二次函数最值问题练习题

合集下载

中考数学《二次函数的最值》专项练习题及答案

中考数学《二次函数的最值》专项练习题及答案

中考数学《二次函数的最值》专项练习题及答案一、单选题1.定义:如果两个函数图象上至少存在一对点是关于原点对称的,我们则称这两个函数互为“守望函数”,这对点称为“守望点”.例如:点P(2,4)在函数y =x 2上,点 Q(−2,−4)在函数y =−2x −8上,点P 与点Q 关于原点对称,此时函数y =x 2和y =−2x −8互为“守望函数”,点P 与点Q 则为一对“守望点”.已知函数y =x 2+2x 和y =4x +n −2022互为“守望函数”,则n 的最大值为( ) A .2020B .2022C .2023D .40842.已知二次函数y=ax 2+2ax+3a 2+3(其中x 是自变量),当x ≥2时,y 随x 的增大而增大,且-2≤x ≤1时,y 的最大值为9,则a 的值为( ) A .1或B .- 或C .D .13.已知二次函数y =ax 2+bx −1(a ,b 是常数,a ≠0)的图象经过A(2,1),B(4,3),C(4,−1)三个点中的其中两个点.平移该函数的图象,使其顶点始终在直线y =x −1上,则平移后所得抛物线与y 轴交点纵坐标的( ) A .最大值为-1B .最小值为-1C .最大值为−12D .最小值为−124.二次函数y=ax 2+bx+c (a 、b 、c 为常数且a ≠0)中的x 与y 的部分对应值如下表:x ﹣3 ﹣2 ﹣1 0 1 2 3 4 5 y125﹣3﹣4﹣35121)二次函数y=ax 2+bx+c 有最小值,最小值为﹣3;2)当 −12<x <2 时,y <0;3)二次函数y=ax 2+bx+c 的图象与x 轴有两个交点,且它们分别在y 轴两侧.则其中正确结论的个数是( ) A .3B .2C .1D .05.已知二次函数 y =−(x −ℎ)2+4 (h 为常数),在自变量 x 的值满足 1≤x ≤4的情况下,与其对应的函数值 y 的最大值为0,则 h 的值为( ) A .和B . 和C .和D . 和6.经过点A (m ,n ),点B (m ﹣4,n )的抛物线y =x 2+2cx+c 与x 轴有两个公共点,与y 轴的交点在x 轴的上方,则当m >﹣12时,n 的取值范围是( )A .14<n <4B .12<n <2C .18<n <8D .14<n <27.二次函数y =x 2+2x -5有A .最大值-5B .最小值-5C .最大值-6D .最小值-68.①4的算术平方根是±2;②√2与-√8是同类二次根式;③点P (2,3)关于原点对称的点的坐标是(-2,-3); ④抛物线y=-12(x-3)2+1的顶点坐标是(3,1).其中正确的是( ) A .①②④B .①③C .②④D .②③④9.童装专卖店销售一种童装,已知这种童装每天所获得的利润y (元)与童装的销售单价x (元)之间满足关系式y=-x 2+50x+500,则要想每天获得最大利润,单价需为( ). A .25元B .20元C .30元D .40元10.已知二次函数y =ax 2+bx +c (a ,b ,c 是常数,a ≠0)的y 与x 的部分对应值如表:x ﹣5 ﹣4 ﹣2 0 2 y6﹣6﹣468,y 1),点(8,y 2)在二次函数图象上,则y 1<y 2;④方程ax 2+bx +c =﹣5有两个不相等的实数根.其中,正确结论的是( ) A .①②③B .①③④C .①②④D .②③④11.已知抛物线y=-2(x-3)2+5,则此抛物线( )A .开口向下,对称轴为直线x=-3B .顶点坐标为(-3,5)C .最小值为5D .当x >3时y 随x 的增大而减小12.如果抛物线 y =x 2−6x +c −2 的顶点到 x 轴的距离是3,那么 c 的值等于( )A .8B .14C .8或14D .-8或-14二、填空题13.二次函数y=2x 2﹣1,∵a= ,∴函数有最 值.14.公路上行驶的汽车急刹车时的行驶路程s (m )与时间t (s )的函数关系式为s=20t-5t 2,当遇到紧急情况时,司机急刹车,但由于惯性汽车要滑行 m 才能停下来.15.已知二次函数y = 12x ²+2若自变量x 的取值范围是-1≤x ≤2,则函数y 的取值范围是 .16.函数y =x 2−2x(0≤x ≤3)有最大值,也有最小值,则最小值是 . 17.若二次函数y =-x 2-4x +k 的最大值是9,则k = .18.当﹣2≤x≤1时,二次函数y=﹣(x﹣m)2+m2+1有最大值4,则实数m的范围是.三、综合题19.某农作物的生长率p与温度t ( C∘ )有如下关系:如图,当10≤t≤25 时可近似用函数p=150t−15刻画;当25≤t≤37 时可近似用函数p=−1160(t−ℎ)2+0.4刻画.(1)求ℎ的值.(2)按照经验,该作物提前上市的天数m (天)与生长率p满足函数关系,部分数据如下:生长率p0.20.250.30.35提前上市的天数m(天)051015②请用含t的代数式表示m③天气寒冷,大棚加温可改变农作物生长速度.在大棚恒温20℃时每天的成本为100元,该作物30天后上市时,根据市场调查:每提前一天上市售出(一次售完),销售额可增加600元.因此决定给大棚继续加温,但加温导致成本增加,估测加温到20≤t≤25时的成本为200元/天,但若加温到25<t≤37,由于要采用特殊方法,成本增加到400元/天,问加温到多少度时增加的利润最大?并说明理由。

初中数学二次函数最值练习题(附答案)

初中数学二次函数最值练习题(附答案)

初中数学二次函数最值练习题一、单选题1.二次函数245y x x -=+的最小值是( ) A.1-B.1C.3D.52.在平面直角坐标系中,对于二次函数2(2)1y x =-+,下列说法中错误的是( ) A.y 的最小值为1B.图象顶点坐标为(2,1),对称轴为直线2x =C.当2x <时,y 的值随x 值的增大而增大,当2x ≥时,y 的值随x 值的增大而减小D.它的图象可以由2y x =的图象向右平移2个单位长度,再向上平移1个单位长度得到3.将进货单价为70元的某种商品按零售价100元一个售出时,每天能卖出20个,若这种商品的零售价每降价1元,其日销量就增加1个,为了获取每日最大利润,则应降价( ) A.5元 B. 10元 C. 15元 D.20元4.当1a x a ≤≤+时,函数221y x x =-+的最小值为1,则a 的值为( ) A.-1 B.2 C.0或2 D.-1或2 5.当21x -≤≤时,二次函数22()1y x m m =--++有最大值4,则实数m 的值为( )A.74-或74- 6.已知二次函数2()1y x h =-+(h 为常数),在自变量x 的值满足13x 的情况下,与其对应的函数值y 的最小值为5,则h 的值为( )A.1或-5B.-1或5C.1或-3D.1或37.某二次函数,当自变量x 满足04x 时,对应的函数值y 满足02y ,则这个函数不可能是( ) A.21(2)2y x =- B.242y x x =-+ C.21(2)22y x =--+ D.2114y x x =-++ 8.在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用28 m 长的篱笆围成一个矩形花园ABCD (篱笆只围,AB BC 两边),设m AB x =.若在点P 处有一棵树与墙,CD AD的距离分别是15 m 和6 m,要将这棵树围在花园内(含边界,不考虑树的粗细),则花园面积S 的最大值为( )A.2193mB.2194mC.2195mD.2196m9.已知二次函数22233y ax ax a =+++(其中x 是自变量),当2x ≥时,y 随x 的增大而增大,且21x -≤≤时,y 的最大值为9,则a 的值为( )A.1或-2B. D.110.已知二次函数2()y x h =--(h 为常数),当自变量x 的值满足25x ≤≤时,与其对应的函数值y 的最大值为1-,则h 的值为( ) A.3或6 B.1或6C.1或3D.4或6二、解答题11.2a b+≤(0,0)a b >>,当且仅当a b =时,等号成立,其中我们把2a b+叫作正数a b 、,a b 的几何平均数,其意义是两个正数的算术平均数不小于其几何平均数。

二次函数区间最值问题专题训练

二次函数区间最值问题专题训练

二次函数区间最值问题专题训练1.在平面直角坐标系xOy中,抛物线y=ax2+bx+a﹣5(a≠0)的对称轴是直线x=1.(1)用含a的式子表示b;(2)求抛物线的顶点坐标;(3)若抛物线与y轴的一个交点为A(0,﹣4),且当m≤x≤n时,y的取值范围是﹣5≤y≤n,结合函数图象,直接写出一个满足条件的n的值和对应m的取值范围.2.如图,已知抛物线y=x2+bx+c的对称轴为直线x=﹣且与x轴相交于点A(﹣6,0),与y轴相交于点C,直线l:y=2x+b经过点C.(1)求该抛物线与直线l的表达式;(2)设动点P(m,n)在该抛物线上,当∠P AC=45°时,求m的值.3.【概念认识】已知m是实数,若某个函数图象上存在点M(m,m),则称点M是该函数图象上的“固定点”.【数学理解】(1)一次函数y=﹣2x+3的图象上的“固定点”的坐标是;(2)求证:反比例函数y=(k>0)的图象上存在2个“固定点”;(3)将二次函数y=x2+bx+1(b<﹣2)的图象在x轴下方的部分沿x轴翻折到x轴上方,图象的其余部分保持不变,翻折后的图象与原图象在x轴上方的部分组成一个类似“W”形状的新图象.若新图象上恰好存在3个“固定点”,求b的值.4.在平面直角坐标系中,抛物线y=x2﹣2(k﹣1)x+k2﹣k(k为常数).(Ⅰ)当k=2时,求该抛物线的解析式及顶点坐标;(Ⅱ)若抛物线经过点(1,k2),求k的值;(Ⅲ)若抛物线经过点(2k,y1)和点(2,y2),且y1>y2,求k的取值范围;(Ⅳ)若将抛物线向右平移1个单位长度得到新抛物线,当1≤x≤2时,新抛物线对应的函数有最小值﹣,求k的值.5.如图,抛物线y=x2+bx+c与x轴交于A、B两点,且A(﹣1,0),对称轴为直线x=2.(1)求该抛物线的函数表达式;(2)直线l过点A且在第一象限与抛物线交于点C.当∠CAB=45°时,求点C的坐标;(3)点D在抛物线上与点C关于对称轴对称,点P是抛物线上一动点,令P(x P,y P),当1≤x P≤a,1≤a≤5时,求△PCD面积的最大值(可含a表示).6.已知抛物线y=x2﹣(m+1)x+2m+3.(1)当m=0时,请判断点(2,4)是否在该抛物线上;(2)该抛物线的顶点随着m的变化而移动,当顶点移动到最高处时,求该抛物线的顶点坐标;(3)已知点E(﹣1,﹣1)、F(3,7),若该抛物线与线段EF只有一个交点,求该抛物线顶点横坐标的取值范围.7.在平面直角坐标系xOy中,直线l1:y=﹣2x+6与y轴交于点A,与x轴交于点B,二次函数的图象过A,B两点,且与x轴的另一交点为点C,BC=2;(1)求点C的坐标;(2)对于该二次函数图象上的任意两点P1(x1,y1),P2(x2,y2),当x1>x2>2时,总有y1>y2.①求二次函数的表达式;②设点A在抛物线上的对称点为点D,记抛物线在C,D之间的部分为图象G(包含C,D两点).若一次函数y=kx﹣2(k≠0)的图象与图象G有公共点,结合函数图象,求k 的取值范围.8.如图,抛物线C1:y=﹣x2+mx+n与抛物线C2:y=ax2﹣4x+5(a≠0)关于y轴对称,C1与x轴交于A,B两点,其中点A在点B的左侧.(1)求抛物线C1,C2的函数表达式.(2)在抛物线C1上是否存在一点N,在抛物线C2上是否存在一点M,使得以AB为边,且以A、B、M、N四点为顶点的四边形是平行四边形?若存在,求出M、N两点的坐标;若不存在,请说明理由.9.综合与探究:如图1,已知抛物线y=x2+bx+c与x轴交于点A,B(点A在点B的左侧),与y轴交于点C,顶点为D,OA=OC=3.(1)求抛物线的函数表达式;(2)判断△ACD的形状并说明理由;(3)如图2,N是AC下方的抛物线上的一个动点,且点N的横坐标为n,求△CAN面积S与n的函数关系式及S的最大值;(4)在抛物线上是否存在一点N,使得∠NAB=∠ABC,若存在,请直接写出点N的坐标;若不存在,请说明理由.10.已知二次函数y=mx2﹣10mx﹣2m2+26.(1)求此二次函数图象的顶点坐标(可用含m的代数式表示);(2)若二次函数的图象与x轴的一个交点为(﹣2,0),试求m的值;(3)当m<0时,若点(n,y1)、(n+2,y2)都在二次函数图象上,且y1<y2.试求n 的取值范围.11.在平面直角坐标系xOy(如图)中,二次函数f(x)=ax2﹣2ax+a﹣1(其中a是常数,且a≠0)的图象是开口向上的抛物线.(1)求该抛物线的顶点P的坐标;(2)我们将横、纵坐标都是整数的点叫做“整点”,将抛物线f(x)=ax2﹣2ax+a﹣1与y轴的交点记为A,如果线段OA上的“整点”的个数小于4,试求a的取值范围;(3)如果f(﹣1)、f(0)、f(3)、f(4)这四个函数值中有且只有一个值大于0,试写出符合题意的一个函数解析式;结合函数图象,求a的取值范围.12.已知面积为1的等腰直角三角形的三个顶点均在抛物线y=ax2+bx(a、b为常数,且a >0)上,其中直角顶点与抛物线顶点重合.(1)求a的值;(2)若直线y=t(t≤4)与抛物线y=ax2+bx(a>0)有公共点.①求t的取值范围;②求关于t的函数y=at2+bt(﹣2<b<2)的最大值.13.已知函数y1=(x﹣m)2+m(x)和y2=﹣(x﹣m)2+2(x m),其中m 为常数.在平面直角坐标系中,y1与y2的图象合在一起组成的图形记作G.(1)当x=m时,求y1的值(用含m的代数式表示).(2)当m=﹣3时,点P(﹣2,a)和Q(﹣1,b)均在图形G上,比较a与b的大小关系.(3)当图形G与直线y=2有且只有两个公共点时,求m的取值范围.(4)当﹣2≤x≤2时,图形G上最低点的纵坐标记作y min,若y min≥﹣,直接写出m 的取值范围.14.已知函数y=,将此函数的图象记为G.(1)当m=1时,①直接写出此函数的函数表达式;②P(﹣1,a)在图象G上,求点P的坐标;③当﹣1≤x≤3时,求y的取值范围;(2)设图象G最低点的纵坐标为y0,当﹣7≤y0≤﹣2时,直接写出m的取值范围;(3)矩形MNPQ的顶点坐标分别为M(m,m)、N(m+2,m)、P(m+2,0)、Q(m,0),若图象G落在矩形MNPQ内部的部分图象所对应的函数值y随x的增大而增大时,直接写出m的取值范围;(4)矩形ABCD的顶点坐标分别为A(﹣4,3),B(﹣4,0),C(3,0),D(3,3),若函数y=,在m﹣1≤x≤m+1范围内的图象与矩形ABCD的边有且只有一个公共点,求m的取值范围.15.如图1,抛物线y=﹣x2+bx+c过点A(﹣1,0),点B(3,0)与y轴交于点C,在x 轴上有一动点E(m,0)(0<m<3),过点E作直线l⊥x轴,交抛物线于点M.(1)求抛物线的解析式及C点坐标;(2)当m=1时,D是直线l上的点且在第一象限内,若△ACD是以∠DCA为底角的等腰三角形,求点D的坐标;(3)如图2,连接BM并延长交y轴于点N,连接AM,OM,设△AEM的面积为S1,△MON的面积为S2,若S1=S2,求m的值.16.平面直角坐标系中,已知抛物线y=﹣x2+(1+m)x﹣m(m为常数,m≠±1)与轴交于定点A及另一点B,与y轴交于点C.(1)当点(2,2)在抛物线上时,求抛物线解析式及点A,B,C的坐标;(2)如图1,在(1)的条件下,D为抛物线x轴上方一点,连接BD,若∠DBA+∠ACB =90°,求点D的坐标;(3)若点P是抛物线的顶点,令△ACP的面积为S,①直接写出S关于m的解析式及m的取值范围;②当时,直接写出m的取值范围.17.已知抛物线y=(x﹣m)2﹣2(m﹣1)2和直线,m为常数,且m≥1.(1)若该抛物线的顶点在x轴上,①求m的值;②若直线与抛物线相交于M,N两点,点P为线段MN上一动点,过P作x轴的垂线交抛物线于点Q,求线段PQ长度的最大值.(2)若直线与抛物线相交于A、B两点(B在对称轴的右边),且与抛物线的对称轴相交于C点,当CO=CB时,求抛物线的顶点坐标.18.已知二次函数y=ax2+bx+c的图象过点(﹣1,0),且对任意实数x,都有4x﹣12≤ax2+bx+c ≤2x2﹣8x+6.(1)求该二次函数的解析式;(2)若(1)中二次函数图象与x轴的正半轴交点为A,与y轴交点为C;点M是(1)中二次函数图象上的动点.问在x轴上是否存在点N,使得以A、C、M、N为顶点的四边形是平行四边形.若存在,求出所有满足条件的点N的坐标;若不存在,请说明理由.19.在平面直角坐标系xOy中,已知抛物线y=ax2﹣2ax+c与直线y=﹣3有且只有一个公共点.(1)直接写出抛物线的顶点D的坐标,并求出c与a的关系式;(2)若点P(x,y)为抛物线上一点,当t≤x≤t+1时,y均满足﹣3≤y≤at2﹣3,求t 的取值范围;(3)过抛物线上动点M(x,y)(其中x≥3)作x轴的垂线l,设l与直线y=﹣ax+2a ﹣3交于点N,若M、N两点间的距离恒大于等于1,求a的取值范围.20.如图,在平面直角坐标系中,A(1,1),过A作线段AB∥y轴(B在A下方),以AB 为边向右作正方形ABCD.设点B的纵坐标为m,二次函数y=ax2﹣4ax的图象的顶点为E.(1)AB=.(用含m的代数式表示);(2)当点A恰好在二次函数y=ax2﹣4ax的图象上时,求二次函数y=ax2﹣4ax的关系式.(3)当点E恰为线段BC的中点时,求经过点D的反比例函数的关系式;(4)若a=m+1,当二次函数y=ax2﹣4ax的图象恰与正方形ABCD有三个交点且二次函数顶点E不位于直线BC下方时,直接写出m的值.21.已知抛物线y=ax2+bx经过点(2,8),(4,8).(1)求抛物线的解析式;(2)若点P(x1,y1),Q(x2,y1)均在该抛物线上,且x1<x2≤4,求的取值范围;(3)若点A为抛物线上的动点,点B(3,7),则以线段AB为直径的圆截直线y=所得弦的长是否为定值?若是,求出它的值;若不是,请说明理由.。

二次函数的最值问题举例(附练习、答案)

二次函数的最值问题举例(附练习、答案)

二次函数的最值问题举例(附练习、答案) 二次函数2 (0)y ax bx c a =++≠是初中函数的主要内容,也是高中学习的重要基础.在初中阶段大家已经知道:二次函数在自变量x 取任意实数时的最值情况(当0a >时,函数在2b x a =-处取得最小值244ac b a -,无最大值;当0a <时,函数在2b x a=-处取得最大值244ac b a-,无最小值. 本节我们将在这个基础上继续学习当自变量x 在某个范围内取值时,函数的最值问题.同时还将学习二次函数的最值问题在实际生活中的简单应用.【例1】当22x -≤≤时,求函数223y x x =--的最大值和最小值.分析:作出函数在所给范围的及其对称轴的草图,观察图象的最高点和最低点,由此得到函数的最大值、最小值及函数取到最值时相应自变量x 的值.解:作出函数的图象.当1x =时,min 4y =-,当2x =-时,max 5y =.【例2】当12x ≤≤时,求函数21y x x =--+的最大值和最小值.解:作出函数的图象.当1x =时,min 1y =-,当2x =时,max 5y =-.由上述两例可以看到,二次函数在自变量x 的给定范围内,对应的图象是抛物线上的一段.那么最高点的纵坐标即为函数的最大值,最低点的纵坐标即为函数的最小值.根据二次函数对称轴的位置,函数在所给自变量x 的范围的图象形状各异.下面给出一些常见情况:【例3】当0x ≥时,求函数(2)y x x =--的取值范围.解:作出函数2(2)2y x x x x =--=-在0x ≥内的图象.可以看出:当1x =时,min 1y =-,无最大值.所以,当0x ≥时,函数的取值范围是1y ≥-.【例4】当1t x t ≤≤+时,求函数21522y x x =--的最小值(其中t 为常数). 分析:由于x 所给的范围随着t 的变化而变化,所以需要比较对称轴与其范围的相对位置. 解:函数21522y x x =--的对称轴为1x =.画出其草图. (1) 当对称轴在所给范围左侧.即1t >时: 当x t =时,2min 1522y t t =--; (2) 当对称轴在所给范围之间.即1101t t t ≤≤+⇒≤≤时:当1x =时,2min 1511322y =⨯--=-; (3) 当对称轴在所给范围右侧.即110t t +<⇒<时:当1x t =+时,22min 151(1)(1)3222y t t t =+-+-=-.综上所述:2213,023,0115,122t t y t t t t ⎧-<⎪⎪=-≤≤⎨⎪⎪-->⎩在实际生活中,我们也会遇到一些与二次函数有关的问题:【例5】某商场以每件30元的价格购进一种商品,试销中发现这种商品每天的销售量m (件)与每件的销售价x (元)满足一次函数1623,3054m x x =-≤≤.(1) 写出商场卖这种商品每天的销售利润y 与每件销售价x 之间的函数关系式;(2) 若商场要想每天获得最大销售利润,每件商品的售价定为多少最合适?最大销售利润为多少?解:(1) 由已知得每件商品的销售利润为(30)x -元,那么m 件的销售利润为(30)y m x =-,又1623m x =-.2 (30)(1623)32524860,3054y x x x x x ∴=--=-+-≤≤(2) 由(1)知对称轴为42x =,位于x 的范围内,另抛物线开口向下 ∴当42x =时,2max 342252424860432y =-⨯+⨯-=∴当每件商品的售价定为42元时每天有最大销售利润,最大销售利润为432元.A 组1.抛物线2(4)23y x m x m=--+-,当m= _____ 时,图象的顶点在y轴上;当m= _____ 时,图象的顶点在x轴上;当m= _____ 时,图象过原点.2.用一长度为l米的铁丝围成一个长方形或正方形,则其所围成的最大面积为________ .3.求下列二次函数的最值:(1) 2245y x x=-+;(2) (1)(2)y x x=-+.4.求二次函数2235y x x=-+在22x-≤≤上的最大值和最小值,并求对应的x的值.5.对于函数2243y x x=+-,当0x≤时,求y的取值范围.6.求函数3y=-7.已知关于x的函数22(21)1y x t x t=+++-,当t取何值时,y的最小值为0?B 组1.已知关于x的函数222y x ax=++在55x-≤≤上.(1) 当1a=-时,求函数的最大值和最小值;(2) 当a为实数时,求函数的最大值.2.函数223y x x=++在0m x≤≤上的最大值为3,最小值为2,求m的取值范围.3.设0a>,当11x-≤≤时,函数21y x ax b=--++的最小值是4-,最大值是0,求,a b的值.4.已知函数221y x ax=++在12x-≤≤上的最大值为4,求a的值.5.求关于x的二次函数221y x tx=-+在11x-≤≤上的最大值(t为常数).第五讲 二次函数的最值问题答案A 组1.4 14或2,322.2216l m 3.(1) 有最小值3,无最大值;(2) 有最大值94,无最小值. 4.当34x =时,min 318y =;当2x =-时,max 19y =. 5.5y ≥-6.当56x =时,min 36y =-;当23x =或1时,max 3y =. 7.当54t =-时,min 0y =. B 组1.(1) 当1x =时,min 1y =;当5x =-时,max 37y =.(2) 当0a ≥时,max 2710y a =+;当0a <时,max 2710y a =-.2.21m -≤≤-.3.2,2a b ==-.4.14a =-或1a =-. 5.当0t ≤时,max 22y t =-,此时1x =;当0t >时,max 22y t =+,此时1x =-.。

中考数学总复习《二次函数的最值》练习题及答案

中考数学总复习《二次函数的最值》练习题及答案

中考数学总复习《二次函数的最值》练习题及答案班级:___________姓名:___________考号:_____________一、单选题1.已知二次函数y=a(x+2)2+3(a<0)的图象如图所示,则以下结论:①当x>﹣2时,y随x的增大而增大;②不论a为任何负数,该二次函数的最大值总是3;③当a=﹣1时,抛物线必过原点;④该抛物线和x轴总有两个公共点.其中正确结论是()A.①②B.②③C.②④D.①④2.二次函数y=ax2+bx的图象如图,若一元二次方程ax2+bx+m=0有实数根,求m的最大值() A.-3B.3C.-6D.93.设实数x>0,y>0,且x+y-2x2y2=4,则1x+1y的最小值为()A.4 √2B.3 √2C.2 √2D.√24.如图,一条抛物线(形状一定)与x轴相交于E、F两点(点E在点F左侧),其顶点P在线段AB上移动.若点A、B的坐标分别为(−2,−3)、(4,−3),点E的横坐标的最小值为-5,则点F的横坐标的最大值为()A.6B.7C.8D.95.如图1,在矩形ABCD中,动点E从A出发,沿A−B−C方向运动,当点E到达点C时停止运动,过点E做FE⊥AE,交CD于F点,设点E运动路程为x,FC=y,如图2所表示的是y与x的函数关系的大致图象,当点E在BC上运动时,FC的最大长度是25,则矩形ABCD的面积是()A.235B.254C.6D.56.已知0≤x≤32,则函数y=x2+x+1()A.有最小值34,但无最大值B.有最小值34,有最大值1C.有最小值1,有最大值194D.无最小值,也无最大值7.已知二次函数y=ax2+bx+c(a,b,c是常数,a≠0)的y与x的部分对应值如表:x﹣5﹣4﹣202y60﹣6﹣46;③若点(﹣8,y1),点(8,y2)在二次函数图象上,则y1<y2;④方程ax2+bx+c=﹣5有两个不相等的实数根.其中,正确结论的是()A.①②③B.①③④C.①②④D.②③④8.已知二次函数y=ax2−2ax+a+2(a≠0),若−1≤x≤2时,函数的最大值与最小值的差为4,则a的值为()A.1B.-1C.±1D.无法确定9.如图,已知二次函数的图象(0≤x≤1+2 √2).关于该函数在所给自变量取值范围内,下列说法正确的是()A.有最小值﹣2,无最大值B.有最小值﹣2,有最大值﹣1.5C.有最小值﹣2,有最大值2D.有最小值﹣1.5,有最大值210.如图,Rt△ABC中,∠ACB=90°,AC=12BC=2点D是AB上一动点,连接CD,将线段CD绕点C逆时针旋转90°得到线段CE,连接DE,BE,当△BED面积最大时,AD的长为()A.2B.√5C.25√5D.4√5511.若二次函数y=﹣x2+mx在﹣1≤x≤2时的最大值为3,那么m的值是()A.﹣4或72B.﹣2 √3或72C.﹣4 或2 √3D.﹣2 √3或2 √3 12.若二次函数y=ax2+4x+a-1的最小值是2,则a的值为()A.4B.-1C.3D.4或-1二、填空题13.二次函数y=x2−2x+3的最小值是.14.当实数a满足2≤a≤5时,且代数式−a2+2ab−b2取最大值-1时,则b的值为.15.抛物线y=ax2+bx+c上部分点的横坐标x,纵坐标y的对应值如下表:x-2-1012y04664从上表可知,下列说法中正确的是.)①抛物线与x轴的一个交点为(3,0);②函数y=ax2+bx+c的最大值为6;②抛物线的对称轴是直线x=12;④在对称轴左侧,y随x增大而增大.16.二次函数y=﹣x2﹣4x+k的最大值是9,则k=.17.已知关于x的函数y=−x2−ax+1,当0≤x≤3时函数有最大值5,则a=.18.已知关于x的二次函数y=x2-2ax+3,当1≤x≤3时,函数有最小值2a,则a的值为.三、综合题19.已知抛物线y=ax2+bx+c与y轴交于点(0,3a),对称轴为x=1.(1)试用含a的代数式表示b、c.(2)当抛物线过点(2,3)时,求此抛物线的解析式.(3)求当b(c+6)取得最大值时的抛物线的顶点坐标.20.如图,正方形ABCD的边长为4,点G,H分别是BC、CD边上的点,直线GH与AB、AD的延长线相交于点E,F,连接AG、AH.(1)当BG=2,DH=3时,则GH:HF=,∠AGH=°;(2)若BG=3,DH=1,求DF、EG的长;(3)设BG=x,DH=y,若∠ABG∠∠FDH,求y与x之间的函数关系式,并求出y的取值范围.21.如图,抛物线y=12x2−32x−2与x轴交于A,B两点,与y轴交于点C,连接AC,BC,点M是线段BC下方抛物线上的任意一点,点M的横坐标为m,过点M画MN∠x轴于点N,交BC于点P.(1)填空:A(,),C(,);(2)探究∠ABC的外接圆圆心的位置,并求出圆心的坐标;(3)探究当m取何值时线段PM的长度取得最大值,最大值为多少?22.某商品现在的售价为每件50元,每天可卖出200件.市场调查反映:如调整价格,每涨价1元,每天要少卖出10件,已知商品的进价为每件40元,请你帮助分析,当每件商品涨价多少元时,可使每天的销售利润最大,最大利润是多少?设每件商品涨价x元,每天售出商品的利润为y元.(1)根据题意,填写下表:每件售价(元)505152……50+x每天售出商品的数量(件)200190……每天售出商品的利润(元)20002090……23.已知,一个铝合金窗框如图所示,所使用的铝合金材料长度为18m.设AB长为xm,窗户的总面积为Sm2.(1)求S关于x的函数表达式.(2)若AB的长不能低于2m,且AB<BC,求此时窗户总面积S的最大值和最小值.24.已知关于x的一元二次方程x2﹣(m+1)x+ 12(m2+1)=0有实数根.(1)求m的值;(2)先作y=x2﹣(m+1)x+ 12(m2+1)的图象关于x轴的对称图形,然后将所作图形向左平移3个单位长度,再向上平移2个单位长度,写出变化后图象的解析式;(3)在(2)的条件下,当直线y=2x+n(n≥m)与变化后的图象有公共点时,求n2﹣4n的最大值和最小值.参考答案1.【答案】C2.【答案】B3.【答案】A4.【答案】B5.【答案】B6.【答案】C7.【答案】B8.【答案】C9.【答案】C10.【答案】C11.【答案】C12.【答案】A13.【答案】214.【答案】1或615.【答案】①③④16.【答案】517.【答案】-418.【答案】119.【答案】(1)解:∵抛物线与y轴交于点(0,3a)∴c=3a∵对称轴为x=1∴x=−b2a=1∴b=−2a(2)解:∵抛物线过点(2,3)∴3=a×22+2(−2a)+3a∴a=1∴b=−2a=−2,c=3a=3∴抛物线为y=x2−2x+3(3)解:∵b(c+6)=−2a(3a+6)=−6a2−12a=−6(a+1)2+6∴当a=−1时,b(c+6)的最大值为6;∴抛物线y=−x2+2x−3=−(x−1)2−2故抛物线的顶点坐标为(1,−2)20.【答案】(1)1:3;90(2)解:∵正方形ABCD的边长为4,BG=3,DH=1∴CG=1,CH=3∵CG∠DF,CH∠BE∴∠CGH∠∠BGE∠∠DFH∴GCHC=BGBE=DFDH,即13=3BE=DF1解得BE=9,DF= 1 3∴Rt∠BEG中,EG= √BG2+BE2= √32+92=3 √10(3)解:∵正方形ABCD的边长为4,BG=x,DH=y ∴CG=4﹣x,CH=4﹣y由(1)可得,∠FDH∠∠GCH,而∠ABG∠∠FDH∴∠ABG∠∠GCH∴ABGC=BGCH,即44−x=x4−y∴y与x之间的函数关系式为:y= 14x2﹣x+4∵44−x=x4−y∴4﹣y= x(4−x)4=﹣14x2+x∴当x=﹣12×(−14)=2时,4﹣y有最大值,且最大值为﹣14×4+2=1∴0<4﹣y≤1解得3≤y<4.21.【答案】(1)-1;0;0;-2(2)解:|OA|=1,|OC|=2,|OB|=4∠AOC=∠COB=90°∴OAOC=OCOB=12∴∠AOC∠∠COB∴∠ACO=∠OBC∠ACO+∠OCB=90°∠OBC+∠OCB=90°=∠ACB∴Rt∠ACB的外接圆圆心为AB的中点∵A(-1,0)B(4,0)∴圆心的坐标( 32,0 ).(3)解:C (0,-2),B (4,0) 又∵直线BC 解析式y =12x −2 p(m ,12m −2) ,M (m , 12m 2−32m −2 )PM=( 12m −2 )-( 12m 2−32m −2 )PM =−12m 2+2m =−12(m −2)2+2 当m=2时,PM 最大值=2.22.【答案】(1)180;200﹣10x ;2160;(200﹣10x )(10+x )(2)解:y =(200﹣10x )(10+x )=﹣10x 2+100x+2000=﹣10(x ﹣5)2+2250 ∴当x =5时,y 取得最大值,此时y =2250即y =﹣10x 2+100x+2000,当每件商品涨价5元时,可使每天的销售利润最大,最大利润是2250元23.【答案】(1)解:∵AB=xm ,铝合金材料长为18m∴AD=BC=18−3x 2∴S =x·18−3x2=−32x 2+9x即S 与x 的函数表达式为:S =−32x 2+9x.(2)解:由题意得:2≤x <18−3x 2解得:2≤x <3.6∵S =−32x 2+9x =−32(x -3)2+272∵−32<0,对称轴是直线x =3,且2≤x <3.6∴当x =3时,S 取得最大值,此时S =272当x =2时,S 取得最小值,此时S =−32(2-3)2+272=12答:窗户总面积S 的最大值272m 2,最小值是12m 2.24.【答案】(1)解:对于一元二次方程x 2﹣(m+1)x+ 12(m 2+1)=0∠=(m+1)2﹣2(m 2+1)=﹣m 2+2m ﹣1=﹣(m ﹣1)2 ∵方程有实数根∴﹣(m﹣1)2≥0∴m=1.(2)解:由(1)可知y=x2﹣2x+1=(x﹣1)2图象如图所示:平移后的解析式为y=﹣(x+2)2+2=﹣x2﹣4x﹣2.(3)解:由{y=2x+ny=−x2−4x−2消去y得到x2+6x+n+2=0由题意∠≥0∴36﹣4n﹣8≥0∴n≤7∵n≤m,m=1∴1≤n≤7令y′=n2﹣4n=(n﹣2)2﹣4∴n=2时,y′的值最小,最小值为﹣4n=7时,y′的值最大,最大值为21∴n2﹣4n的最大值为21,最小值为﹣4.。

最新二次函数的最值问题举例(附练习、答案)

最新二次函数的最值问题举例(附练习、答案)

二次函数的最值问题举例(附练习、答案)二次函数y = ax2bx c (a = 0)是初中函数的主要内容,也是高中学习的重要基础. 在初x取任意实数时的最值情况(当a ■ 0时,函数在本节我们将在这个基础上继续学习当自变量x在某个范围内取值时,函数的最值问题.同时还将学习二次函数的最值问题在实际生活中的简单应用.2【例1】当-2弐x玄2时,求函数y=x -2x-3的最大值和最小值.分析:作出函数在所给范围的及其对称轴的草图,观察图象的最高点和最低点,由此得到函数的最大值、最小值及函数取到最值时相应自变量x的值.解:作出函数的图象.当x=1时,y mi n =-4,当x=-2时,y max=5.【例2】当1^x^2时,求函数y =-X2「x T的最大值和最小值.X = 1 时,y min = T ,当X = 2 时,y max = 一5 .由上述两例可以看到,二次函数在自变量x的给定范围内,对应的图象是抛物线上的一段.那么最高点的纵坐标即为函数的最大值,最低点的纵坐标即为函数的最小值.根据二次函数对称轴的位置,函数在所给自变量x的范围的图象形状各异.下面给出一些常见情况:【例3】当x - 0时,求函数y = -x(2 - x)的取值范围.中阶段大家已经知道:二次函数在自变量b2a处取得最小值4ac - b24a,无最大值;当 a c 0时,函数在x = -亠-处取得最大值2a4ac -b24a无最小值.解:作出函数的图象.当解:作出函数y =-x(2 - x) n x? — 2x在x_0内的图象.可以看出:当x = 1时,ymin - -1,无最大值.所以,当X _ 0时,函数的取值范围是y _ -1 .1 25【例4】当t <x <t 1时,求函数y x「x 的最小值(其中t为常数).2 2分析:由于x所给的范围随着t的变化而变化,所以需要比较对称轴与其范围的相对位置.1 25解:函数y x2-X 的对称轴为x=1 .画出其草图.2 21 25(1)当对称轴在所给范围左侧•即t 1时:当X = t时,『min t -t-2 2⑵当对称轴在所给范围之间•即t乞1乞t • 1 = 0乞t乞1时:1 25当X=1 时,『min -1—? = 一3 ;⑶当对称轴在所给范围右侧.即t • 1 ::: 1= t ::: 0时:1 2 5 1 2当X=t 1 时,y min —(t 1) -(t 1)—?=?t -3 .1 2—t —3,t < 02综上所述:y二-3,0乞t乞1-1 -5,t A1.2 2在实际生活中,我们也会遇到一些与二次函数有关的问题:【例5】某商场以每件30元的价格购进一种商品,试销中发现这种商品每天的销售量与每件的销售价x(元)满足一次函数m =162 -3x,30 _ x _ 54 .(1)写出商场卖这种商品每天的销售利润y与每件销售价x之间的函数关系式;(2)若商场要想每天获得最大销售利润,每件商品的售价定为多少最合适?最大销售利润为多少?解:(1)由已知得每件商品的销售利润为(x-30)元,m (件)那么m件的销售利润为y = m(x - 30),又m = 162 - 3x .2y = (x - 30)(162 - 3x)二-3x 252x - 4860,30 - x - 54(2)由⑴知对称轴为x=42,位于x的范围内,另抛物线开口向下.当x=42 时,y max - -3 421 2252 42 -4860 =432•当每件商品的售价定为42元时每天有最大销售利润,最大销售利润为432元.A 组21.抛物线y =x —(m —4)x +2m -3,当m = _________ 时,图象的顶点在y轴上;当m = _______ 时, 图象的顶点在x轴上;当m = _____ 时,图象过原点.2•用一长度为I米的铁丝围成一个长方形或正方形,则其所围成的最大面积为 _______ .3.求下列二次函数的最值:2(1) y = 2x -4x 5 ;(2) y = (1 - x)(x 2).24.求二次函数y = 2x -3x - 5在-2 _ x _ 2上的最大值和最小值,并求对应的x的值.25•对于函数y =2x • 4x -3,当x _0时,求y的取值范围.6.求函数y = 3 —€5x —3x —2的最大值和最小值.7 .已知关于x的函数y = x2• (2t T)x • t2-1,当t取何值时,y的最小值为0 ?B 组21 当a - -1时,求函数的最大值和最小值;2 当a为实数时,求函数的最大值.2.函数y =x2• 2x 3在m^x乞0上的最大值为3,最小值为2,求m的取值范围.23 .设a • 0,当-1乞x乞1时,函数y x - ax b 1的最小值是-4,最大值是0,求a,b的值.4.已知函数y = x2 2ax 1在-1空x乞2上的最大值为4,求a的值.25.求关于x的二次函数y=x -2tx 1在-1辽x^1上的最大值(t为常数).1 .已知关于x的函数y =x2• 2ax • 2在-5辽x乞5上.第五讲二次函数的最值问题答案ymin- 0 •(1)当 X =1 时,Y min =1 ;当 X 「-5 时, ⑵当 a - 0 时,Y max =2710a ;当 a 0 时,Y max =27 —10a •一2空m 乞一1 • a =2,b 一2 •1a 或 a - -1.4123 4567123 44 14或 2,I 2 2 —m 16(1)有最小值 3, 无最大值;(2)有最大值9-,无最小值•4 --5时,Y min3 ;当x 「2时, 8Y max =19 •ymin2i 或 1 时,Ymaxymax- 37 •5.当t <0时,y max =2 —2t,此时X = 1 ;当t 0 时,y max =2 • 2t,此时X = -1 .。

二次函数的最值问题(典型例题)

二次函数的最值问题(典型例题)

二次函数的最值问题【例题精讲】题面:当-1≤x ≤2时,函数y =2x 2-4ax +a 2+2a +2有最小值2, 求a 的所有可能取值.【拓展练习】如图,在平面直角坐标系xOy 中,二次函数2y bx c =++的图象与x 轴交于A (-1,0)、B (3,0)两点, 顶点为C .(1)求此二次函数解析式;(2)点D 为点C 关于x 轴的对称点,过点A 作直线l :y =+BD 于点E ,过点B 作直线BK //AD 交直线l 于K 点.问:在四边形ABKD 的内部是否存在点P ,使得它到四边形ABKD 四边的距离都相等,若存在,请求出点P 的坐标;若不存在,请说明理由;(3)在(2)的条件下,若M 、N 分别为直线AD 和直线l 上的两个动点,连结DN 、NM 、MK ,求DN NM MK ++和的最小值.练习一【例题精讲】若函数y=4x2-4ax+a2+1(0≤x≤2)的最小值为3,求a的值.【拓展练习】题面:已知:y关于x的函数y=(k-1)x2-2kx+k+2的图象与x轴有交点.(1)求k的取值范围;(2)若x1,x2是函数图象与x轴两个交点的横坐标,且满足(k-1)x12+2kx2+k+2= 4x1x2.①求k的值;②当k≤x≤k+2时,请结合函数图象确定y的最大值和最小值.练习二金题精讲题面:已知函数y=x2+2ax+a2-1在0≤x≤3范围内有最大值24,最小值3,求实数a的值.【拓展练习】题面:当k分别取-1,1,2时,函数y=(k-1)x2 -4x+5-k都有最大值吗?请写出你的判断,并说明理由;若有,请求出最大值.讲义参考答案【例题精讲】答案:3--0或2或4【拓展练习】答案:(1) 2y=-;(2) (2);(3)8练习一答案【例题精讲】答案:a =【拓展练习】答案:(1) k≤2;(2)①k值为-1;②y的最大值为32,最小值为-3.详解:(1)当k=1时,函数为一次函数y= -2x+3,其图象与x轴有一个交点. 当k≠1时,函数为二次函数,其图象与x轴有一个或两个交点,令y=0得(k-1)x2-2kx+k+2=0.△=(-2k)2-4(k-1)(k+2)≥0,解得k≤2.即k≤2且k≠1.综上所述,k的取值范围是k≤2.(2)①∵x1≠x2,由(1)知k<2且k≠1.由题意得(k-1)x12+(k+2)=2kx1(*),将(*)代入(k-1)x12+2kx2+k+2=4x1x2中得:2k(x1+x2)=4x1x2.又∵x1+x2=2kk1-,x1x2=k+2k1-,∴2k•2kk1-=4•k+2k1-,解得:k1= -1,k2=2(不合题意,舍去).∴所求k值为-1.②如图,∵k1= -1,y= -2x2+2x+1= -2(x-12)2+32,且-1≤x≤1,由图象知:当x= -1时,y最小= -3;当x=12时,y最大=32.∴y的最大值为32,最小值为-3.练习二答案课后练习详解【例题精讲】答案:2或-5.详解:配方y=(x+a)2-1,函数的对称轴为直线x= -a,顶点坐标为(-a,-1).①当0≤-a≤3即-3≤a≤0时,函数最小值为-1,不合题意;②当-a<0即a>0时,∵当x=3时,y有最大值;当x=0时,y有最小值,∴9+6a+a2 −1=24,a2 −1=3,解得a=2;③当-a>3即a<-3时,∵当x=3时,y有最小值;当x=0时,y有最大值,∴a2 −1=24,9+6a+a2 −1=3,解得a= -5.∴实数a的值为2或-5.【拓展练习】答案:有最大值,为8.详解:∵当开口向下时函数y=(k-1)x2 -4x+5-k取最大值∴k-1<0,解得k<1.∴当k= -1时函数y=(k-1)x2 -4x+5-k有最大值,当k=1,2时函数没有最大值. ∴当k= -1时,函数y= -2x2-4x+6= -2(x+1)2+8.∴最大值为8.。

二次函数的最值精选题道参考答案

二次函数的最值精选题道参考答案

二次函数的最值精选题参考答案与试题解析一.选择题(共14小题)1.【分析】根据对称轴的位置,分三种情况讨论求解即可.【解答】解:二次函数的对称轴为直线x=m,①m<﹣2时,x=﹣2时二次函数有最大值,此时﹣(﹣2﹣m)2+m2+1=4,解得m=﹣,与m<﹣2矛盾,故m值不存在;②当﹣2≤m≤1时,x=m时,二次函数有最大值,此时,m2+1=4,解得m=﹣,m=(舍去);③当m>1时,x=1时二次函数有最大值,此时,﹣(1﹣m)2+m2+1=4,解得m=2,综上所述,m的值为2或﹣.故选:C.【点评】本题考查了二次函数的最值问题,难点在于分情况讨论.2.【分析】首先求得抛物线的对称轴,抛物线开口向上,在顶点处取得最小值,在距对称轴最远处取得最大值.【解答】解:抛物线的对称轴是直线x=1,则当x=1时,y=1﹣2﹣3=﹣4,是最小值;当x=3时,y=9﹣6﹣3=0是最大值.故选:A.【点评】本题考查了二次函数的图象和性质,正确理解取得最大值和最小值的条件是关键.3.【分析】min{a,b}的含义就是取二者中的较小值,画出函数图象草图,利用函数图象的性质可得结论.【解答】解:在同一坐标系xOy中,画出二次函数y=﹣x2+1与正比例函数y=﹣x的图象,如图所示.设它们交于点A、B.令﹣x2+1=﹣x,即x2﹣x﹣1=0,解得:x=或,∴A(,),B(,).观察图象可知:①当x≤时,min{﹣x2+1,﹣x}=﹣x2+1,函数值随x的增大而增大,其最大值为;②当<x<时,min{﹣x2+1,﹣x}=﹣x,函数值随x的增大而减小,其最大值为小于;③当x≥时,min{﹣x2+1,﹣x}=﹣x2+1,函数值随x的增大而减小,最大值为.综上所述,min{﹣x2+1,﹣x}的最大值是.故选:A.【点评】本题考查了二次函数与正比例函数的图象与性质,充分理解定义min{a,b}和掌握函数的性质是解题的关键.4.【分析】先求出二次函数的对称轴为直线x=﹣1,然后根据二次函数开口向上确定其增减性,并结合图象解答即可.【解答】解:∵二次函数y=(x+1)2﹣4,对称轴是:x=﹣1∵a=1>0,∴x>﹣1时,y随x的增大而增大,x<﹣1时,y随x的增大而减小,由图象可知:在﹣2≤x≤2内,x=2时,y有最大值,y=(2+1)2﹣4=5,x=﹣1时y有最小值,是﹣4,故选:B.【点评】本题考查了二次函数的最值问题,二次函数的增减性,结合图象可得函数的最值是解题的关键.5.【分析】根据已知条件得到CP=6﹣t,得到PQ===,于是得到结论.【解答】解:∵AP=CQ=t,∴CP=6﹣t,∴PQ===,∵0≤t≤2,∴当t=2时,PQ的值最小,∴线段PQ的最小值是2,故选:C.【点评】本题考查了二次函数的最值,勾股定理,正确的理解题意是解题的关键.6.【分析】先求出二次函数的对称轴,再求得函数在顶点处的函数值,根据已知条件最小值是﹣,得出m≤﹣;再求得当x=1时的函数值,发现该值等于已知条件中的最大值,根据二次函数的对称性可得m的下限.【解答】解:解法一:∵函数y=x2+x﹣1的对称轴为直线x=﹣,∴当x=﹣时,y有最小值,此时y=﹣﹣1=﹣,∵函数y=x2+x﹣1在m≤x≤1上的最小值是﹣,∴m≤﹣;∵当x=1时,y=1+1﹣1=1,对称轴为直线x=﹣,∴当x=﹣﹣[1﹣(﹣)]=﹣2时,y=1,∵函数y=x2+x﹣1在m≤x≤1上的最大值是1,且m≤﹣;∴﹣2≤m≤﹣.解法二:画出函数图象,如图所示:y=x2+x﹣1=(x+)2﹣,∴当x=1时,y=1;当x=﹣,y=﹣,当x=﹣2,y=1,∵函数y=x2+x﹣1在m≤x≤1上的最大值是1,最小值是﹣,∴﹣2≤m≤﹣.故选:C.【点评】本题考查了二次函数在给定范围内的最值问题,熟练掌握二次函数的性质是解题的关键.7.【分析】用a表示出b、c并求出a的取值范围,再代入S整理成关于a的函数形式,然后根据二次函数的增减性求出m、n的值,再相减即可得解.【解答】解:∵a+b=2,c﹣3a=4,∴b=2﹣a,c=3a+4,∵b,c都是非负数,∴,解不等式①得,a≤2,解不等式②得,a≥﹣,∴﹣≤a≤2,又∵a是非负数,∴0≤a≤2,S=a2+b+c=a2+(2﹣a)+3a+4,=a2+2a+6,∴对称轴为直线a=﹣=﹣1,∴a=0时,最小值n=6,a=2时,最大值m=22+2×2+6=14,∴m﹣n=14﹣6=8.故选:B.【点评】本题考查了二次函数的最值问题,用a表示出b、c并求出a的取值范围是解题的关键,难点在于整理出s关于a的函数关系式.8.【分析】抛物线y=(x+1)2﹣2开口向上,有最小值,顶点坐标为(﹣1,﹣2),顶点的纵坐标﹣2即为函数的最小值.【解答】解:根据二次函数的性质,当x=﹣1时,二次函数y=(x﹣1)2﹣2的最小值是﹣2.故选:D.【点评】本题考查对二次函数最值.求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法.9.【分析】把二次函数解析式整理成顶点式形式,然后根据二次函数最值问题解答即可.【解答】解:y=x2+2x﹣5=(x+1)2﹣6,∵a=1>0,∴当x=﹣1时,二次函数由最小值﹣6.故选:D.【点评】本题考查了二次函数的最值问题,整理成顶点式形式求解更简便.10.【分析】利用配方法将原函数关系式化为顶点式,即可求出二次函数的最小值.【解答】解:y=2x2﹣4x﹣6=2(x﹣1)2﹣8,因为图象开口向上,故二次函数的最小值为﹣8.故选:A.【点评】本题考查了二次函数的最值,将原式化为顶点式是解题的关键.11.【分析】根据题意判定抛物线开口向上,对称轴在0和1之间,然后根据点到对称轴的距离的大小即可判断.【解答】解:∵二次函数图象经过P1(﹣3,y1),P2(﹣1,y2),P3(1,y3),P4(3,y4)四点,且y3<y2<y4,∴抛物线开口向上,对称轴在0和1之间,∴P1(﹣3,y1)离对称轴的距离最大,P3(1,y3)离对称轴距离最小,∴y3最小,y1最大,故选:A.【点评】本题考查了二次函数图象上点的坐标特征,二次函数的性质,判定对称轴的位置是解题的关键.12.【分析】根据二次函数的性质求解.【解答】解:∵y=(x﹣1)2+2,∴当x=1时,函数有最小值2.故选:D.【点评】本题考查了二次函数的最值:当a>0时,抛物线在对称轴左侧,y随x的增大而减少;在对称轴右侧,y随x的增大而增大,因为图象有最低点,所以函数有最小值,当x=﹣,函数最小值y=;当a<0时,抛物线在对称轴左侧,y随x的增大而增大;在对称轴右侧,y随x的增大而减少,因为图象有最高点,所以函数有最大值,当x=﹣,函数最大值y=.13.【分析】根据二次函数的图象,可知函数y的最大值和最小值.【解答】解:观察图象可得,在0≤x≤4时,图象有最高点和最低点,∴函数有最大值2和最小值﹣2.5,故选:A.【点评】本题考查二次函数的最值,解题的关键是灵活运用所学知识解决问题,学会利用图象解决最值问题.14.【分析】把(﹣1,﹣3)代入y=x2+mx+n确定m,n之间的数量关系,代入mn+1讨论.【解答】解:把(﹣1,﹣3)代入y=x2+mx+n得﹣3=1﹣m+n∴n=m﹣4∴mn+1=m(m﹣4)+1=m2﹣4m+1=(m﹣2)2﹣3所以mn+1有最小值﹣3,故选:A.【点评】本题考查二次函数图象上点的特征.根据二次函数性质确定m,n的数量关系是解答关键.二.填空题(共18小题)15.【分析】由a+b2=2得出b2=2﹣a,代入a2+5b2得出a2+5b2=a2+5(2﹣a)=a2﹣5a+10,再利用配方法化成a2+5b2=(a﹣)2+,即可求出其最小值.【解答】解:∵a+b2=2,∴b2=2﹣a,a≤2,∴a2+5b2=a2+5(2﹣a)=a2﹣5a+10=(a﹣)2+,当a=2时,a2+5b2可取得最小值为4.故答案为:4.【点评】本题考查了二次函数的最值,根据题意得出a2+5b2=(a﹣)2+是关键.16.【分析】设矩形的宽为x,则长为(20﹣x),S=x(20﹣x)=﹣x2+20x=﹣(x﹣10)2+100,当x=10时,S最大值为100.【解答】解:设矩形的宽为x,则长为(20﹣x),S=x(20﹣x)=﹣x2+20x=﹣(x﹣10)2+100,当x=10时,S最大值为100.故答案为100.【点评】本题考查了函数的最值,熟练运用配方法是解题的关键.17.【分析】根据题目中的函数解析式和二次函数的性质,可以求得a的取值范围,本题得以解决.【解答】解:∵函数y=﹣x2+2x+1=﹣(x﹣1)2+2,当﹣1≤x≤a时,函数的最大值是2,∴当x=1时,函数取得最大值,此时y=2,∴a≥1,故答案为:a≥1.【点评】本题考查二次函数的最值,解答本题的关键是明确题意,利用二次函数的性质解答.18.【分析】分类讨论抛物线对称轴的位置确定出m的范围即可.【解答】解:由二次函数y=x2﹣2mx(m为常数),得到对称轴为直线x=m,抛物线开口向上,当m≥2时,由题意得:当x=2时,y最小值为﹣2,代入得:4﹣4m=﹣2,即m=1.5<2,不合题意,舍去;当﹣1≤m≤2时,由题意得:当x=m时,y最小值为﹣2,代入得:﹣m2=﹣2,即m=或m=﹣(舍去);当m<﹣1时,由题意得:当x=﹣1时,y最小值为﹣2,代入得:1+2m=﹣2,即m=﹣1.5,综上,m的值是﹣1.5或,故答案为:﹣1.5或.【点评】此题考查了二次函数的最值,利用了分类讨论的思想,熟练掌握二次函数性质是解本题的关键.19.【分析】化成顶点式,根据二次函数的性质即可求得.【解答】解:y=x2﹣16x﹣8=(x﹣8)2﹣72,由于函数开口向上,因此函数有最小值,且最小值为﹣72,故答案为:﹣72.【点评】本题考查了二次函数的最值、顶点式的运用及顶点坐标的求法.20.【分析】根据二次函数的增减性利用对称轴列出不等式求解即可.【解答】解:∵0≤x≤4时,y仅在x=4时取得最大值,∴﹣<,解得a<5.故答案为:a<5.【点评】本题考查了二次函数的最值问题,熟练掌握二次函数的增减性和对称轴公式是解题的关键.21.【分析】利用二次函数图象上点的坐标特征找出当y=1时x的值,结合当a≤x≤a+1时函数有最小值1,即可得出关于a的一元一次方程,解之即可得出结论.【解答】解:当y=1时,有x2﹣2x+1=1,解得:x1=0,x2=2.∵当a≤x≤a+1时,函数有最小值1,∴a=2或a+1=0,∴a=2或a=﹣1,故答案是:2或﹣1.【点评】本题考查了二次函数图象上点的坐标特征以及二次函数的最值,利用二次函数图象上点的坐标特征找出当y=1时x的值是解题的关键.22.【分析】根据二次函数的性质,可以得到在2≤x≤5范围内,该函数的最小值.【解答】解:∵二次函数y=x2﹣2x+1=(x﹣1)2,∴当x>1时,y随x的增大而增大,∴在2≤x≤5范围内,当x=2时,y取得最小值,此时y=(2﹣1)2=1,故答案为:1.【点评】本题考查二次函数的最值、二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质解答.23.【分析】由当x=﹣1时y取得最大值知﹣=﹣1且m<0,解关于m的方程可得答案.【解答】解:根据题意知,﹣=﹣1,且m<0,整理该方程可得m2﹣2m﹣3=0,解得:m=﹣1或m=3(舍),故答案为:﹣1.【点评】本题主要考查二次函数的最值,解题的关键是根据二次函数的性质得出关于m 的方程.【点评】本题考查了二次函数的最值:对于二次函数y=a(x﹣k)2+h,当a>0时,x=k时,y有最小值h,当a<0时,x=k时,y有最大值h.24.【分析】根据抛物线解析式得到顶点坐标(﹣3,5);然后由抛物线的增减性进行解答.【解答】解:∵y=﹣(x+3)2+5,∴该抛物线的开口方向向下,且顶点坐标是(﹣3,5).∴当x<﹣3时,y随x的增大而增大,∴当x=a时,二次函数y=﹣(x+3)2+5恰好有最大值3,把y=3代入函数解析式得到3=﹣(x+3)2+5,解得x1=﹣5,x2=﹣1.∴a=﹣5.故答案是:﹣5.【点评】本题考查了二次函数的最值.求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法.25.【分析】根据三角形的面积公式,△ABE底边BE上的高AO不变,BE越小,则面积越小,可以判断当AD与⊙C相切时,BE的值最小,根据勾股定理求出AD的值,然后根据相似三角形对应边成比例列式求出OE的长度,代入三角形的面积公式进行计算即可求解.【解答】解:如图所示,当AD与⊙C相切时,线段BE最短,此时△ABE面积的最小,∵A(2,0),C(﹣1,0),⊙C半径为1,∴AO=2,AC=2+1=3,CD=1,在Rt△ACD中,AD===2,∵CD⊥AD,∴∠D=90°,∴∠D=∠AOE,在△AOE与△ADC中,,∴△AOE∽△ADC,∴=,即=,解得EO=,∵点B(0,2),∴OB=2,∴BE=OB﹣OE=2﹣,∴△ABE面积的最小值=×BE×AO=(2﹣)×2=2﹣.故答案为:2﹣.【点评】本题考查了坐标与图形的性质,勾股定理,相似三角形的判定与性质,根据相似三角形对应边成比例列式求出OE的长度是解题的关键.26.【分析】根据题意:二次函数y=ax2+4x+a﹣1的最小值是2,则判断二次函数的系数大于0,再根据公式y最小值=2列出关于a的一元二次方程,解得a的值即可.【解答】解:∵二次函数y=ax2+4x+a﹣1有最小值2,∴a>0,y最小值===2,整理,得a2﹣3a﹣4=0,解得a=﹣1或4,∵a>0,∴a=4.故答案为4.【点评】本题主要考查二次函数的最值的知识点,求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法,常用的是后两种方法,当二次项系数a的绝对值是较小的整数时,用配方法较好.37.【分析】根据题意求出当菱形EGFH的面积最大时所满足的条件,然后根据条件求出GH长度,即可求出面积.【解答】解:根据题意可得,由勾股定理可得EF=;∵四边形EGFH为菱形,根据菱形面积公式,S EGFH=,∴若要菱形EGFH的面积最大,只需GH值最大,∴根据题意可得G,H在图象上的位置为:过点E作EM⊥BC,垂足为M;过点G作GN⊥CD,垂足为N;又∵EF⊥GH,∴∠MEF=∠NGH,又∵∠EMF=∠GNH,EM=GN,∴△EMF≌△GNH(AAS),∴GH=EF=2,∴=34.【点评】本题考查了求最大面积时所满足的条件以及菱形的面积公式,根据临界值即可求出答案,属于中档题.28.【分析】根据二次函数的性质解答即可.【解答】解:二次函数y=(x﹣4)2﹣5的最小值是﹣5.故答案为:﹣5.【点评】本题考查的是二次函数的最值的确定,掌握二次函数的性质是解题的关键.29.【分析】将二次函数配方,即可直接求出二次函数的最小值.【解答】解:∵y=x2﹣2x﹣4=x2﹣2x+1﹣5=(x﹣1)2﹣5,∴可得二次函数的最小值为﹣5.故答案是:﹣5.【点评】本题考查了二次函数的最值问题,用配方法是解此类问题的最简洁的方法.三.解答题(共8小题)30.【分析】(1)根据max{a,b}表示a、b两数中较大者,即可求出结论;(2)根据max{3x+1,﹣x+1}=﹣x+1,即可得出关于x的一元一次不等式,解之即可得出结论;(3)联立两函数解析式成方程组,解之即可求出交点坐标,画出直线y=﹣x+2的图象,观察图形,即可得出max{﹣x+2,x2﹣2x﹣4}的最小值.【解答】解:(1)max{5,2}=5,max{0,3}=3.故答案为:5;3.(2)∵max{3x+1,﹣x+1}=﹣x+1,∴3x+1≤﹣x+1,解得:x≤0.(3)联立两函数解析式成方程组,,解得:,,∴交点坐标为(﹣2,4)和(3,﹣1).画出直线y=﹣x+2,如图所示,观察函数图象可知:当x=3时,max{﹣x+2,x2﹣2x﹣4}取最小值﹣1.【点评】本题考查了二次函数的最值、一次函数的图象、一次函数的性质以及二次函数的图象,解题的关键是:(1)读懂题意,弄清max的意思;(2)根据max{3x+1,﹣x+1}=﹣x+1,找出关于x的一元一次不等式;(3)联立两函数解析式成方程组,通过解方程组求出交点坐标.31.【分析】(1)①根据二次项系数为0,一次项系数不为0,常数项为任意实数解答即可;②根据k>0,k<0时x、y的对应关系确定直线经过的点的坐标,求出解析式;③根据一次函数的性质即增减性解答即可;(2)把m=﹣1,n=2代入关系式,得到二次函数解析式,确定对称轴,顶点坐标,分情况讨论求出k的值.【解答】解:(1)①m=﹣2,k≠0,n为任意实数;②当k>0时,y随x的增大而增大,直线经过(﹣2,0)(1,3),函数关系式为:y=x+2当k<0时,y随x的增大而减小,直线经过(﹣2,3)(1,0),函数关系式为:y=﹣x+1③当k>0时,x=﹣2,y有最小值为﹣2k+nx=3时,y有最大值为3k+n当k<0时,x=﹣2,y有最大值为﹣2k+nx=3时,y有最小值为3k+n(2)若m=﹣1,n=2时,二次函数为y=x2+kx+2对称轴为x=﹣,当﹣≤﹣2,即k≥4时,把x=﹣2,y=﹣4代入关系式得:k=5当﹣2<﹣<2,即﹣4<k<4时,把x=﹣,y=﹣4代入关系式得:k=±2(不合题意)当﹣≥2,即k≤﹣4时,把x=2,y=﹣4代入关系式得:k=﹣5.所以实数k的值为±5.【点评】本题考查了一次函数的概念、一次函数的性质、一次函数最值的应用以及二次函数的性质,综合性较强,需要学生灵活运用性质,把握一次函数的增减性和二次函数的增减性,解答题目.32.【分析】(1)先求出抛物线的对称轴为直线x=﹣1,然后确定当x=4时取得最大值,代入函数解析式进行计算即可得解;(2)先求出抛物线的对称轴为直线x=﹣1,再根据对称性可得x=﹣4和x=2时函数值相等,然后分p≤﹣4,﹣4<p≤2讨论求解;(3)根据(2)的思路分t<﹣2,t≥﹣2时两种情况讨论求解.【解答】解:(1)∵抛物线的对称轴为直线x=﹣1,∴当﹣2≤x≤4时,二次函数y=2x2+4x+1的最大值为:2×42+4×4+1=49;(2)∵二次函数y=2x2+4x+1的对称轴为直线x=﹣1,∴由对称性可知,当x=﹣4和x=2时函数值相等,∴若p≤﹣4,则当x=p时,y的最大值为2p2+4p+1,若﹣4<p≤2,则当x=2时,y的最大值为17;(3)t<﹣2时,最大值为:2t2+4t+1=31,整理得,t2+2t﹣15=0,解得t1=3(舍去),t2=﹣5,t≥﹣2时,最大值为:2(t+2)2+4(t+2)+1=31,整理得,(t+2)2+2(t+2)﹣15=0,解得t1=1,t2=﹣7(舍去),所以,t的值为1或﹣5.【点评】本题考查了二次函数的最值问题,主要利用了二次函数的对称性,确定出抛物线的对称轴解析式是确定p和t的取值范围的关键,难点在于读懂题目信息.33.【分析】(1)根据表中的数据得出对称轴是直线x=2,根据对称点的特点得出即可;(2)根据表得出图象有最小值,根据顶点坐标得出即可;(3)根据二次函数的性质得出即可.【解答】解:(1)∵根据表可知:对称轴是直线x=2,∴点(0,5)和(4,n)关于直线x=2对称,∴n=5,故答案为:5;(2)根据表可知:顶点坐标为(2,1),即当x=2时,y有最小值,最小值是1;(3)∵函数的图象开口向上,顶点坐标为(2,1),对称轴是直线x=2,∴当m>2时,点A(m1,y1),B(m+1,y2)都在对称轴的右侧,y随x的增大而增大,∵m<m+1,∴y1<y2.【点评】本题考查了二次函数的图象和性质,能根据表中的熟记得出正确信息是解此题的关键.34.【分析】(1)过A作AE⊥BC于E,根据含30度的直角三角形三边的关系得到AE=x,利用平行四边的周长可表示出BC=4﹣x,则0<x<4;然后根据平行四边形的面积公式即可得到y(cm2)与x的函数关系式;(2)把(1)中的关系式配成顶点式得到y=﹣(x﹣2)2+2,然后根据二次函数的最值问题即可得到x取什么值时,y的值最大,并得到最大值.【解答】解:(1)过A作AE⊥BC于E,如图,∵∠B=30°,AB=x,∴AE=x,又∵平行四边形ABCD的周长为8cm,∴BC=4﹣x,∴y=AE•BC=x(4﹣x)=﹣x2+2x(0<x<4);(2)y=﹣x2+2x=﹣(x﹣2)2+2,∵a=﹣,∴当x=2时,y有最大值,其最大值为2.【点评】本题考查了二次函数的最值问题:先把二次函数配成顶点式:y=a(x﹣h)2+k,当a<0时,x=h,y有最大值k;当a>0,x=h,y有最小值k.也考查了平行四边形的性质以及含30度的直角三角形三边的关系.35.【分析】(1)把抛物线的解析式化成顶点式即可;(2)把点B坐标代入抛物线的解析式,求出抛物线的解析式,结合图形,再求当0<m<3时,n的取值范围;(3)分别讨论m和b的大小关系,根据n≤2,求出b的取值范围.【解答】解:(1)∵y=x2﹣2bx+b2﹣2=(x﹣b)2﹣2,∴顶点坐标为(b,﹣2);(2)把(0,2)代入y=x2﹣2bx+b2﹣2(b>0),得b=2,或b=﹣2(舍去),∴b=2,∴解析式为:y=x2﹣4x+2,对称轴为x=2;顶点坐标为(2,﹣2),结合函数图象可得,在顶点处n取得最小值﹣2;当x=0时,y=2,∴当0<m<3时,﹣2≤n<2.(3)如图,①若3≤m≤5≤b时,y max=(3﹣b)2﹣2≤2,∴1≤b≤5,矛盾,不成立;②若3≤b≤5时,则当x=3时,y=(3﹣b)2﹣2≤2,得1≤b≤5,且当x=5时,y=(5﹣b)2﹣2≤2,得3≤b≤7,∴3≤b≤5;③当b≤3≤m≤5时,y max=(5﹣b)2﹣2≤2,得3≤b≤7,矛盾;综上,b的取值范围为3≤b≤5.【点评】本题主要考查二次函数的取值范围问题,涉及待定系数法求解析式,数形结合思想等,利用数形结合思想结合图象求取值范围是常见方法.36.【分析】物线的顶点式解析式y=a(x﹣h)2+k,代入顶点坐标另一点求出a的值即可.【解答】解:∵抛物线l1的最高点为P(3,4),∴设抛物线的解析式为y=a(x﹣3)2+4,把点(0,1)代入得,1=a(0﹣3)2+4,解得,a=﹣,∴抛物线的解析式为y=﹣(x﹣3)2+4.【点评】此题考查待定系数法求函数解析式,根据题目中的已知条件,灵活选用二次函数解析式的形式解决问题.37.【分析】直接利用对角线互相垂直的四边形面积求法得出S=AC•BD,再利用配方法求出二次函数最值.【解答】解:设AC=x,四边形ABCD面积为S,则BD=12﹣x,则:S=AC•BD=x(12﹣x)=﹣(x﹣6)2+18,当x=6时,S最大=18;所以AC=BD=6时,四边形ABCD的面积最大.【点评】此题主要考查了二次函数最值以及四边形面积求法,正确掌握对角线互相垂直的四边形面积求法是解题关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次函数最值问题练习题
1.抛物线 $y=x-(m-4)x+2m-3$,当 $m=4$ 时,图象的对称轴是 $y$ 轴;当 $m=2$ 时,图象的顶点在 $x$ 轴上;当
$m=3$ 时,图象过原点。

2.用一长度为 $l$ 米的铁丝围成一个长方形或正方形,则其所围成的最大面积为 $\frac{l^2}{4}$。

3.求下列二次函数的最值:(1) $y=2x^2-4x+5$;(4)
$y=ax^2-2x$;(5) $y=2x^2-3x+5$。

4.求二次函数 $y=2x^2-3x+5$ 在 $-2\leq x\leq 2$ 上的最大值和最小值,并求对应的 $x$ 的值。

5.函数 $y=x^2+x+1$ 在区间 $-1\leq x\leq 1$ 上的最小值和最大值分别是 $\frac{3}{4}$ 和 $\frac{5}{4}$。

6.求函数 $y=\frac{1-x}{8}$ 在区间 $[-3,3]$ 上的最大值和最小值分别为 $\frac{7}{8}$ 和 $-\frac{1}{8}$。

7.函数 $y=2x^2-4x+5$ 的最值为最大值为 $8$,最小值为$1$。

8.已知二次函数 $y=x^2-6x+m$ 的最小值为 $1$,那么$m$ 的值为 $10$。

9.对于函数 $y=2x+4x-3$,当 $x\leq -1$ 时,$y$ 的取值范围为 $(-\infty,-2)$。

10.求函数 $y=3-5x-3x^2-2$ 的最小值为 $-5$。

11.已知关于 $x$ 的函数 $y=x+\frac{2a}{x+2}$ 在 $-5\leq x\leq 5$ 上。

1) 当 $a=-1$ 时,函数的最大值为 $5$,最小值为 $-3$。

2) 当 $a$ 为常数时,函数的最大值为 $6$,当 $x=-1$ 时取得。

12.已知关于 $x$ 的函数 $y=x+(2t+1)x+t-1$,当 $t=-
\frac{1}{2}$ 时,$y$ 的最小值为 $-\frac{1}{2}$。

13.求关于 $x$ 的二次函数 $y=x-2tx+1$ 在 $-1\leq x\leq
1$ 上的最大值为 $1$。

14.如图,抛物线 $y=x-2x-p$ 与直线 $y=x$ 交于点 $A(-1,m)$、$B(4,n)$,点 $M$ 是抛物线上的一个动点,连接$OM$。

1) 求 $m$,$n$,$p$。

2) 当 $M$ 为抛物线的顶点时,$M$ 坐标为 $(1,-p+1)$,$\triangle OMB$ 的面积为 $\frac{25+p^2}{2}$。

3) 当点 $M$ 在直线 $AB$ 的下方且在抛物线对称轴的右侧,$M$ 运动到点 $(\frac{3}{2},-\frac{1}{4})$ 时,$\triangle OMB$ 的面积最大。

1.函数关系式为y=2x^2+2x+4.
2.由于最低点在x轴上,所以该二次函数的顶点坐标为(-a。

3a-2),即x轴上的点为-a,带入函数得到3a-2=0,解得a=2/
3.
函数的解析式为y=(2/3-1)x^2+4x+6/3,即y=-1/3x^2+4x+2.
3.桥拱顶点O为抛物线的顶点,即x=-b/2a=0,代入抛物
线解析式得到y=0.所以O点坐标为(0,0)。

涵洞水面宽为12m,所以抛物线的两个交点横坐标为-6和6.抛物线经过点(6.-3),
所以水面到拱顶点的距离为3m。

4.根据题意可得到方程h=-1/23s(s-23),解得s=23m。

由于球网距原点5m,所以球从P点到网的距离为s-5=18m。

球的
最大高度为hmax=23m,所以乙的起跳点C的纵坐标为
hmax=23m。

由于球的高度高于乙扣球的最大高度,所以乙的
起跳点横坐标范围为-6≤m≤4.
5.由于抛物线y=x^2+(2a+1)x+2a+与x轴只有一个交点,
所以判别式b^2-4ac=0.代入得到(2a+1)^2-4(2a+1)(2a)=0,解得
a=-1/2或a=-2.代入可得到两个不同的抛物线,满足条件。

6.抛物线y=x^2+(2a+1)x+2a+与x轴只有一个交点,即判别式b^2-4ac=0.代入得到(2a+1)^2-8a-8=0,解得a=3或a=-5.代入得到两个不同的抛物线,满足条件。

7.直线y=-2x+3与抛物线y=x^2相交于A(-1,5)和B(2,0)两点,所以△OAB的高为5,底为3,面积为7.5.
8.正确的说法为②和③。

9.将抛物线解析式与篮底的高度相等,得到方程-
0.04x^2+0.8x+1.5=0,解得x≈3.5或x≈11.5.XXX与篮底的距离为3.5m。

10.27-4m+2m=27-2m的最小值为27,所以选C。

11.正确的结论为①和③。

12.抛物线与x轴有两个交点,即判别式b^2-4ac>0.代入得到(2m-1)^2-4m^2>0,解得m1.所以m的取值范围为m1.。

相关文档
最新文档