种;(ii)由表格知,符合题意的所有可能结果为{A,B},{A,D},{A,E},{A,F},{B,D},{B,E},{B,F},{C,E},{C,F},{D,F},{E,F},共11种,所以,事件M发生的概率P(M )=.【点评】本题考查了用列举法求古典概型的概率问题以及根据数据分析统计结论的问题,是基础题目9.(2019年北京文科)改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A,B两种移动支付方式的使用情况,从全校所有的1000名学生中随机抽取了100人,发现样本中A,B两种支付方式都不使用的有5人,样本中仅使用A和仅使用B的学生的支付金额分布情况如下:不大于2000元大于2000元仅使用A27人3人仅使用B24人1人(Ⅰ)估计该校学生中上个月A,B两种支付方式都使用的人数;(Ⅱ)从样本仅使用B的学生中随机抽取1人,求该学生上个月支付金额大于2000元的概率;(Ⅲ)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用B的学生中随机抽查1人,发现他本月的支付金额大于2000元.结合(Ⅱ)的结果,能否认为样本仅使用B的学生中本月支付金额大于2000元的人数有变化?说明理由.【分析】(Ⅰ)从全校所有的1000名学生中随机抽取的100人中,A,B两种支付方式都不使用的有5人,仅使用A的有30人,仅使用B的有25人,求出A,B两种支付方式都使用的人数有40人,由此能估计该校学生中上个月A,B两种支付方式都使用的人数.(Ⅱ)从样本仅使用B的学生有25人,其中不大于2000元的有24人,大于2000元的有1人,从中随机抽取1人,基本事件总数n=25,该学生上个月支付金额大于2000元包含的基本事件个数m=1,由此能求出该学生上个月支付金额大于2000元的概率.(Ⅲ)从样本仅使用B的学生中随机抽查1人,发现他本月的支付金额大于2000元的概率为,虽然概率较小,但发生的可能性为.不能认为样本仅使用B的学生中本月支付金额大于2000元的人数有变化.【解答】解:(Ⅰ)由题意得:从全校所有的1000名学生中随机抽取的100人中,A,B两种支付方式都不使用的有5人,仅使用A的有30人,仅使用B的有25人,∴A,B两种支付方式都使用的人数有:100﹣5﹣30﹣25=40,∴估计该校学生中上个月A,B两种支付方式都使用的人数为:1000×=400人.(Ⅱ)从样本仅使用B的学生有25人,其中不大于2000元的有24人,大于2000元的有1人,从中随机抽取1人,基本事件总数n=25,该学生上个月支付金额大于2000元包含的基本事件个数m=1,∴该学生上个月支付金额大于2000元的概率p==.(Ⅲ)不能认为样本仅使用B的学生中本月支付金额大于2000元的人数有变化,理由如下:上个月样本学生的支付方式在本月没有变化.现从样本仅使用B的学生中随机抽查1人,发现他本月的支付金额大于2000元的概率为,虽然概率较小,但发生的可能性为.故不能认为样本仅使用B的学生中本月支付金额大于2000元的人数有变化.【点评】本题考查频数、概率的求法,考查频数分布表、概率等基础知识,考查推理能力与计算能力,属于基础题.(三)随机变量部分1.(2019年新课标Ⅱ文理科)我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为0.98.【分析】利用加权平均数公式直接求解.【解答】解:∵经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,∴经停该站高铁列车所有车次的平均正点率的估计值为:=(10×0.97+20×0.98+10×0.99)=0.98.故答案为:0.98.【点评】本题考查经停该站高铁列车所有车次的平均正点率的估计值的求法,考查加权平均数公式等基础知识,考查推理能力与计算能力,属于基础题.2.(2019年浙江)设0<a<1.随机变量X的分布列是X0a1P则当a在(0,1)内增大时,()A.D(X)增大B.D(X)减小C.D(X)先增大后减小D.D(X)先减小后增大【分析】方差公式结合二次函数的单调性可得结果【解答】解:E(X)=0×+a×+1×=,D(X)=()2×+(a﹣)2×+(1﹣)2×=[(a+1)2+(2a﹣1)2+(a﹣2)2]=(a2﹣a+1)=(a﹣)2+∵0<a<1,∴D(X)先减小后增大故选:D.【点评】本题考查方差的求法,利用二次函数的单调性是关键,考查推理能力与计算能力,是中档题.3.(2019年天津理科)设甲、乙两位同学上学期间,每天7:30之前到校的概率均为.假定甲、乙两位同学到校情况互不影响,且任一同学每天到校情况相互独立.(Ⅰ)用X表示甲同学上学期间的三天中7:30之前到校的天数,求随机变量X的分布列和数学期望;(Ⅱ)设M为事件“上学期间的三天中,甲同学在7:30之前到校的天数比乙同学在7:30之前到校的天数恰好多2”,求事件M发生的概率.【分析】(I)甲上学期间的三天中到校情况相互独立,且每天7:30之前到校的概率均为,故X~B(),可求分布列及期望;(II)设乙同学上学期间的三天中7:30到校的天数为Y,则Y~B(3,),且M={X =3,Y=1}∪{X=2,Y=0},由题意知{X=3,Y=1}与{X=2,Y=0}互斥,且{X=3}与{Y=1},{X=2}与{Y=0}相互独立,利用相互对立事件的个概率公式可求【解答】解:(I)甲上学期间的三天中到校情况相互独立,且每天7:30之前到校的概率均为,故X~B(3,),从而P(X=k )=,k=0,1,2,3.所以,随机变量X的分布列为:X0123P随机变量X的期望E(X)=3×=2.(II)设乙同学上学期间的三天中7:30到校的天数为Y,则Y~B(3,),且M={X=3,Y=1}∪{X=2,Y=0},由题意知{X=3,Y=1}与{X=2,Y=0}互斥,且{X=3}与{Y=1},{X=2}与{Y=0}相互独立,由(I)知,P(M)=P({X=3,Y=1}∪{X=2,Y=0}=P({X=3,Y=1}+P{X=2,Y =0}=P(X=3)P(Y=1)+P(X=2)P(Y=0)==【点评】本题主要考查了离散型随机变量的分布列与期望,互斥事件与相互独立事件的概率计算公式,考查运算概率公式解决实际问题的能力.4.(2019年北京理科)改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A,B两种移动支付方式的使用情况,从全校学生中随机抽取了100人,发现样本中A,B两种支付方式都不使用的有5人,样本中仅使用A和仅使用B的学生的支付金额分布情况如下:(0,1000](1000,2000]大于2000仅使用A18人9人3人仅使用B10人14人1人(Ⅰ)从全校学生中随机抽取1人,估计该学生上个月A,B两种支付方式都使用的概率;(Ⅱ)从样本仅使用A和仅使用B的学生中各随机抽取1人,以X表示这2人中上个月支付金额大于1000元的人数,求X的分布列和数学期望;(Ⅲ)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用A的学生中,随机抽查3人,发现他们本月的支付金额都大于2000元.根据抽查结果,能否认为样本仅使用A的学生中本月支付金额大于2000元的人数有变化?说明理由.【分析】(Ⅰ)从全校所有学生中随机抽取的100人中,A,B两种支付方式都不使用的有5人,仅使用A的有30人,仅使用B的有25人,从而A,B两种支付方式都使用的人数有40人,由此能求出从全校学生中随机抽取1人,估计该学生上个月A,B两种支付方式都使用的概率.(Ⅱ)记事件E为“从样本仅使用A的学生中随机抽查3人,他们本月的支付金额都大于2000元”,求出P(E)=,答案示例1:可以认为有变化.P(E)比较小,概率比较小的事件一般不容易发生,一旦发生,就有理由认为本月的支付金额发生了变化,可以认为有变化.答案示例2:无法确定有没有变化.事件E是随机事件,P(E)比较小,一般不容易发生,但还是有可能发生,无法确定有没有变化.【解答】解:(Ⅰ)由题意得:从全校所有学生中随机抽取的100人中,A,B两种支付方式都不使用的有5人,仅使用A的有30人,仅使用B的有25人,∴A,B两种支付方式都使用的人数有:100﹣5﹣30﹣25=40,∴从全校学生中随机抽取1人,估计该学生上个月A,B两种支付方式都使用的概率p==0.4.(Ⅱ)从样本仅使用A和仅使用B的学生中各随机抽取1人,以X表示这2人中上个月支付金额大于1000元的人数,则X的可能取值为0,1,2,样本仅使用A的学生有30人,其中支付金额在(0,1000]的有18人,超过1000元的有12人,样本仅使用B的学生有25人,其中支付金额在(0,1000]的有10人,超过1000元的有15人,P(X=0)===,P(X=1)===,P(X=2)===,∴X的分布列为:X012P数学期望E(X)==1.(Ⅲ)记事件E为“从样本仅使用A的学生中随机抽查3人,他们本月的支付金额都大于2000元”,假设样本仅使用A的学生中,本月支付金额额大于2000元的人数没有变化,则由上个月的样本数据得P(E)==,答案示例1:可以认为有变化,理由如下:P(E)比较小,概率比较小的事件一般不容易发生,一旦发生,就有理由认为本月的支付金额发生了变化,∴可以认为有变化.答案示例2:无法确定有没有变化,理由如下:事件E是随机事件,P(E)比较小,一般不容易发生,但还是有可能发生,∴无法确定有没有变化.【点评】本题考查概率、离散型随机变量的分布列、数学期望的求法,考查古典概型、相互独立事件概率乘法公式等基础知识,考查推理能力与计算能力,是中档题.5.(2019年新课标Ⅰ理科)为治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得﹣1分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得﹣1分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X.(1)求X的分布列;(2)若甲药、乙药在试验开始时都赋予4分,p i(i=0,1,…,8)表示“甲药的累计得分为i时,最终认为甲药比乙药更有效”的概率,则p0=0,p8=1,p i=ap i﹣1+bp i+cp i+1。
高中数学概率与统计题型解答方法

高中数学概率与统计题型解答方法概率与统计是高中数学中的重要内容,也是学生们普遍感觉较为困难的部分。
在这篇文章中,我将为大家介绍一些解答概率与统计题型的方法和技巧,希望能够帮助大家更好地理解和应对这一部分的考试内容。
一、概率题型解答方法概率题型主要涉及到事件的发生可能性以及事件之间的关系。
在解答概率题型时,我们可以按照以下步骤进行:1. 确定样本空间:首先要明确问题中所涉及的所有可能结果,这些结果构成了样本空间。
例如,如果问题是抛一枚硬币,我们可以得到样本空间为{正面,反面}。
2. 确定事件:根据问题的要求,确定我们关注的事件。
例如,如果问题是抛一枚硬币,要求出现正面的概率,那么我们可以将事件定义为“出现正面”。
3. 计算概率:根据事件发生的可能性和样本空间的大小,计算事件发生的概率。
例如,对于抛一枚硬币出现正面的问题,由于样本空间中只有两个结果,所以事件发生的概率为1/2。
除了基本的概率计算,还有一些特殊的概率题型,例如条件概率、独立事件等。
对于这些题型,我们需要根据具体情况使用相应的公式和方法进行计算。
二、统计题型解答方法统计题型主要涉及到数据的收集、整理和分析。
在解答统计题型时,我们可以按照以下步骤进行:1. 收集数据:首先要明确问题中所要求的数据类型和范围,然后进行数据的收集。
例如,如果问题是调查学生的身高,我们可以通过测量学生的身高来收集数据。
2. 整理数据:将收集到的数据进行整理和分类,以便后续的分析。
例如,可以将学生的身高按照一定的范围进行分组,并制作成频数表或直方图。
3. 分析数据:根据问题的要求,对数据进行分析和计算。
例如,可以计算出数据的平均值、中位数、众数等统计量,以及数据的方差和标准差等。
除了基本的数据分析,还有一些特殊的统计题型,例如假设检验、相关性分析等。
对于这些题型,我们需要根据具体情况使用相应的统计方法和检验标准进行分析。
三、举一反三在解答概率与统计题型时,我们可以通过举一反三的方法拓展思路,将相似的题目进行比较和联系,从而更好地理解和解答题目。
高考数学真题与解析-算法初步

专题十二算法初步、推理与证明12.1算法初步考点算法与程序框图1.(2020课标Ⅱ文,7,5分)执行下面的程序框图,若输入的k=0,a=0,则输出的k为()A.2B.3C.4D.5答案C输入k=0,a=0,第一次循环,a=1,k=1,a<10,第二次循环,a=3,k=2,a<10,第三次循环,a=7,k=3,a<10,第四次循环,a=15,k=4,a>10,结束循环,输出k=4.2.(2020课标Ⅰ文,9,5分)执行如图所示的程序框图,则输出的n=()A.17B.19C.21D.23答案C S=0,n=1;S=1,S≤100,n=3;S=4,S≤100,n=5;S=9,S≤100,n=7;……S=81,S≤100,n=19;S=100,S≤100,n=21;S=121,S>100,结束循环,∴输出n 的值为21.3.(2019课标Ⅰ理,8,5分)如图是求12+12+12的程序框图,图中空白框中应填入()A.A=12+B.A=2+1C.A=11+2D.A=1+12答案A 本题考查学生对程序框图基本逻辑结构以及算法的含义和算法思想的理解;考查的核心素养是逻辑推理.观察题目所给式子,由程序框图,得当k=1时,k≤2成立,A=12+=12+12;当k=2时,k≤2成立,A=12+=12+12+12;当k=3时,k≤2不成立,输出A,程序结束.故选A.名师点拨程序框图题通常是计算输出结果,或者寻找判断条件、逆推输入条件.本题另辟蹊径,要求完善处理框,对学生的应变能力有一定的要求,难度不大.另外,由题设结合递推关系也可直接选出答案.4.(2018北京理,3文3,5分)执行如图所示的程序框图,输出的s 值为()A.12B.56C.76D.712k=1,s=1;s=1+(-1)1×11+1=1-12=12,k=2,2<3;s=12+(-1)2×11+2=12+13=56,k=3,此时跳出循环,∴输出56.故选B.5.(2017北京理,3文3,5分)执行如图所示的程序框图,输出的s值为()A.2B.32C.53D.85答案C本题考查程序框图中的循环结构.由程序框图可知k=1,s=2;k=2,s=32;k=3,s=53.此时k<3不成立,故输出s=53.故选C.解题关键找出循环终止的条件是解题的关键.6.(2017天津理,3,5分)阅读下面的程序框图,运行相应的程序,若输入N的值为24,则输出N的值为()A.0B.1C.2D.3执行程序框图,输入N的值为24时,24能被3整除,执行是,N=8,8≤3不成立,继续执行循环体;8不能被3整除,执行否,N=7,7≤3不成立,继续执行循环体;7不能被3整除,执行否,N=6,6≤3不成立,继续执行循环体;6能被3整除,执行是,N=2,2≤3成立,退出循环,输出N的值为2,故选C.7.(2017山东文,6,5分)执行下面的程序框图,当输入的x的值为4时,输出的y的值为2,则空白判断框中的条件可能为()A.x>3B.x>4C.x≤4D.x≤5答案B∵log24=2,4+2=6,∴当x=4时,应执行否.结合选项知选B.8.(2016课标Ⅰ,理9,文10,5分)执行下面的程序框图,如果输入的x=0,y=1,n=1,则输出x,y的值满足()A.y=2xB.y=3xC.y=4xD.y=5x答案C x=0,y=1,n=1,x=0,y=1,n=2;x=12,y=2,n=3;x=32,y=6,此时x2+y2>36,输出x=32,y=6,满足y=4x.故选C.9.(2016天津理,4,5分)阅读下边的程序框图,运行相应的程序,则输出S的值为()A.2B.4C.6D.8答案B S=4,n=1;S=8,n=2;S=2,n=3;S=4,n=4,结束循环,输出S=4,故选B.10.(2016四川理,6,5分)秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法求某多项式值的一个实例,若输入n,x的值分别为3,2,则输出v的值为()A.9B.18C.20D.35答案B执行程序框图,n=3,x=2,v=1,i=2≥0;v=1×2+2=4,i=1≥0;v=4×2+1=9,i=0≥0;v=9×2+0=18,i=-1<0,结束循环,输出v=18.故选B.11.(2016北京文,3,5分)执行如图所示的程序框图,输出的s值为()A.8B.9C.27D.36答案B由题意,知=0,=1,=1,=2,=9,=3,这时3>2,输出s=9,故选B.12.(2015北京理,3,5分)执行如图所示的程序框图,输出的结果为()A.(-2,2)B.(-4,0)C.(-4,-4)D.(0,-8)答案B第一次循环:s=0,t=2,x=0,y=2,k=1<3;第二次循环:s=-2,t=2,x=-2,y=2,k=2<3;第三次循环:s=-4,t=0,x=-4,y=0,k=3,满足k≥3,循环结束,此时输出(x,y)为(-4,0),故选B.13.(2015湖南理,3,5分)执行如图所示的程序框图.如果输入n=3,则输出的S=()A.67B.37C.89D.49答案B当输入n=3时,输出S=11×3+13×5+15×7=121-13+13-15+1517=37.故选B.14.(2015课标Ⅰ,理9,文9,5分)执行下面的程序框图,如果输入的t=0.01,则输出的n=()A.5B.6C.7D.8答案C第一次循环:S=1-12=12,m=14,n=1,S>t;第二次循环:S=12-14=14,m=18,n=2,S>t;第三次循环:S=14-18=18,m=116,n=3,S>t;第四次循环:S=18-116=116,m=132,n=4,S>t;第五次循环:S=116-132=132,m=164,n=5,S>t;第六次循环:S=132-164=164,m=1128,n=6,S>t;第七次循环:S=164-1128=1128,m=1256,n=7,此时不满足S>t,结束循环,输出n=7,故选C.15.(2015课标Ⅱ,理8,文8,5分)下边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入的a,b分别为14,18,则输出的a=()A.0B.2C.4D.14答案B开始:a=14,b=18,第一次循环:a=14,b=4;第二次循环:a=10,b=4;第三次循环:a=6,b=4;第四次循环:a=2,b=4;第五次循环:a=2,b=2.此时,a=b,退出循环,输出a=2.评析熟悉“更相减损术”对理解框图所确定的算法有帮助.16.(2015重庆理,7,5分)执行如图所示的程序框图,若输出k的值为8,则判断框内可填入的条件是()A.s≤34B.s≤56C.s≤1112D.s≤2524答案C k=2,s=12;k=4,s=12+14=34;k=6,s=12+14+16=1112;k=8,s=12+14+16+18=2524.此时循环结束,所以判断框中可填入的条件是s≤1112,选C.17.(2014课标Ⅰ,理7,文9,5分)执行下面的程序框图,若输入的a,b,k分别为1,2,3,则输出的M=()A.203B.72C.165D.158答案D第一次循环,M=32,a=2,b=32,n=2;第二次循环,M=83,a=32,b=83,n=3;第三次循环,M=158,a=83,b=158,n=4,退出循环,输出M为158,故选D.18.(2014课标Ⅱ,理7,文8,5分)执行下面的程序框图,如果输入的x,t均为2,则输出的S=()A.4B.5C.6D.7答案D k=1,M=11×2=2,S=2+3=5;k=2,M=22×2=2,S=2+5=7;k=3,3>t,∴输出S=7,故选D.19.(2013课标Ⅰ理,5,5分)执行下面的程序框图,如果输入的t∈[-1,3],则输出的s属于()A.[-3,4]B.[-5,2]C.[-4,3]D.[-2,5]答案A由框图知s是关于t的分段函数:s=3s-1≤<1,4t2,1≤t≤3,当t∈[-1,1)时,s∈[-3,3);当t∈[1,3]时,s=4t-t2=4-(t-2)2∈[3,4],故s∈[-3,4],故选A.20.(2013课标Ⅱ理,6,5分)执行下面的程序框图,如果输入的N=10,那么输出的S=()A.1+12+13+...+110 B.1+12!+13!+ (110)C.1+12+13+...+111 D.1+12!+13!+ (111)答案B由框图知循环情况如下:T=1,S=1,k=2;T=12,S=1+12,k=3;T=12×3,S=1+12+12×3,k=4;T=14!,S=1+12!+13!+14!,k=5;…;T=110!,S=1+12!+13!+…+110!,k=11>10,输出S,故选B.21.(2013课标Ⅱ文,7,5分)执行下面的程序框图,如果输入的N=4,那么输出的S=()A.1+12+13+14B.1+12+13×2+14×3×2C.1+12+13+14+15D.1+12+13×2+14×3×2+15×4×3×2答案B 由框图知循环情况为:T=1,S=1,k=2;T=12,S=1+12,k=3;T=12×3,S=1+12+12×3,k=4;T=12×3×4,S=1+12+12×3+12×3×4,k=5>4,故输出S.选B.22.(2012课标理,6,5分)如果执行下边的程序框图,输入正整数N(N≥2)和实数a 1,a 2,…,a N ,输出A,B,则()A.A+B 为a 1,a 2,…,a N 的和B.r 2为a 1,a 2,…,a N 的算术平均数C.A 和B 分别是a 1,a 2,…,a N 中最大的数和最小的数D.A 和B 分别是a 1,a 2,…,a N 中最小的数和最大的数答案C 不妨令N=3,a 1<a 2<a 3,则有k=1,A=a 1,B=a 1,x=a 1;k=2,x=a 2,A=a 2;k=3,x=a 3,A=a 3,结束循环.故输出A=a 3,B=a 1,选C.评析本题考查了流程图,考查了由一般到特殊的转化思想.23.(2011课标,理3,文5,5分)执行右面的程序框图,如果输入的N 是6,那么输出的p 是()A.120B.720C.1440D.5040答案B 输入N=6,k=1,p=1,赋值p=1×1=1,k=1<6;k=1+1=2,p=1×2=2,k=2<6;k=2+1=3,p=2×3=6,k=3<6;k=3+1=4,p=6×4=24,k=4<6;k=4+1=5,p=24×5=120,k=5<6;k=5+1=6,p=120×6=720,k=6不小于6,所以输出p=720,故选B.24.(2017江苏,4,5分)下图是一个算法流程图.若输入x 的值为116,则输出y 的值是.答案-2解析本题考查算法与程序框图.∵x=116<1,∴y=2+log2116=-2.25.(2016课标Ⅱ,8,5分)中国古代有计算多项式值的秦九韶算法,如图是实现该算法的程序框图.执行该程序框图,若输入的x=2,n=2,依次输入的a为2,2,5,则输出的s=()A.7B.12C.17D.34答案C k=0,s=0,输入a=2,s=0×2+2=2,k=1;输入a=2,s=2×2+2=6,k=2;输入a=5,s=6×2+5=17,k=3>2,输出s=17.故选C.。
算法初步程序框图题解析

2018年第1期“算法初步”是普通高中课程标准实验教科书的新增内容之一。
算法初步知识与函数、数列、统计、概率等知识点的整合,是高考试题命制的新亮点,既遵循了“在知识网络交汇处设计试题”的命制原则,又符合高考试题“能力立意”的宗旨,突出了数学的学科特点。
这类试题虽然难度不大,但得分率不高。
本文通过举例,说明解决这类试题的一般方法,供参考。
一、算法与函数的整合例1.执行如图所示的程序框图,如果依次输入函数:f (x )=3x ,f (x )=sin x ,f (x )=x 3,f (x )=x +x 1,那么输出的函数f (x )为()A.3x B.sin x C.x 3 D.x +x1解析:输出的函数应满足:f (-x )=-f (x )(x ∈R ),即函数f (x )是定义在R 上的奇函数,且f (x +m )>f (x ),其中m >0,即函数f (x )是定义在R 上的增函数。
对于A ,函数f (x )=3x 不是奇函数;对于B ,函数f (x )=sin x 不是定义在R 上的增函数;对于C ,函数f (x )=x 3既是奇函数又是定义在R 上的增函数;对于D ,函数f (x )=x +x 1的定义域不是实数集。
故选C 。
注:本题既考查对函数性质的理解,又考查对算法流程图的理解,学生在解答这类题目时,需系统掌握函数的基本知识及性质,解题的关键是根据判断框内的条件解决算法问题。
二、算法与数列的整合例2.执行如图所示的程序框图,若输出的S 的值是126,则①应为()A.n ≤5 B.n ≤6 C.n ≤7 D.n ≤8解析:本题的实质是计算数列{2n }的前多少项和为126。
注意到数列{2n }是首项为2,公比为2的等比数列,其前6项和为2(1-26)1-2=126,结合题意可知,应选B 。
注:本题属循环语句和数列求和综合题。
主要考查在不完整的程序框图中填补一些条件或内容,是高考考查算法知识的一种重要题型。
统计与概率:统计初步(答案版)
人才运营管理方案一、前言人才是企业发展的重要资源,拥有优秀的人才是企业取得竞争优势的关键。
而人才管理作为企业管理的一个重要方面,已经逐渐引起企业的重视。
本文将围绕人才运营管理,提出一套全面的人才运营管理方案,以期帮助企业更好地管理和发展人才。
二、人才运营管理的含义人才运营管理是指企业依托现代人力资源管理理念,通过各种手段和方法,全面、有效、系统地管理和发展企业人才,使其为企业的发展和实现战略目标做出贡献。
三、人才运营管理的重要性1. 提升企业绩效。
优秀的人才是企业的核心竞争力,有能力的员工可以提升企业的创新和生产效率,促进企业的持续发展。
2. 促进企业文化建设。
人才是企业文化的重要组成部分,企业可以通过人才管理促进企业文化的建设,形成积极向上的企业氛围。
3. 降低人才流失率。
通过有效的人才运营管理,企业可以提高员工的工作满意度,减少员工的流失,降低用工成本。
四、人才运营管理方案1. 制定人才引进和选拔的标准和程序企业应该根据自身的发展需要和岗位需求,制定相应的招聘标准和程序,确保招聘到符合企业要求的人才。
在招聘过程中,要充分考虑应聘者的专业能力、团队合作意识、沟通能力等方面的评估。
2. 建立绩效考核制度企业需要建立完善的绩效考核制度,通过绩效考核来评价员工的工作表现,并根据绩效考核结果进行奖惩。
这样可以激励员工的工作动力,提高工作效率。
3. 设立员工培训计划企业需要根据员工的工作岗位以及业务发展的需求,制定员工培训计划。
通过不同形式的培训,提高员工的专业能力和综合素质,满足企业对人才的需求。
4. 搭建人才梯队建设平台企业需要搭建人才梯队建设平台,制定相应的人才选拔、培养、激励计划,通过内部选拔和外部引进,加速培养和选拔年轻有为的人才,为企业未来的发展做好人才储备。
5. 建立有效的激励机制企业需要建立完善的激励机制,包括薪酬激励、晋升激励、荣誉激励等,激励员工为企业发展贡献自己的力量,提高员工的归属感和忠诚度。
专题六 算法、统计、概率、复数测试题(文)解析
专题六 算法、统计、概率、复数测试题(文)解析一、选择题:本大题共12小题,每小题5分,共60分. 1.已知复数z 的共轭复数为z ,若|z |=4,则z ·z =( )A .4B .2C .16D .±2解析 设z =a +b i ,则z ·z =(a +b i)(a -b i)=a 2+b 2.又|z |=4,得a 2+b 2=4,所以z ·z =16.故选C. 2.在复平面内,复数311i i+-对应的点位于 A .第四象限 B .第三象限C .第二象限D .第一象限【解析】1i 22z =-11, 22⎛⎫- ⎪⎝⎭对应的点是,故选A. 3.有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为( )A.13B.12C.23D.34解析 古典概型,总的情况共3×3=9种,满足题意的有3种,故所求概率为P =39=13.4.对变量x ,y 有观测数据(x i ,y i )(i =1,2,…,10),得散点图1;对变量u ,v 有观测数据(u i ,v i )(i =1,2,…,10),得散点图2.由这两个散点图可以判断( )A.变量x与y正相关,u与v正相关B.变量x与y正相关,u与v负相关C.变量x与y负相关,u与v正相关D.变量x与y负相关,u与v负相关解析夹在带状区域内的点,总体呈上升趋势的属于正相关;反之,总体呈下降趋势的属于负相关.显然选C.5.某个容量为100的样本的频率分布直方图如图所示,则在区间[4,5)上的数据的频数为()A.15 B.20 C.25 D.30解析在区间[4,5)的频率/组距的数值为0.3,而样本容量为100,所以频数为30.故选D.6.甲、乙两名同学在五次测试中的成绩用茎叶图表示如图,若甲、乙两人的平均成绩分别是x 甲、x 乙,则下列结论正确的是( )A .x 甲>x 乙;乙比甲成绩稳定B .x 甲>x 乙;甲比乙成绩稳定C .x 甲<x 乙;甲比乙成绩稳定D .x 甲<x 乙;乙比甲成绩稳定 解析 由题意得,x甲=15×(68+69+70+71+72)=15×350=70,x乙=15×(63+68+69+69+71)=15×340=68,所以x 甲>x 乙.又s 2甲=15×(22+12+02+12+22)=15×10=2,s 2乙=15×(52+02+12+12+32)=15×36=7.2,所以甲比乙成绩稳定.故选B.7.记集合{}22(,)|16A x y x y =+≤和集合{}(,)|40,0,0B x y x y x y =+-≤≥≥表示的平面区域分别为12,ΩΩ若在区域1Ω内任取一点(,)M x y ,则点M 落在区域2Ω的概率为A .12πB .1πC .14D .24ππ- 【解析】区域1Ω为圆心在原点,半径为4的圆,区域2Ω为等腰直角三角形,两腰长为4,所以218116π2πS P S ΩΩ===,故选A . 8.如图所示的流程图,最后输出的n 的值是( )A .3B .4C .5D .6解析 当n =2时,22>22不成立;当n =3时,23>32不成立;当n =4时,24>42不成立;当n =5时,25>52成立.所以n =5.故选C . 9.正四面体的四个表面上分别写有数字1,2,3,4,将3个这样的四面体同时投掷于桌面上,与桌面接触的三个面上的数字的乘积能被3整除的概率为( )A .164B .1364C .3764D .6164解析 将正四面体投掷于桌面上时,与桌面接触的面上的数字是1,2,3,4的概率是相等的,都等于14.若与桌面接触的三个面上的数字的乘积能被3整除,则三个数字中至少应有一个为3,其对立事件为“与桌面接触的三个面上的数字都不是3”,其概率是⎝ ⎛⎭⎪⎫343=2764,故所求概率为1-2764=3764.10.用系统抽样法从160名学生中抽取容量为20的样本,将160名学生随机地从1~160编号,按编号顺序平均分成20组(1~8号,9~16号,…,153~160号),若第16组抽出的号码为126,则第1组中用抽签的方法确定的号码是( )A .5B .6C .7D .8解析 设第1组抽出的号码为x ,则第16组应抽出的号码是8×15+x =126,∴x =6.故选B .11.在某地区某高传染性病毒流行期间,为了建立指标显示疫情已受控制,以便向该地区居众显示可以过正常生活,有公共卫生专家建议的指标是“连续7天每天新增感染人数不超过5人”,根据连续7天的新增病倒数计算,下列各选项中,一定符合上述指标的是 ①平均数3x ≤;②标准差2S ≤;③平均数3x ≤且标准差2S ≤; ④平均数3x ≤且极差小于或等于2;⑤众数等于1且极差小于或等于4。
概率论与数理统计试卷分析(精品).doc
4.基本理论与基本方法题,考察学生对随机事件运算的掌握情况。
5.基本理论与基本方法题,考察学生对分布函数性质的掌握情况。
二、选择题
6、基本理论与基本方法题,考察学生对两独立事件、两对立事件、两互不相容事件概念的掌握情 况。
7、基本理论与基本方法题,考察学生对分布函数性质的掌握情况。
4基本概念和基本定理学生掌握较好基本概念和基本定理学生掌握较好本次试卷考察基本概念和基本定理题目共80分约百分之七十的学生在该类题目上失分较少达到良好以上这说明学生的对概率论中的基本概念和基本定理学生掌握较好
山东建筑大学理学院试卷分析(试卷类)
20典-20虬学年第 二 学期
课程名称:概率论与数理统计答题时间:120分钟
2、学生的综合计算能力较强
本次试卷的求解题共60分,并且其计算量较大,但约百分之八十的学生在计算题上失分较多,这 说明学生的计算能力总体性不强。
3、逻辑推理能力较强
本次试卷的求解题中逻辑推理题共22分,但约百分之八十的学生在求解题上失分较少,这说明学 生的逻辑推理能力较强。
4、基本概念和基本定理学生掌握较好
3、加强《概率论》中知识产生背景的教学,帮助学生加深理解和掌握《概率论》中的基本概念和 基本科学方法。
任课教师(签字):
教研室主任(签字):年—月_日
注:1.表中使用的字符选中的用♦,未选中的用◊-
2.得分率=平均得分/标准题分-
3.题目类型是指:选择、填空、计算、简答、证明等'
65
%
%
基本理论与 方法、综合运 用
成绩分数段
0~59
60-69
70 〜79
高中数学概率与统计的常见题型及解题思路
高中数学概率与统计的常见题型及解题思路数学是一门精确的科学,而概率与统计则是数学中的一个重要分支。
在高中阶段,学生将学习到许多与概率与统计相关的常见题型,本文将介绍这些题型以及解题的思路。
一、概率题型1. 事件的概率计算概率计算是概率论的基本概念之一。
当我们面对一个事件时,首先需要明确事件的样本空间以及事件本身的可能性。
以掷硬币为例,样本空间为{正面,反面},而事件“掷出正面”有一半的可能性。
解题时,可以使用计数原理或者几何概型来计算概率。
2. 独立事件的概率计算当两个或多个事件相互独立时,可以使用乘法法则来计算它们同时发生的概率。
例如,从一副扑克牌中同时抽出两张牌,求两张牌都是红心的概率。
解题时,需要考虑每个事件的概率,并将它们相乘。
3. 互斥事件的概率计算互斥事件指的是两个事件不可能同时发生。
当两个事件互斥时,可以使用加法法则来计算它们发生的概率。
例如,从一副扑克牌中抽出一张牌,求该牌是红心或者是黑桃的概率。
解题时,需要考虑每个事件的概率,并将它们相加。
4. 条件概率计算条件概率是在已知一定条件下某个事件发生的概率。
例如,某城市早高峰时段交通事故的概率。
解题时,需要将已知条件与事件的概率结合起来计算。
二、统计题型1. 样本调查与数据分析在统计学中,常常需要进行样本调查以获取数据。
例如,假设我们要调查全校学生的身高分布,可以通过随机抽样的方式获得样本数据,并进行统计分析。
解题时,需要了解样本调查的方法和数据分析的技巧。
2. 统计指标计算常见的统计指标包括平均数、中位数、众数、方差等。
解决统计题目时,需要根据给定的数据计算相应的统计指标。
例如,求一组数据的平均值或者方差。
3. 概率分布计算概率分布是指随机变量取各个值的概率。
在统计学中,常见的概率分布包括二项分布、正态分布等。
解决概率分布相关的题目时,需要了解不同概率分布的特点,并运用相应的公式来计算。
4. 假设检验与置信区间假设检验和置信区间是统计学中的两个重要概念。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《算法初步、统计与概率》试题别解与感悟 1.(广东,理6,文7)图1是某县参加2007年高考的学生身高条形统计图,从左到右的各条形表示的学生人数依次记为1210AAA,,,(如2A表示身高(单位:cm)在150155,内的学生人数).图2是统计图1中身高在一定范围内学生人数的一个算法流程图.现要统计身高在160~180cm(含160cm,不含180cm)的学生人数,那么在流程图中的判断框内应填写的条件是( ) A.6i B.7i C.8i D.9i
解答途径:身高在160~180cm的学生人数4567SAAAA,判断框内需填写循环的终止条件,下标i为循环变量,4为i的初始值,7为i的终止值,执行4次循环即可得到所需结果,因此终止条件为8i.故选C. 解题感悟:本题主要考查条形统计图和算法的程序框图.由条形统计图确定算式是基础,弄清算法流程图的逻辑结构是解题关键,本题用当型循环结构来描述算法.
图1 图2
开始 输入1210AAA,,, 04si
issA s输出 结束
1ii
否 是
50 100 150 200 250 300 350
400
450 500 550 600
145 150 155 160 165 170 175 180 185 190 195
人数/人
身高/cm 2.(山东,理10,文10)阅读右边的程序框图,若输入的 n是100,则输出的变量S和T的值依次是( ) A.2500,2500 B.2550,2550 C.2500,2550 D.2550,2500 解答途径:第1次循环后100,99ST; 第2次循环后,10098,9997ST; ……,第50次循环后, 1009822550S, 999712500T. 故选D. 解题感悟:本题主要考查得算法流程图、等差数列求和等基础知识,以及数据处理能力、语言转换能力和算法 思想.本题采用直到型循环结构描述算法.解题关键在于弄清循环体的特征,特别是明确循环一次后n的值就减少了2.本题算法的实质是等差数列求和.顺便指出,2007年海南、宁夏卷理5(文5)采用当型循环结构描述算法,与本题同源, 都是课本例题的变式题(参见人教A版数学3第14页例6).算法初步是新课程高考新增内容,算法思想是新课程强调的基本数学思想之一. 3.(海南、宁夏,理11,文12)甲、乙、丙三名射箭运动员在某次测试中各射箭20次,三人的测试成绩如下表 123sss,,分别表示甲、乙、丙三名运动员这次测试成绩的标准差,则有( ) A.312sss B.213sss C.123sss D.231sss 解答途径:先计算甲、乙、丙20次测试成绩的平均数: 8.5xxx甲乙丙; 又2222215(1.50.50.51.5)S20=, 222222161.540.540.561.520S, 222223141.560.560.541.520S. 由于221.50.5,所以222213SSS,213SSS.故选B. 甲的成绩 环数 7 8 9 10 频数 5 5 5 5 乙的成绩 环数 7 8 9 10 频数 6 4 4 6 丙的成绩 环数 7 8 9 10 频数 4 6 6 4 开始 输入n
2?x 1nn TTn 1nn 结束
输出ST, ssn 否 00ST, 是解题感悟:本题主要考查平均数、标准差等基础知识及运算求解能力.上述解答,利用221.50.5进行估算,简化了运算,节省了时间.
4.(安徽,理10)以()x表示标准正态总体在区间()x,内取值的概率,若随机变量服从正态分布2()N,,则概率()P等于( ) A.()() B.(1)(1)
C.1 D.2() 解答途径:||()PP ()()PP ()()
(1)(1),故选B.
解题感悟:本题主要考查正态分布的基础知识.解题思路是将一般正态分布化为标准正态分布.解题依据是:对任一正态总体2(,)N来说,取值小于x的概率
()()xPxFx
,
其中()x表示标准正态总体(0,1)N在区间(,)x内取值的概率.上述公式将一般正态总体化为标准正态总体,蕴涵着化归与变换的思想方法.顺便指出,本题是课本例题的变式题(详见高中数学第三册(选修Ⅱ)第34页例1).正态分布试题是近两年出现的高考题型(2006年湖北卷理19;2007年湖南卷,理5;2007年安徽卷,理10;2007年全国卷Ⅱ,理14;2007年浙江卷,理5),三种题型都有,应引起高度关注!
5.(福建,理12)如图,三行三列的方阵中有9个数(123123)ijaij,,;,,,从中任取三个
数,则至少有两个数位于同行或同列的概率是( )111213212223313233aaaaaaaaa A.37 B.47 C.114 D.1314 解答途径:(1)设“3个数位于同一行”为事件A,“2个数位于同一行,第3个数位于另一行,但这3个数不位于同一列”为事件B,“2个数位于同一行,第3个数位于另一行,且与前2个数中的1个位于同一列”为事件C.则1339C1C28PA,223339AC3C14PB,
22133239
ACC3
C7PC,故所求概率为132214PAPBPC.故选D.
(2)设“至少有两个数位于同行或同列”为事件D,则D表示“每行或每列只有一个数”,即11132139CCC1C14PD,故13114PDPD.故选D. 解题感悟:本题主要考查排列、组合与概率的有关知识.解答途径(1)根据分类讨论的思想,将问题分为两类:第一类“3个数位于同一行(或列)”,第二类“2个数位于同一行(或列),第3个数位于另一行(或列)”,但第二类中又有两种情形,即“2个数位于同一行(或列),第3个数位于另一行(或列),但这3个数不位于同一列(或行)”和“2个数位于同一行,第3个数位于另一行,但与前2个数中1个位于同一列”,这种分类思想需要有慎密的逻辑思维能力,否则极易出错;解答途径(2)根据题中出现了“至少”的词语,因此利用间接法,从问题的反面思考,显得简洁.
6.(湖北,理9)连掷两次骰子得到的点数分别为m和n,记向量()mn,a=与向量(11),b的夹角为,则0,的概率是( )
A.512 B.12 C.712 D.56 解答途径:(1)由cos0•abab,得0mn,当1m时,1n,当2m时,1,2n,当3m时,1,2,3n,…,当6m时,1,2,3,4,5,6n,故所求概率为
12345673612.
(2)由cos0•abab,得0mn,显然当0mn时有6种可能,根据对称性0mn与0mn的可能性相同,即各有15种可能,故所求概率为61573612. 解题感悟:本题主要考查古典概型,由于把投骰子问题与平面向量知识融为一体,使问题显得新颖.解答途径(1)采用列举的方法求解,思路自然;解答途径(2)采用对称的方法求解,思路别致. 7.(浙江,理15)随机变量的分布列如下: 1 0 1
P a b c 其中abc,,成等差数列,若13E,则D的值是 .
解答途径:(1)由abc,,成等差数列,13E,得1,2,1.3abcacbac解得16a,13b,12c.则22211111151013633329D.
(2)求,,abc同(1),则2222221111510163239DEE. (3)由abc,,成等差数列,得1,2.abcacb解得23ac,则222222
15
10139DEEabc
.
解题感悟:本题主要考查随机变量期望与方差的计算.解答途径(1)、(2)根据条件求出abc,,后,分别利用方差的定义与性质求解,解答途径(3)则利用方差的性质与整体思想求解,显示出解题的简捷性.
8.(山东,理18)设b和c分别是先后抛掷一枚骰子得到的点数,用随机变量表示方程20xbxc
实根的个数(重根按一个计).
(Ⅰ)求方程20xbxc有实根的概率; (Ⅱ)求的分布列和数学期望; (Ⅲ)求在先后两次出现的点数中有5的条件下,方程20xbxc有实根的概率. 别解途径:(Ⅰ),bc的所有可能取值有(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(3,1),(3,2),(3,3),(3,4),(3,5),(3,6),(4,1),(4,2),(4,3),(4,4),(4,5),(4,6),(5,1),