2006—2013年吉林大学《数学分析、高等代数》考研试题及答案

合集下载

精编版-2006考研数学一真题及答案

精编版-2006考研数学一真题及答案

2006考研数学一真题及答案一、填空题(本题共6小题,每小题4分,满分24分.把答案填在题中横线上)(1)0ln(1)lim 1cos x x x x→+=-.(2)微分方程(1)y x y x-'=の通解是 .(3)设∑是锥面z =(01z ≤≤)の下侧,则23(1)xdydz ydzdx z dxdy ∑++-=⎰⎰ .(4)点(2,1,0)到平面3450x y z ++=の距离z = .(5)设矩阵2112⎛⎫=⎪-⎝⎭A ,E 为2阶单位矩阵,矩阵B 满足2=+BA B E ,则B = .(6)设随机变量X 与Y 相互独立,且均服从区间[0,3]上の均匀分布,则{}max{,}1P X Y ≤= .二、选择题(本题共8小题,每小题4分,满分32分. 每小题给出の四个选项中,只有一项符合题目要求,把所选项前の字母填在题后の括号内)(7)设函数()y f x =具有二阶导数,且()0,()0f x f x '''>>,x ∆为自变量x 在0x 处の增量,y ∆与dy 分别为()f x 在点0x 处对应の增量与微分,若0x ∆>,则(A)0dx y <<∆ (B)0y dy <∆< (C)0y dy ∆<<(D)0dy y <∆<(8)设(,)f x y 为连续函数,则140(cos ,sin )d f r r rdr πθθθ⎰⎰等于(A)(,)xf x y dy ⎰⎰(B)(,)f x y dy ⎰⎰(C)(,)yf x y dx ⎰⎰(C)(,)f x y dx ⎰⎰(9)若级数1nn a∞=∑收敛,则级数(A)1nn a∞=∑收敛 (B)1(1)nn n a ∞=-∑收敛(C)11n n n a a ∞+=∑收敛(D)112n n n a a ∞+=+∑收敛 (10)设(,)f x y 与(,)x y ϕ均为可微函数,且1(,)0y x y ϕ≠.已知00(,)x y 是(,)f x y 在约束条件(,)0x y ϕ=下の一个极值点,下列选项正确の是(A)若00(,)0x f x y '=,则00(,)0y f x y '=(B)若00(,)0x f x y '=,则00(,)0y f x y '≠(C)若00(,)0x f x y '≠,则00(,)0y f x y '=(D)若00(,)0x f x y '≠,则00(,)0y f x y '≠(11)设12,,,,s ααα均为n 维列向量,A 是m n ⨯矩阵,下列选项正确の是 (A)若12,,,,s ααα线性相关,则12,,,,s A αA αA α线性相关 (B)若12,,,,s ααα线性相关,则12,,,,s A αA αA α线性无关(C)若12,,,,s ααα线性无关,则12,,,,s A αA αA α线性相关 (D)若12,,,,s ααα线性无关,则12,,,,s A αA αA α线性无关.(12)设A 为3阶矩阵,将A の第2行加到第1行得B ,再将B の第1列の-1倍加到第2列得C ,记110010001⎛⎫⎪= ⎪ ⎪⎝⎭P ,则(A)1-=C P AP(B)1-=C PAP(C)T=C P AP(D)T=C PAP(13)设,A B 为随机事件,且()0,(|)1P B P A B >=,则必有(A)()()P AB P A > (B)()()P A B P B >(C)()()P A B P A = (D)()()P A B P B =(14)设随机变量X 服从正态分布211(,)N μσ,Y 服从正态分布222(,)N μσ,且12{||1}{||1},P X P Y μμ-<>-<则(A)12σσ< (B)12σσ>(C)12μμ<(D)12μμ>三、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤) (15)(本题满分10分) 设区域D=(){}22,1,0x y x y x +≤≥,计算二重积分2211DxyI dxdy x y +=++⎰⎰. (16)(本题满分12分)设数列{}n x 满足()110,sin 1,2,...n x x x n ππ+<<==. 求:(1)证明lim n x x →∞存在,并求之.(2)计算211lim n x n x n x x +→∞⎛⎫ ⎪⎝⎭. (17)(本题满分12分) 将函数()22xf x x x =+-展开成x の幂级数.(18)(本题满分12分) 设函数()()0,,f u +∞在内具有二阶导数且z f=满足等式22220z zx y∂∂+=∂∂. (1)验证()()0f u f u u'''+=. (2)若()()10,11,f f '==求函数()f u の表达式. (19)(本题满分12分) 设在上半平面(){},0D x y y =>内,数(),f x y 是有连续偏导数,且对任意の0t >都有()()2,,f tx ty t f x y =.证明: 对L 内の任意分段光滑の有向简单闭曲线L ,都有(,)(,)0Lyf x y dx xf x y dy -=⎰.(20)(本题满分9分) 已知非齐次线性方程组1234123412341435131x x x x x x x x ax x x bx +++=-⎧⎪++-=-⎨⎪++-=⎩ 有3个线性无关の解,(1)证明方程组系数矩阵A の秩()2r =A . (2)求,a b の值及方程组の通解. (21)(本题满分9分)设3阶实对称矩阵A の各行元素之和均为3,向量()()121,2,1,0,1,1TT=--=-αα是线性方程组0x =A の两个解.(1)求A の特征值与特征向量.(2)求正交矩阵Q 和对角矩阵A ,使得T=Q AQ A . (22)(本题满分9分)随机变量x の概率密度为()()21,1021,02,,40,令其它x x f x x y x F x y ⎧-<<⎪⎪⎪=≤<=⎨⎪⎪⎪⎩为二维随机变量(,)X Y の分布函数.(1)求Y の概率密度()Y f y . (2)1,42F ⎛⎫-⎪⎝⎭. (23)(本题满分9分)设总体X の概率密度为(,0)F X = 10θθ- 0112x x <<≤<其它,其中θ是未知参数(01)θ<<,12n ,...,X X X 为来自总体X の简单随机样本,记N 为样本值12,...,n x x x 中小于1の个数,求θの最大似然估计.参考答案 一、填空题(1)0ln(1)lim1cos x x x x→+-= 2 .221cos 1,)1ln(x x x x -+ (0x →当时)(2)微分方程(1)y x y x-'=の通解是(0)x y cxe x -=≠,这是变量可分离方程.(3)设∑是锥面1)Z ≤≤の下侧,则23(1)2xdydz ydzdx z dxdy π∑++-=⎰⎰补一个曲面221:1x y z ⎧+≤∑⎨=⎩1上侧,2,3(1)P x Q y R z ===-1236P Q Rx y z∂∂∂++=++=∂∂∂ ∴16dxdydz ∑∑Ω+=⎰⎰⎰⎰⎰⎰⎰(Ω为锥面∑和平面1∑所围区域)6V =(V 为上述圆锥体体积)623ππ=⨯=而123(1)0dydz ydzdx z dxdy ∑⨯++-=⎰⎰(∵在1∑上:1,0z dz ==)(4),1,0,450x y z d ++==点(2)到平面3的距离d ====(5)设A = 2 1 ,2阶矩阵B 满足BA =B +2E ,则|B |= .-1 2解:由BA =B +2E 化得B (A -E )=2E ,两边取行列式,得|B ||A -E |=|2E |=4,计算出|A -E |=2,因此|B |=2. (6)91 二、选择题(7)设函数()y f x =具有二阶导数,且()0f x '>,()0f x ''>,x ∆为自变量x 在0x 处の增量,y ∆与dy 分别为()f x 在点0x 处对应の增量与微分.若0>∆x ,则[A]0)(0)(0)(0)(<∆<<<∆<∆<∆<<y dy D dy y C dy y B y dy A()0,()f x f x '>因为则严格单调增加 ()0,()f x f x ''>则是凹的 y dy x ∆<<>∆0,0故又2212211220(8)(,)(cos ,sin )[C](A)(,)(B)(,)x x xf x y d f r r rdr dx f x y dydx f x y dyπθθθ--⎰⎰⎰⎰⎰⎰40设为连续函数,则等于222211220(C)(,)(D)(,)y y ydy f x y dxdy f x y dx --⎰⎰⎰⎰111111111(9)[D]()()(1)()()()2n n n n n n n n n n n n n n n a A a B a a a C a a D a∞=∞∞==∞∞∞+++===-+∑∑∑∑∑∑若级数收敛,则级数收敛收敛收敛收敛也收敛00000000000000000(10)(,)(,)(,)0,(,)(,)0y x y x y x y x y f x y x y x y x y f x y x y f x y f x y f x y f x y f x y f x y f x y f x ϕϕϕ'≠=''''≠''''≠≠设与均为可微函数,且已知(,)是在约束条件下的一个极值点,下列选项正确的是[D](A)若(,)=0,则(,)=0(B)若(,)=0,则(,)0(C)若(,)0,则(,)=0(D)若(,)0,则(,00000000000000000(,)(,)(,)(,)0(1)(,)(,)0(2)(,)0(,)(,)(,)(,)0,(,)(,)(,)(,)0x x x y y y y y xy x y y x y f x y x y f x y x y f x y x y x y f x y f x y x y x y f x y x y x y f x y λλϕλϕλϕϕϕϕλϕϕ≠+'''⎧+=⎪'''+=⎨⎪'=⎩'''''≠∴=-='''≠)0构造格朗日乘子法函数F=F =F =F =今代入(1)得今00,(,)0[]y f x y D '≠则故选 (11)设1,2,…,s 都是n 维向量,A 是m ⨯n 矩阵,则( )成立.(A) 若1,2,…,s 线性相关,则A 1,A 2,…,A s 线性相关. (B) 若1,2,…,s 线性相关,则A 1,A 2,…,A s 线性无关. (C) 若1,2,…,s 线性无关,则A 1,A 2,…,A s 线性相关. (D) 若1,2,…,s 线性无关,则A 1,A 2,…,A s 线性无关. 解: (A)本题考の是线性相关性の判断问题,可以用定义解.若1,2,…,s 线性相关,则存在不全为0の数c 1,c 2,…,c s 使得c 11+c 22+…+c s s =0,用A 左乘等式两边,得c 1A 1+c 2A 2+…+c s A s =0,于是A 1,A 2,…,A s 线性相关.如果用秩来解,则更加简单明了.只要熟悉两个基本性质,它们是: 1.1,2,…,s 线性无关⇔ r(1,2,…,s )=s. 2. r(AB )≤ r(B ). 矩阵(A 1,A 2,…,A s )=A (1,2,…,s),因此 r(A 1,A 2,…,A s )≤ r(1,2,…,s). 由此马上可判断答案应该为(A).(12)设A 是3阶矩阵,将A の第2列加到第1列上得B ,将B の第1列の-1倍加到第2列上得C .记 1 1 0P = 0 1 0 ,则 0 0 1(A) C =P -1AP . (B) C =PAP -1.(C) C =P T AP . (D) C =PAP T.解: (B)用初等矩阵在乘法中の作用得出B =PA ,1 -1 0C =B 0 1 0 =BP -1= PAP -1. 0 0 1(13)根据乘法公式与加法公式有: P(AB)=P(B)P(A/B)=P(B)P(A ⋃B)=P(A)+P(B)-P(AB)=P(A) 应选C (14)依题:).1,0(~),10(~2211N Y N x σμσμ--,,1}1{1111⎭⎬⎫<⎩⎨⎧-=<-σσμμX P X P .1}1{2222⎭⎬⎫⎩⎨⎧<-=<-σσμμY P Y P 因 },1{}1{21<-><-μμY P X P 即 .11222111⎭⎬⎫⎩⎨⎧<->⎭⎬⎫⎩⎨⎧<-σσμσσμY P X p 所以.,112121σσσσ<>应选A三、解答题{}22222212120222021(15)(,)1,0,1:011ln(1)ln 21122DD DxyD x y x y x I dxdyx y xydxdy x y r I dxdy d dr r x yr ππππθ-+=+≤≥=++=++===+=+++⎰⎰⎰⎰⎰⎰⎰⎰设区域计算二重积分解{}{}{}211112121(16)0,sin (1,2,)(1)lim (2)lim():(1)sin ,01,2sin ,0,lim ,n n n n n n x n n nn n n n n n n n x x x x n x x x x x x n x x x x x x x A π+→∞+→∞+→∞<<===∴<≤≥=≤≥∴=设数列满足求证明存在,并求之计算解因此当时单调减少又有下界,根据准则1,存在递推公式两边取极限得sin ,0A A A =∴=21sin (2)lim(),n x n n n x x ∞→∞原式=为"1"型离散型不能直接用洛必达法则22011sin lim ln()0sin lim()t ttt tt t e t→→=先考虑2323203311(cos sin )1110()0()lim26cos sin sin 1262limlim2262t t t t t t t t t t t t t t ttt tttteeeee →→→⎡⎤⎡⎤--+--+⎢⎥⎢⎥-⎢⎥⎢⎥-⎣⎦⎣⎦-=====2(17)()2xf x x x x =+-将函数展开成的幂极数()(2)(1)21x A Bf x x x x x ==+-+-+解:2(1)(2)2,32,3A xB x x x A A ++-====令 11,31,3x B B =-=-=-令)](1[131)21(131)1(131)2(132)(x x x x x f --⨯--⨯=+⨯--⨯= 10001111()(1)(1),132332n n n n n n n n n x x x x ∞∞∞+===⎡⎤=--=+-<⎢⎥⎣⎦∑∑∑(18)设函数()(0,)f u +∞在内具有二阶导数,且Z f=满足等式22220z zx y∂∂+=∂∂ (I )验证()()0f u f u u'''+= (II )若(1)0,(1)1f f '== 求函数()f u 的表达式 证:(I)zzf f xy∂∂''==∂∂()22222zxf f xx y ∂'''=+∂+()()22322222x y f f x y x y '''=+++()()2223222222zy x f f yx y x y ∂'''=+∂++同理22220()()0z z f x y f u f u u∂∂''+=+=∂∂'''∴+=代入得成立(II )令(),;dp p dp du f u p c du u p u'==-=-+⎰⎰则ln ln ,()cp u c f u p u'=-+∴==22(1)1,1,()ln ||,(1)0,0()ln ||f c f u u c f c f u u '===+===由得于是(19)设在上半平面{}(,)|0D x y y =>内,函数(,)f x y 具有连续偏导数,且对任意0t >都有2(,)(,)f tx ty t f x y -=证明:对D 内任意分段光滑の有向简单闭曲线L ,都有0),(),(=-⎰dy y x xf dx y x yf L.证:把2(,)(,)f tx ty t f x y t -=两边对求导 得:(,)(,)2(,)x y xf tx ty yf tx ty tf x y ''+=- 令 1t =,则(,)(,)2(,)x y xf x y yf x y f x y ''+=- 再令 (,),(,)P yf x y Q xf x y ==-所给曲线积分等于0の充分必要条件为Q Px y∂∂=∂∂ 今(,)(,)x Qf x y xf x y x∂'=--∂(,)(,)y Pf x y yf x y y∂'=+∂ 要求Q Px y∂∂=∂∂成立,只要(,)(,)2(,)x y xf x y yf x y f x y ''+=- 我们已经证明,Q Px y∂∂∴=∂∂,于是结论成立. (20)已知非齐次线性方程组x 1+x 2+x 3+x 4=-1,4x 1+3x 2+5x 3-x 4=-1,ax 1+x 2+3x 3+bx 4=1有3个线性无关の解.① 证明此方程组の系数矩阵A の秩为2. ② 求a,b の值和方程组の通解. 解:① 设1,2,3是方程组の3个线性无关の解,则2-1,3-1是AX =0の两个线性无关の解.于是AX =0の基础解系中解の个数不少于2,即4-r(A )≥2,从而r(A )≤2.又因为A の行向量是两两线性无关の,所以r(A )≥2.两个不等式说明r(A )=2.② 对方程组の增广矩阵作初等行变换: 1 1 1 1 -1 1 1 1 1 -1 (A |)= 4 3 5 -1 -1 → 0 –1 1 –5 3 ,a 1 3b 1 0 0 4-2a 4a+b-5 4-2a由r(A )=2,得出a=2,b=-3.代入后继续作初等行变换:1 02 -4 2→ 0 1 -1 5 -3 .0 0 0 0 0得同解方程组x 1=2-2x 3+4x 4,x 2=-3+x 3-5x 4,求出一个特解(2,-3,0,0)T 和AX =0の基础解系(-2,1,1,0)T ,(4,-5,0,1) T .得到方程组の通解:(2,-3,0,0)T +c 1(-2,1,1,0)T +c 2(4,-5,0,1)T , c 1,c 2任意.(21) 设3阶实对称矩阵A の各行元素之和都为3,向量1=(-1,2,-1)T ,2=(0,-1,1)T 都是齐次线性方程组AX =0の解.① 求A の特征值和特征向量.② 求作正交矩阵Q 和对角矩阵Λ,使得Q T AQ =Λ.解:① 条件说明A (1,1,1)T =(3,3,3)T ,即0=(1,1,1)T 是A の特征向量,特征值为3.又1,2都是AX =0の解说明它们也都是A の特征向量,特征值为0.由于1,2线性无关, 特征值0の重数大于1.于是A の特征值为3,0,0.属于3の特征向量:c0, c ≠0. 属于0の特征向量:c 11+c 22, c 1,c 2不都为0. ② 将0单位化,得0=(33,33,33)T . 对1,2作施密特正交化,の1=(0,-22,22)T ,2=(-36,66,66)T . 作Q =(0,1,2),则Q 是正交矩阵,并且3 0 0Q T AQ =Q -1AQ = 0 0 0 .0 0 0(22)随机变量X の概率密度为⎪⎪⎪⎩⎪⎪⎪⎨⎧<≤<<-=其他,020,4101,21)(x x x f X ,令2X Y =,),(y x F 为二维随机变量)(Y X ,の分布函数. (Ⅰ)求Y の概率密度;(Ⅱ))4,21(-F 解: (Ⅰ)⎪⎪⎩⎪⎪⎨⎧≤<≤<≤<=≤=≤=yy y y y X P y Y P y F Y 4,141,)2(10,)1(0,0)()()(2式式 ⎰⎰=+=≤≤-=-y yy dx dx y X y P 00434121)()1(式; ⎰⎰+=+=≤≤-=-y y dx dx y X y P 00141214121)()2(式. 所以:⎪⎪⎪⎩⎪⎪⎪⎨⎧<≤<<==其他,041,8110,83)()('y yy y y F y f Y Y 这个解法是从分布函数の最基本の概率定义入手,对y 进行适当の讨论即可,在新东方の辅导班里我也经常讲到,是基本题型.(Ⅱ))4,21(-F )212()22,21()4,21()4,21(2-≤≤-=≤≤--≤=≤-≤=≤-≤=X P X X P X X P Y X P 4121211==⎰--dx . (23)设总体X の概率密度为⎪⎩⎪⎨⎧≤≤-<<=其他,021,110,),(x x x f θθθ,其中θ是未知参数(0<θ<1).n X X X ,,21为来自总体の简单随机样本,记N 为样本值n x x x ,,21中小于1の个数.求θの最大似然估计.解:对样本n x x x ,,21按照<1或者≥1进行分类:pN p p x x x ,,21<1,pn pN pN x x x ,,21++≥1.似然函数⎩⎨⎧≥<-=++-其他,,01,,,1,,)1()(2121pn pN pN pN p p N n N x x x x x x L θθθ, 在pN p p x x x ,,21<1,pn pN pN x x x ,,21++≥1时, )1ln()(ln )(ln θθθ--+=N n N L ,01)(ln =---=θθθθN n N d L d ,所以n N =最大θ.。

2006年南开大学数学分析考研试题及解答

2006年南开大学数学分析考研试题及解答

南开大学2006年数学分析考研试题及解答1.求极限()204sin limtt tx dx t→⎰.2.设123222212311111231111nn n n n n nx x x x u x x x x x x x x ----=,试证()112ni i in n u x u x =-∂=∂∑.3.设()f x 在[]0,2上有界可积,()20f x dx =⎰,求证存在[]0,1a ∈,使得()10a af x dx +=⎰.4.若幂级数0n n n a x ∞=∑在()1,1-内收敛于()f x ,设()01,1n x ≠∈-,满足lim 0n n x →∞=和()0n f x =,1,2n = ,则()0f x =,对所有()1,1x ∈-.5.设函数()f x 在(),-∞+∞有任意阶导数,且导数数列()()n f x 在(),-∞+∞一致收敛于()x ϕ,()01ϕ=,求证()x x e ϕ=.6.设(),,f x y z 在球(){}222,,:1x y z x y z ++≤上连续,令()(){}2222,,:B r x y z x y z r =++≤,()(){}2222,,:S r x y z x y z r =++=,0r >,求证()()()(),,,,B r S r df x y z dxdydz f x y z dS dr =⎰⎰⎰⎰⎰,()0,1r ∈. 7.设(),,f x y z 在全空间上具有连续的偏导数,且关于,,x y z 都是周期的,即对任意点(),,x y z ,成立()()()()1,,,1,,,1,,f x y z f x y z f x y z f x y z +=+=+=,则对任意实数,,αβγ,有0f f f dxdydz x y z αβγΩ⎛⎫∂∂∂++= ⎪∂∂∂⎝⎭⎰⎰⎰,这里[][][]0,10,10,1Ω=⨯⨯是单位方体.8.设A 为三阶实对称方阵,定义函数()(),,,,x h x y z x y z A y z ⎛⎫⎪= ⎪ ⎪⎝⎭,求证(),,h x y z 在条件2221x y z ++=下的最大值为矩阵A 的最大特征值.9.(1)设数列0n a ≠,满足0n a →,()n →+∞,定义集合{}:,i P ka k Z i N =∈∈,Z 为整数集,N 为自然数集,求证对任何实数b ,存在数列k b P ∈,使得lim k k b b →∞=;(2)试证 一个非常数的周期连续函数必有最小正周期.10.设()x ϕ是(),-∞+∞上的周期连续函数,周期为1,且()10x dx ϕ=⎰,令()1xn a e nx dx ϕ=⎰,()1,2,n = ,求证级数21n n a ∞=∑收敛.南开大学2006年数学分析考研试题解答1、解 当0t +→时, 令2tx y =,12dx dy yt=, 原式341sin 2lim t t y dyy tt+→⋅=⎰3902sin 2lim t t ydy y t+→=⎰323702sin 32lim 92t t t t t +→⋅=330sin 1lim 33t t t +→==. 当0t -→时,同理()204sin 1lim 3tt tx dx t -→=⎰故()240sin 1lim3tt tx dx t →=⎰. 2、证明 将行列式按第一列展开11112111n n u A x A x A -=+++ , 所以()111211111n n ux x A n x A x -∂=++-∂ ,同理将行列式按第i 列展开,得()121n ii i i ni iux x A n x A x -∂=++-∂ ,1,2,,i n = , 于是()12122221nin n i iux x A x A x A x =∂=+++∂∑ ()22213123232n n x A x A x A ++++)()11111221n n n n n n nn n x A x A x A ---+-+++ ()()1212n n u u n u u -=+++-= . 3、证明 构造函数()()1x xF x f t dt +=⎰,[]0,1x ∈,()()()()()1221010F F f t dt f t dt f t dt +=+==⎰⎰⎰,由()f x 在[]0,2上有界可积,知()F x 在[]0,1上连续,存在[]0,1α∈,使得()()()0102F F F α+==, 即()10f x dx αα+=⎰.4、证明 设()()()n n g x f x =,由于()(){}nf x 一致收敛于()x ϕ,()()()()()()1lim lim n n n n f x f x x ϕ+→∞→∞'==,则有(){}n g x 一致收敛于()x ϕ,(){}n g x '一致收敛于()x ϕ, 于是()()x x ϕϕ'=,()x x Ce ϕ=, 又因为()01ϕ=,故()x x e ϕ=.5、证明 令sin cos x t ϕθ=,sin sin y t ϕθ=,cos z t ϕ=0t r ≤≤,0ϕπ≤≤,02θπ≤≤,则()(),,B r df x y z dxdydz dr ⎰⎰⎰ ()22000sin cos ,sin sin ,cos sin r d dt d f t t t t d drππθϕθϕθϕϕϕ=⋅⎰⎰⎰ ()220sin cos ,sin sin ,cos sin d f r r r r d ππθϕθϕθϕϕϕ=⋅⎰⎰,在()S r 中:sin cos x r ϕθ=,sin sin y r ϕθ=,cos z r ϕ=,0ϕπ≤≤,02θπ≤≤,2dS EG F d d ϕθ=-2sin r d d ϕϕθ=,()()()220,,sin cos ,sin sin ,cos sin S r f x y z dS d f r r r r d ππθϕθϕθϕϕϕ=⋅⎰⎰⎰⎰.故结论得证.6、证明 由偏导数连续,()()()1,,,,0yzD fdxdydz f x y z f x y z dydz x ααΩ∂=+-=∂⎰⎰⎰⎰⎰, 同理()()(),1,,,0xzD fdxdydz f x y z f x y z dxdz y ββΩ∂=+-=∂⎰⎰⎰⎰⎰, ()()(),,1,,0xyD fdxdydz f x y z f x y z dydz z γγΩ∂=+-=∂⎰⎰⎰⎰⎰, 故有0f f f dxdydz x y z αβγΩ⎛⎫∂∂∂++= ⎪∂∂∂⎝⎭⎰⎰⎰.7、证明 由幂级数的收敛性知()f x 连续, 于是()()0lim 0n n f f x →∞==,由幂级数的性质()()k f x 都在()1,1-上连续,()1,2,k = 由()0n f x =,()1,2,n = ,存在n ξ在n x 与0之间,使得()0n f ξ'=,显然有lim 0n n ξ→∞=,0n ξ≠,()()0lim 0n n f f ξ→∞''==,由()0n f ξ'=,()1,2,n = ,存在n η在n ξ与0之间,使得()0n f η''=, 显然有lim 0n n η→∞=,0n η≠,()()0lim 0n n f f ξ→∞''''==,同理这样继续下去,可得()()00k f =,()0,1,2,3,k = ,由于()f x 已展开成收敛的幂级数 ()0n n n f x a x ∞==∑,所以()()00!n n f a n ==,()0,1,2,3,n = ,故()0f x =,()1,1x ∈-.8、设A 为n 阶实对称方阵,定义函数()T f x x Ax =,其中()12,,,Tn x x x x = ,求证:()f x 在条件12211ni i x x =⎛⎫== ⎪⎝⎭∑下的最大值和最小值分别为矩阵A 的最大特征值和最小特征值.证明 因为{}:1n S x R x =∈=是有界闭集,()f x 在S 上连续,所以()f x 在S 上存在最大值和最小值. 设0x S ∈,使得()()0max x Sf x f x M ∈==,0y S ∈,使得()()0min x Sf y f x m ∈==,则对任意的实数t ,n h R ∈都有,00x thf M x th⎛⎫+≤ ⎪ ⎪+⎝⎭, ()()00201Tx th A x th M x th++≤+,()()2000Tx th A x th M x th ++≤+,2200000022T T T TT T x Ax th Ax t h Ah Mx x Mth x t h h ++≤++,220022T T T T th Ax t h Ah Mth x t h h +≤+, 对0t >时,有0022T T T T h Ax th Ah Mh x th h +≤+, 令0t +→,得00T T h Ax Mh x ≤,对于0t <时,有0022T T T T h Ax th Ah Mh x th h +≥+, 令0t -→,得00T T h Ax Mh x ≥, 故有00T T h Ax Mh x =,(任意n h R ∈)从而00Ax Mx =,M 是A 的特征值, 同理可证m 也是A 的特征值,设λ为A 的特征值,对应的特征向量为n R ξ∈,1ξ=,A ξλξ=,T A ξξλ=,于是m M λ≤≤,所以M 是A 的最大特征值,m 是A 的最小特征值.8、证明 因为A 是实对称矩阵,所以存在正交阵T ,使得12300000T AT λλλ⎛⎫⎪'= ⎪ ⎪⎝⎭,123,,λλλ为实数, 于是()()12300,,,,0000x h x y z x y z T T y z λλλ⎛⎫⎛⎫⎪ ⎪'= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,令()()111,,,,x y z T x y z =, 则()()111,,,,x y z x y z T '=,又因为111x x y T y z z ⎛⎫⎛⎫⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,所以()2221x x y z xyz y z ⎛⎫⎪=++= ⎪ ⎪⎝⎭()111111,,x x y z T T y z ⎛⎫ ⎪'= ⎪ ⎪⎝⎭222111x y z =++, 即2221111x y z ++=,()222112131,,h x y z x y z λλλ=++, 不妨设123λλλ≤≤,则有()()()22222211113111,,x y z h x y z x y z λλ++≤≤++, 显然(),,h x y z 有最大值3λ.9、证明(1)对任意固定实数b ,存在11b a ,使得()1111,1b b a b a ∈+⎡⎤⎣⎦,1b 为整数, 将闭区间进一步缩小,存在i ka , 使得()()1111,1,1i i b ka k a b a b a ∈+⊂+⎡⎤⎡⎤⎣⎦⎣⎦,记i ka 为22n n b a ,一直进行下去,得到一列闭区间套,使得()()1111,1,1k k k k k k k k n n n n n n n n b b a b a b a b a ----⎡⎤⎡⎤∈+⊂+⎣⎦⎣⎦,因为lim 0n n a →∞=,所以{}n a 的任何子列比收敛于零,则()lim 1lim 0k k k k k n n n n n k k b a b a a →∞→∞⎡⎤+-==⎣⎦, 利用闭区间套定理,存在(),1k k k k n n n n b a b a ξ⎡⎤∈+⎣⎦, 使得lim k k n n k b a ξ→∞=,由ξ是唯一公共点,知b ξ=. 令k k n n k b a b P =∈,则有lim k k b b →∞=.(2) (a )因为集合{}f 的正周期有下界0, 有确界存在定理,{}0inf f T =的正周期存在, (b )现证明{}0inf f T ∈的周期,根据下确界的性质,存在{}inf f n T ∈的正周期,1,2,n = , 使得0lim n n T T →∞=,对任意x R ∈,由()f x 得连续性,得()()()()0lim lim n n n f x T f x T f x f x →∞→∞+=+==,所以0T 是f 的周期.(c )因为0n T >,0lim n n T T →∞=,所以00T ≥,若00T =,则lim 0n n T →∞=,于是f 得周期网点(指等于周期整数倍的点)在实数轴R 上稠密,从而,任意x R ∈,存在{}n x ,{}n y 是有一些周期网点所组成的序列,lim n n x x →∞=,由此()()()()lim lim 00n n n n f x f x f x f →∞→∞==+=,即()()0f x f ≡(为常数),矛盾, 故00T >,结论得证.10、 证明 设()()0xx t dt ϕΦ=⎰,由于()t ϕ是周期为1的连续函数,且()10t dt ϕ=⎰,易知()x Φ亦是周期为1的连续函数,且()()x x ϕ'Φ=,()00Φ=,()0n Φ=,()1,2,n =()()1n a f x nx dx ϕ=⎰()01n u f u du n n ϕ⎛⎫= ⎪⎝⎭⎰()01n x f x dx n n ⎛⎫'=Φ ⎪⎝⎭⎰()()00111nn x x x f f x dx nn n nn ⎛⎫⎛⎫⎛⎫'=Φ-Φ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎰()011n x f x dx n nn ⎛⎫'=-Φ ⎪⎝⎭⎰,()011n n x a f x dx n n n ⎛⎫'≤Φ ⎪⎝⎭⎰()00111max n x x x f dx n n n≤≤⎛⎫'≤Φ⋅ ⎪⎝⎭⎰()()10011max x x f t dt n ≤≤'=Φ⋅⎰1K n=, 其中K 为常数,()()101max x K x f t dt ≤≤'=Φ⋅⎰,22210na K n ≤≤,而2211n K n ∞=∑收敛,所以21n n a ∞=∑收敛.。

三峡大学考研历年真题之高等代数2006 2009--2011年考研真题

三峡大学考研历年真题之高等代数2006 2009--2011年考研真题
1.分别求多项式 x 5 2 x 4 4 x 8 在有理数域、数域 Q( 2 ) 、实数域、复数域范 围内的因式分解. (12 分)
1 0 2、设 A b 0 a 1 0 0 0 0 4 5 3 5 0 0 c. 问 4 5
(1) a, b, c 满足何关系时, A 为可逆矩阵? (2) a, b, c 为何值时, A 为对称矩阵? (3) a, b, c 为何值时, A 为正交矩阵? (15 分)
2 2 9、9、已知二次型 f ( x1 , x2 , x3 ) x12 x2 x3 2ax1 x2 , (a 0) 通过正交变换化成标准 2 2 形 f y2 ,求参数 a 及所用的正交变换. 2 y3
(24 分)
第二页
第 1 页共 2 页
三 峡


2009 年研究生入学考试试题
二、 (15 分)证明:如果 ( f ( x), g ( x)) 1, 那么 ( f ( x) g ( x), f ( x) g ( x)) 1. 三、(20 分)设 A, B, C, D 都是 2 2 矩阵,且 A 0, AC CA . (1) 证明
A B AD CB . C D
(1)证明方程组系数矩阵 A 的秩 r ( A) 2 ; (2)求 a,b 的值及方程组的通解(20 分). 第一页
1 3 5 5、设 A 3 4 7 , AX A X ,求矩阵 X . 1 2 3
(13 分)
6、 证明:实二次型 f ( x1 , x2 ,, xn ) X AX 半正定的充分必要条件是它的正惯性指 数与秩相等. (14 分)
3、设向量组 1 , 2 ,3 线性相关; 2 , 3 , 4 线性无关. 问: (1) 1 能否由 2 , 3 线性表出?证明你的结论; (2) 4 能否由 1 , 2 ,3 线性表出?证明你的结论. (18 分)

2006年考研数学三真题及答案解析

2006年考研数学三真题及答案解析

2006年考研数学(三)真题一、填空题:1-6小题,每小题4分,共24分. 把答案填在题中横线上. (1)()11lim ______.nn n n -→∞+⎛⎫=⎪⎝⎭(2)设函数()f x 在2x =的某邻域内可导,且()()e f x f x '=,()21f =,则()2____.f '''=(3)设函数()f u 可微,且()102f '=,则()224z f x y =-在点(1,2)处的全微分()1,2d _____.z =(4)设矩阵2112A ⎛⎫=⎪-⎝⎭,E 为2阶单位矩阵,矩阵B 满足2BA B E =+,则=B . (5)设随机变量X Y 与相互独立,且均服从区间[]0,3上的均匀分布,则{}{}max ,1P X Y ≤=_______. (6)设总体X 的概率密度为()()121,,,,2xn f x e x X X X -=-∞<<+∞L 为总体X 的简单随机样本,其样本方差为2S ,则2____.ES =二、选择题:7-14小题,每小题4分,共32分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.(7)设函数()y f x =具有二阶导数,且()0,()0f x f x '''>>,x ∆为自变量x 在点0x 处的增量,d y y ∆与分别为()f x 在点0x 处对应的增量与微分,若0x ∆>,则(A) 0d y y <<∆. (B) 0d y y <∆<.(C) d 0y y ∆<<. (D) d 0y y <∆< . [ ](8)设函数()f x 在0x =处连续,且()22lim1h f h h→=,则(A) ()()000f f -'=且存在 (B) ()()010f f -'=且存在(C) ()()000f f +'=且存在 (D)()()010f f +'=且存在 [ ] (9)若级数1nn a∞=∑收敛,则级数(A)1nn a∞=∑收敛 . (B )1(1)nn n a ∞=-∑收敛.(C)11n n n a a ∞+=∑收敛. (D)112n n n a a ∞+=+∑收敛. [ ](10)设非齐次线性微分方程()()y P x y Q x '+=有两个不同的解12(),(),y x y x C 为任意常数,则该方程的通解是(A)[]12()()C y x y x -. (B)[]112()()()y x C y x y x +-.(C)[]12()()C y x y x +. (D)[]112()()()y x C y x y x ++ [ ](11)设(,)(,)f x y x y ϕ与均为可微函数,且(,)0y x y ϕ'≠,已知00(,)x y 是(,)f x y 在约束条件(,)0x y ϕ=下的一个极值点,下列选项正确的是(A) 若00(,)0x f x y '=,则00(,)0y f x y '=. (B) 若00(,)0x f x y '=,则00(,)0y f x y '≠. (C) 若00(,)0x f x y '≠,则00(,)0y f x y '=.(D) 若00(,)0x f x y '≠,则00(,)0y f x y '≠. [ ] (12)设12,,,s αααL 均为n 维列向量,A 为m n ⨯矩阵,下列选项正确的是(A) 若12,,,s αααL 线性相关,则12,,,s A A A αααL 线性相关. (B) 若12,,,s αααL 线性相关,则12,,,s A A A αααL 线性无关. (C) 若12,,,s αααL 线性无关,则12,,,s A A A αααL 线性相关.(D) 若12,,,s αααL 线性无关,则12,,,s A A A αααL 线性无关. [ ](13)设A 为3阶矩阵,将A 的第2行加到第1行得B ,再将B 的第1列的1-倍加到第2列得C ,记110010001P ⎛⎫⎪= ⎪ ⎪⎝⎭,则(A)1C P AP -=. (B)1C PAP -=.(C)T C P AP =. (D)TC PAP =. [ ] (14)设随机变量X 服从正态分布211(,)N μσ,Y 服从正态分布222(,)N μσ,且{}{}1211P X P Y μμ-<>-<则必有(A) 12σσ< (B) 12σσ>(C) 12μμ< (D) 12μμ> [ ] 三 、解答题:15-23小题,共94分. 解答应写出文字说明、证明过程或演算步骤. (15)(本题满分7分)设()1sin,,0,01arctan xy y yf x y x y xy xπ-=->>+,求 (Ⅰ) ()()lim ,y g x f x y →+∞=;(Ⅱ) ()0lim x g x +→. (16)(本题满分7分)计算二重积分d Dx y ,其中D 是由直线,1,0y x y x ===所围成的平面区域.(17)(本题满分10分)证明:当0a b π<<<时,sin 2cos sin 2cos b b b b a a a a ππ++>++.(18)(本题满分8分)在xOy 坐标平面上,连续曲线L 过点()1,0M ,其上任意点()(),0P x y x ≠处的切线斜率与直线OP 的斜率之差等于ax (常数>0a ).(Ⅰ) 求L 的方程;(Ⅱ) 当L 与直线y ax =所围成平面图形的面积为83时,确定a 的值. (19)(本题满分10分)求幂级数()()1211121n n n x n n -+∞=--∑的收敛域及和函数()s x . (20)(本题满分13分)设4维向量组()()()TTT1231,1,1,1,2,2,2,2,3,3,3,3,a a a ααα=+=+=+()T44,4,4,4a α=+,问a 为何值时1234,,,αααα线性相关?当1234,,,αααα线性相关时,求其一个极大线性无关组,并将其余向量用该极大线性无关组线性表出.(21)(本题满分13分)设3阶实对称矩阵A 的各行元素之和均为3,向量()()TT121,2,1,0,1,1αα=--=-是线性方程组0Ax =的两个解.(Ⅰ)求A 的特征值与特征向量;(Ⅱ)求正交矩阵Q 和对角矩阵Λ,使得TQ AQ =Λ;(Ⅲ)求A 及632A E ⎛⎫- ⎪⎝⎭,其中E 为3阶单位矩阵.(22)(本题满分13分)设随机变量X 的概率密度为()1,1021,0240,X x f x x ⎧-<<⎪⎪⎪=≤<⎨⎪⎪⎪⎩ 其他,令()2,,Y X F x y =为二维随机变量(,)X Y 的分布函数. (Ⅰ)求Y 的概率密度()Y f y ; (Ⅱ)Cov(,)X Y ;(Ⅲ)1,42F ⎛⎫-⎪⎝⎭. (23)(本题满分13分)设总体X 的概率密度为(),01,;1,12,0,x f x x θθθ<<⎧⎪=-≤<⎨⎪⎩其他,其中θ是未知参数()01θ<<,12n ,...,X X X 为来自总体X 的简单随机样本,记N 为样本值12,...,n x x x 中小于1的个数.(Ⅰ)求θ的矩估计; (Ⅱ)求θ的最大似然估计2006年考研数学(三)真题解析二、填空题:1-6小题,每小题4分,共24分. 把答案填在题中横线上. (1)()11lim 1.nn n n -→∞+⎛⎫=⎪⎝⎭【分析】将其对数恒等化ln eNN =求解.【详解】()(1)111ln lim (1)ln 1lim lim eennn n n n n n n n n n -→∞-++⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭→∞→∞+⎛⎫== ⎪⎝⎭,而数列{}(1)n -有界,1lim ln 0n n n →∞+⎛⎫= ⎪⎝⎭,所以1lim(1)ln 0nn n n →∞+⎛⎫-= ⎪⎝⎭. 故 ()101lim e 1nn n n -→∞+⎛⎫==⎪⎝⎭.(2)设函数()f x 在2x =的某邻域内可导,且()()e f x f x '=,()21f =,则()322e .f '''=【分析】利用复合函数求导即可. 【详解】由题设知,()()ef x f x '=,两边对x 求导得()()()2e()ef x f x f x f x '''==,两边再对x 求导得 ()()23()2e()2ef x f x f x f x ''''==,又()21f =,故 ()323(2)2e 2e f f '''==.(3)设函数()f u 可微,且()102f '=,则()224z f x y =-在点(1,2)处的全微分()1,2d 4d 2d .z x y =-【分析】利用二元函数的全微分公式或微分形式不变性计算. 【详解】方法一:因为22(1,2)(1,2)(4)84z f x y xx ∂'=-⋅=∂,()22(1,2)(1,2)(4)22z f x y y y∂'=-⋅-=-∂,所以 ()()()1,21,21,2d d d 4d 2d z z z x y x y xy⎡⎤∂∂=+=-⎢⎥∂∂⎣⎦. 方法二:对()224z f x y=-微分得()222222d (4)d(4)(4)8d 2d z f x y x y f x y x x y y ''=--=--, 故 ()()1,2d (0)8d 2d 4d 2d z f x y x y'=-=-.(4)设矩阵2112A ⎛⎫= ⎪-⎝⎭,E 为2阶单位矩阵,矩阵B 满足2BA B E =+,则=B 2 .【分析】 将矩阵方程改写为AX B XA B AXB C ===或或的形式,再用方阵相乘的行列式性质进行计算即可.【详解】 由题设,有()2B A E E -= 于是有 4B A E -=,而11211A E -==-,所以2B =.(5)设随机变量X Y 与相互独立,且均服从区间[]0,3上的均匀分布,则{}{}max ,1P X Y ≤=19. 【分析】 利用X Y 与的独立性及分布计算. 【详解】 由题设知,X Y 与具有相同的概率密度1,3()30,x f x ⎧≤≤⎪=⎨⎪⎩ 0 其他.则 {}{}{}max ,11,1P X Y P X Y ≤=≤≤{}{}11P X P Y =≤≤{}()2120111d 39P X x ⎛⎫=≤== ⎪⎝⎭⎰.【评注】 本题属几何概型,也可如下计算,如下图:则 {}{}{}1max ,11,19S P X Y P X Y S ≤=≤≤==阴. (6)设总体X 的概率密度为()()121,,,,2xn f x e x X X X -=-∞<<+∞L 为总体X 的简单随机样本,其样本方差为2S ,则22.ES =【分析】利用样本方差的性质2ES DX =即可. 【详解】因为()d e d 02xx EX xf x x x +∞+∞--∞-∞===⎰⎰, 22222000()d e d e d e 2e d 2xx xx x EX x f x x x x x x x x +∞+∞+∞+∞---+∞--∞-∞====-+⎰⎰⎰⎰2e2e d 2e 2x x xx x +∞-+∞--+∞=-+=-=⎰,所以 ()22202DX EX EX =-=-=,又因2S 是DX 的无偏估计量,所以 22ES DX ==.二、选择题:7-14小题,每小题4分,共32分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.(7)设函数()y f x =具有二阶导数,且()0,()0f x f x '''>>,x ∆为自变量x 在点0x 处的增量,d y y ∆与分别为()f x 在点0x 处对应的增量与微分,若0x ∆>,则(A) 0d y y <<∆. (B) 0d y y <∆<.(C) d 0y y ∆<<. (D) d 0y y <∆< .[ A ]【分析】 题设条件有明显的几何意义,用图示法求解.【详解】 由()0,()0f x f x '''>>知,函数()f x 单调增加,曲线()y f x =凹向,作函数()y f x =的图形如右图所示,显然当0x ∆>时,00d ()d ()0y y f x x f x x ''∆>==∆>,故应选(A).(8)设函数()f x 在0x =处连续,且()22lim1h f h h →=,则(A) ()()000f f -'=且存在 (B) ()()010f f -'=且存在(C) ()()000f f +'=且存在 (D)()()010f f +'=且存在 [ C ] 【分析】从()22lim1h f h h→=入手计算(0)f ,利用导数的左右导数定义判定(0),(0)f f -+''的存在性. 【详解】由()22lim1h f h h→=知,()20lim 0h f h →=.又因为()f x 在0x =处连续,则()2(0)lim ()lim 0x h f f x f h→→===.令2t h =,则()()22(0)1limlim (0)h t f h f t f f h t++→→-'===.所以(0)f +'存在,故本题选(C ). (9)若级数1nn a∞=∑收敛,则级数(A)1nn a∞=∑收敛 . (B )1(1)nn n a ∞=-∑收敛.(C)11n n n a a ∞+=∑收敛. (D)112n n n a a ∞+=+∑收敛. [ D ] 【分析】 可以通过举反例及级数的性质来判定. 【详解】 由1nn a∞=∑收敛知11n n a∞+=∑收敛,所以级数112n n n a a ∞+=+∑收敛,故应选(D). 或利用排除法: 取1(1)nn a n=-,则可排除选项(A),(B);取(1)nn a =-.故(D)项正确. (10)设非齐次线性微分方程()()y P x y Q x '+=有两个不同的解12(),(),y x y x C 为任意常数,则该方程的通解是(A)[]12()()C y x y x -. (B)[]112()()()y x C y x y x +-.(C)[]12()()C y x y x +. (D)[]112()()()y x C y x y x ++ [ B ] 【分析】 利用一阶线性非齐次微分方程解的结构即可.【详解】由于12()()y x y x -是对应齐次线性微分方程()0y P x y '+=的非零解,所以它的通解是[]12()()Y C y x y x =-,故原方程的通解为[]1112()()()()y y x Y y x C y x y x =+=+-,故应选(B).【评注】本题属基本题型,考查一阶线性非齐次微分方程解的结构:*y y Y =+.其中*y 是所给一阶线性微分方程的特解,Y 是对应齐次微分方程的通解.(11)设(,)(,)f x y x y ϕ与均为可微函数,且(,)0y x y ϕ'≠,已知00(,)x y 是(,)f x y 在约束条件(,)0x y ϕ=下的一个极值点,下列选项正确的是(A) 若00(,)0x f x y '=,则00(,)0y f x y '=. (B) 若00(,)0x f x y '=,则00(,)0y f x y '≠. (C) 若00(,)0x f x y '≠,则00(,)0y f x y '=.(D) 若00(,)0x f x y '≠,则00(,)0y f x y '≠. [ D ]【分析】 利用拉格朗日函数(,,)(,)(,)F x y f x y x y λλϕ=+在000(,,)x y λ(0λ是对应00,x y 的参数λ的值)取到极值的必要条件即可.【详解】 作拉格朗日函数(,,)(,)(,)F x y f x y x y λλϕ=+,并记对应00,x y 的参数λ的值为0λ,则000000(,,)0(,,)0x y F x y F x y λλ⎧'=⎪⎨'=⎪⎩, 即0000000000(,)(,)0(,)(,)0x x y y f x y x y f x y x y λϕλϕ⎧''+=⎪⎨''+=⎪⎩ .消去0λ,得00000000(,)(,)(,)(,)0x y y x f x y x y f x y x y ϕϕ''''-=, 整理得 000000001(,)(,)(,)(,)x y x y f x y f x y x y x y ϕϕ'''='.(因为(,)0y x y ϕ'≠),若00(,)0x f x y '≠,则00(,)0y f x y '≠.故选(D).(12)设12,,,s αααL 均为n 维列向量,A 为m n ⨯矩阵,下列选项正确的是(A) 若12,,,s αααL 线性相关,则12,,,s A A A αααL 线性相关. (B) 若12,,,s αααL 线性相关,则12,,,s A A A αααL 线性无关.(C) 若12,,,s αααL 线性无关,则12,,,s A A A αααL 线性相关.(D) 若12,,,s αααL 线性无关,则12,,,s A A A αααL 线性无关. [ A ] 【分析】 本题考查向量组的线性相关性问题,利用定义或性质进行判定. 【详解】 记12(,,,)s B ααα=L ,则12(,,,)s A A A AB ααα=L .所以,若向量组12,,,s αααL 线性相关,则()r B s <,从而()()r AB r B s ≤<,向量组12,,,s A A A αααL 也线性相关,故应选(A).(13)设A 为3阶矩阵,将A 的第2行加到第1行得B ,再将B 的第1列的1-倍加到第2列得C ,记110010001P ⎛⎫ ⎪= ⎪ ⎪⎝⎭,则(A)1C P AP -=. (B)1C PAP -=.(C)TC P AP =. (D)TC PAP =. [ B ]【分析】利用矩阵的初等变换与初等矩阵的关系以及初等矩阵的性质可得. 【详解】由题设可得110110*********,010010010001001001001B A C B A --⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ ,而 1110010001P --⎛⎫ ⎪= ⎪ ⎪⎝⎭,则有1C PAP -=.故应选(B).(14)设随机变量X 服从正态分布211(,)N μσ,Y 服从正态分布222(,)N μσ,且{}{}1211P X P Y μμ-<>-< 则必有(A) 12σσ< (B) 12σσ>(C) 12μμ< (D) 12μμ> [ A ] 【分析】 利用标准正态分布密度曲线的几何意义可得.【详解】 由题设可得12112211X Y P P μμσσσσ⎧-⎫⎧-⎫<><⎨⎬⎨⎬⎩⎭⎩⎭,则 12112121σσ⎛⎫⎛⎫Φ->Φ-⎪ ⎪⎝⎭⎝⎭,即1211σσ⎛⎫⎛⎫Φ>Φ ⎪ ⎪⎝⎭⎝⎭. 其中()x Φ是标准正态分布的分布函数. 又()x Φ是单调不减函数,则1211σσ>,即12σσ<.故选(A).三 、解答题:15-23小题,共94分. 解答应写出文字说明、证明过程或演算步骤. (15)(本题满分7分)设()1sin,,0,01arctan xy y yf x y x y xy xπ-=->>+,求 (Ⅰ) ()()lim ,y g x f x y →+∞=;(Ⅱ) ()0lim x g x +→. 【分析】第(Ⅰ)问求极限时注意将x 作为常量求解,此问中含,0∞⋅∞∞型未定式极限;第(Ⅱ)问需利用第(Ⅰ)问的结果,含∞-∞未定式极限.【详解】(Ⅰ) ()()1sin lim ,lim 1arctan y y x y y y g x f x y xy x π→+∞→∞⎛⎫- ⎪⎪==-+ ⎪⎪⎝⎭sin 11111lim 1arctan arctan y x yxy x x x x y ππ→∞⎛⎫ ⎪ ⎪-⎪⎪-=-=-⎪ ⎪+ ⎪ ⎪ ⎪⎝⎭. (Ⅱ) ()200011arctan lim lim lim arctan arctan x x x x x x x g x x x x xππ+++→→→--+⎛⎫=-= ⎪⎝⎭ (通分) 22222000112arctan 2(1)1lim lim lim 22x x x x x x x x x x x x x xππππ+++→→→-+-+-+++====(16)(本题满分7分) 计算二重积分2d d Dy xy x y -⎰⎰,其中D 是由直线,1,0y x y x ===所围成的平面区域.【分析】画出积分域,将二重积分化为累次积分即可.【详解】积分区域如右图.因为根号下的函数为关于x 的一次函数,“先x后y ”积分较容易,所以1220d d d d yDy xy x y y y xy x -=-⎰⎰⎰⎰()311222002122d d 339yy xy y y y y=--==⎰⎰ (17)(本题满分10分)证明:当0a b π<<<时,sin 2cos sin 2cos b b b b a a a a ππ++>++.【分析】 利用“参数变易法”构造辅助函数,再利用函数的单调性证明.【详解】 令()sin 2cos sin 2cos ,0f x x x x x a a a a a x b πππ=++---<≤≤<, 则 ()sin cos 2sin cos sin f x x x x x x x x ππ'=+-+=-+,且()0f π'=. 又 ()cos sin cos sin 0f x x x x x x x ''=--=-<,(0,sin 0x x x π<<>时),故当0a x b π<≤≤<时,()f x '单调减少,即()()0f x f π''>=,则()f x 单调增加,于是()()0f b f a >=,即sin 2cos sin 2cos b b b b a a a a ππ++>++.(18)(本题满分8分)在xOy 坐标平面上,连续曲线L 过点()1,0M ,其上任意点()(),0P x y x ≠处的切线斜率与直线OP 的斜率之差等于ax (常数>0a ).(Ⅰ) 求L 的方程;(Ⅱ) 当L 与直线y ax =所围成平面图形的面积为83时,确定a 的值. 【分析】(Ⅰ)利用导数的几何意义建立微分方程,并求解;(Ⅱ)利用定积分计算平面图形的面积,确定参数. 【详解】(Ⅰ) 设曲线L 的方程为()y f x =,则由题设可得 y y ax x '-=,这是一阶线性微分方程,其中1(),()P x Q x ax x=-=,代入通解公式得 ()11d d 2e e d x x x x y ax x C x ax C ax Cx -⎛⎫⎰⎰=+=+=+ ⎪⎝⎭⎰,又(1)0f =,所以C a =-.故曲线L 的方程为 2y ax ax =-(0)x ≠.(Ⅱ) L 与直线y ax =(>0a )所围成平面图形如右图所示. 所以()220d D ax ax ax x ⎡⎤=--⎣⎦⎰ ()220482d 33a x x x a =-==⎰,故2a =.(19)(本题满分10分)求幂级数()()1211121n n n x n n -+∞=--∑的收敛域及和函数()s x .【分析】因为幂级数缺项,按函数项级数收敛域的求法计算;利用逐项求导或积分并结合已知函数的幂级数展开式计算和函数.【详解】记121(1)()(21)n n n x u x n n -+-=-,则2321121(1)()(1)(21)lim lim (1)()(21)n n n n n n n nx u x n n xx u x n n ++-+→∞→∞-++==--. 所以当21,1x x <<即时,所给幂级数收敛;当1x >时,所给幂级数发散;当1x =±时,所给幂级数为1(1)(1),(21)(21)n nn n n n -----,均收敛, 故所给幂级数的收敛域为[]1,1-在()1,1-内,()12112111(1)(1)()22()(21)(21)2n n n nn n x x s x x xs x n n n n -+-∞∞==--===--∑∑,而 12112211211(1)1(),()(1)211n n n n n n x s x s x x n x --∞∞--==-'''==-=-+∑∑, 所以 111201()(0)()d d arctan 1xxs x s s t t t x t ''''-===+⎰⎰,又1(0)0s '=,于是 1()arctan s x x '=.同理1110()(0)()d arctan d xxs x s s t t t t '-==⎰⎰()20201arctan d arctan ln 112xxt t t t x x x t =-=-++⎰, 又 1(0)0s =,所以 ()211()arctan ln 12s x x x x =-+.故 ()22()2arctan ln 1s x x x x x =-+.()1,1x ∈-.由于所给幂级数在1x =±处都收敛,且()22()2arctan ln 1s x x x x x =-+在1x =± 处都连续,所以()s x 在1x =±成立,即()22()2arctan ln 1s x x x x x =-+,[]1,1x ∈-. (20)(本题满分13分)设4维向量组()()()TTT1231,1,1,1,2,2,2,2,3,3,3,3,a a a ααα=+=+=+()T44,4,4,4a α=+,问a 为何值时1234,,,αααα线性相关?当1234,,,αααα线性相关时,求其一个极大线性无关组,并将其余向量用该极大线性无关组线性表出.【分析】因为向量组中的向量个数和向量维数相同,所以用以向量为列向量的矩阵的行列式为零来确定参数a ;用初等变换求极大线性无关组.【详解】记以1234,,,αααα为列向量的矩阵为A ,则312341234(10)12341234aa A a a a a++==+++.于是当0,010A a a ===-即或时,1234,,,αααα线性相关.当0a =时,显然1α是一个极大线性无关组,且2131412,3,4αααααα===; 当10a =-时,1α 2α 3α 4α9234183412741236A -⎛⎫ ⎪-⎪= ⎪- ⎪-⎝⎭,由于此时A 有三阶非零行列式9231834000127--=-≠-,所以123,,ααα为极大线性无关组,且123441230αααααααα+++==---,即.(21)(本题满分13分)设3阶实对称矩阵A 的各行元素之和均为3,向量()()TT121,2,1,0,1,1αα=--=-是线性方程组0Ax =的两个解.(Ⅰ) 求A 的特征值与特征向量;(Ⅱ) 求正交矩阵Q 和对角矩阵Λ,使得TQ AQ =Λ;(Ⅲ)求A 及632A E ⎛⎫- ⎪⎝⎭,其中E 为3阶单位矩阵.【分析】 由矩阵A 的各行元素之和均为3及矩阵乘法可得矩阵A 的一个特征值和对应的特征向量;由齐次线性方程组0Ax =有非零解可知A 必有零特征值,其非零解是0特征值所对应的特征向量.将A 的线性无关的特征向量正交化可得正交矩阵Q ;由TQ AQ =Λ可得到A 和632A E ⎛⎫- ⎪⎝⎭.【详解】 (Ⅰ) 因为矩阵A 的各行元素之和均为3,所以1311331131A ⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则由特征值和特征向量的定义知,3λ=是矩阵A 的特征值,T(1,1,1)α=是对应的特征向量.对应3λ=的全部特征向量为k α,其中k 为不为零的常数.又由题设知 120,0A A αα==,即11220,0A A αααα=⋅=⋅,而且12,αα线性无关,所以0λ=是矩阵A 的二重特征值,12,αα是其对应的特征向量,对应0λ=的全部特征向量为 1122k k αα+,其中12,k k 为不全为零的常数.(Ⅱ) 因为A 是实对称矩阵,所以α与12,αα正交,所以只需将12,αα正交. 取 11βα=,()()21221111012,3120,61112αββαβββ⎛⎫-⎪-⎛⎫⎛⎫ ⎪- ⎪ ⎪=-=--= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭ ⎪⎝⎭.再将12,,αββ单位化,得1212312,,0ββαηηηαββ⎛⎛⎪====== ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪⎝⎭ ⎪⎝⎭, 令 []123,,Q ηηη=,则1T QQ -=,由A 是实对称矩阵必可相似对角化,得T300Q AQ ⎡⎤⎢⎥==Λ⎢⎥⎢⎥⎣⎦. (Ⅲ)由(Ⅱ)知 T300Q AQ ⎡⎤⎢⎥==Λ⎢⎥⎢⎥⎣⎦,所以T31110011101110A Q Q ⎛⎫ ⎪⎪⎛⎫⎛⎫⎪ ⎪ ⎪=Λ==⎪ ⎪ ⎪ ⎪⎪⎪ ⎝⎭⎝⎭⎪ ⎪ ⎪⎪⎝⎭⎭. 666T T T 333222Q A E Q Q A E Q Q AQ E ⎡⎤⎛⎫⎛⎫⎛⎫-=-=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦ 6666633223333022203322E ⎛⎫⎛⎫⎡⎤⎛⎫ ⎪ ⎪⎢⎥ ⎪⎝⎭ ⎪⎛⎫⎢⎥ ⎪ ⎪⎛⎫⎛⎫ ⎪⎢⎥ ⎪ ⎪=-== ⎪ ⎪ ⎪⎢⎥ ⎪ ⎪⎝⎭⎝⎭ ⎪⎢⎥ ⎪ ⎪⎝⎭⎢⎥ ⎪⎛⎫ ⎪ ⎪⎢⎥ ⎪⎝⎭⎣⎦⎪⎝⎭⎝⎭,则666T 333222A E Q EQ E ⎛⎫⎛⎫⎛⎫-== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.(22)(本题满分13分)设随机变量X 的概率密度为()1,1021,0240,X x f x x ⎧-<<⎪⎪⎪=≤<⎨⎪⎪⎪⎩ 其他,令()2,,Y X F x y =为二维随机变量(,)X Y 的分布函数.(Ⅰ) 求Y 的概率密度()Y f y ; (Ⅱ) Cov(,)X Y ;(Ⅲ) 1,42F ⎛⎫-⎪⎝⎭. 【分析】 求一维随机变量函数的概率密度一般先求分布,然后求导得相应的概率密度或利用公式计算.【详解】 (I ) 设Y 的分布函数为()Y F y ,即2()()()Y F y P Y y P X y =≤=≤,则1) 当0y <时,()0Y F y =;2) 当01y ≤<时,(2()()Y F y P X y P X =<=<<0d 4x x =+=⎰3) 当14y ≤<时,(2()()1Y F y P X y P X =<=-<<10111d d 242x x -=+=⎰.4) 当4y ≥,()1Y F y =. 所以1()()40,Y Y y f y F y y <<⎪'==≤<⎪⎩其他.(II ) 22232Cov(,)Cov(,)()()X Y X X E X EX X EX EX EXEX ==--=-,而 02101d d 244x x EX x x -=+=⎰⎰,22022105d d 246x x EX x x -=+=⎰⎰, 3323107d d 248x x EX x x -=+=⎰⎰, 所以 7152Cov(,)8463X Y =-⋅=. (Ⅲ) 1,42F ⎛⎫-⎪⎝⎭211,4,422P X Y P X X ⎛⎫⎛⎫=≤-≤=≤-≤ ⎪ ⎪⎝⎭⎝⎭11,22222P X X P X ⎛⎫⎛⎫=≤--≤≤=-≤≤- ⎪ ⎪⎝⎭⎝⎭12111d 24x --==⎰. (23)(本题满分13分)设总体X 的概率密度为(),01,;1,12,0,x f x x θθθ<<⎧⎪=-≤<⎨⎪⎩其他,其中θ是未知参数()01θ<<,12n ,...,X X X 为来自总体X 的简单随机样本,记N 为样本值12,...,n x x x 中小于1的个数.(Ⅰ)求θ的矩估计; (Ⅱ)求θ的最大似然估计【分析】 利用矩估计法和最大似然估计法计算.【详解】(Ⅰ)因为()1213(;)d d 1d 2EX xf x x x x x x θθθθ+∞-∞==+-=-⎰⎰⎰, 令 32X θ-=,可得θ的矩估计为 32X θ=-).(Ⅱ)记似然函数为()L θ,则()()()()()111(1)N n N N n N L θθθθθθθθθ--=⋅⋅⋅-⋅-⋅⋅-=-L L 1424314444244443个个. 两边取对数得ln ()ln ()ln(1)L N n N θθθ=+--,令d ln()d1L N n Nθθθθ-=-=-,解得Nnθ=)为θ的最大似然估计.。

(整理)2006年数学一详解.

(整理)2006年数学一详解.

2006年数学一试题详解一、填空题:1-6小题,每小题4分,共24分. 把答案填在题中横线上. (1)【分析】 本题为未定式极限的求解,利用等价无穷小代换即可. 【详解】 002ln(1)lim lim 211cos 2x x x x x xx x →→+⋅==-.(2) 微分方程(1)y x y x-'=的通解是e (0).xy Cx x -=≠【分析】本方程为可分离变量型,先分离变量,然后两边积分即可 【详解】 原方程等价为d 11d y x y x ⎛⎫=- ⎪⎝⎭, 两边积分得 1ln ln y x x C =-+,整理得 e xy Cx -=.(1e CC =) (3)设∑是锥面1)z z =≤≤的下侧,则d d 2d d 3(1)d d x y z y z x z x y ∑++-=⎰⎰2π.【分析】本题∑不是封闭曲面,首先想到加一曲面1∑:2211z x y =⎧⎨+≤⎩,取上侧,使1∑+∑构成封闭曲面,然后利用高斯公式转化为三重积分,再用球面(或柱面)坐标进行计算即可.【详解】 设1∑:221(1)z x y =+≤,取上侧,则d d 2d d 3(1)d d x y z y z x z x y ∑++-⎰⎰11d d 2d d 3(1)d d d d 2d d 3(1)d d x y z y z x z x y x y z y z x z x y ∑+∑∑=++--++-⎰⎰⎰⎰.而1d d 2d d 3(1)d d x y z y z x z x y ∑+∑++-⎰⎰=2116d 6d d d 2rVv r r z πθπ==⎰⎰⎰⎰⎰⎰,1d d 2d d 3(1)d dx y zy z x zx y ∑++-=⎰⎰.所以d d 2d d 3(1)d d 2x y z y z x z x y π∑++-=⎰⎰.(4)点(2,1,0)到平面3450x y z ++=的距离d【分析】本题直接利用点到平面距离公式d =进行计算即可. 其中000(,,)x y z 为点的坐标,0Ax By Cz D +++=为平面方程. 【详解】d ==【评注】 本题属基本题型,要熟记空间解析几何中的概念和公式. (5)设矩阵2112A ⎛⎫= ⎪-⎝⎭,E 为2阶单位矩阵,矩阵B 满足2BA B E =+,则=B 2 .【分析】 将矩阵方程改写为AX B XA B AXB C ===或或的形式,再用方阵相乘的行列式性质进行计算即可.【详解】 由题设,有()2B A E E -= 于是有 4B A E -=,而11211A E -==-,所以2B =.【评注】 本题关键是将其转化为用矩阵乘积形式表示.类似题2005年考过.(6)设随机变量X Y 与相互独立,且均服从区间[]0,3上的均匀分布,则{}{}max ,1P X Y ≤=19. 【分析】 利用X Y 与的独立性及分布计算. 【详解】 由题设知,X Y 与具有相同的概率密度1,3()30,x f x ⎧≤≤⎪=⎨⎪⎩ 0 其他.则 {}{}{}max ,11,1P X Y P X Y ≤=≤≤{}{}11P X P Y =≤≤{}()2120111d 39P X x ⎛⎫=≤== ⎪⎝⎭⎰.【评注】 本题属几何概型,也可如下计算,如下图:则 {}{}{}1max ,11,19S P X Y P X Y S ≤=≤≤==阴. 二、选择题:7-14小题,每小题4分,共32分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.(7)设函数()y f x =具有二阶导数,且()0,()0f x f x '''>>,x ∆为自变量x 在点0x 处的增量,d y y ∆与分别为()f x 在点0x 处对应的增量与微分,若0x ∆>,则(A) 0d y y <<∆. (B) 0d y y <∆<.(C) d 0y y ∆<<. (D) d 0y y <∆< . [ A ]【详解】 由()0,()0f x f x '''>>知,函数()f x 单调增加,曲线()y f x =凹向,作函数()y f x =的图形如右图所示,显然当0x ∆>时,00d ()d ()0y y f x x f x x ''∆>==∆>,故应选(A).【评注】 对于题设条件有明显的几何意义或所给函数图形容易绘出时,图示法是求解此题的首选方法.本题还可用拉格朗日定理求解:0000()()(),y f x x f x f x x x x ξξ'∆=+∆-=∆<<+∆因为()0f x ''>,所以()f x '单调增加,即0()()f f x ξ''>,又0x ∆>, 则 0()()d 0y f x f x x y ξ''∆=∆>∆=>,即0d y y <<∆.(8)设(,)f x y 为连续函数,则140d (cos ,sin )d f r r r r πθθθ⎰⎰等于(A)0(,)d xx f x y y . (B )0(,)d x f x y y .(C)(,)d yy f x y x .(D)(,)d y f x y x . [ C ]【分析】 本题首先由题设画出积分区域的图形,然后化为直角坐标系下累次积分即可. 【详解】 由题设可知积分区域D 如右图所示,显然是Y 型域,则原式0(,)d yy f x y x =.故选(C).【评注】 本题为基本题型,关键是首先画出积分区域的图形. (9)若级数1nn a∞=∑收敛,则级数(A)1nn a∞=∑收敛 . (B )1(1)nn n a ∞=-∑收敛.(C)11n n n a a∞+=∑收敛. (D)112n n n a a ∞+=+∑收敛. [ D ] 【分析】 可以通过举反例及级数的性质来判定. 【详解】 由1n n a ∞=∑收敛知11n n a ∞+=∑收敛,所以级数112n n n a a ∞+=+∑收敛,故应选(D). 或利用排除法: 取1(1)nn a n=-,则可排除选项(A),(B);取(1)nn a =-,则可排除选项(C).故(D)项正确. 【评注】 本题主要考查级数收敛的性质和判别法,属基本题型.(10)设(,)(,)f x y x y ϕ与均为可微函数,且(,)0y x y ϕ'≠,已知00(,)x y 是(,)f x y 在约束条件(,)0x y ϕ=下的一个极值点,下列选项正确的是(A) 若00(,)0x f x y '=,则00(,)0y f x y '=. (B) 若00(,)0x f x y '=,则00(,)0y f x y '≠. (C) 若00(,)0x f x y '≠,则00(,)0y f x y '=.(D) 若00(,)0x f x y '≠,则00(,)0y f x y '≠. [ D]【分析】 利用拉格朗日函数(,,)(,)(,)F x y f x y x y λλϕ=+在000(,,)x y λ(0λ是对应00,x y 的参数λ的值)取到极值的必要条件即可.【详解】 作拉格朗日函数(,,)(,)(,)F x y f x y x y λλϕ=+,并记对应00,x y 的参数λ的值为0λ,则000000(,,)0(,,)0x y F x y F x y λλ⎧'=⎪⎨'=⎪⎩, 即0000000000(,)(,)0(,)(,)0x x y y f x y x y f x y x y λϕλϕ⎧''+=⎪⎨''+=⎪⎩ 消去0λ,得00000000(,)(,)(,)(,)0x y y x f x y x y f x y x y ϕϕ''''-=, 整理得 000000001(,)(,)(,)(,)x y x y f x y f x y x y x y ϕϕ'''='.(因为(,)0y x y ϕ'≠),若00(,)0x f x y '≠,则00(,)0y f x y '≠.故选(D). (11)设12,,,s ααα均为n 维列向量,A 为m n ⨯矩阵,下列选项正确的是(A) 若12,,,s ααα线性相关,则12,,,s A A A ααα线性相关. (B) 若12,,,s ααα线性相关,则12,,,s A A A ααα线性无关. (C) 若12,,,s ααα线性无关,则12,,,s A A A ααα线性相关.(D) 若12,,,s ααα线性无关,则12,,,s A A A ααα线性无关.[ C ]【分析】 本题考查向量组的线性相关性问题,利用定义或性质进行判定. 【详解】 记12(,,,)s B ααα=,则12(,,,)s A A A AB ααα=.所以,若向量组12,,,s ααα线性相关,则()r B s <,从而()()r AB r B s ≤<,向量组12,,,s A A A ααα也线性相关,故应选(A).【评注】 对于向量组的线性相关问题,可用定义,秩,也可转化为齐次线性方程组有无非零解进行讨论.(12)设A 为3阶矩阵,将A 的第2行加到第1行得B ,再将B 的第1列的1-倍加到第2列得C ,记110010001P ⎛⎫ ⎪= ⎪ ⎪⎝⎭,则(A)1C P AP -=. (B)1C PAP -=.(C)T C P AP =. (D)TC PAP =. [ B ] 【分析】利用矩阵的初等变换与初等矩阵的关系以及初等矩阵的性质可得. 【详解】由题设可得110110*********,010010010001001001001B A C B A --⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ ,而 1110010001P --⎛⎫ ⎪= ⎪ ⎪⎝⎭,则有1C PAP -=.故应选(B).【评注】(1)每一个初等变换都对应一个初等矩阵,并且对矩阵A 施行一个初等行(列)变换,相当于左(右)乘相应的初等矩阵.(2)牢记三种初等矩阵的转置和逆矩阵与初等矩阵的关系. (13)设,A B 为随机事件,且()0,(|)1P B P A B >=,则必有(A) ()()P A B P A⋃>(B) ()()P A B P B ⋃> (C) ()()P A B P A ⋃= (D) ()()P A B P B ⋃= [ B ] 【分析】 利用事件和的运算和条件概率的概念即可. 【详解】 由题设,知 ()(|)1()P AB P A B P B ==,即()()P AB P A =.又 ()()()()()P A B P A P B P AB P A ⋃=+-=.故应选(C).【评注】 本题考查随机事件的运算和关系的概念,应牢记.(14)设随机变量X 服从正态分布211(,)N μσ,Y 服从正态分布222(,)N μσ,且{}{}1211P X P Y μμ-<>-< 则必有(A) 12σσ< (B) 12σσ>(C) 12μμ< (D) 12μμ> [ D ] 【分析】 利用标准正态分布密度曲线的几何意义可得. 【详解】 由题设可得12112211X Y P P μμσσσσ⎧-⎫⎧-⎫<><⎨⎬⎨⎬⎩⎭⎩⎭,则 12112121σσ⎛⎫⎛⎫Φ->Φ-⎪ ⎪⎝⎭⎝⎭,即1211σσ⎛⎫⎛⎫Φ>Φ ⎪ ⎪⎝⎭⎝⎭.其中()x Φ是标准正态分布的分布函数. 又()x Φ是单调不减函数,则1211σσ>,即12σσ<.故选(A).【评注】 对于服从正态分布2(,)N μσ的随机变量X ,在考虑它的概率时,一般先将X 标准化,即X μσ-.三 、解答题:15-23小题,共94分.解答应写出文字说明、证明过程或演算步骤.(15)(本题满分10分)设区域{}22(,)1,0D x y x y x =+≤≥, 计算二重积分221d d .1Dxyx y x y +++⎰⎰ 【分析】 由于积分区域D 关于x 轴对称,故可先利用二重积分的对称性结论简化所求积分,又积分区域为圆域的一部分,则将其化为极坐标系下累次积分即可.【详解】 积分区域D 如右图所示.因为区域D 关于x 轴对称,函数221(,)1f x y x y=++是变量y 的偶函数,函数22(,)1xyg x y x y =++是变量y 的奇函数.则112222220011ln 2d d 2d d 2d d 1112DD r x y x y r xyx y r ππθ===+++++⎰⎰⎰⎰⎰⎰22d d 01Dxyx y x y =++⎰⎰, 故22222211ln 2d d d d d d 1112D D Dxy xy x y x y x y x y x y x y π+=+=++++++⎰⎰⎰⎰⎰⎰. 【评注】只要见到积分区域具有对称性的二重积分计算问题,就要想到考查被积函数或其代数和的每一部分是否具有奇偶性,以便简化计算. (16)(本题满分12分)设数列{}n x 满足110,sin (1,2,)n n x x x n π+<<==(Ⅰ)证明lim n n x →∞存在,并求该极限;(Ⅱ)计算211lim n x n n n x x +→∞⎛⎫ ⎪⎝⎭. 【分析】 一般利用单调增加有上界或单调减少有下界数列必有极限的准则来证明数列极限的存在. (Ⅱ)的计算需利用(Ⅰ)的结果.【详解】 (Ⅰ)因为10x π<<,则210sin 1x x π<=≤<. 可推得 10sin 1,1,2,n n x x n π+<=≤<=,则数列{}n x 有界.于是1sin 1n nn nx x x x +=<,(因当0sin x x x ><时,), 则有1n n x x +<,可见数列{}n x 单调减少,故由单调减少有下界数列必有极限知极限lim n n x →∞存在.设lim n n x l →∞=,在1sin n n x x +=两边令n →∞,得 sin l l =,解得0l =,即l i m 0n n x →∞=.(Ⅱ) 因 22111sin lim lim nn x x n n n n n n x x x x +→∞→∞⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭,由(Ⅰ)知该极限为1∞型, 令n t x =,则,0n t →∞→,而222sin 111111sin 1000sin sin sin lim lim 11lim 11tt t t t t t t t t t t t t t t -⋅-→→→⎡⎤⎛⎫⎛⎫⎛⎫⎢⎥=+-=+- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,又 23300001sin sin cos 1sin 1lim1lim lim lim 366t t t t t t t t t t t t t t →→→→---⎛⎫-====- ⎪⎝⎭. (利用了sin x 的麦克劳林展开式)故 2211116sin lim lim e nn x x n n n n n n x x x x -+→∞→∞⎛⎫⎛⎫== ⎪⎪⎝⎭⎝⎭. 【评注】 对于有递推关系的数列极限的证明问题,一般利用单调有界数列必有极限准则来证明. (17)(本题满分12分) 将函数2()2xf x x x=+-展成x 的幂级数. 【分析】 利用常见函数的幂级数展开式. 【详解】 2()2(2)(1)21x x A Bf x x x x x x x===++--+-+,比较两边系数可得21,33A B ==-,即121111()3213112f x x x x x ⎛⎫⎪⎛⎫=-=- ⎪ ⎪-++⎝⎭ ⎪-⎝⎭. 而1(1),(1,1)1n nn x x x ∞==-∈-+∑,01,(2,2)212nn x x x ∞=⎛⎫=∈- ⎪⎝⎭-∑, 故120001111()(1)(1),(1,1)23232n n n n n n n n n n x f x x x x x x x ∞∞∞+===⎛⎫⎛⎫==--+=-+∈- ⎪ ⎪+-⎝⎭⎝⎭∑∑∑. 【评注】 分式函数的幂级数展开一般采用间接法.要熟记常用函数的幂级数展开公式:(1)∑∞=-∈=+++++=-12)1,1(,111n n nu u u u u u ; (2)∑∞=-∈-=+-+-+-=+12)1,1(,)1()1(111n n n nn u u u u u u ; (3)),(,!1!1!21102+∞-∞∈=+++++=∑∞=u u n u n u u e nn n u;(4)),(,)!12()1()!12()1(!3sin 012123+∞-∞∈+-=++-++-=∑∞=++u n u n u u u u n n n n n; (5)),(,)!2()1()!2()1(!21cos 0222+∞-∞∈-=+-++-=∑∞=u n u n u u u n n n n n ; (6)]1,1(,1)1(1)1(32)1(ln 01132-∈+-=++-+-+-=+∑∞=++u n u n u u u u u n n n n n ; (7)]1,1(,!)1()1(!2)1(1)1(2-∈++--++-++=+u u n n u u u n ααααααα.(18)(本题满分12分)设函数()f u 在(0,)+∞内具有二阶导数,且z f=满足等式22220z zx y∂∂+=∂∂. (I )验证()()0f u f u u'''+=; (II )若(1)0,(1)1f f '==,求函数()f u 的表达式.【分析】利用复合函数偏导数计算方法求出2222,z zx y∂∂∂∂代入2222z zx y∂∂+=∂∂即可得(I).按常规方法解(II)即可.【详解】(I)设u=,则(( z zf u f u x y∂∂'' ==∂∂.22()()zf u f ux∂'''=+∂()22322222()()x yf u f ux yx y'''=⋅+⋅++,()2223222222()()z y xf u f uy x yx y∂'''=⋅+⋅∂++.将2222,z zx y∂∂∂∂代入2222z zx y∂∂+=∂∂得()()0f uf uu'''+=.(II)令()f u p'=,则d dp p upu p u'+=⇒=-,两边积分得1ln ln lnp u C=-+,即1Cpu=,亦即1()Cf uu'=.由(1)1f'=可得11C=.所以有1()f uu'=,两边积分得2()lnf u u C=+,由(1)0f=可得2C=,故()lnf u u=.【评注】本题为基础题型,着重考查多元复合函数的偏导数的计算及可降阶方程的求解.(19)(本题满分12分)设在上半平面{}(,)|0D x y y=>内,函数(,)f x y具有连续偏导数,且对任意的0t>都有2(,)(,)f tx ty t f x y-=.证明:对D内的任意分段光滑的有向简单闭曲线L,都有(,)d(,)d0Lyf x y x xf x y y-=⎰.【分析】 利用曲线积分与路径无关的条件Q P x y∂∂=∂∂. 【详解】 2(,)(,)f tx ty t f x y -=两边对t 求导得3(,)(,)2(,)x y xf tx ty yf tx ty t f x y -''+=-. 令 1t =,则 (,)(,)2(,)x y xf x y yf x y f x y ''+=-. ① 设(,)(,),(,)(,)P x y yf x y Q x y xf x y ==-,则(,)(,),(,)(,)x y Q P f x y xf x y f x y yf x y x y∂∂''=--=+∂∂. 则由①可得Q P x y ∂∂=∂∂. 故由曲线积分与路径无关的定理可知,对D 内的任意分段光滑的有向简单闭曲线L ,都有(,)d (,)d 0L yf x y x xf x y y -=⎰.【评注】 本题难度较大,关键是如何将待求解的问题转化为可利用已知条件的情形.(20)(本题满分9分)已知非齐次线性方程组1234123412341435131x x x x x x x x ax x x bx +++=-⎧⎪++-=-⎨⎪+++=⎩有3个线性无关的解.(Ⅰ)证明方程组系数矩阵A 的秩()2r A =;(Ⅱ)求,a b 的值及方程组的通解.【分析】 (I )根据系数矩阵的秩与基础解系的关系证明;(II )利用初等变换求矩阵A 的秩确定参数,a b ,然后解方程组.【详解】 (I ) 设123,,ααα是方程组Ax β=的3个线性无关的解,其中111114351,1131A a b β-⎛⎫⎛⎫ ⎪ ⎪=-=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭.则有 1213()0,()0A A αααα-=-=.则 1213,αααα--是对应齐次线性方程组0Ax =的解,且线性无关.(否则,易推出123,,ααα线性相关,矛盾).所以 ()2n r A -≥,即4()2()2r A r A -≥⇒≤.又矩阵A 中有一个2阶子式111043=-≠,所以()2r A ≤.因此 ()2r A =.(II ) 因为11111111111143510115011513013004245A a b a a b a a b a ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=-→--→-- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪----+-⎝⎭⎝⎭⎝⎭.又()2r A =,则42024503a a b a b -==⎧⎧⇒⎨⎨+-==-⎩⎩. 对原方程组的增广矩阵A 施行初等行变换,111111024243511011532133100000A --⎛⎫⎛⎫ ⎪ ⎪=--→-- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭,故原方程组与下面的方程组同解.134********x x x x x x =-++⎧⎨=--⎩. 选34,x x 为自由变量,则134234334424253x x x x x x x x x x =-++⎧⎪=--⎪⎨=⎪⎪=⎩. 故所求通解为12242153100010x k k -⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪-- ⎪ ⎪ ⎪=++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,12,k k 为任意常数.【评注】 本题综合考查矩阵的秩,初等变换,方程组系数矩阵的秩和基础解系的关系以及方程组求解等多个知识点,特别是第一部分比较新颖. 这是考查综合思维能力的一种重要表现形式,今后类似问题将会越来越多.(21)(本题满分9分)设3阶实对称矩阵A 的各行元素之和均为3,向量()()T T121,2,1,0,1,1αα=--=-是线性方程组0Ax =的两个解.(Ⅰ) 求A 的特征值与特征向量;(Ⅱ) 求正交矩阵Q 和对角矩阵Λ,使得T Q AQ =Λ.【分析】 由矩阵A 的各行元素之和均为3及矩阵乘法可得矩阵A 的一个特征值和对应的特征向量;由齐次线性方程组0Ax =有非零解可知A 必有零特征值,其非零解是0特征值所对应的特征向量.将A 的线性无关的特征向量正交化可得正交矩阵Q .【详解】 (Ⅰ) 因为矩阵A 的各行元素之和均为3,所以 1311331131A ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则由特征值和特征向量的定义知,3λ=是矩阵A 的特征值,T(1,1,1)α=是对应的特征向量.对应3λ=的全部特征向量为k α,其中k 为不为零的常数.又由题设知 120,0A A αα==,即11220,0A A αααα=⋅=⋅,而且12,αα线性无关,所以0λ=是矩阵A 的二重特征值,12,αα是其对应的特征向量,对应0λ=的全部特征向量为 1122k k αα+,其中12,k k 为不全为零的常数.(Ⅱ) 因为A 是实对称矩阵,所以α与12,αα正交,所以只需将12,αα正交.取 11βα=, ()()21221111012,3120,61112αββαβββ⎛⎫- ⎪-⎛⎫⎛⎫ ⎪- ⎪ ⎪=-=--= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭ ⎪⎝⎭. 再将12,,αββ单位化,得1212312,,0ββαηηηαββ⎛⎛⎪====== ⎪⎪⎪⎪⎪⎪ ⎪⎝⎭⎪⎝⎭,令[]123,,Qηηη=,则1TQ Q-=,由A是实对称矩阵必可相似对角化,得T3Q AQ⎡⎤⎢⎥==Λ⎢⎥⎢⎥⎣⎦.【评注】本题主要考查求抽象矩阵的特征值和特征向量,此类问题一般用定义求解,则要想方设法将题设条件转化为Ax xλ=的形式.(22)(本题满分9分)设随机变量X的概率密度为()1,1021,0240,Xxf x x⎧-<<⎪⎪⎪=≤<⎨⎪⎪⎪⎩ 其他,令()2,,Y X F x y=为二维随机变量(,)X Y的分布函数.(Ⅰ)求Y的概率密度()Yf y(Ⅱ)1,42F⎛⎫-⎪⎝⎭.【分析】求一维随机变量函数的概率密度一般先求分布,然后求导得相应的概率密度或利用公式计算.【详解】(I)设Y的分布函数为()YF y,即2()()()YF y P Y y P X y=≤=≤,则1)2)当0y<时,()0YF y=;3)4)当01y≤<时,(2()()YF y P X y P X=<=<<1d4x x=+=⎰5)6)当14y≤<时,(2()()1YF y P X y P X=<=-<<1011d d242x x-=+=⎰.7)当4y≥,()1YF y=.所以1()()40,Y Yyf y F y y<<⎪'==≤≤⎪⎪⎩其他.(II)1,42F⎛⎫-⎪⎝⎭211,4,422P X Y P X X⎛⎫⎛⎫=≤-≤=≤-≤⎪ ⎪⎝⎭⎝⎭11,22222P X X P X⎛⎫⎛⎫=≤--≤≤=-≤≤-⎪ ⎪⎝⎭⎝⎭12111d24x--==⎰.(23)(本题满分9分)设总体X的概率密度为(),01,;1,12,0,xf x xθθθ<<⎧⎪=-≤<⎨⎪⎩其他,其中θ是未知参数()01θ<<,12n,...,X X X为来自总体X的简单随机样本,记N为样本值12,...,nx x x中小于1的个数,求θ的最大似然估计.【分析】先写出似然函数,然后用最大似然估计法计算θ的最大似然估计.【详解】记似然函数为()Lθ,则()()()()()111(1)N n N N n N L θθθθθθθθθ--=⋅⋅⋅-⋅-⋅⋅-=-个个.两边取对数得ln ()ln ()ln(1)L N n N θθθ=+--, 令d ln ()0d 1L N n N θθθθ-=-=-,解得N nθ=为θ的最大似然估计.。

[整理]2006年数学一分析详解和评注

[整理]2006年数学一分析详解和评注

2006年数学一试题分析、详解和评注一、填空题:1-6小题,每小题4分,共24分. 把答案填在题中横线上.(1)0ln(1)lim1cos x x x x→+=- 2.【分析】 本题为0未定式极限的求解,利用等价无穷小代换即可.【详解】 002ln(1)lim lim 211cos 2x x x x x xx x →→+⋅==-.(2) 微分方程(1)y x y x-'=的通解是e (0).xy Cx x -=≠【分析】本方程为可分离变量型,先分离变量,然后两边积分即可 【详解】 原方程等价为d 11d y x y x ⎛⎫=- ⎪⎝⎭, 两边积分得 1ln ln y x x C =-+,整理得 e xy Cx -=.(1e CC =) (3)设∑是锥面1)z z =≤≤的下侧,则d d 2d d 3(1)d d x y z y z x z x y ∑++-=⎰⎰2π.【分析】本题∑不是封闭曲面,首先想到加一曲面1∑:2211z x y =⎧⎨+≤⎩,取上侧,使1∑+∑构成封闭曲面,然后利用高斯公式转化为三重积分,再用球面(或柱面)坐标进行计算即可.【详解】 设1∑:221(1)z x y =+≤,取上侧,则d d 2d d 3(1)d d x y z y z x z x y ∑++-⎰⎰11d d 2d d 3(1)d d d d 2d d 3(1)d d x y z y z x z x y x y z y z x z x y ∑+∑∑=++--++-⎰⎰⎰⎰.而1d d 2d d 3(1)d d x y z y z x z x y ∑+∑++-⎰⎰=2116d 6d d d 2rVv r r z πθπ==⎰⎰⎰⎰⎰⎰,1d d 2d d 3(1)d d 0x y zy z x z x y ∑++-=⎰⎰.所以d d 2d d 3(1)d d 2x y z y z x z x y π∑++-=⎰⎰.(4)点(2,1,0)到平面3450x y z ++=的距离d【分析】本题直接利用点到平面距离公式d =进行计算即可. 其中000(,,)x y z 为点的坐标,0Ax By Cz D +++=为平面方程. 【详解】d ==【评注】 本题属基本题型,要熟记空间解析几何中的概念和公式. (5)设矩阵2112A ⎛⎫= ⎪-⎝⎭,E 为2阶单位矩阵,矩阵B 满足2BA B E =+,则=B 2 .【分析】 将矩阵方程改写为AX B XA B AXB C ===或或的形式,再用方阵相乘的行列式性质进行计算即可.【详解】 由题设,有()2B A E E -= 于是有 4B A E -=,而11211A E -==-,所以2B =.【评注】 本题关键是将其转化为用矩阵乘积形式表示.类似题2005年考过.(6)设随机变量X Y 与相互独立,且均服从区间[]0,3上的均匀分布,则{}{}max ,1P X Y ≤=19. 【分析】 利用X Y 与的独立性及分布计算. 【详解】 由题设知,X Y 与具有相同的概率密度1,3()30,x f x ⎧≤≤⎪=⎨⎪⎩ 0 其他.则 {}{}{}max ,11,1P X Y P X Y ≤=≤≤{}{}11P X P Y =≤≤{}()2120111d 39P X x ⎛⎫=≤== ⎪⎝⎭⎰.【评注】 本题属几何概型,也可如下计算,如下图:则 {}{}{}1max ,11,19S P X Y P X Y S ≤=≤≤==阴. 二、选择题:7-14小题,每小题4分,共32分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.(7)设函数()y f x =具有二阶导数,且()0,()0f x f x '''>>,x ∆为自变量x 在点0x 处的增量,d y y ∆与分别为()f x 在点0x 处对应的增量与微分,若0x ∆>,则(A) 0d y y <<∆. (B) 0d y y <∆<.(C) d 0y y ∆<<. (D) d 0y y <∆< . [ A ]【详解】 由()0,()0f x f x '''>>知,函数()f x 单调增加,曲线()y f x =凹向,作函数()y f x =的图形如右图所示,显然当0x ∆>时,00d ()d ()0y y f x x f x x ''∆>==∆>,故应选(A).【评注】 对于题设条件有明显的几何意义或所给函数图形容易绘出时,图示法是求解此题的首选方法.本题还可用拉格朗日定理求解:0000()()(),y f x x f x f x x x x ξξ'∆=+∆-=∆<<+∆因为()0f x ''>,所以()f x '单调增加,即0()()f f x ξ''>,又0x ∆>, 则 0()()d 0y f x f x x y ξ''∆=∆>∆=>,即0d y y <<∆.(8)设(,)f x y 为连续函数,则140d (cos ,sin )d f r r r r πθθθ⎰⎰等于(A)0(,)d xx f x y y . (B )0(,)d x f x y y .(C)(,)d yy f x y x .(D)(,)d y f x y x . [ C ]【分析】 本题首先由题设画出积分区域的图形,然后化为直角坐标系下累次积分即可. 【详解】 由题设可知积分区域D 如右图所示,显然是Y 型域,则原式0(,)d yy f x y x =.故选(C).【评注】 本题为基本题型,关键是首先画出积分区域的图形. (9)若级数1nn a∞=∑收敛,则级数(A)1nn a∞=∑收敛 . (B )1(1)nn n a ∞=-∑收敛.(C)11n n n a a∞+=∑收敛. (D)112n n n a a ∞+=+∑收敛. [ D ] 【分析】 可以通过举反例及级数的性质来判定. 【详解】 由1n n a ∞=∑收敛知11n n a ∞+=∑收敛,所以级数112n n n a a ∞+=+∑收敛,故应选(D). 或利用排除法: 取1(1)nn a n=-,则可排除选项(A),(B);取(1)nn a =-,则可排除选项(C).故(D)项正确. 【评注】 本题主要考查级数收敛的性质和判别法,属基本题型.(10)设(,)(,)f x y x y ϕ与均为可微函数,且(,)0y x y ϕ'≠,已知00(,)x y 是(,)f x y 在约束条件(,)0x y ϕ=下的一个极值点,下列选项正确的是(A) 若00(,)0x f x y '=,则00(,)0y f x y '=. (B) 若00(,)0x f x y '=,则00(,)0y f x y '≠. (C) 若00(,)0x f x y '≠,则00(,)0y f x y '=.(D) 若00(,)0x f x y '≠,则00(,)0y f x y '≠. [ D]【分析】 利用拉格朗日函数(,,)(,)(,)F x y f x y x y λλϕ=+在000(,,)x y λ(0λ是对应00,x y 的参数λ的值)取到极值的必要条件即可.【详解】 作拉格朗日函数(,,)(,)(,)F x y f x y x y λλϕ=+,并记对应00,x y 的参数λ的值为0λ,则000000(,,)0(,,)0x y F x y F x y λλ⎧'=⎪⎨'=⎪⎩, 即0000000000(,)(,)0(,)(,)0x x y y f x y x y f x y x y λϕλϕ⎧''+=⎪⎨''+=⎪⎩ 消去0λ,得00000000(,)(,)(,)(,)0x y y x f x y x y f x y x y ϕϕ''''-=, 整理得 000000001(,)(,)(,)(,)x y x y f x y f x y x y x y ϕϕ'''='.(因为(,)0y x y ϕ'≠),若00(,)0x f x y '≠,则00(,)0y f x y '≠.故选(D). (11)设12,,,s ααα均为n 维列向量,A 为m n ⨯矩阵,下列选项正确的是(A) 若12,,,s ααα线性相关,则12,,,s A A A ααα线性相关. (B) 若12,,,s ααα线性相关,则12,,,s A A A ααα线性无关. (C) 若12,,,s ααα线性无关,则12,,,s A A A ααα线性相关.(D) 若12,,,s ααα线性无关,则12,,,s A A A ααα线性无关.[ C ]【分析】 本题考查向量组的线性相关性问题,利用定义或性质进行判定. 【详解】 记12(,,,)s B ααα=,则12(,,,)s A A A AB ααα=.所以,若向量组12,,,s ααα线性相关,则()r B s <,从而()()r AB r B s ≤<,向量组12,,,s A A A ααα也线性相关,故应选(A).【评注】 对于向量组的线性相关问题,可用定义,秩,也可转化为齐次线性方程组有无非零解进行讨论.(12)设A 为3阶矩阵,将A 的第2行加到第1行得B ,再将B 的第1列的1-倍加到第2列得C ,记110010001P ⎛⎫ ⎪= ⎪ ⎪⎝⎭,则(A)1C P AP -=. (B)1C PAP -=.(C)T C P AP =. (D)TC PAP =. [ B ] 【分析】利用矩阵的初等变换与初等矩阵的关系以及初等矩阵的性质可得. 【详解】由题设可得110110*********,010010010001001001001B A C B A --⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ ,而 1110010001P --⎛⎫ ⎪= ⎪ ⎪⎝⎭,则有1C PAP -=.故应选(B).【评注】(1)每一个初等变换都对应一个初等矩阵,并且对矩阵A 施行一个初等行(列)变换,相当于左(右)乘相应的初等矩阵.(2)牢记三种初等矩阵的转置和逆矩阵与初等矩阵的关系. (13)设,A B 为随机事件,且()0,(|)1P B P A B >=,则必有(A) ()()P A B P A ⋃>(B) ()()P A B P B⋃> (C) ()()P A B P A ⋃= (D) ()()P A B P B ⋃= [ B ] 【分析】 利用事件和的运算和条件概率的概念即可. 【详解】 由题设,知 ()(|)1()P AB P A B P B ==,即()()P AB P A =.又 ()()()()()P A B P A P B P AB P A ⋃=+-=.故应选(C).【评注】 本题考查随机事件的运算和关系的概念,应牢记.(14)设随机变量X 服从正态分布211(,)N μσ,Y 服从正态分布222(,)N μσ,且{}{}1211P X P Y μμ-<>-< 则必有(A) 12σσ< (B) 12σσ>(C) 12μμ< (D) 12μμ> [ D ] 【分析】 利用标准正态分布密度曲线的几何意义可得. 【详解】 由题设可得12112211X Y P P μμσσσσ⎧-⎫⎧-⎫<><⎨⎬⎨⎬⎩⎭⎩⎭,则 12112121σσ⎛⎫⎛⎫Φ->Φ-⎪ ⎪⎝⎭⎝⎭,即1211σσ⎛⎫⎛⎫Φ>Φ ⎪ ⎪⎝⎭⎝⎭.其中()x Φ是标准正态分布的分布函数. 又()x Φ是单调不减函数,则1211σσ>,即12σσ<.故选(A).【评注】 对于服从正态分布2(,)N μσ的随机变量X ,在考虑它的概率时,一般先将X 标准化,即X μσ-.三 、解答题:15-23小题,共94分.解答应写出文字说明、证明过程或演算步骤.(15)(本题满分10分)设区域{}22(,)1,0D x y x y x =+≤≥, 计算二重积分221d d .1Dxyx y x y +++⎰⎰ 【分析】 由于积分区域D 关于x 轴对称,故可先利用二重积分的对称性结论简化所求积分,又积分区域为圆域的一部分,则将其化为极坐标系下累次积分即可.【详解】 积分区域D 如右图所示.因为区域D 关于x 轴对称,函数221(,)1f x y x y=++是变量y 的偶函数,函数22(,)1xyg x y x y =++是变量y 的奇函数.则112222220011ln 2d d 2d d 2d d 1112DD r x y x y r xyx y r ππθ===+++++⎰⎰⎰⎰⎰⎰22d d 01Dxyx y x y =++⎰⎰, 故22222211ln 2d d d d d d 1112D D Dxy xy x y x y x y x y x y x y π+=+=++++++⎰⎰⎰⎰⎰⎰. 【评注】只要见到积分区域具有对称性的二重积分计算问题,就要想到考查被积函数或其代数和的每一部分是否具有奇偶性,以便简化计算. (16)(本题满分12分)设数列{}n x 满足110,sin (1,2,)n n x x x n π+<<==(Ⅰ)证明lim n n x →∞存在,并求该极限;(Ⅱ)计算211lim n x n n n x x +→∞⎛⎫ ⎪⎝⎭. 【分析】 一般利用单调增加有上界或单调减少有下界数列必有极限的准则来证明数列极限的存在. (Ⅱ)的计算需利用(Ⅰ)的结果.【详解】 (Ⅰ)因为10x π<<,则210sin 1x x π<=≤<. 可推得 10sin 1,1,2,n n x x n π+<=≤<=,则数列{}n x 有界.于是1sin 1n nn nx x x x +=<,(因当0sin x x x ><时,), 则有1n n x x +<,可见数列{}n x 单调减少,故由单调减少有下界数列必有极限知极限lim n n x →∞存在.设lim n n x l →∞=,在1sin n n x x +=两边令n →∞,得 sin l l =,解得0l =,即l i m 0n n x →∞=.(Ⅱ) 因 22111sin lim lim nn x x n n n n n n x x x x +→∞→∞⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭,由(Ⅰ)知该极限为1∞型, 令n t x =,则,0n t →∞→,而222sin 111111sin 1000sin sin sin lim lim 11lim 11tt t t t t t t t t t t t t t t -⋅-→→→⎡⎤⎛⎫⎛⎫⎛⎫⎢⎥=+-=+- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,又 23300001sin sin cos 1sin 1lim1lim lim lim 366t t t t t t t t t t t t t t →→→→---⎛⎫-====- ⎪⎝⎭. (利用了sin x 的麦克劳林展开式)故 2211116sin lim lim e nn x x n n n n n n x x x x -+→∞→∞⎛⎫⎛⎫== ⎪⎪⎝⎭⎝⎭. 【评注】 对于有递推关系的数列极限的证明问题,一般利用单调有界数列必有极限准则来证明. (17)(本题满分12分) 将函数2()2xf x x x=+-展成x 的幂级数. 【分析】 利用常见函数的幂级数展开式. 【详解】 2()2(2)(1)21x x A Bf x x x x x x x===++--+-+,比较两边系数可得21,33A B ==-,即121111()3213112f x x x x x ⎛⎫⎪⎛⎫=-=- ⎪ ⎪-++⎝⎭ ⎪-⎝⎭. 而1(1),(1,1)1n nn x x x ∞==-∈-+∑,01,(2,2)212nn x x x ∞=⎛⎫=∈- ⎪⎝⎭-∑, 故120001111()(1)(1),(1,1)23232n n n n n n n n n n x f x x x x x x x ∞∞∞+===⎛⎫⎛⎫==--+=-+∈- ⎪ ⎪+-⎝⎭⎝⎭∑∑∑. 【评注】 分式函数的幂级数展开一般采用间接法.要熟记常用函数的幂级数展开公式:(1)∑∞=-∈=+++++=-12)1,1(,111n n nu u u u u u ; (2)∑∞=-∈-=+-+-+-=+12)1,1(,)1()1(111n n n nn u u u u u u ; (3)),(,!1!1!21102+∞-∞∈=+++++=∑∞=u u n u n u u e nn n u;(4)),(,)!12()1()!12()1(!3sin 012123+∞-∞∈+-=++-++-=∑∞=++u n u n u u u u n n n n n; (5)),(,)!2()1()!2()1(!21cos 0222+∞-∞∈-=+-++-=∑∞=u n u n u u u n n n n n ; (6)]1,1(,1)1(1)1(32)1(ln 01132-∈+-=++-+-+-=+∑∞=++u n u n u u u u u n n n n n ; (7)]1,1(,!)1()1(!2)1(1)1(2-∈++--++-++=+u u n n u u u n ααααααα.(18)(本题满分12分)设函数()f u 在(0,)+∞内具有二阶导数,且z f=满足等式22220z zx y∂∂+=∂∂. (I )验证()()0f u f u u'''+=; (II )若(1)0,(1)1f f '==,求函数()f u 的表达式.【分析】利用复合函数偏导数计算方法求出2222,z zx y∂∂∂∂代入2222z zx y∂∂+=∂∂即可得(I).按常规方法解(II)即可.【详解】(I)设u=,则(( z zf u f u x y∂∂'' ==∂∂.22()()zf u f ux∂'''=+∂()22322222()()x yf u f ux yx y'''=⋅+⋅++,()2223222222()()z y xf u f uy x yx y∂'''=⋅+⋅∂++.将2222,z zx y∂∂∂∂代入2222z zx y∂∂+=∂∂得()()0f uf uu'''+=.(II)令()f u p'=,则d dp p upu p u'+=⇒=-,两边积分得1ln ln lnp u C=-+,即1Cpu=,亦即1()Cf uu'=.由(1)1f'=可得11C=.所以有1()f uu'=,两边积分得2()lnf u u C=+,由(1)0f=可得2C=,故()lnf u u=.【评注】本题为基础题型,着重考查多元复合函数的偏导数的计算及可降阶方程的求解.(19)(本题满分12分)设在上半平面{}(,)|0D x y y=>内,函数(,)f x y具有连续偏导数,且对任意的0t>都有2(,)(,)f tx ty t f x y-=.证明:对D内的任意分段光滑的有向简单闭曲线L,都有(,)d(,)d0Lyf x y x xf x y y-=⎰.【分析】 利用曲线积分与路径无关的条件Q P x y∂∂=∂∂. 【详解】 2(,)(,)f tx ty t f x y -=两边对t 求导得3(,)(,)2(,)x y xf tx ty yf tx ty t f x y -''+=-. 令 1t =,则 (,)(,)2(,)x y xf x y yf x y f x y ''+=-. ① 设(,)(,),(,)(,)P x y yf x y Q x y xf x y ==-,则(,)(,),(,)(,)x y Q P f x y xf x y f x y yf x y x y∂∂''=--=+∂∂. 则由①可得Q P x y ∂∂=∂∂. 故由曲线积分与路径无关的定理可知,对D 内的任意分段光滑的有向简单闭曲线L ,都有(,)d (,)d 0L yf x y x xf x y y -=⎰.【评注】 本题难度较大,关键是如何将待求解的问题转化为可利用已知条件的情形.(20)(本题满分9分)已知非齐次线性方程组1234123412341435131x x x x x x x x ax x x bx +++=-⎧⎪++-=-⎨⎪+++=⎩有3个线性无关的解.(Ⅰ)证明方程组系数矩阵A 的秩()2r A =;(Ⅱ)求,a b 的值及方程组的通解.【分析】 (I )根据系数矩阵的秩与基础解系的关系证明;(II )利用初等变换求矩阵A 的秩确定参数,a b ,然后解方程组.【详解】 (I ) 设123,,ααα是方程组Ax β=的3个线性无关的解,其中111114351,1131A a b β-⎛⎫⎛⎫ ⎪ ⎪=-=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭.则有 1213()0,()0A A αααα-=-=.则 1213,αααα--是对应齐次线性方程组0Ax =的解,且线性无关.(否则,易推出123,,ααα线性相关,矛盾).所以 ()2n r A -≥,即4()2()2r A r A -≥⇒≤.又矩阵A 中有一个2阶子式111043=-≠,所以()2r A ≤.因此 ()2r A =.(II ) 因为11111111111143510115011513013004245A a b a a b a a b a ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=-→--→-- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪----+-⎝⎭⎝⎭⎝⎭.又()2r A =,则42024503a a b a b -==⎧⎧⇒⎨⎨+-==-⎩⎩. 对原方程组的增广矩阵A 施行初等行变换,111111024243511011532133100000A --⎛⎫⎛⎫ ⎪ ⎪=--→-- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭,故原方程组与下面的方程组同解.134********x x x x x x =-++⎧⎨=--⎩. 选34,x x 为自由变量,则134234334424253x x x x x x x x x x =-++⎧⎪=--⎪⎨=⎪⎪=⎩. 故所求通解为12242153100010x k k -⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪-- ⎪ ⎪ ⎪=++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,12,k k 为任意常数.【评注】 本题综合考查矩阵的秩,初等变换,方程组系数矩阵的秩和基础解系的关系以及方程组求解等多个知识点,特别是第一部分比较新颖. 这是考查综合思维能力的一种重要表现形式,今后类似问题将会越来越多.(21)(本题满分9分)设3阶实对称矩阵A 的各行元素之和均为3,向量()()T T121,2,1,0,1,1αα=--=-是线性方程组0Ax =的两个解.(Ⅰ) 求A 的特征值与特征向量;(Ⅱ) 求正交矩阵Q 和对角矩阵Λ,使得T Q AQ =Λ.【分析】 由矩阵A 的各行元素之和均为3及矩阵乘法可得矩阵A 的一个特征值和对应的特征向量;由齐次线性方程组0Ax =有非零解可知A 必有零特征值,其非零解是0特征值所对应的特征向量.将A 的线性无关的特征向量正交化可得正交矩阵Q .【详解】 (Ⅰ) 因为矩阵A 的各行元素之和均为3,所以 1311331131A ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则由特征值和特征向量的定义知,3λ=是矩阵A 的特征值,T(1,1,1)α=是对应的特征向量.对应3λ=的全部特征向量为k α,其中k 为不为零的常数.又由题设知 120,0A A αα==,即11220,0A A αααα=⋅=⋅,而且12,αα线性无关,所以0λ=是矩阵A 的二重特征值,12,αα是其对应的特征向量,对应0λ=的全部特征向量为 1122k k αα+,其中12,k k 为不全为零的常数.(Ⅱ) 因为A 是实对称矩阵,所以α与12,αα正交,所以只需将12,αα正交.取 11βα=, ()()21221111012,3120,61112αββαβββ⎛⎫- ⎪-⎛⎫⎛⎫ ⎪- ⎪ ⎪=-=--= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭ ⎪⎝⎭. 再将12,,αββ单位化,得1212312,,0ββαηηηαββ⎛⎛⎪====== ⎪⎪⎪⎪⎪⎪ ⎪⎝⎭⎪⎝⎭,令[]123,,Qηηη=,则1TQ Q-=,由A是实对称矩阵必可相似对角化,得T3Q AQ⎡⎤⎢⎥==Λ⎢⎥⎢⎥⎣⎦.【评注】本题主要考查求抽象矩阵的特征值和特征向量,此类问题一般用定义求解,则要想方设法将题设条件转化为Ax xλ=的形式.(22)(本题满分9分)设随机变量X的概率密度为()1,1021,0240,Xxf x x⎧-<<⎪⎪⎪=≤<⎨⎪⎪⎪⎩ 其他,令()2,,Y X F x y=为二维随机变量(,)X Y的分布函数.(Ⅰ)求Y的概率密度()Yf y(Ⅱ)1,42F⎛⎫-⎪⎝⎭.【分析】求一维随机变量函数的概率密度一般先求分布,然后求导得相应的概率密度或利用公式计算.【详解】(I)设Y的分布函数为()YF y,即2()()()YF y P Y y P X y=≤=≤,则1)当0y<时,()0YF y=;2)当01y≤<时,(2()()YF y P X y P X=<=<<1d4x x=+=⎰3)4) 当14y ≤<时,(2()()1Y F y P X y P X =<=-<<01011d d 242x x -=+=⎰. 5)6) 当4y ≥,()1Y F y =.所以1()()40,Y Y y f y F y y <<⎪'==≤≤⎪⎪⎩其他.(II ) 1,42F ⎛⎫- ⎪⎝⎭211,4,422P X Y P X X ⎛⎫⎛⎫=≤-≤=≤-≤ ⎪ ⎪⎝⎭⎝⎭ 11,22222P X X P X ⎛⎫⎛⎫=≤--≤≤=-≤≤- ⎪ ⎪⎝⎭⎝⎭ 12111d 24x --==⎰.(23)(本题满分9分)设总体X 的概率密度为(),01,;1,12,0,x f x x θθθ<<⎧⎪=-≤<⎨⎪⎩其他,其中θ是未知参数()01θ<<,12n ,...,X X X 为来自总体X 的简单随机样本,记N 为样本值12,...,n x x x 中小于1的个数,求θ的最大似然估计.【分析】 先写出似然函数,然后用最大似然估计法计算θ的最大似然估计.【详解】 记似然函数为()L θ,则()()()()()111(1)N n N N n N L θθθθθθθθθ--=⋅⋅⋅-⋅-⋅⋅-=-个个.两边取对数得ln ()ln ()ln(1)L N n N θθθ=+--, 令d ln ()0d 1L N n N θθθθ-=-=-,解得N nθ=为θ的最大似然估计.。

大连理工大学2006年数学分析考研试题答案

大连理工大学2006年数学分析考研试题答案

所以 H ( x) 是递增的函数。当 x ∈[0,1] 时有: H ( x) ≥ H (o) = 0 综 上 可 以 得 到 , 当 x ∈[0,1] 时 F '( x) ≥ 0 所 以 F (1) ≥ F (0) = 0 即 : 成立。■ 六.证:分两种情况讨论: 1)当 x ∈ (0,1) 时, ∫ t f (t )dt 的一致收敛性。 由于 λ ∈[a, b] , t 关于 t 是单调的,以及 ∀t ∈ (0,1] 有 t
n −1 − n )xn
的收敛范围. 上任意点处的切平面在各坐标轴上的截距之和等
7. 设函数 f ( x) = π − x, x ∈ (0, π ) ,将 f ( x) 展成正弦级数. 8. 试证曲面 于 a.
0
x + y + z = a (a > 0)
9. 计算积分 ∫ dx ∫
1
x
x
sin y dy . y
1 1 1 ≤ + (1 + ) 2 x '− x '' = L x '− x '' 2 (a + 1) a (a + 1)
在 [a, ∞) 上一致连续。 ■ 三.证: (用反证法)设 f ( x) 在 [ a, b ] 上无界,则对任意的 n ∈ N 存在 x ∈ [ a, b ] ,使得
2 2 2 2 1,2
=0
3
0
综上可以得到 f ( x, y) 在 x
2
+ y ≤1
2
的最大值为:
a + b + (a − c) 2 + 4b 2 2
最小值为:
a + b − (a − c) 2 + 4b 2 2

2006年考研数学(三)真题2

2006年考研数学(三)真题2

(12)设12,,,s ααα 均为n 维列向量,A 为m n ⨯矩阵,下列选项正确的是(A) 若12,,,s ααα 线性相关,则12,,,s A A A ααα 线性相关. (B) 若12,,,s ααα 线性相关,则12,,,s A A A ααα 线性无关. (C) 若12,,,s ααα 线性无关,则12,,,s A A A ααα 线性相关.(D) 若12,,,s ααα 线性无关,则12,,,s A A A ααα 线性无关. [ A ] 【分析】 本题考查向量组的线性相关性问题,利用定义或性质进行判定. 【详解】 记12(,,,)s B ααα= ,则12(,,,)s A A A AB ααα= .所以,若向量组12,,,s ααα 线性相关,则()r B s <,从而()()r AB r B s ≤<,向量组12,,,s A A A ααα 也线性相关,故应选(A).(13)设A 为3阶矩阵,将A 的第2行加到第1行得B ,再将B 的第1列的1-倍加到第2列得C ,记110010001P ⎛⎫ ⎪= ⎪ ⎪⎝⎭,则(A)1C P AP -=. (B)1C PAP -=.(C)TC P AP =. (D)TC PAP =. [ B ]【分析】利用矩阵的初等变换与初等矩阵的关系以及初等矩阵的性质可得.【详解】由题设可得11011011011010,010010010001001001001B A C B A --⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ , 而 1110010001P --⎛⎫⎪= ⎪ ⎪⎝⎭,则有1C PAP -=.故应选(B).(14)设随机变量X 服从正态分布211(,)N μσ,Y 服从正态分布222(,)N μσ,且{}{}1211P X P Y μμ-<>-< 则必有 (A)12σσ< (B) 12σσ>(C)12μμ< (D) 12μμ> [ A ]【分析】 利用标准正态分布密度曲线的几何意义可得. 【详解】 由题设可得12112211X Y P P μμσσσσ⎧-⎫⎧-⎫<><⎨⎬⎨⎬⎩⎭⎩⎭,则 12112121σσ⎛⎫⎛⎫Φ->Φ-⎪ ⎪⎝⎭⎝⎭,即1211σσ⎛⎫⎛⎫Φ>Φ ⎪ ⎪⎝⎭⎝⎭. 其中()x Φ是标准正态分布的分布函数. 又()x Φ是单调不减函数,则1211σσ>,即12σσ<.故选(A).三 、解答题:15-23小题,共94分. 解答应写出文字说明、证明过程或演算步骤. (15)(本题满分7分)设()1sin,,0,01arctan xy y yf x y x y xy xπ-=->>+,求 (Ⅰ) ()()lim ,y g x f x y →+∞=;(Ⅱ) ()0lim x g x +→. 【分析】第(Ⅰ)问求极限时注意将x 作为常量求解,此问中含,0∞⋅∞∞型未定式极限;第(Ⅱ)问需利用第(Ⅰ)问的结果,含∞-∞未定式极限.【详解】(Ⅰ) ()()1sin lim ,lim 1arctan y y x y y y g x f x y xy x π→+∞→∞⎛⎫- ⎪⎪==-+ ⎪⎪⎝⎭sin 11111lim 1arctan arctan y x yxy x x x x y ππ→∞⎛⎫ ⎪ ⎪-⎪⎪-=-=-⎪ ⎪+ ⎪ ⎪ ⎪⎝⎭.(Ⅱ) ()200011arctan lim lim lim arctan arctan x x x x x x x g x x x x xππ+++→→→--+⎛⎫=-= ⎪⎝⎭ (通分) 22222000112arctan 2(1)1lim lim lim 22x x x x x x x x x x x x x xππππ+++→→→-+-+-+++====(16)(本题满分7分)计算二重积分d Dx y ,其中D 是由直线,1,0y x y x ===所围成的平面区域.【分析】画出积分域,将二重积分化为累次积分即可. 【详解】积分区域如右图.因为根号下的函数为关于x 的一次函数,“先x 后y ”积分较容易,所以10d d yDx y y x =⎰⎰()311222002122d d 339y y xy y y y y=--==⎰⎰ (17)(本题满分10分)证明:当0a b π<<<时,sin 2cos sin 2cos b b b b a a a a ππ++>++.【分析】 利用“参数变易法”构造辅助函数,再利用函数的单调性证明.【详解】 令()sin 2cos sin 2cos ,0f x x x x x a a a a a x b πππ=++---<≤≤<, 则 ()sin cos 2sin cos sin f x x x x x x x x ππ'=+-+=-+,且()0f π'=. 又 ()cos sin cos sin 0f x x x x x x x ''=--=-<,(0,s i n 0x x x π<<>时),故当0a x b π<≤≤<时,()f x '单调减少,即()()0f x f π''>=,则()f x 单调增加,于是()()0f b f a >=,即sin 2cos sin 2cos b b b b a a a a ππ++>++.(18)(本题满分8分)在xOy 坐标平面上,连续曲线L 过点()1,0M ,其上任意点()(),0P x y x ≠处的切线斜率与直线OP 的斜率之差等于ax (常数>0a ).(Ⅰ) 求L 的方程;(Ⅱ) 当L 与直线y ax =所围成平面图形的面积为83时,确定a 的值. 【分析】(Ⅰ)利用导数的几何意义建立微分方程,并求解;(Ⅱ)利用定积分计算平面图形的面积,确定参数.【详解】(Ⅰ) 设曲线L 的方程为()y f x =,则由题设可得 y y ax x '-=,这是一阶线性微分方程,其中1(),()P x Q x ax x=-=,代入通解公式得()11d d 2e e d x x x x y ax x C x ax C ax Cx -⎛⎫⎰⎰=+=+=+ ⎪⎝⎭⎰, 又(1)0f =,所以C a =-.故曲线L 的方程为 2y ax ax =-(0)x ≠.(Ⅱ) L 与直线y ax =(>0a )所围成平面图形如右图所示. 所以()220d D ax ax ax x ⎡⎤=--⎣⎦⎰ ()220482d 33a x x x a =-==⎰,故2a =.(19)(本题满分10分)求幂级数()()1211121n n n x n n -+∞=--∑的收敛域及和函数()s x .【分析】因为幂级数缺项,按函数项级数收敛域的求法计算;利用逐项求导或积分并结合已知函数的幂级数展开式计算和函数.【详解】记121(1)()(21)n n n x u x n n -+-=-,则2321121(1)()(1)(21)lim lim (1)()(21)n n n n n n n nx u x n n xx u x n n ++-+→∞→∞-++==--. 所以当21,1x x <<即时,所给幂级数收敛;当1x >时,所给幂级数发散;当1x =±时,所给幂级数为1(1)(1),(21)(21)n nn n n n -----,均收敛, 故所给幂级数的收敛域为[]1,1-在()1,1-内,()12112111(1)(1)()22()(21)(21)2n n n nn n x x s x x xs x n n n n -+-∞∞==--===--∑∑,而 12112211211(1)1(),()(1)211n n n n n n x s x s x x n x --∞∞--==-'''==-=-+∑∑, 所以 1112001()(0)()d d arctan 1xxs x s s t t t x t''''-===+⎰⎰,又1(0)0s '=, 于是 1()arctan s x x '=.同理 1110()(0)()d arctan d xxs x s s t t t t '-==⎰⎰()2201arctan d arctan ln 112xxt t tt x x x t =-=-++⎰, 又 1(0)0s =,所以 ()211()arctan ln 12s x x x x =-+.故 ()22()2arctan ln 1s x x x x x =-+.()1,1x ∈-.由于所给幂级数在1x =±处都收敛,且()22()2arctan ln 1s x x x x x =-+在1x =± 处都连续,所以()s x 在1x =±成立,即()22()2arctan ln 1s x x x x x =-+,[]1,1x ∈-.(20)(本题满分13分)设4维向量组()()()TTT1231,1,1,1,2,2,2,2,3,3,3,3,a a a ααα=+=+=+()T44,4,4,4a α=+,问a 为何值时1234,,,αααα线性相关?当1234,,,αααα线性相关时,求其一个极大线性无关组,并将其余向量用该极大线性无关组线性表出.【分析】因为向量组中的向量个数和向量维数相同,所以用以向量为列向量的矩阵的行列式为零来确定参数a ;用初等变换求极大线性无关组. 【详解】记以1234,,,αααα为列向量的矩阵为A ,则312341234(10)12341234a a A a a a a++==+++.于是当0,010A a a ===-即或时,1234,,,αααα线性相关.当0a =时,显然1α是一个极大线性无关组,且2131412,3,4αααααα===; 当10a =-时,1α 2α 3α 4α9234183412741236A -⎛⎫ ⎪-⎪= ⎪- ⎪-⎝⎭, 由于此时A 有三阶非零行列式9231834000127--=-≠-,所以123,,ααα为极大线性无关组,且123441230αααααααα+++==---,即.(21)(本题满分13分)设3阶实对称矩阵A 的各行元素之和均为3,向量()()TT121,2,1,0,1,1αα=--=-是线性方程组0Ax =的两个解.(Ⅰ) 求A 的特征值与特征向量;(Ⅱ) 求正交矩阵Q 和对角矩阵Λ,使得T Q AQ =Λ;(Ⅲ)求A 及632A E ⎛⎫- ⎪⎝⎭,其中E 为3阶单位矩阵.【分析】 由矩阵A 的各行元素之和均为3及矩阵乘法可得矩阵A 的一个特征值和对应的特征向量;由齐次线性方程组0Ax =有非零解可知A 必有零特征值,其非零解是0特征值所对应的特征向量.将A 的线性无关的特征向量正交化可得正交矩阵Q ;由TQ A Q =Λ可得到A 和632A E ⎛⎫- ⎪⎝⎭.【详解】 (Ⅰ) 因为矩阵A 的各行元素之和均为3,所以1311331131A ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则由特征值和特征向量的定义知,3λ=是矩阵A 的特征值,T(1,1,1)α=是对应的特征向量.对应3λ=的全部特征向量为k α,其中k 为不为零的常数.又由题设知 120,0A A αα==,即11220,0A A αααα=⋅=⋅,而且12,αα线性无关,所以0λ=是矩阵A 的二重特征值,12,αα是其对应的特征向量,对应0λ=的全部特征向量为 1122k k αα+,其中12,k k 为不全为零的常数.(Ⅱ) 因为A 是实对称矩阵,所以α与12,αα正交,所以只需将12,αα正交.取 11βα=,()()21221111012,3120,61112αββαβββ⎛⎫-⎪-⎛⎫⎛⎫ ⎪- ⎪ ⎪=-=--= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭ ⎪⎝⎭.再将12,,αββ单位化,得1212312,,0ββαηηηαββ⎛⎛⎪====== ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪⎝⎭ ⎪⎝⎭, 令 []123,,Q ηηη=,则1T Q Q -=,由A 是实对称矩阵必可相似对角化,得T300Q AQ ⎡⎤⎢⎥==Λ⎢⎥⎢⎥⎣⎦. (Ⅲ)由(Ⅱ)知 T300Q AQ ⎡⎤⎢⎥==Λ⎢⎥⎢⎥⎣⎦,所以T 31110011101110A Q Q ⎛⎫ ⎪⎪⎛⎫⎛⎫⎪ ⎪ ⎪=Λ==⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎝⎭⎝⎭⎪ ⎪ ⎪⎪⎝⎭⎭. 666T T T 333222Q A E Q Q A E Q Q AQ E ⎡⎤⎛⎫⎛⎫⎛⎫-=-=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦6666633223333022203322E ⎛⎫⎛⎫⎡⎤⎛⎫ ⎪ ⎪⎢⎥ ⎪⎝⎭ ⎪⎛⎫⎢⎥ ⎪ ⎪⎛⎫⎛⎫ ⎪⎢⎥ ⎪ ⎪=-== ⎪ ⎪ ⎪⎢⎥ ⎪ ⎪⎝⎭⎝⎭ ⎪⎢⎥ ⎪ ⎪⎝⎭⎢⎥ ⎪⎛⎫ ⎪ ⎪⎢⎥ ⎪⎝⎭⎣⎦⎪⎝⎭⎝⎭,则666T 333222A E Q EQ E ⎛⎫⎛⎫⎛⎫-== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.(22)(本题满分13分)设随机变量X 的概率密度为()1,1021,0240,X x f x x ⎧-<<⎪⎪⎪=≤<⎨⎪⎪⎪⎩ 其他,令()2,,Y X F x y =为二维随机变量(,)X Y 的分布函数.(Ⅰ) 求Y 的概率密度()Y f y ; (Ⅱ) Cov(,)X Y ;(Ⅲ) 1,42F ⎛⎫-⎪⎝⎭. 【分析】 求一维随机变量函数的概率密度一般先求分布,然后求导得相应的概率密度或利用公式计算.【详解】 (I ) 设Y 的分布函数为()Y F y ,即2()()()Y F y P Y y P X y =≤=≤,则 1) 当0y <时,()0Y F y =;2) 当01y ≤<时,(2()()Y F y P X y P X =<=<<0d 4x x =+=⎰3) 当14y ≤<时,(2()()1Y F y P X y P X =<=-<<1011d d 242x x -=+=⎰. 4) 当4y ≥,()1Y F y =. 所以01()(),140,Y Yyf y F y y<<⎪'==≤<⎪⎩其他.(II)22232 Cov(,)Cov(,)()()X Y X X E X EX X EX EX EXEX==--=-,而02101d d244x xEX x x-=+=⎰⎰,22022105d d246x xEX x x-=+=⎰⎰,33023107d d248x xEX x x-=+=⎰⎰,所以7152Cov(,)8463X Y=-⋅=.(Ⅲ)1,42F⎛⎫-⎪⎝⎭211,4,422P X Y P X X⎛⎫⎛⎫=≤-≤=≤-≤⎪ ⎪⎝⎭⎝⎭11,22222P X X P X⎛⎫⎛⎫=≤--≤≤=-≤≤-⎪ ⎪⎝⎭⎝⎭12111d24x--==⎰.(23)(本题满分13分)设总体X的概率密度为(),01,;1,12,0,xf x xθθθ<<⎧⎪=-≤<⎨⎪⎩其他,其中θ是未知参数()01θ<<,12n,...,X X X为来自总体X的简单随机样本,记N为样本值12,...,nx x x中小于1的个数.(Ⅰ)求θ的矩估计;(Ⅱ)求θ的最大似然估计【分析】利用矩估计法和最大似然估计法计算.【详解】(Ⅰ)因为()12013(;)d d1d2EX xf x x x x x xθθθθ+∞-∞==+-=-⎰⎰⎰,令32Xθ-=,可得θ的矩估计为32Xθ=-.(Ⅱ)记似然函数为()Lθ,则()()()()()111(1)N n N N n N L θθθθθθθθθ--=⋅⋅⋅-⋅-⋅⋅-=- 个个. 两边取对数得ln ()ln ()ln(1)L N n N θθθ=+--,令d ln ()0d 1L N n N θθθθ-=-=-,解得N nθ= 为θ的最大似然 估计.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

吉林大学2006年攻读硕士学位研究生入学考试试题数学分析卷一、(共 30 分)判断题1、若函数)(x f 在()b a ,上Riemann 可积,则 []2)(x f 在()b a ,上Riemann 也可积;2、若级数∑∞=1n n a 收敛,则级数∑∞=1n n a 也收敛;3、任何单调数列必有极限;4、数列(){}n1-的上、下极限都存在;5、区间 ()b a , 上的连续函数必能达到最小值;6、x sin 在整个实轴上是一致连续的;7、若函数()y x f ,沿着任何过原点的直线连续,则()y x f ,在()0,0连续; 8、若函数()x f 在点0x 取极小值,则()0x f '=0; 9、若()0x f '=0,()00<''x f ,则()x f 再点0x 取最大值; 10、向量场()222222,,x z z y y x ---是无源场。

二、(共 20 分)填空题1、设))(sin(z y x y x u +++=,则gradu =( );2、设),,(x z z y y x F +++=,则F div =();3、设),,-(xy z zx y yz x F --=,则F rot =( );4、设s 表示单位球面1222=++z y x ,则第一型曲边梯形ds x s⎰⎰2=();5、数列()⎭⎬⎫⎩⎨⎧+2211-n n n 的下极限为( );三、(共 20 分)计算下列极限1、nn k n k 1120061lim ⎪⎭⎫ ⎝⎛∑=∞→;2、()x x xx 31211lim30+-+→;3、()112007120061lim ++++∞→++n n n n n ;4、dx x x x n ⎰++∞→10221lim ; 四、(共 20 分)判断下列级数的敛散性1、∑∞=-1200520072006n n nn; 2、∑∞=1n n u ,其中0>n u ,()2211+≤-n n u u n n ,⋅⋅⋅=2,1n ; 五、(10 分)设函数)(x f 在[]1,0两次连续可微,满足0)1()0(==f f 且()01=⎰dx x f 。

证明:存在()1,0∈ξ使得()0=''ξf 。

六、(10 分)计算第二型曲线积分dy y x y dx y x x c 2222434433+-+⎰其中C 为单位圆周122=+y x ,方向为顺时针方向。

七、 (10 分)证明,对任意 0>x ,都有6sin 3x x x ->八、 (10 分)设b a ,,,βα均为常数,且对任意x 都有()b ax x x +=+sin βα证明:0====b a βα九、(10 分)证明,不存在[)∞,0上的正的可微函数()x f ,满足()()0≤+'x f x f 。

十、(10 分)试构造区间[]1,0上的函数序列(){}x f n ,具有如下性质: (1)对每个n ,(){}x f n 是[]1,0上的正的连续函数;(2)对每个固定的[]1,0∈x ,()0lim =∞→x f n n ;(3)()+∞=⎰∞→dx x f n n 1lim .高等代数与空间解析几何卷一、(共 32 分)填空1、平面上的四个点()()4,3,2,1,=i y x i i 在同一个圆上的充要条件为 _____ 。

(要求用含有 i i y x ,的等式表示);2、设方阵A 只与自己相似,则A 必为 _____ ;3、设⎪⎪⎪⎭⎫⎝⎛=333222111c b a c b a c b a A 为可逆矩阵,则直线212121c c z b b y a a x -=-=-与直线323232-c c zb b y a a x -=-=的位置关系为 。

(要求填写相交、平行、重合、异面四者之一);4、设()4321,,,αααα=A 为四阶正方矩阵,其中4321,,,αααα均为四维列向量:3212αααβ-+=,3213ααα-=,且432ααα,,线性无关。

求线性方程组β=AX 的通解 。

二、(16 分)求二次曲面01264242222=-+--+--z y x xz z y x 的主方向; 三、(17 分)设V 为n 维欧式空间,n u u u ,,21⋅⋅⋅与n v v v ,,,21⋅⋅⋅为V 中向量,n u u u ,,21⋅⋅⋅线性无关,且对任意的()n j i j i ,,,2,1,,⋅⋅⋅=均有j i j i v v u u =。

证明,必有V 上的正交变换σ使得()()n i v u i i ,,3,2,1⋅⋅⋅==σ四、(17 分)设 V 为数域Ω上的n 维向量空间,τσ,均为V 上的线性变换,且满足0=++σττσ。

证明:τσστ=。

五、(17 分)设A 为实对称矩阵,证明,必有实对称矩阵B ,使得B A +为正定矩阵。

六、(17 分)设V 为数域Ω上的n 2维向量空间,σ为V 上的线性变换,且()V Ker σσ=。

证明:存在V 的一个适当基底及Jordan 型矩阵A ,使得σ在该基底下恰好对应矩阵A 。

七、(17 分)设V 为实数域上的全体n 阶方阵在通常的运算下所构成的向量空间,σ为V 上的线性变换,对任意的A ,()T A A =σ。

1、求σ的特征值;2、对于每一个特征值,求其特征子空间;3、证明V 恰为σ的所有特征子空间的直接和。

八、(17 分)设()nn ija A ⨯=为n 阶实方阵,若对任意的()n i i ,,2,1⋅⋅⋅=均有∑≠=>nj i ijii aa 1,1,则称A 为对角占优矩阵。

证明,对角占优矩阵比为可逆矩阵。

吉林大学2007 年攻读硕士学位研究生入学考试试题数学分析卷一、(共 30 分)判断题1、Riemann 函数在任何有限区间上都是Riemann 可积的;2、若无穷积分()dx x f ⎰∞0收敛,则无穷积分()dx x f ⎰∞也收敛;3、任何单调递增且有下界的数列必有极限;4、有界数列的上、下极限都存在;5、连续函数一定是有界函数;6、x 在整个实轴上是一致连续的;7、若函数()y x f , 在[]0,0处的两个偏导数,则()y x f ,在[]0,0连续; 8、x1sin在()1,0内有无穷多个极大极小值点; 9、若()00='x f 则 ()x f 在点0x 必取极大值或极小值; 10、向量场()222222y x x z z y ---,,是无源场。

二、(共 20 分)填空题1、设()222arctan z y x u ++=,则=gradu ( );2、设()z y x y x F ++=→,cos ,sin ,则→F div =( );3、设),,-(222xy z zx y yz x F --= ,则→F rot =( );4、设s 表示单位球面1222=++z y x ,则第一型曲边梯形()ds z y x s⎰⎰++2= ( );5、数列()⎭⎬⎫⎩⎨⎧+n n n 11-的上、下极限的和为( );三、(共 20 分)计算下列极限 1、22222221lim n n n n n n n n ++⋅⋅⋅+++⎪⎭⎫ ⎝⎛+∞→;六、(10 分)计算第二型曲面积分dxdy zy x xdzdx z y x x dydz z y x x 222222222222++++++++⎰∑ 其中∑为球面1222=++z y x 的内侧。

高等代数与空间解析几何卷1、求点()0,1,1P 到平面1=++z y x 的距离。

2、求曲面4222=++yz y x 在点()1,1,1P 处的切平面。

3、写出内积、外积和混合积的定义。

4、设()a x x x x x f n n n n n++⋅⋅⋅+++=----2222211为在有理数域上大于1的多项式,给出a 的两个非零值,使得相应的两个多项式分别可约,不可约。

5、再复数域上,当g 取何值时,多项式()g x x x f ++=33有重因式。

6、011101110=A ,求正交矩阵P 及对角矩阵D ,使得D AP P T =8、V 是实数域上三元列向量空间,1101202aa A =,为n 阶正定矩阵。

定义V v u Av u uv T ∈∀=,,,则当a 满足什么条件是,V 为欧式空间。

9、当b a ,为何值时,5个平面40,032≤≤=+++k b z y x a kkkk经过一条直线。

10、求V 上的线性变换τσ,,使*1=στ,*1≠τσ 二、1、设()()x g x f ,为有理数域上的两个非零多项式,且有无穷多个整数n ,使得()()n g n f 都是整数,证明:()()n g n f 是整数多项式。

2、P 是在曲线1222=++cz by ax 的充要条件是22221γβαc b a d++=,其中d 是向量OP 的长度,γβα,,是向量OP 的方向余弦。

3、V 是数域Ω上的向量空间,σ是V 上的线性变换,记:Ω∈=a a ,*σ当且仅当V 是σ特征子空间。

4、假定A 是正定矩阵,证明:存在唯一的正定矩阵B ,使得2B A =。

5、设V 是数域Ω上的n 阶矩阵构成的向量空间,V A ∈,()x f 是A 的极小多项式,令()()(){}x x h A h U Ω∈=,证明:(1)U 是V 的子空间,而且()x f U dim dim =(2)()x f ∀不可约,则U 的每个非零元素都是可逆矩阵。

吉林大学2008 年攻读硕士学位研究生入学考试试题数学分析卷一、 二、3、dy e dx x y ⎰⎰1124、()d s y x xy L⎰-+22432,L 为椭圆13422=+y x ,周长为a 。

三、1、设()x f 于()∞+∞,-上二次连续、可微,存在不低于整数x 的常数0>r ,使得()r x f ≥'。

记()()+∞∈,0f η,证明:存在ξ,使()ηξ=f .2、()()x g x f 和皆为区间[]b a ,上的连续函数,()y x K ,在[]⨯b a ,[]b a ,上二次连续, ()()()()⎰+=-ba n n x g dy y f y x K x f 1,λ,其中λ为常数。

证明(1)()⎰<bady y x K 1,sup λ时,()x f n 于()b a ,一至连续。

(2)()x f 满足()()()x g dy y x K x f ba=⎰,-λ3、()x f 在()∞+∞,-上具有连续的一阶导数。

()()()()()dt t x f t f f x x-'+='⎰000ϕϕ 证明;()()()dt t x f t f x x-'=⎰0ϕ4、()⋅⋅⋅=⎪⎩⎪⎨⎧≤≤≤≤-=,2,1,11,010,1n x n n x nx x f n 证明:()x f n 在()1,0上不一致连续,且()()dx x f dx x f n n n n ⎰⎰∞→∞→=101lim lim5、()x f 在()∞+∞,-上具有连续的一阶导数,且()()()dt t x f t f x x-=⎰0ϕ,证明: ()()()()()dt t x f t f f x f x x-'+='⎰00ϕ高等代数与空间解析几何卷7、求点()0,1,1P 到平面1=++z y x 的距离。

相关文档
最新文档