求导法则及基本求导公式
求导法则与导数公式

f
11
x2 ,
( x0 )1
或 ,
dx
1
xdy (y 1y0, 1) ,dy
1 x2
dx x x0
arctan x
1
1 x2
,
arc cotx
1
1 x2
,
x (,
) .
4. 复合函数的导数
指导思想:“由外向内, 逐层求导”
(1) 求导法则(链式法则)
Thm 3 设 u g( x) 在点 x 可导,而 y f (u) 在 在对应点 u g( x) 可导,则 y f (g(x)) 在点 x 可导,且
dt
求三叶玫瑰线 r a sin 3 (a> 0) 在对应
4 的点处的切线方程.
a
o
r
6. 隐函数的导数
例 11 (1)
由显x函y 数 ex
e y 0 确定了隐函数 y 形如 y f ( x) 的函数.
f
(x)
,求
y .
(2) 隐函数 由 F ( x, y) 0确定的函数 y y( x) . 能显化, 不能显化.
若函数 x(t) 存在反函数 t 1( x) ,则
y f [1( x)]是由 y f (t) , t 1( x) 复合而成.
Thm 4
设有参数方程
x y
f
(t ), (t ),
t I ,若函数
x(t) , y f (t) 在区间I 上均可导且 (t)0 ,
又 x(t) 存在反函数 t 1( x) ,则
d ln f ( x)
dx
Thm 若函数 y f ( x) 在 x 可导 ,且 f (x)0 ,则
d ln f ( x) f ( x) , 即 ln f ( x) f ( x) .
基本初等函数的导数公式及导数的运算法则

的函数.
如果把y与u的关系记作y fu,u和x的关系记作 u gx,那么这个"复合"过程可表示为 y fu fgx lnx 2.
我们遇到的许多函数都可以看成是由两个函数经过
"复合"得到的,例如,函数y 2x 32由y u2和u
解 因为y' x3 2x 3 ' x3 ' 2x' 3'
3x2 2.
所以,函数 y x3 2x 3的导数是 y' 3x2 2.
例3 日常生活中的饮用水 通常是经过净化的.随着水 纯净度的提高, 所需净化费 用不断增加.已知将1吨水净 化到纯净度为x%时所需费
0.05eu 0.05e0.0 . 5x1
3函数y sinπx φ可以看作函数y sinu和
u πx φ的复合函数.
由复合函数求导法则有
y'x
y
' u
u'x
sinu' πx φ'
π cosu π cosπx φ.
明,水的纯净度越高,需要的净化费用就越多,
而且净化费用增加的速度也越快.
思考 如何求函数y lnx 2的导数呢?
我们无法用现有的方法求函数y lnx 2的导数.
下面,我们先分析这个函数的结构特点.
若设u x 2x 2,则y lnu.从而y lnx 2 可以看成是由y lnu和u x 2x 2经过"复
1321,
所以,纯净度为98%时,费用的瞬时变化率
导数公式记忆口诀

导数公式记忆口诀
导数公式记忆口诀如下:
1.常为零,幂降次;对倒数(e为底时直接倒数,a为底时乘以1/lna);指不变
(特别的,自然对数的指数函数完全不变,一般的指数函数须乘以lna);正变余,余变正;切割方(切函数是相应割函数(切函数的倒数)的平方);割乘切,反分式。
2.导数定义记牢,求导数要细心,正负号要分清,切线斜率正负与切线夹角有关
系。
3.导数公式要牢记,灵活运用有法度,常用公式要掌握,其他公式要能熟练推导。
4.导数运算法则常运用,基本公式综合法,常积常导常数乘法要记牢。
5.导数运算分步走,步步为营不可漏,复合函数求导法则:链式法则求商的导,
指数法则求积的导。
6.复合函数导数求法:先分解再求导最后求原式导数,先求内再求外最后用链式
法则。
7.隐函数求导法则:两边求导最后把y看作x的函数用复合函数求导法则。
8.参数方程求导法则:消去参数化为普通方程两边求导最后用复合函数求导法则。
9.反三角函数求导法则:复合函数求导法则及基本初等函数求导公式。
10.指数对数求导法则:常系数乘以幂次法则,系数倒数为幂次法则。
11.分式型求导法则:基本初等函数求导公式与求商法则。
12.幂指对求导法则:复合函数求导法则及幂对数求导法则。
13.导数定义切记好,极限形式才可靠,不为0才意义合,公式推导才能行。
函数求导公式大全法则

函数求导公式大全法则
基本的求导法则如下:1、求导的线性:对函数的线性组合求导,等于先对其中每个部分求导后再取线性组合(即①式)。
2、两个函数的乘积的导函数:一导乘二+一乘二导(即②式)。
导数的求导法则
由基本函数的和、差、积、商或相互复合构成的函数的导函数则可以通过函数的求导法则来推导。
基本的求导法则如下:
1、求导的线性:对函数的线性组合求导,等于先对其中每个部分求导后再取线性组合(即①式)。
2、两个函数的乘积的导函数:一导乘二+一乘二导(即②式)。
3、两个函数的商的导函数也是一个分式:(子导乘母-子乘母导)除以母平方(即③式)。
4、如果有复合函数,则用链式法则求导。
导数的计算口诀
常为零,幂降次
对倒数(e为底时直接倒数,a为底时乘以1/lna)
指不变(特别的,自然对数的指数函数完全不变,一般的指数函数须乘以lna)
正变余,余变正
切割方(切函数是相应割函数(切函数的倒数)的平方)
割乘切,反分式
三角函数求导公式
(sinx)'=cosx
(cosx)'=-sinx
(tanx)'=sec²x=1+tan²x
(cotx)'=-csc²x
(secx)'=tanx·secx
(cscx)'=-cotx·cscx.
(tanx)'=(sinx/cosx)'=[cosx·cosx-sinx·(-sinx)]/cos²x=sec ²x。
常用的基本求导法则与导数公式

常用的基本求导法则与导数公式1. 基本初等函数的导数公式和求导法则基本初等函数的求导公式和上述求导法则,在初等函数的基本运算中起着重要的作用,我们必须熟练的掌握它,为了便于查阅,我们把这些导数公式和求导法则归纳如下: 基本初等函数求导公式(1) 0)(='C (2) 1)(-='μμμx x(3) x x cos )(sin ='(4) x x sin )(cos -='(5)x x 2sec )(tan =' (6)x x 2csc )(cot -=' (7) x x x tan sec )(sec ='(8) x x x cot csc )(csc -='(9)a a a xx ln )(=' (10) (e )e xx '=(11)a x x a ln 1)(log ='(12)x x 1)(ln =',(13)211)(arcsin x x -=' (14)211)(arccos x x --=' (15)21(arctan )1x x '=+(16)21(arccot )1x x '=-+函数的和、差、积、商的求导法则 设)(x u u =,)(x v v =都可导,则(1) v u v u '±'='±)( (2) u C Cu '=')((C 是常数)(3) v u v u uv '+'=')((4) 2v v u v u v u '-'='⎪⎭⎫ ⎝⎛反函数求导法则 若函数)(y x ϕ=在某区间y I 内可导、单调且0)(≠'y ϕ,则它的反函数)(x f y =在对应区间xI 内也可导,且)(1)(yxfϕ'='或dydxdxdy1=复合函数求导法则设)(ufy=,而)(xuϕ=且)(uf及)(xϕ都可导,则复合函数)]([xfyϕ=的导数为dy dy dudx du dx=g或()()y f u xϕ'''=g上述表中所列公式与法则是求导运算的依据,请读者熟记.2. 双曲函数与反双曲函数的导数.双曲函数与反双曲函数都是初等函数,它们的导数都可以用前面的求导公式和求导法则求出.可以推出下表列出的公式:(sh)chx x'=(ch)shx x'=21(th)chxx'=21(arsh)1xx'=+21(arch)1xx'=-21(arth)1xx'=-大厦巍然屹立,是因为有坚强支柱,理想和信仰就是人生大厦支柱;航船破浪前行,是因为有指示方向罗盘,理想和信仰就是人生航船罗盘;列车奔驰千里,是因为有引导它铁轨,理想和信仰就是人生列车上铁轨。
基本初等函数的导数公式及导数的运算法则

5284 2因为c 98 1321 , 2 100 98 所以, 纯净度为98%时, 费用的瞬时变化率 是1321 元 / 吨.
'
函数 f x 在某点处的导数的大小 表示函数 在 此 点附近变化的快 慢 .由上 述 计算可知,
' '
c 98 25c 90 .它表示纯净度为 98% 左 右时 净 化费用的变化率 ,大 约是 纯 净 度 为 90% 左右时净化费用变化率 的 25 倍 .这说 明,水的纯净度越高 ,需要的净化费用就越多 , 而且净化费用增加的速 度也越快.
定某商品的p0 1, 那么在第 10个年头, 这种商品的 的价格上涨的速度大约 是多少( 精确到0.01 ) ? 解 根据基本初等函数导数 公式表,有
因此, 在第10个年头, 这种商品的价格约以 0.08元 / 年的速度上涨.
思考 如果上式中某种商品的 p 0 5,那么在第 10个 年头, 这种商品的价格上涨的 速度大约是多少 ?
'
2. f x gx ' f ' xgx f xg' x;
f x f x gx f x g x gx 0 . 3. 2 gx gx
' ' '
例2
根据基本初等函数 的导数公式
例4
求下列函数的导数
2 0.05 x 1
解 1函数y 2x 3 可以看作函数 y u3和 u 2x 3的复合函数 . 由复合函数求导法则有
2
1 y 2 x 3 ; 2 y e ; 3 y sinπx φ 其中π, φ均为常数.
3
和导数运算法则 , 求函数 y x 2 x 3 的导数.
求导的四则运算法则公式

求导的四则运算法则公式求导是微积分中的一个重要概念,而求导的四则运算法则公式更是我们解决导数问题的有力工具。
先来说说加法法则。
假设我们有两个函数 f(x) 和 g(x) ,它们的导数分别为 f'(x) 和 g'(x) ,那么 (f(x) + g(x))' = f'(x) + g'(x) 。
这就好比你有两堆苹果,一堆每天增加的数量是按照 f'(x) 的规律,另一堆按照 g'(x) 的规律增加,那么把这两堆合在一起每天增加的总数,就是这两个规律相加。
举个例子吧,比如说 f(x) = x²,它的导数 f'(x) = 2x ; g(x) = 3x ,它的导数 g'(x) = 3 。
那么 (f(x) + g(x)) 就是 x² + 3x ,它的导数就是 (f(x) + g(x))' = 2x + 3 ,正好就是 f'(x) + g'(x) 。
再看减法法则,(f(x) - g(x))' = f'(x) - g'(x) 。
这就像你有两群羊,一群每天减少的数量按 f'(x) 的规律,另一群按 g'(x) 的规律减少,那么两群羊合在一起每天减少的总数就是这两个规律相减。
比如说 f(x) = 5x²,导数 f'(x) = 10x ; g(x) = 2x ,导数 g'(x) = 2 。
那么 (f(x) - g(x)) 就是 5x² - 2x ,它的导数就是 (f(x) - g(x))' = 10x - 2 ,正是 f'(x) - g'(x) 。
乘法法则稍微复杂点,(f(x)g(x))' = f'(x)g(x) + f(x)g'(x) 。
这有点像两个人合作完成一项任务,一个人的效率变化规律是 f'(x) ,另一个人的工作总量是 g(x) ;反过来,另一个人的效率变化规律是 g'(x) ,这个人的工作总量是 f(x) ,那么他们合作的成果增加的速度就是这两部分相加。
导数的基本公式及运算法则

导数的基本公式及运算法则在数学的广袤天地中,导数无疑是一颗璀璨的明珠,它在众多领域都发挥着至关重要的作用。
无论是研究函数的性质、解决优化问题,还是探索物理世界中的变化规律,导数都提供了强大的工具。
接下来,让我们一同深入了解导数的基本公式及运算法则。
首先,我们来认识一些常见的基本导数公式。
对于常数函数$C$ ,其导数为$0$ ,即$(C)'= 0$ 。
这很好理解,因为常数函数的值是固定不变的,没有任何变化率。
幂函数$x^n$ ($n$ 为实数)的导数为$nx^{n 1}$。
例如,$x^2$ 的导数是$2x$ ,$x^3$ 的导数是$3x^2$ 。
指数函数$e^x$ 的导数还是它本身,即$(e^x)'= e^x$ 。
这是指数函数的一个非常独特且重要的性质。
对数函数$\ln x$ 的导数为$\frac{1}{x}$。
正弦函数$\sin x$ 的导数是$\cos x$ ,余弦函数$\cos x$ 的导数是$\sin x$ 。
了解了这些基本公式后,我们再来看看导数的运算法则。
加法法则:若$f(x)$和$g(x)$的导数都存在,那么$(f(x) +g(x))'= f'(x) + g'(x)$。
也就是说,两个函数之和的导数等于它们各自导数的和。
减法法则与加法法则类似,$(f(x) g(x))'= f'(x) g'(x)$。
乘法法则:$(f(x)g(x))'= f'(x)g(x) + f(x)g'(x)$。
这个法则相对复杂一些,但通过一些具体的例子就能很好地理解。
比如,若$f(x) = x^2$ ,$g(x) = e^x$ ,那么$f'(x) = 2x$ ,$g'(x) =e^x$ ,$(x^2e^x)'= 2xe^x + x^2e^x$ 。
除法法则:$\left(\frac{f(x)}{g(x)}\right)'=\frac{f'(x)g(x) f(x)g'(x)}{(g(x))^2}$,其中$g(x) \neq 0$ 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
求导法则及基本求导公式
1. 求导法则:
- 常数法则:导数为0。
- 加法法则:导数等于各项的导数之和。
- 常数倍法则:导数等于常数倍的导数。
- 乘法法则:导数等于第一个函数乘以第二个函数的导数,再加上第一个函数的导数乘以第二个函数。
- 除法法则:导数等于分子的导数乘以分母减去分母的导数乘以分子,再除以分母的平方。
- 复合函数求导法则:导数等于外层函数对内层函数求导,再乘以内层函数对自变量求导。
- 指数函数求导法则:对于以常数e为底的指数函数,导数等于指数函数的常数倍。
- 对数函数求导法则:对于以常数e为底的对数函数,导数等于函数的倒数。
2. 基本求导公式:
- 常数函数:导数为0。
- 幂函数:对于函数y=x^n,当n≠0时,导数为y'=nx^(n-1)。
- 指数函数:对于函数y=a^x(其中a>0,a≠1),导数为
y'=a^xlog(a)。
- 对数函数:对于函数y=log_ax(其中a>0,a≠1),导数为y'=(1/x)log_ae。
- 三角函数:对于函数y=sin(x),导数为y'=cos(x);对于函数y=cos(x),导数为y'=-sin(x);对于函数y=tan(x),导数为
y'=sec^2(x)。
其中sec^2(x)是sec(x)的平方。
- 反三角函数:对于函数y=arcsin(x),导数为y'=1/√(1-x^2);对于函数y=arccos(x),导数为y'=-1/√(1-x^2);对于函数
y=arctan(x),导数为y'=1/(1+x^2)。