概率分布与期望的计算方法
期望与方差公式汇总

期望与方差公式汇总
期望与方差是统计学中最基本的概念,它们是用来衡量随机变量分布特征的两个重要指标。
期望是概率分布的数学期望,它反映了随机变量的期望值,即随机变量取值的期望值。
期望的计算公式为:E(X)=∑xP(X),其中x表示随机变量的取值,P(X)表示随机变量取值x
的概率。
方差是概率分布的数学期望,它反映了随机变量的变异程度,即随机变量取值的变异程度。
方差的计算公式为:D(X)=∑(x-E(X))^2P(X),其中x表示随机变量的取值,E(X)表示随机
变量的期望值,P(X)表示随机变量取值x的概率。
期望与方差是统计学中最基本的概念,它们可以帮助我们了解随机变量的分布特征。
期望与方差的计算公式分别为E(X)=∑xP(X)和D(X)=∑(x-E(X))^2P(X)。
高中数学中的概率统计计算期望与方差的技巧

高中数学中的概率统计计算期望与方差的技巧概率统计是高中数学中的重要内容,计算期望与方差是其中的关键技巧。
本文将介绍几种常见的计算期望与方差的技巧,以帮助读者更好地理解和应用这些知识。
一、离散型随机变量的期望与方差计算对于离散型随机变量X,其概率分布列为P(X=x),而期望和方差的计算公式如下:1. 期望计算期望E(X)表示随机变量X的平均值,计算公式为:E(X) = Σ[x * P(X=x)]其中,Σ表示对所有可能取值的求和。
通过遍历所有可能取值,将取值与其对应的概率相乘,再求和,即可得到期望值。
2. 方差计算方差Var(X)表示随机变量X的离散程度,计算公式为:Var(X) = Σ[(x - E(X))^2 * P(X=x)]同样,通过遍历所有可能取值,将每个取值减去期望值,再平方,再与其对应的概率相乘,最后再求和,即可得到方差值。
这种计算方法适用于离散型随机变量的期望和方差计算,例如投掷一枚骰子的结果、抽取一副扑克牌的点数等情况。
二、连续型随机变量的期望与方差计算对于连续型随机变量X,其概率密度函数为f(x),而期望和方差的计算公式如下:1. 期望计算期望E(X)的计算公式为:E(X) = ∫(x * f(x))dx其中,∫表示对整个定义域的积分。
通过对概率密度函数乘以x后再积分,即可得到期望值。
2. 方差计算方差Var(X)的计算公式为:Var(X) = ∫[(x - E(X))^2 * f(x)]dx同样,通过对概率密度函数乘以(x - E(X))的平方后再积分,即可得到方差值。
这种计算方法适用于连续型随机变量的期望和方差计算,例如正态分布、指数分布等情况。
三、应用技巧下面将介绍一些计算期望与方差时的常用技巧:1. 期望的线性性质如果X和Y是两个随机变量,a和b为常数,则有:E(aX + bY) = aE(X) + bE(Y)这是期望的线性性质,利用这个性质可以简化复杂随机变量的期望计算。
概率与统计中的期望与方差计算

概率与统计中的期望与方差计算概率与统计是一门研究随机现象规律的学科,其中期望与方差是重要的概念与计算方法。
期望和方差是衡量随机变量分布特征的统计量,它们在各个领域的应用广泛。
本文将介绍期望和方差的定义、计算公式以及在实际问题中的应用。
一、期望的定义与计算在概率论中,期望是随机变量取值的平均数,也可以看作是随机变量的加权平均。
设X是一个离散型随机变量,其取值为x1,x2,...,xn,对应的概率为p1,p2,...,pn。
则随机变量X的期望E(X)定义为:E(X) = x1*p1 + x2*p2 + ... + xn*pn对于连续型随机变量,期望的计算稍有不同。
若X的概率密度函数为f(x),则其期望E(X)定义为:E(X) = ∫(x*f(x))dx (积分范围为整个取值区间)在实际计算中,可以利用期望的线性性质简化计算。
设a、b为常数,X和Y分别是随机变量,则有:E(aX + bY) = a*E(X) + b*E(Y)同时,期望也满足可加性(若X和Y相互独立):E(X + Y) = E(X) + E(Y)二、方差的定义与计算方差是用来衡量随机变量取值与其期望之间的离散程度。
设X是一个随机变量,其期望为E(X),则随机变量X的方差Var(X)定义为:Var(X) = E((X - E(X))^2)方差是随机变量离散程度的平方,因此方差的单位为原随机变量的单位的平方。
方差越大,表示离散程度越大,反之亦然。
利用方差的性质,我们可以将方差表示为:Var(X) = E(X^2) - [E(X)]^2方差也满足线性性质:设a、b为常数,X为随机变量,则有:Var(aX + b) = a^2*Var(X)三、期望与方差的应用期望和方差是概率与统计中重要的工具,在实际问题中具有广泛的应用。
以下是几个常见的应用例子:1. 投资决策:在金融领域,投资者关注投资的风险与收益。
期望和方差可以作为衡量投资回报的重要指标,投资组合的预期收益和风险可以通过这两个统计量进行计算与比较。
概率分布计算练习题求期望与方差

概率分布计算练习题求期望与方差一、题目描述在统计学中,概率分布是用来描述随机变量在不同取值上出现的概率。
期望与方差是概率分布的重要指标,用于描述随机变量的中心位置和离散程度。
下面通过一些具体的练习题,来计算概率分布的期望与方差。
二、练习题1已知某随机变量X的概率分布如下:```X | -2 | 1 | 3P(X) | 0.2 | 0.4| 0.4```计算随机变量X的期望与方差。
解答:期望的计算公式为E(X) = ΣX * P(X),其中Σ表示求和符号。
根据给定的概率分布,我们可以计算出期望为:E(X) = (-2 * 0.2) + (1 * 0.4) + (3 * 0.4) = -0.4 + 0.4 + 1.2 = 1.2方差的计算公式为 Var(X) = E(X^2) - [E(X)]^2,其中E(X^2)表示随机变量X的平方的期望。
根据给定的概率分布,我们可以计算出E(X^2)为:E(X^2) = (-2^2 * 0.2) + (1^2 * 0.4) + (3^2 * 0.4) = 0.8 + 0.4 + 3.6 = 4.8将期望和E(X^2)带入方差的计算公式中,即可计算出方差为:Var(X) = 4.8 - 1.2^2 = 4.8 - 1.44 = 3.36因此,随机变量X的期望为1.2,方差为3.36。
三、练习题2已知某离散型随机变量Y的概率分布如下:```Y | -1 | 0 | 2 | 3P(Y) | 0.1| 0.2 | 0.4 | 0.3```计算随机变量Y的期望与方差。
解答:同样地,首先计算期望。
根据给定的概率分布,我们可以计算出期望为:E(Y) = (-1 * 0.1) + (0 * 0.2) + (2 * 0.4) + (3 * 0.3) = -0.1 + 0 + 0.8 + 0.9 = 1.6接下来计算方差。
根据方差的计算公式,需要先计算E(Y^2)。
根据给定的概率分布,我们可以计算出E(Y^2)为:E(Y^2) = (-1^2 * 0.1) + (0^2 * 0.2) + (2^2 * 0.4) + (3^2 * 0.3) = 0.1 + 0 + 1.6 + 2.7 = 4.4将期望和E(Y^2)带入方差的计算公式中,即可计算出方差为:Var(Y) = 4.4 - 1.6^2 = 4.4 - 2.56 = 1.84因此,随机变量Y的期望为1.6,方差为1.84。
概率分布以及期望和方差

学辅教育成功就是每天进步一点点!概率分布以及期望和方差上课时间 :上课教师:上课重点 :掌握两点分布、超几何分布、二项分布、正态分布的概率分布及其期望和方差上课规划:解题技巧和方法一两点分布知识内容⑴两点分布如果随机变量X 的分布列为X1 0P p q其中 0 p 1 , q 1 p ,则称离散型随机变量X服从参数为p的二点分布.二点分布举例:某次抽查活动中,一件产品合格记为 1,不合格记为 0 ,已知产品的合格率为 80% ,随机变量 X 为任意抽取一件产品得到的结果,则 X 的分布列满足二点分布.X100.8 0.2P两点分布又称 0 1 分布,由于只有两个可能结果的随机试验叫做伯努利试验,所以这种分布又称为伯努利分布.(2)典型分布的期望与方差:二点分布:在一次二点分布试验中,离散型随机变量X 的期望取值为p ,在 n 次二点分布试验中,离散型随机变量X 的期望取值为np .典例分析学辅教育成功就是每天进步一点点!,针尖向上;1、在抛掷一枚图钉的随机试验中,令 X1,如果针尖向上的,针尖向下 .概率为 p ,试写出随机变量X 的概率分布.2、从装有 6 只白球和 4 只红球的口袋中任取一只球,用X 表示“取到的白,当取到白球时,球个数”,即X1,求随机变量 X 的概率分布. ,当取到红球时,3、若随机变量 X 的概率分布如下:X1P23 8C9C C试求出 C ,并写出 X 的分布列.3、抛掷一颗骰子两次,定义随机变量0,(当第一次向上一面的点 数不等于第二次向上一 面的点数 )1, (当第一次向上一面的点数等于第二次向上一面的点数 )试写出随机变量 的分布列.4、篮球运动员比赛投篮,命中得1分,不中得 0 分,已知运动员甲投篮命中率的概率为 P .⑴记投篮1次得分X,求方差D ( X )的最大值;⑵当⑴中 D ( X ) 取最大值时,甲投3次篮,求所得总分Y的分布列及Y的期望与方差.二超几何分布知识内容将离散型随机变量X 所有可能的取值x i与该取值对应的概率p i (i 1, 2,, n)列表表示:X x1x2P p1p2⋯⋯x ip i⋯⋯x np n一般地,设有总数为N 件的两类物品,其中一类有M 件,从所有物品中任取 n 件 ( n ≤ N ) ,这 n 件中所含这类物品件数X 是一个离散型随机变量,它取值为 m 时的概率为P( X m)C M m C n N m M≤ l ,l为 n 和M中较小的一个 ) .C n N(0≤ m我们称离散型随机变量X 的这种形式的概率分布为超几何分布,也称X 服从参数为 N , M ,n的超几何分布.在超几何分布中,只要知道 N , M 和n,就可以根据公式求出 X 取不同值时的概率P( X m),从而列出 X 的分布列.超几何分布的期望和方差:若离散型随机变量 X 服从参数为N,M,n的超几何分布,则 E(X)nM,n(N n)( N M )M.ND(X)2(N 1)N典例分析例题:一盒子内装有 10 个乒乓球,其中 3 个旧的,7 个新的,从中任意取 4 个,则取到新球的个数的期望值是.练习 1. 某人参加一次英语口语考试,已知在备选的10道试题中,能答对其中的 6 题,规定每次考试都从备选题中随机抽出 5 题进行测试,每题分数为20分,求他得分的期望值.练习 2. 以随机方式自 5 男 3 女的小群体中选出 5 人组成一个委员会,求该委员会中女性委员人数的概率分布、期望值与方差.练习 3. 在12个同类型的零件中有2 个次品,抽取 3 次进行检验,每次任取一个,并且取出不再放回,若以和分别表示取出次品和正品的个数.求,的期望值及方差.三二项分布知识内容若将事件 A 发生的次数设为X ,事件 A 不发生的概率为q 1 p ,那么在 n 次独立重复试验中,事件 A 恰好发生k 次的概率是P( X k)C kn pk q n k,其中k0 , 1, 2 , n, .于是得到X的分布列X01⋯k⋯nP C 0n p0q n C1n p1q n 1⋯C n k p k q n k⋯C n n p n q0由于表中的第二行恰好是二项展开式(q p)n C0n p0 q n C1n p1q n 1C k n p k q n k C n n p n q0各对应项的值,所以称这样的散型随机变量X 服从参数为n,p 的二项分布,记作 X ~ B(n , p) .二项分布的均值与方差:若离散型随机变量X 服从参数为 n 和 p 的二项分布,则E ( X ) np , D (x) npq (q1 p) .二项分布:若离散型随机变量X 服从参数为 n 和 p 的二项分布,则 E( X ) np ,D ( x) npq (q 1 p) .典例分析二项分布的概率计算1例题:已知随机变量服从二项分布, ~ B(4 , ) ,则 P(2)等于.练3习 1.甲乙两人进行围棋比赛,比赛采取五局三胜制,无论哪一方先胜三局则比赛结束,假定甲每局比赛获胜的概率均为2,则甲以 3:1 的比分获胜的3概率为( )A .8B .64C .4D .8278199练习 2.某篮球运动员在三分线投球的命中率是1,他投球 10 次,恰好投2进 3 个球的概率.(用数值表示)练习 3. 某人参加一次考试, 4 道题中解对 3 道则为及格,已知他的解题正确率为 0.4 ,则他能及格的概率为 _________(保留到小数点后两位小数)接种某疫苗后,出现发热反应的概率为0.80,现有 5 人接种了该疫苗,至少有 3 人出现发热反应的概率为.(精确到 0.01)例题 :从一批由 9 件正品, 3 件次品组成的产品中,有放回地抽取 5 次,每次抽一件,求恰好抽到两次次品的概率(结果保留2 位有效数字).练习 1. 一台X型号的自动机床在一小时内不需要人照看的概为0.8000 ,有四台这种型号的自动机床各自独立工作,则在一小时内至多有 2 台机床需要工人照看的概率是()A.0.1536B.0.1808C.0.5632D.0.9728练习 2. 设在 4 次独立重复试验中,事件A发生的概率相同,若已知事件A至少发生一次的概率等于65,求事件A在一次试验中发生的概率.81例题:某公司拟资助三位大学生自主创业,现聘请两位专家,独立地对每位大学生的创业方案进行评审.假设评审结果为“支持”或“不支持”的概率都学辅教育成功就是每天进步一点点!是1.若某人获得两个“支持,”则给予 10万元的创业资助;若只获得一个“支2持”,则给予 5 万元的资助;若未获得“支持”,则不予资助.求:⑴ 该公司的资助总额为零的概率;⑵该公司的资助总额超过15万元的概率.练习 1. 某商场经销某商品,顾客可采用一次性付款或分期付款购买.根据以往资料统计,顾客采用一次性付款的概率是 0.6 ,经销一件该商品,若顾客采用一次性付款,商场获得利润 200 元;若顾客采用分期付款,商场获得利润250 元.⑴求3位购买该商品的顾客中至少有1位采用一次性付款的概率;⑵求3位位顾客每人购买1件该商品,商场获得利润不超过650元的概率.练习 2. 某万国家具城进行促销活动,促销方案是:顾客每消费1000元,便可获得奖券一张,每张奖券中奖的概率为1,若中奖,则家具城返还顾客5现金 200 元.某顾客消费了 3400 元,得到3张奖券.⑴求家具城恰好返还该顾客现金 200元的概率;⑵求家具城至少返还该顾客现金 200元的概率.例题:设飞机 A 有两个发动机,飞机 B 有四个发动机,如有半数或半数以上的发动机没有故障,就能够安全飞行,现设各个发动机发生故障的概率p 是t的函数p 1 e t ,其中t为发动机启动后所经历的时间,为正的常数,试讨论飞机 A 与飞机 B 哪一个安全?(这里不考虑其它故障).练习 1. 假设飞机的每一台发动机在飞行中的故障率都是1 P,且各发动机互不影响.如果至少50% 的发动机能正常运行,飞机就可以顺利地飞行.问对于多大的 P 而言,四发动机飞机比二发动机飞机更安全?练习 2. 一名学生每天骑车上学,从他家到学校的途中有 6 个交通岗,假设他在各个交通岗遇到红灯的事件是相互独立的,并且概率都是1 .3⑴设为这名学生在途中遇到红灯的次数,求的分布列;⑵设为这名学生在首次停车前经过的路口数,求的分布列;⑶求这名学生在途中至少遇到一次红灯的概率.二项分布的期望与方差例题 :已知X ~ B(10,0.8),求E( X )与D(X ).练习 1. 已知X ~ B(n,p),E ( X )8, D(X ) 1.6 ,则 n 与p的值分别为()A.10和0.8B.20和0.4C.10和 0.2D.100和 0.8练习 2.已知随机变量 X 服从参数为6,0.4的二项分布,则它的期望E(X ),方差 D(X).练习 3. 已知随机变量X服从二项分布,且E ( ) 2.4 ,D( ) 1.44 ,则二项分布的参数 n ,p的值分别为,.练习 4. 一盒子内装有10个乒乓球,其中3个旧的,7个新的,每次取一球,取后放回,取 4 次,则取到新球的个数的期望值是.例题:甲、乙、丙 3 人投篮,投进的概率分别是1,2,1.352⑴现 3 人各投篮 1 次,求 3 人都没有投进的概率;⑵用表示乙投篮 3 次的进球数,求随机变量的概率分布及数学期望.练习 1. 抛掷两个骰子,当至少有一个2点或3点出现时,就说这次试验成功.⑴ 求一次试验中成功的概率;⑵求在4次试验中成功次数X 的分布列及 X 的数学期望与方差.练习 2. 某寻呼台共有客户3000人,若寻呼台准备了100份小礼品,邀请客户在指定时间来领取.假设任一客户去领奖的概率为 4% .问:寻呼台能否向每一位顾客都发出奖邀请?若能使每一位领奖人都得到礼品,寻呼台至少应准备多少礼品?四正态分布知识内容概率密度曲线:样本数据的频率分布直方图,在样本容量越来越大时,直方图上面的折线所接近的曲线.在随机变量中,如果把样本中的任一数据看作随机变量 X ,则这条曲线称为 X 的概率密度曲线.曲线位于横轴的上方,它与横轴一起所围成的面积是1,而随机变量X 落在指定的两个数a,b 之间的概率就是对应的曲边梯形的面积.2.正态分布⑴定义:如果随机现象是由一些互相独立的偶然因素所引起的,而且每一个偶然因素在总体的变化中都只是起着均匀、微小的作用,则表示这样的随机现象的随机变量的概率分布近似服从正态分布.服从正态分布的随机变量叫做正态随机变量,简称正态变量.yx=μO x1( x)2正态变量概率密度曲线的函数表达式为f (x) e 22,x R ,其中,2π是参数,且0 , .式中的参数 和 分别为正态变量的数学期望和标准差. 期望为 、标准差为 的正态分布通常记作N ( ,2) .正态变量的概率密度函数的图象叫做正态曲线.⑵标准正态分布: 我们把数学期望为0 ,标准差为 1的正态分布叫做标准正态分布.①正态变量在区间( ,),(2 ,2 ),(3 ,3 )内,取值的概率分别是 68.3% , 95.4% , 99.7% .②正态变量在 (,) 内的取值的概率为 1,在区间 ( 3 ,3 ) 之外的取值的概率是 0.3% ,故正态变量的取值几乎都在距 x三倍标准差之内,这就是正态分布的3 原则.若 ~N(, 2) , f ( x) 为其概率密度函数,则称 F (x)P( ≤ x)xf (t )dt 为概率分布函数,特别的,,2x1t 2dt 为标准正态分布函数.2~ N (0 1 ) ,称 ( x)e2πP(x) (x) .标准正态分布的值可以通过标准正态分布表查得.典例分析(一)正态曲线(正态随机变量的概率密度曲线)1.下列函数是正态分布密度函数的是()1 ( x r ) 22 πe A . f ( x )B . f ( x )e22π2 πx 221 ( x1) 21 x 2ee2C . f ( x )4D . f ( x )22π2π2.若正态分布密度函数 f ( x)1( x 1) 2e 2( x R ) ,下列判断正确的是()2πA .有最大值,也有最小值B .有最大值,但没最小值C .有最大值,但没最大值D .无最大值和最小值3.对于标准正态分布 N 0 ,1 1 x 2的概率密度函数2 ,下列说法不正确f xe2 π的是()A.f x为偶函数B.f x最大值为12πC.f x在x0 时是单调减函数,在x ≤ 0 时是单调增函数D.f x关于x 1对称4.设的概率密度函数为1( x 1) 2e2f ( x)2πA.P(1) P(1)C.f (x)的渐近线是x0,则下列结论错误的是()B.P( 1≤ ≤1) P(11) D.1~ N(0 ,1)(二)求,的取值以及概率例题:设 X ~ N ( ,2 ) ,且总体密度曲线的函数表达式为:f (x)1x2 2 x 1e4,2πx R .⑴求,;⑵求 P(| x 1|2) 及 P(1 2 x 1 2 2) 的值.练习 1.某市组织一次高三调研考试,考试后统计的数学成绩服从正态分布,其密度函数为 f ( x)1( x 80)2,则下列命题中不正确的是()200e102A.该市这次考试的数学平均成绩为80 分B.分数在 120 分以上的人数与分数在60 分以下的人数相同C.分数在 110 分以上的人数与分数在50 分以下的人数相同D.该市这次考试的数学标准差为10(三)正态分布的性质及概率计算例题 :设随机变量服从正态分布N (0 ,1) ,a0 ,则下列结论正确的个数是____ .⑴ P(||a )P(||a)P(| | a)⑵ P(||a )2P(a)1⑶ P(||a )12P(a)⑷ P(||a )1P(||a)练习 1. 已知随机变量 X 服从正态分布 N (3 ,a 2 ) ,则 P( X 3)()A .1B .1C .1D .15 432练习 2. 在某项测量中,测量结果 X 服从正态分布 N 1, 20 ,若X 在 0,1内取值的概率为 0.4 ,则 X 在 0 ,2 内取值的概率为.练习 3.已知随机变量 X 服从正态分布 N (2 , 2) , P( X ≤ 4) 0.84 ,则 P(X ≤ 0)A . 0.16B . 0.32C . 0.68D . 0.84练习4.已知X~N( 1,2 ),若 P( 3≤ X ≤-1) 0.4,则 P( 3≤ X ≤1) ()A . 0.4B . 0.8C . 0.6D .无法计算加强训练:1 设随机变量 服从正态分布 N (2 ,9) ,若 P( c 2)P( c 2) ,则 c_______.2 设 ~ N(0 1),且 P(| | b) a(0 a 1 b 0) ,则 P(b) 的值是_______(用 a 表,,≥示).3 正态变量 X ~ N (1, 2 ) , c 为常数, c0 ,若 P(c X2c) P(2c X 3c ) 0.4,求P( X ≤ 0.5) 的值.4 某种零件的尺寸服从正态分布N (0 ,4) ,则不属于区间 ( 4 ,4) 这个尺寸范围的零件约占总数的.(四)正态分布的数学期望及方差例题:如果随机变量~ N( , 2),ED1,求 P( 1 1)的值.(五)正态分布的 3 原则例题 :灯泡厂生产的白炽灯寿命(单位: h ),已知 ~ N (1000 ,302 ) ,要使灯泡的平均寿命为1000h 的概率为 99.7% ,则灯泡的最低使用寿命应控制在_____ 小时以上.练习 1.一批电池(一节)用于手电筒的寿命服从均值为35.6 小时、标准差为4.4 小时的正态分布,随机从这批电池中任意取一节,问这节电池可持续使用不少于 40小时的概率是多少?练习 2. 某班有48名同学,一次考试后的数学成绩服从正态分布,平均分为80 ,标准差为 10,理论上说在 80 分到 90 分的人数是 ______.杂题(拓展相关:概率密度,分布函数及其他)练习 3. 以F x表示标准正态总体在区间, x 内取值的概率,若随机变量服从正态分布N ,2,则概率P等于()A.F F B.F1F1C.F 1D.2F练习 4.甲、乙两人参加一次英语口语考试,已知在备选的10 道题中,甲能答对其中的 6 题,乙能答对其中的 8 题.规定每次考试都从备选题中随机抽出 3 题进行测试,至少答对 2 题才算合格.⑴求甲答对试题数X的分布列、数学期望与方差;⑵ 求甲、乙两人至少有一人考试合格的概率.课后练习1、一个袋子里装有大小相同的 3 个红球和 2 个黄球,从中同时取出 2 个,则其中含红球个数的数学期望是_________.(用数字作答)2.、同时抛掷4枚均匀硬币80次,设4枚硬币正好出现2枚正面向上,2枚反面向上的次数为,则的数学期望是()A.20B.25C.30D.403、某服务部门有n个服务对象,每个服务对象是否需要服务是独立的,若每个服务对象一天中需要服务的可能性是p ,则该部门一天中平均需要服务的对象个数是()A.np(1 p)B.np C.n D.p(1 p)4、同时抛掷4枚均匀硬币 80次,设 4 枚硬币正好出现 2枚正面向上, 2 枚反面向上的次数为,则的数学期望是()A、20B.25C.30D.405、一个袋中有若干个大小相同的黑球、白球和红球.已知从袋中任意摸出 1个球,得到黑球的概率是2;从袋中任意摸出2个球,至少得到1个白5球的概率是7.9⑴若袋中共有 10 个球,从袋中任意摸出 3 个球,求得到白球的个数的数学期望;⑵求证:从袋中任意摸出 2 个球,至少得到 1 个黑球的概率不大于7 .并10指出袋中哪种颜色的球个数最少.5.某厂生产电子元件,其产品的次品率为5% ,现从一批产品中的任意连续取出 2 件,求次品数的概率分布列及至少有一件次品的概率.某单位为绿化环境,移栽了甲、乙两种大树各 2 株.设甲、乙两种大树移栽的成活率分别为5和4,且各株大树是否成活互不影响.求移栽的 4 株65大树中:⑴至少有 1 株成活的概率;⑵两种大树各成活 1 株的概率.6.一个口袋中装有n 个红球(n≥5且n N *)和5个白球,一次摸奖从中摸两个球,两个球颜色不同则为中奖.⑴试用 n 表示一次摸奖中奖的概率p ;⑵若 n 5 ,求三次摸奖(每次摸奖后放回)恰有一次中奖的概率;⑶记三次摸奖(每次摸奖后放回)恰有一次中奖的概率为P .当n取多少时, P 最大?7.袋子 A 和 B 中装有若干个均匀的红球和白球, 从 A 中摸出一个红球的概率是 1,从 B 中摸出一个红球的概率为p .3⑴从 A 中有放回地摸球,每次摸出一个,有 3 次摸到红球即停止.①求恰好摸 5 次停止的概率;②记 5 次之内(含 5 次)摸到红球的次数为,求随机变量 的分布.⑵若 A ,B 两个袋子中的球数之比为 1: 2 ,将 A ,B 中的球装在一起后,从中摸出一个红球的概率是 2,求 p 的值.58、一个质地不均匀的硬币抛掷 5 次,正面向上恰为 1次的可能性不为 0 ,而且与正面向上恰为2 次的概率相同.令既约分数i为硬币在 5 次抛掷中有 3j次正面向上的概率,求ij .9、某气象站天气预报的准确率为80% ,计算(结果保留到小数点后面第 2位)⑴5 次预报中恰有2次准确的概率;⑵ 5 次预报中至少有 2 次准确的概率;⑶5 次预报中恰有2次准确,且其中第3次预报准确的概率;10 、某大厦的一部电梯从底层出发后只能在第18,19,20层可以停靠.若该电梯在底层载有 5 位乘客,且每位乘客在这三层的每一层下电梯的概率均为1,求至少有两位乘客在 20 层下的概率.311、10 个球中有一个红球,有放回的抽取,每次取一球,求直到第n 次才取得 k(k ≤ n) 次红球的概率.12 、已知甲投篮的命中率是0.9,乙投篮的命中率是0.8,两人每次投篮都不受影响,求投篮 3 次甲胜乙的概率.(保留两位有效数字)13 、若甲、乙投篮的命中率都是p 0.5,求投篮n次甲胜乙的概率.( n N,n ≥ 1 )14、省工商局于某年 3 月份,对全省流通领域的饮料进行了质量监督抽查,结果显示,某种刚进入市场的 x 饮料的合格率为80%,现有甲,乙,丙3人聚会,选用 6 瓶x饮料,并限定每人喝 2 瓶,求:⑴甲喝 2 瓶合格的x饮料的概率;⑵甲,乙,丙 3 人中只有 1 人喝 2 瓶不合格的x饮料的概率(精确到0.01).15、在一次考试中出了六道是非题,正确的记“√”号不,正确的记“×”号若.某考生随手记上六个符号,试求:⑴全部是正确的概率;⑵正确解答不少于 4 道的概率;⑶至少答对 2 道题的概率.17、某大学的校乒乓球队与数学系乒乓球队举行对抗赛,校队的实力比系队强,当一个校队队员与系队队员比赛时,校队队员获胜的概率为0.6 .现在校、系双方商量对抗赛的方式,提出了三种方案:⑴双方各出 3人;⑵双方各出 5 人;⑶双方各出 7 人.三种方案中场次比赛中得胜人数多的一方为胜利.问:对系队来说,哪一种方案最有利?18、某地区为下岗人员免费提供财会和计算机培训,以提高下岗人员的再就业能力,每名下岗人员可以选择参加一项培训、参加两项培训或不参加培训,已知参加过财会培训的有60% ,参加过计算机培训的有75% ,假设每个人对培训项目的选择是相互独立的,且各人的选择相互之间没有影响.⑴任选 1 名下岗人员,求该人参加过培训的概率;⑵任选 3 名下岗人员,记为3人中参加过培训的人数,求的分布和期望.19、设进入某商场的每一位顾客购买甲种商品的概率为0.5,购买乙种商品的概率为 0.6 ,且购买甲种商品与购买乙种商品相互独立,各顾客之间购买商品也是相互独立的.记表示进入商场的 3 位顾客中至少购买甲、乙两种商品中的一种的人数,求的分布及期望.20、某班级有n人,设一年365天中,恰有班上的m(m≤n)个人过生日的天数为 X ,求 X 的期望值以及至少有两人过生日的天数的期望值.21、购买某种保险,每个投保人每年度向保险公司交纳保费a元,若投保人在购买保险的一年度内出险,则可以获得10000元的赔偿金.假定在一年度内有 10000人购买了这种保险,且各投保人是否出险相互独立.已知保险。
数学期望的计算公式

数学期望的计算公式数学期望是概率论中的重要概念,用于描述随机变量在大量试验中的平均值。
数学期望常用于统计分析和决策模型的建立。
本文将介绍数学期望的计算公式,并举例说明其应用。
一、离散型随机变量的数学期望计算公式对于离散型随机变量X,其取值有限且可数,其概率分布可以用概率质量函数P(X=x)表示。
则X的数学期望E(X)计算公式如下:E(X) = Σ[xP(X=x)]其中,Σ表示求和运算,x表示随机变量X的取值,P(X=x)表示随机变量X取值为x的概率。
例如,假设有一个骰子,其有6个面,每个面的点数分别为1、2、3、4、5、6,且每个面的点数出现的概率相等。
我们可以通过计算骰子的数学期望来获取平均点数的预期值。
设随机变量X表示骰子的点数,则X取值为1、2、3、4、5、6的概率均为1/6,因此骰子的数学期望E(X)的计算如下:E(X) = (1 * 1/6) + (2 * 1/6) + (3 * 1/6) + (4 * 1/6) + (5 * 1/6) + (6 * 1/6) = 3.5因此,通过计算可得,骰子的数学期望为3.5。
二、连续型随机变量的数学期望计算公式对于连续型随机变量X,其取值在某个区间上,其概率分布可以用概率密度函数f(x)表示。
则X的数学期望E(X)计算公式如下:E(X) = ∫[xf(x)]dx其中,∫表示积分运算,x表示随机变量X的取值,f(x)表示随机变量X的概率密度函数。
例如,假设有一个服从均匀分布的随机变量X,其取值范围在0到1之间。
我们可以通过计算随机变量X的数学期望来预测其取值的平均数。
设随机变量X的概率密度函数为f(x),则在0到1之间,f(x)的取值为1。
因此,X的数学期望E(X)的计算如下:E(X) = ∫[x * 1]dx = ∫xdx = 1/2因此,通过计算可得,随机变量X的数学期望为1/2。
综上所述,对于离散型随机变量和连续型随机变量,其数学期望的计算公式分别为Σ[xP(X=x)]和∫[xf(x)]dx。
常见概率分布的期望和方差

常见概率分布的期望和方差
概率分布是统计学中极为重要的概念,它给出了随机变量在不同值上出现的概率。
期望和
方差是衡量概率分布形状和程度的重要指标,常见的概率分布的期望和方差也是学习统计
学的重要内容。
首先我们来看看正态分布。
正态分布又称高斯分布,是最常见和最重要的概率分布之一,
它形状像两个钟形,其期望等于均值μ,方差等于μ的平方,常见的概率分布期望和方差
如下:正态分布期望μ=E(X)= μ,方差σ2=V(X)=σ2;指数分布期望μ=E(X)=1/ λ,方差
σ2=V(X)= 1/ λ2 ;γ分布期望μ=E(X)=α/β,方差σ2=V(X)=α/β2;beta分布期望
μ=E(X)=α/ (α+β),方差σ2=V(X)=αβ/ ( (α+β)2 (α+β+1) )。
比较期望和方差的计算式可以发现,期望是分布的一般性参数,它反映了随机变量的中心倾向,而方差则是分布的程度型参数,它反映了随机变量的离散程度。
借助于期望和方差,我们可以粗略地描述随机变量的分布情况。
在实际应用中,我们可以利用期望和方差对庞大的数据进行归纳和总结,预测数据的分布趋势,给出适宜的分析结论。
期望和方差是统计概率分布的两个重要参数,它们可以反映概率分布的形状和程度。
读者可以根据不同概率分布的计算式来计算其概率分布的期望和
方差。
常见分布的期望与方差的计算

常见分布的期望与方差的计算期望和方差是描述一个随机变量的两个最常用的统计量。
期望(也称为均值)表示随机变量的中心位置,方差则表示随机变量的离散程度。
在概率论和统计学中,有许多常见的概率分布,每个分布都有自己的期望和方差的计算方法。
在下面的文章中,我们将讨论一些常见的概率分布,包括离散分布和连续分布,以及它们的期望和方差的计算。
离散分布的期望和方差1. 伯努利分布(Bernoulli Distribution)伯努利分布是一种最简单的二元离散分布,它描述了一个只有两个可能取值的随机变量,例如抛一枚硬币正面向上的概率为p,反面向上的概率为1-p。
其期望计算公式为E(X) = p,方差计算公式为Var(X) = p(1-p)。
2. 二项分布(Binomial Distribution)二项分布描述了一定次数的伯努利试验中成功的次数。
例如,投掷n次硬币,成功(正面朝上)的次数即为二项分布的取值。
其期望计算公式为E(X) = np,方差计算公式为Var(X) = np(1-p)。
3. 泊松分布(Poisson Distribution)连续分布的期望和方差1. 均匀分布(Uniform Distribution)均匀分布是一种在指定区间上所有取值概率相等的连续分布,例如在0和1之间均匀分布的随机变量。
其期望计算公式为E(X) = (a + b) / 2,方差计算公式为Var(X) = (b - a)²/122. 正态分布(Normal Distribution)正态分布是一种非常常见的连续分布,也称为高斯分布。
它被广泛应用于自然和社会科学中。
正态分布由两个参数完全描述,即均值μ和方差σ²。
期望和方差分别等于μ和σ²,即E(X) = μ,Var(X) = σ²。
3. 指数分布(Exponential Distribution)指数分布是描述等待时间(或间隔时间)的连续分布,例如两个事件之间的时间间隔。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
概率分布与期望的计算方法
概率分布和期望是概率论中两个基本且重要的概念,它们在统
计学、物理学、工程学、生物学等领域都有广泛应用。
概率分布
是研究随机变量取得各种可能取值的概率分布情况,而期望则是
指数学上的数学期望,是所有可能取值的加权平均值。
本文将介
绍概率分布和期望的计算方法。
一、概率分布的计算方法
1. 离散型随机变量概率分布的计算方法
离散型随机变量是一种取有限个或可数个值的随机变量,如抛
掷骰子的点数、抽取彩球的颜色等。
离散型随机变量的概率分布
可以用概率分布函数、概率质量函数和累积分布函数等方法计算。
概率分布函数(Probability Mass Function,简称PMF)是指随
机变量X取某个具体值的概率。
公式如下:
P(X=x)=p
其中,p表示X取值为x的概率。
例如,一枚硬币正面朝上的概率为0.5,反面朝上的概率为0.5,其PMF如下:
P(X=正) = 0.5
P(X=反) = 0.5
概率质量函数(Probability Density Function,简称PDF)是离
散型随机变量的概率分布函数,表示随机变量取某个具体值的概
率密度。
公式如下:
f(x)=P(X=x)
其中,f(x)表示X取值为x的概率密度。
例如,一次投掷一个骰子,其点数的PDF如下:
点数 1 2 3 4 5 6
概率1/6 1/6 1/6 1/6 1/6 1/6
累积分布函数(Cumulative Distribution Function,简称CDF)是指随机变量X小于等于某个具体值a的概率。
公式如下:
F(a)=P(X≤a)
例如,一次投掷一个骰子,其点数的CDF如下:
点数 1 2 3 4 5 6
概率1/6 2/6 3/6 4/6 5/6 6/6
2. 连续型随机变量概率分布的计算方法
连续型随机变量是一种取无限个值的随机变量,如测量某物理量的误差、抽取某种材料的密度等。
连续型随机变量的概率分布可以用概率密度函数和累积分布函数等方法计算。
概率密度函数(Probability Density Function,简称PDF)是指随机变量X取某个具体值的概率密度,而不是概率。
公式如下:
f(x)≥0,且∫f(x)dx=1
其中,f(x)表示X取值为x的概率密度,∫f(x)dx表示f(x)在所有可能取值区间内的积分,等于1。
例如,某实验测量某物理量的误差,其误差的PDF如下:
误差-0.5 -0.2 0 0.2 0.5
概率密度0.1 0.3 0.4 0.2 0.0
累积分布函数(Cumulative Distribution Function,简称CDF)是指随机变量X小于等于某个具体值a的概率。
公式如下:
F(a)=P(X≤a)=∫f(x)dx
例如,某实验测量某物理量的误差,其误差的CDF如下:
误差-1 -0.5 0 0.5 1
概率密度0 0.1 0.4 0.7 0.9
二、期望的计算方法
期望是随机变量X所有可能取值的加权平均值,用E(X)表示。
期望可以用离散型随机变量的期望公式和连续型随机变量的期望
公式来计算。
1. 离散型随机变量的期望计算方法
离散型随机变量的期望计算公式如下:
E(X)=∑xP(X=x)
其中,x表示随机变量X的每个可能取值,P(X=x)表示X取x
的概率。
例如,抛5次硬币正面朝上的次数X,其期望为:
E(X)=(0×(½)⁵)+(1×5(½)⁵)+(2×10(½)⁵)+(3×10(½)⁵)+(4×5(½)⁵)+(5×(½)⁵)=2.5
2. 连续型随机变量的期望计算方法
连续型随机变量的期望计算公式如下:
E(X)=∫xf(x)dx
其中,x表示随机变量X的每个可能取值,f(x)表示X取x的概率密度。
例如,某实验测量某物理量的误差X的PDF如下:
误差-0.5 -0.2 0 0.2 0.5
概率密度0.1 0.3 0.4 0.2 0.0
其误差的期望为:
E(X)=(-0.5×0.1)+(-0.2×0.3)+(0×0.4)+(0.2×0.2)+(0.5×0.0)=-0.05
三、总结
本文介绍了概率分布和期望的计算方法。
概率分布是研究随机
变量取得各种可能取值的概率分布情况,离散型随机变量的概率
分布可以用概率分布函数、概率质量函数和累积分布函数等方法
计算,连续型随机变量的概率分布可以用概率密度函数和累积分
布函数等方法计算。
期望则是指数学上的数学期望,是所有可能
取值的加权平均值,离散型随机变量的期望计算公式为∑xP(X=x),连续型随机变量的期望计算公式为∫xf(x)dx。
在实际应用中,概率
分布和期望的计算方法可以帮助我们分析统计数据和预测未来的
结果。