霍尔效应研究--数据处理

合集下载

霍尔效应实验报告(共8篇)

霍尔效应实验报告(共8篇)

篇一:霍尔效应实验报告大学本(专)科实验报告课程名称:姓名:学院:系:专业:年级:学号:指导教师:成绩:年月日(实验报告目录)实验名称一、实验目的和要求二、实验原理三、主要实验仪器四、实验内容及实验数据记录五、实验数据处理与分析六、质疑、建议霍尔效应实验一.实验目的和要求:1、了解霍尔效应原理及测量霍尔元件有关参数.2、测绘霍尔元件的vh?is,vh?im曲线了解霍尔电势差vh与霍尔元件控制(工作)电流is、励磁电流im之间的关系。

3、学习利用霍尔效应测量磁感应强度b及磁场分布。

4、判断霍尔元件载流子的类型,并计算其浓度和迁移率。

5、学习用“对称交换测量法”消除负效应产生的系统误差。

二.实验原理:1、霍尔效应霍尔效应是导电材料中的电流与磁场相互作用而产生电动势的效应,从本质上讲,霍尔效应是运动的带电粒子在磁场中受洛仑兹力的作用而引起的偏转。

当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场的方向上产生正负电荷在不同侧的聚积,从而形成附加的横向电场。

如右图(1)所示,磁场b位于z的正向,与之垂直的半导体薄片上沿x正向通以电流is(称为控制电流或工作电流),假设载流子为电子(n型半导体材料),它沿着与电流is相反的x负向运动。

由于洛伦兹力fl的作用,电子即向图中虚线箭头所指的位于y轴负方向的b侧偏转,并使b侧形成电子积累,而相对的a侧形成正电荷积累。

与此同时运动的电子还受到由于两种积累的异种电荷形成的反向电场力fe的作用。

随着电荷积累量的增加,fe增大,当两力大小相等(方向相反)时,fl=-fe,则电子积累便达到动态平衡。

这时在a、b两端面之间建立的电场称为霍尔电场eh,相应的电势差称为霍尔电压vh。

设电子按均一速度向图示的x负方向运动,在磁场b作用下,所受洛伦兹力为fl=-eb式中e为电子电量,为电子漂移平均速度,b为磁感应强度。

同时,电场作用于电子的力为 fe??eeh??evh/l 式中eh为霍尔电场强度,vh为霍尔电压,l为霍尔元件宽度当达到动态平衡时,fl??fe ?vh/l (1)设霍尔元件宽度为l,厚度为d,载流子浓度为n,则霍尔元件的控制(工作)电流为 is?ne (2)由(1),(2)两式可得 vh?ehl?ib1isbrhs (3)nedd即霍尔电压vh(a、b间电压)与is、b的乘积成正比,与霍尔元件的厚度成反比,比例系数rh?1称为霍尔系数,它是反映材料霍尔效应强弱的重要参数,根据材料的电导ne率σ=neμ的关系,还可以得到:rh??/ (4)式中?为材料的电阻率、μ为载流子的迁移率,即单位电场下载流子的运动速度,一般电子迁移率大于空穴迁移率,因此制作霍尔元件时大多采用n型半导体材料。

实验十六 霍尔效应测量磁场_北大物院普物实验报告

实验十六 霍尔效应测量磁场_北大物院普物实验报告

±
������������������
=
������ ������������
=
(14.42
±
0.05)mV

mT−1

A−1
3. 根据 2 中计算的������������和������������,计算������,并作磁化曲线图
将由
������
=
������������ ������������������������
������������(mV) 32.22 32.19 32.13 32.11 32.09 32.06 32.05 32.04 32.03 32.02 32.01 31.99 31.98 31.97 31.97 31.97
������(mT) 223.4 223.2 222.8 222.7 222.5 222.3 222.3 222.2 222.1 222.1 222.0 221.8 221.8 221.7 221.7 221.7
2
������������������ )
+
������������ (������������������
2
������������������ )
+
������������ (������������������
2
������������������ )
且有σKH = 0.05mV ⋅ mT−1 ⋅ A−1, ������������������ = 0.09mA,σUH = 0.07mV,可得到 ������������ = 5mT
做出������ − ������图线如下:
表格 5
31.96 31.95 31.94 31.92 31.9 31.87 31.83 31.76 31.67 31.51 31.23 30.81 29.77 27.73 23.94 19.00 14.91 11.96 9.68 8.22 7.03 6.08 5.35 4.77 4.25 3.89 3.48 3.16 2.88 2.65 2.43 2.26 1.90 1.57 1.29

霍尔效应实验报告

霍尔效应实验报告

大学本(专)科实验报告课程名称:姓名:学院:系:专业:年级:学号:指导教师:成绩:年月日(实验报告目录)实验名称一、实验目的和要求二、实验原理三、主要实验仪器四、实验内容及实验数据记录五、实验数据处理与分析六、质疑、建议霍尔效应实验一.实验目的和要求:1、了解霍尔效应原理及测量霍尔元件有关参数.2、测绘霍尔元件的,曲线了解霍尔电势差与霍尔元件控制(工s H I V -M H I V -H V 作)电流、励磁电流之间的关系。

s I M I 3、学习利用霍尔效应测量磁感应强度B 及磁场分布。

4、判断霍尔元件载流子的类型,并计算其浓度和迁移率。

5、学习用“对称交换测量法”消除负效应产生的系统误差。

二.实验原理:1、霍尔效应霍尔效应是导电材料中的电流与磁场相互作用而产生电动势的效应,从本质上讲,霍尔效应是运动的带电粒子在磁场中受洛仑兹力的作用而引起的偏转。

当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场的方向上产生正负电荷在不同侧的聚积,从而形成附加的横向电场。

如右图(1)所示,磁场B 位于Z 的正向,与之垂直的半导体薄片上沿X 正向通以电流(称为控制电s I 流或工作电流),假设载流子为电子(N 型半导体材料),它沿着与电流相反的X 负向运动。

s I 由于洛伦兹力的作用,电子即向图中虚线箭头所指的位于y 轴负方向的B 侧偏转,L f 并使B 侧形成电子积累,而相对的A 侧形成正电荷积累。

与此同时运动的电子还受到由于两种积累的异种电荷形成的反向电场力的作用。

随着电荷积累量的增加,增大,当E f E f 两力大小相等(方向相反)时,=-,则电子积累便达到动态平衡。

这时在A 、B 两端L f E f 面之间建立的电场称为霍尔电场,相应的电势差称为霍尔电压。

H E H V 设电子按均一速度向图示的X 负方向运动,在磁场B 作用下,所受洛伦兹力为V =-e BL f V 式中e 为电子电量,为电子漂移平均速度,B 为磁感应强度。

大学物理实验——霍尔效应

大学物理实验——霍尔效应
返回
能斯特效应
由图所示由于输入电流端引线D、E点处的电阻不相等,
通电后发热程度不同,使D和E两端之间出现热扩散电流,
在磁场的作用下,在A、A’两端出现横向电场,由此产生
附加电势差,记为 V。其方向与 无I S 关,只随磁场方向而
变。
N
B
A'
D
E
A
返回
里纪-勒杜克效应
由于热扩散电流的载流子的迁移率不同,类似于厄廷 豪森效应中载流子速度不同一样,也将形成一个横向的温 度梯度,产生附加电势差,记为V ,其方向只与磁场方向
A'
B
IS
A
返回
厄廷豪森效应
1887年厄廷豪森发现,由于载流子的速度不相等,它 们在磁场的作用下,速度大的受到的洛仑兹力大,绕大圆 轨道运动,速度小则绕小圆轨道运动,这样导致霍尔元件 的一端较另一端具有较多的能量而形成一个横向的温度梯 度。因而产生温差效应,形成电势差,记为V E ,其方向取 决于 B 和 I S 的方向。可判断出 V E 和V H 始终同向。
霍尔电场 E H 霍尔电压 V H
测量霍尔电压
A'
BB
IS
VAA’ mV
C'
z
IS
A
C
实验中的副效应:
不等势电压V0 厄廷豪森效应VE 能斯特效应VN 里纪-勒杜克效应VRL
y x
副效应的消除方法 用对称测量法测量
+B,+IS -B,+IS -B,-IS +B,-IS
VAA’=V1 VAA’=V2 VAA’=V3 VAA’=V4
测量v时is不宜过大以免数字电压表超量程通常is取为02ma左相关系数斜率截距如果相关系数r趋于1说明vh和is线性关系好截距a趋于0说明vh和is是正比关系有因为设置状态设置状态modemodemodemode清除内存清除内存shiftacshiftac输入数据输入数据xx1x2x2截距截距aashift22位单位位单位斜率斜率bbshift44位单位位单位相关系数相关系数rrshift保留至不为保留至不为99的数霍尔效应halleffect不等势电压不等势电压是由于霍尔元件的材料本身不均匀以及电压输入端aa引线在制作时不可能绝对对称地焊接在霍尔片的两侧

霍尔效应实验原理

霍尔效应实验原理

霍尔效应实验原理霍尔效应是指在导体中通过一定方向的电流时,垂直于电流与磁场方向的电场会产生电势差,并且该电势差与电流、磁场以及材料性质有关。

霍尔效应实验是为了研究和探究这种电势差现象的原理和机制。

实验装置和材料:- 霍尔元件:一个长方形的矽晶片,上方有四个电流引线和下方有四个电压引线- 恒温恒流电源:用来控制和稳定电流的大小和方向- 磁场装置:一对永久磁体,用来产生稳定的磁场- 比较器:用来测量霍尔元件上产生的电势差实验步骤:1. 准备工作:a. 将霍尔元件放在平整的实验台上,并确保霍尔元件的表面清洁无杂质。

b. 将电流引线A和B连接到恒温恒流电源的正、负极上,使电流通过霍尔元件。

c. 将电压引线C和D连接到比较器。

d. 将磁体分别放在霍尔元件的两侧,使磁场垂直于电流方向。

2. 实验记录:a. 调节恒温恒流电源的电流大小及方向,记录下每个电流值对应的比较器示数。

b. 通过改变电流方向,重复步骤a。

3. 数据处理:a. 统计每个电流值对应的比较器示数的平均值。

b. 根据已知的电流和比较器示数的关系,绘制图表。

实验原理解析:霍尔效应的实验原理基于洛伦兹力的作用效应。

当电流通过导体时,电子在磁场中会受到洛伦兹力的作用,使其偏转。

由于导体的存在,电子的偏转会产生电势差,这个电势差被称为霍尔电势差。

霍尔电势差与电流、磁场以及材料性质直接相关。

根据实验数据绘制的图表可以发现,当电流方向与磁场方向垂直时,霍尔电势差达到最大值,并呈线性关系。

此外,图表还能反映出霍尔电势差的极性(正负)。

通过进一步的数据处理和分析,可以得到霍尔系数和霍尔电阻的数值,从而更深入地了解材料的特性。

实验应用:霍尔效应实验在实际应用中有很多重要的作用。

其中包括:1. 磁场测量:通过测量霍尔电势差,可以确定磁场的强度及方向。

2. 物质性质研究:通过测量不同物质的霍尔电势差,可以研究材料的导电性质、载流子浓度等因素。

3. 传感器应用:将霍尔元件作为传感器,可以用于测量物体的位移、速度、角度等。

霍尔效应的研究实验报告

霍尔效应的研究实验报告

霍尔效应的研究实验报告一、实验目的1、了解霍尔效应的基本原理。

2、掌握用霍尔效应测量磁场的方法。

3、学会使用霍尔效应实验仪测量霍尔电压、霍尔电流等物理量。

二、实验原理当电流 I 沿垂直于磁场 B 的方向通过半导体薄片时,在薄片的垂直于电流和磁场方向的两侧 a、b 之间会产生一个电位差 UH,这一现象称为霍尔效应。

霍尔电压 UH 的大小与电流 I、磁感应强度 B 以及薄片的厚度 d 有关,它们之间的关系为:UH = KHIB (1)其中 KH 称为霍尔元件的灵敏度,它是一个与材料性质和几何尺寸有关的常数。

假设霍尔元件为一个矩形,其长为 l,宽为 w,厚度为 d,则霍尔元件的灵敏度 KH 可以表示为:KH = 1 /(ned) (2)其中 n 为载流子浓度,e 为电子电荷量。

由(1)式可知,如果已知霍尔元件的灵敏度 KH,通过测量霍尔电压 UH 和电流 I,就可以计算出磁感应强度 B。

三、实验仪器霍尔效应实验仪、直流电源、毫安表、伏特表、特斯拉计、霍尔元件等。

四、实验步骤1、连接实验仪器按照实验电路图连接好霍尔效应实验仪、直流电源、毫安表、伏特表等仪器。

确保连接正确无误,避免短路或断路。

2、调节磁场打开特斯拉计,调节磁场强度到所需的值。

在调节过程中,注意观察磁场强度的变化,确保其稳定在设定值附近。

3、测量霍尔电压接通直流电源,调节电流 I 到一定值。

然后,使用伏特表测量霍尔元件两侧的霍尔电压 UH。

改变电流 I 的方向和磁场 B 的方向,分别测量相应的霍尔电压,并记录数据。

4、改变电流和磁场分别改变电流 I 和磁场 B 的大小,重复步骤 3,测量多组数据。

5、数据处理根据测量得到的数据,计算出不同电流和磁场条件下的霍尔电压UH,并利用公式(1)计算出相应的磁感应强度 B。

绘制 B I 曲线,分析实验结果。

五、实验数据记录与处理|电流 I(mA)|磁场 B(T)|霍尔电压 UH(mV)(+I,+B)|霍尔电压 UH(mV)(I,+B)|霍尔电压 UH(mV)(+I,B)|霍尔电压 UH(mV)(I,B)|平均霍尔电压 UH (mV)|||||||||| 100 | 010 | 250 |-248 |-252 | 250 | 250 || 100 | 020 | 502 |-498 |-500 | 500 | 500 || 100 | 030 | 750 |-745 |-752 | 750 | 750 || 200 | 010 | 500 |-495 |-505 | 500 | 500 || 200 | 020 | 1000 |-990 |-1010 | 1000 | 1000 || 200 | 030 | 1500 |-1485 |-1515 | 1500 | 1500 |根据实验数据,计算出不同条件下的平均霍尔电压 UH,并利用公式 UH = KHIB 计算出相应的磁感应强度 B。

霍尔效应实验报告数据及处理

霍尔效应实验报告数据及处理

霍尔效应实验报告数据及处理霍尔效应实验可真是一门神奇的科学,咱们今天就来聊聊这个现象。

霍尔效应可不是啥高大上的东西,听起来挺复杂,其实就是在电流通过导体的时候,外加一个磁场,结果导体里就出现了电压差。

嘿,这不是在说“魔法”吗?当你把一根导线放在磁场里,电流的流动就像是跟着某种隐形的节奏在跳舞,真是妙不可言。

实验开始时,咱们得准备一些材料,像导体、磁铁、万用表啥的。

你想啊,没有这些工具,咱们就像没有武器的战士,打不了胜仗嘛!将导体放置在磁场中,打开电源,电流开始流动。

咱们的万用表就像个勤快的小蜜蜂,开始记录数据。

每当我看到那表上的数字变化,心里真是乐开了花,感觉自己就是个小科学家,跟爱因斯坦也没啥差别。

咱们要开始记录不同的电流和磁场强度。

这时候,数据就像小朋友一样,一会儿乖乖的,一会儿又调皮捣蛋。

记得有一次,我本来想测量电流和磁场的关系,结果万用表上显示的数字让人抓狂,怎么都不对劲。

后来仔细一看,哎呀,原来是我手一抖,电线松了,真是尴尬得恨不得找个地缝钻进去。

真的是,不经历风雨,怎么见彩虹?然后,咱们就可以用公式来处理这些数据,算出霍尔电压。

公式其实也不复杂,感觉跟解数学题似的,脑子里飞快转动,像是个急性子的小兔子。

最终,咱们得到的霍尔电压,就像是实验的“最终成绩”,让人心里踏实得很。

这时候,咱们就可以把数据做成图表,看看那条线是怎么跑的,简直就像看一场精彩的体育赛事,让人兴奋不已。

在分析完数据后,我发现霍尔效应的应用真是无处不在。

比如,咱们常见的霍尔传感器,就是利用这个原理来检测位置和速度。

真是没想到,原来这些高科技背后也有这么简单的原理,真是让人觉得科技感满满。

想到这里,心里那份自豪感油然而生,感觉自己也在为科学做贡献。

霍尔效应的实验,让我认识到了科学的乐趣。

它不仅仅是公式和数据,更是生活中的点滴体验。

每次看到实验成功,内心的成就感就像吃了蜜一样甜。

而那些出错的小插曲,虽然当时让人抓狂,但回头想想,简直就是笑料,成了我和朋友们茶余饭后的笑谈。

霍尔效应

霍尔效应
五、数据处理:
1、绘制试样的VH-IS曲线、VH-IM曲线,
2、绘制螺线管的中心轴线上的磁场分布曲线。
3、求出霍尔片的霍尔系数。
六、实验结论与讨论:
本次实验测量数据较好,有一定难度,处理数据时用Excel做出VH-IS曲线、VH-IM曲线和螺线管的中心轴线上的磁场分布曲线,并根据公式求出霍尔系数,较好地完成实验。
2.霍尔效应有哪些应用,举一例,并简单阐述其原理。
答:利用霍尔效应做成的霍尔传感器。已在现代汽车上广泛应用的霍尔器件有:在分电器上作信号传感器、ABS系统中的速度传感器、汽车速度表和里程表等等。
例如:汽车点火系统,设计者将霍尔传感器放在分电器内取代机械断电器,用作点火脉冲发生器。这种霍尔式点火脉冲发生器随着转速变化的磁场在带电的半导体层内产生脉冲电压,控制电控单元(ECU)的初级电流。
七:问答题
1.如果磁感应强度B不垂直于霍尔片,对测量结果有何影响?如何由实验判断B与霍尔片是否垂直?
答:如果不在法向,那么测出来的就是存在一个余弦项,按公式B=V/KI,算出来的磁感应强度就总是比实际值小。要准确测定磁场,需要将霍尔元件转至霍尔电压最大的地方,及与B垂直。
当实验数据和理论值不一样时,就可以判断是不垂直的
指导教师批阅意见:
成绩评定:
预习
(20分)
操作及记录(4Βιβλιοθήκη 分)数据处理(20分)
结果分析(10分)
思考题
(10分)
报告整体
印象
总分
注:1、报告内的项目或内容设置,可根据实际情况加以调整和补充。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

附页:
大学物理实验报告
-------霍尔效应的研究
六:实验数据处理,制作散点图
(1)根据步骤五中的表-1,当恒流源Im=500mA,霍尔传感器位与螺线管中心,霍尔灵敏度为190mV/(mA*T)时,Vh~Is数据变化情况如左下表格。

利用Excel对表中数据绘制散点图得出如上图曲线,可见霍尔电势差Vh与恒流源Is为线性关系。

(2) 根据步骤五中的表-2,当恒流源Is=4.00mA,霍尔传感器位与螺线管中心,霍尔灵敏度为190mV/(mA*T)时,Vh~Im数据变化情况如左下表格。

利用Excel对表中数据绘制散点图得出如上图曲线,可见霍尔电势差Vh与恒流源Im为线性关系。

(3)根据上图曲线,及给定的接线图可以判定,霍尔器件的导电类型为P型
(4)根据步骤五中的表-3,当恒流源Is=4.00mA,Im=500mA, 霍尔灵敏度为190mV/(mA*T)时,计算磁感应强度B和霍尔感应器位置P数据变化情况如左下表格。

则可根据对称性,得出螺线圈的磁感应变化曲线,。

相关文档
最新文档