射频测量技术

射频测量技术
射频测量技术

一、射频测量技术(转摘)

2008-06-03 21:20

引言

当前,基于射频原理的无线通信产品俯拾即是,其数量的增长速度也非常惊人。从蜂窝电话和无线PDA,到支持WiFi的笔记本电脑、蓝牙耳机、射频身份标签、无线医疗设备和Zigbee传感器,射频设备的市场规模在飞速扩大。仅从今年来看,全球制造并销售的蜂窝电话将高达8.5亿多只。

要想进行全面的生产测试并提高测试产能,测试工程师们必须要理解射频基本原理,清楚测试的内容,并懂得选用最适合的仪器完成这些测试工作。问题是,大多数从事低频应用(工作频率在1MHz以下)的工程师不太熟悉高频的应用特点。

射频术语:您必须掌握的“工作语言”

忘掉电压,射频工程师常用功率

射频信号的强度千差万别。随着信号在自由空间的传播,单位功率将随着距离的平方成比例降低,功率的变化常用分贝(dB)来表示。

采用分贝进行功率测量也大大简化了计算过程。增益

和损耗都按分贝为单位进行加减。因此,乘法操作简化为加法操作。dB的形式化定义为:dB = 10 log (Pout/Pin)

分贝dB是一个相对的值。另一个相关的单位是毫瓦分贝dBm,它是相对于1mW的绝对功率。图1给出了dBm的值及其相应的瓦特数,其中还给出了移动电话的发射机发射功率参考范围,以及灵敏接收机所能检测到的最低信号功率。图2给出的等式定义了室温下射频信号的理论热噪声。由于射频信号通过空气的传输以及受到大气干扰和其它信号的干扰,到达接收机端的信号电平可能变得非常低。接收机常常需要检测低于0.1pW的信号(或者低于微伏的信号电平)。

Noise Floor:本底噪声

常见问题不再是输入阻抗,而是传输线的阻抗失配

在低频情况下,我们在电路上传输电压的目标是实现最小的衰减幅度。其中,最有效的电路是输入阻抗高而输出阻抗低的电路。对于射频应用,线缆的长度可能只有波长的四分之一,我们必须把信号传输当成波来理解。如果波受到阻断,部分波信号就会发生反射。射频传输的目标就是无损耗地将所有的功率传给负载。任何功率的反射就意味着传给负载功率的损失。因此,失配是一个关键的参数。电路元件和传输线之间的任何阻抗差异都会引起反射和功率损耗。

在射频应用中,传输线一般都采用同轴电缆,它们相对于电路板和电路板内的微带线路而言都是外部组件。这些组件具有自己的特征阻抗。传输线的特征阻抗取决于导线的几何结

构、导线的属性以及包裹或隔离导线的绝缘体。对于射频应用来说,传输线的特征阻抗以及各组件的输入和输出阻抗通常采用50欧姆或75欧姆。50欧姆的阻抗用于优化系统内的功率传输,而75欧姆的阻抗用于实现最小的衰减,例如有线电视网系统。大部分射频无线传输系统都是针对功率传输而进行设计优化的,因此特征阻抗都是50欧姆。

为了尽量减少反射,无线测试与测量应用中的射频线缆和组件都是基于50欧姆特征阻抗而设计的。相反,当阻抗匹配时,就实现了最佳的功率传输。

如果某个信号波从一种特征阻抗传输到另一种不同的特征阻抗,那么就会引起信号反射和反向传输。如果阻抗相同,就不会发生反射。当由于阻抗不连续而发生信号发射时,就会在传输线的两个方向上出现信号波的传输。在这两个波相位相同的点上,将出现最大的电压幅值Vmax;在它们相位相差180度的点上,将出现Vmin。Vmax和Vmin的比值称为电压驻波比,即VSWR。VSWR是衡量某个连接器或某条线缆的阻抗是否接近50欧姆的一个指标。图3给出了理想情况下全匹配(没有反射)、理想开路(100%反射),以及极端情况下这三个值之间的关系。

Return Loss:回波损耗

Reflected Power:反射功率

熟悉掌握新型的连接器、线缆和元件

带BNC连接器的电缆通常在500MHz以上就开始衰减。在射频领域,电缆通常配备N型连接器和SMA连接器。N型连接器常用在测试仪器上,因为它们非常耐用,可以处理高功率,能够很好地工作在高达18GHz的频率下。SMA连接器比N型连接器小得多,比N 连接器的功率更低,但是可以很好地用于18GHz以上的频率下。

所有的射频电缆都是同轴的。同轴射频电缆可以是不可弯曲的(即刚性的)、可弯曲一定程度的(即半刚性的),或者可弯曲的。对于射频而言,我们要比低频情况下更小心地对待电缆。过分的弯曲电缆以及明显的90度折弯都会损坏电缆,严重地降低传输性能。

在低频情况下,良好的连接就是指导线之间要相互接触(简单的连续性)。而在射频

情况下,阻抗失配是很严重的问题,意味着良好的连接不仅要确保导线相互接触,而且要求连接器也要正确的扭转在一起。因此,射频制造商常采用7英尺磅大小的扭矩,以确保连接器之间具有很好的接触和最小的电阻(射频术语称为插入损耗)。

在整个测试系统中保证50欧姆的传输线

射频电路中的并行连接或者多信号通路并不像低频电路中的那样简单。保证整个电路通路阻抗匹配,减小阻抗不连续和信号反射是非常关键的。射频开关的制作都采用精密加工,以确保整个开关都是50欧姆的阻抗。为了实现并行通路,人们采用所谓的分路器或分离器之类的器件将一条输入信号通路分成两条或多条输出通路,每条通路50欧姆。组合器则实现相反的作用,将多条输入通路合并成一条输出通路。如果您是首次接触射频测试,那么不要被这些复杂的情况所吓倒。射频元件比同样的直流元件成本要高得多。

您需要什么样的射频仪器以满足您的测试需求?

低频测试仪器正不断丰富普及,射频测试仪器的种类也越来越多,应用越来越广泛,包括从信号源和功率计,到频谱和网络分析仪等各种仪器。这些仪器用于产生射频信号,以及测量大量信号参数。

射频功率计——射频领域的数字万用表

功率是射频领域中最经常被测量的一个量。测量功率最简单的方法就是使用功率计,它实际上是用来

测量射频信号功率的。功率计中使用宽带检波器,按瓦特、dBm、或者dB μV显示绝对功率的大小。对于大多数功率计而言,宽带检波器(或传感器)是一个射频肖特基二极管或者二极管网络,实现射频到直流的转换处理。

功率计是所有测量功率的射频仪器中最准确的。高端功率计(通常需要一个外部功率传感器)可以实现0.1dB或更高的测量精度。功率计最低可以测量- 70dBm(100pW)的功率。传感器有各种模型,从高功率模型、高频率(40GHz)模型,到峰值功率测量的高带宽模型等。

功率计有单通道和双通道两种。每个通道都需要配置自己的传感器。两个通道的功率计就能够测量出一个器件、电路或系统的输入和输出功率,并计算出增益或损耗。

某些功率计能够达到每秒200到1500次读数的测量速度。而有些功率计能够测量多种信号的峰值功率特性,包括通信和某些应用中使用的调制信号和脉冲射频信号。双通道的功率计还能够准确测量出相对功率。功率计还可以针对便携式应用的需要设计成尺寸精巧的外形,使其更适合于现场测试的需要。

功率计的主要局限在于其幅值测量范围。频率范围是与测量量程之间进行折衷的。此外,功率计虽然能够非常准确地测量出功率,但是无法表示信号的频率分量。

射频频谱或射频信号分析仪——射频工程师的示波器

频谱或矢量信号分析仪利用窄带检测技术在频域内测量射频信号。其主要的输出显示是功率频谱与频率之间的关系,包括绝对功率和相对功率。这种分析仪还可以输出解调信号。

频谱分析仪和矢量信号分析仪没有像功率计那样的精确性,但是,射频分析仪中使用的窄带检测技术使其能够测量低达-150dBm的功率。射频分析仪的精度一般在±0.5dB以上。

频谱和矢量信号分析仪可以测量的信号频率从1kHz到40GHz(甚至以上)。频率范围越宽,分析仪的成本就越大。最常见的分析仪的频率达到3GHz。工作在5.8GHz频率范围的新通信标准就需要带宽为6GHz以上的分析仪。

矢量信号分析仪是增加了信号处理功能的频谱分析仪,它不仅能够测量信号的幅值,而且能够将信号分解成它的同相和正交分量。矢量信号分析仪可以将某些调制信号进行解调,例如一些由移动电话、无线LAN设备和基于其他一些新通信标准的设备所产生的调制信号。矢量信号分析仪可以显示星座图、码域图和调制质量(例如误差矢量幅度)的计算度量。

传统的频谱分析仪是扫描-调谐式设备,因为其中的局部振荡器要扫描一个频率范围,窄带滤波器就可以获取该频率范围内每个单位频率上的功率分量。矢量信号分析仪也扫描一部分频谱,但是它们捕捉一定宽带内的数据进行快速傅立叶变换得到单位频率上的功率分量。因此矢量信号分析仪扫描频谱的速度比频谱分析仪快得多。

评价矢量信号分析仪性能的关键指标在于它的测量带宽。一些新的高带宽通信标准,例如WLAN和WiMax,需要捕捉带宽为20MHz的信号。要想捕捉并分析这些信号,分析仪必须具有足够大的带宽才能捕捉到整个信号。如果测试高带宽、数字调制的信号,那么要确保分析仪的测量带宽能够充分捕捉到所测的信号。

频谱分析仪可以用于检验待测发射机是否产生了正确的功率频谱。如果设计工程要求测试某些失真分量,例如谐波或寄生信号,那么就需要采用频谱分析仪或矢量信号分析仪。类似的,如果设计者关注器件的噪声功率,那么也需要使用这样的射频分析仪。其他一些需要频谱分析仪或矢量信号分析仪的例子包括:测试互调失真、三阶截断、功率放大器或功率晶体管的1dB增益压缩、器件的频率响应等。

测试那些涉及数字调制信号的发射机或放大器就需要使用矢量信号分析仪,对调制信号进行解调。矢量信号分析仪能够测量出某个器件产生了多大的调制失真。解调过程是一个复杂、计算密集的过程。能够快速进行解调和测量计算操作的矢量信号分析仪就可以大大缩短测试时间,降低测试成本。

射频信号源

所有的射频信号源都能产生连续(CW)射频正弦波信号。某些信号发生器也能够产生模拟调制射频信号(如AM信号或脉冲射频信号),矢量信号发生器采用IQ调制器产生各种模拟或数字调制信号。

射频信号源进一步可以分成很多种,包括固定频率CW正弦波输出源、扫描输出一个频段非

固定频率CW正弦波的扫频源、模拟信号发生器以及增加模拟和数字调制功能的矢量信号发生器。

如果测试需要激励信号,那么就需要射频信号源。射频信号源的关键指标是频率与幅值范围、幅值精度和调制质量(对于产生调制信号的信号源而言)。频率调谐速度和幅值稳定时间对于减少测试时间也是非常关键的。

矢量信号发生器是一种高性能的信号源,通常结合任意波形发生器一起产生某些调制信号。通过任意波形发生器可以使矢量信号发生器产生任意类型的模拟或数字调制信号。这种发生器可以在内部产生多种基带波形,在某些情况下,也可以在外部产生某种基带波形然后载入到仪器中。如果测试规范要求被测的

元件、设备或系统按照待测设备最终使用中的处理调制方式进行测试,那么这种情况下通常需要使用矢量信号发生器。

如果测试规范需要进行接收器灵敏度测试、误码率测试、相邻信道抑制、双音互调抑制、或双音互调失真的测试,那么也需要使用射频信号源。双音互调测试和相邻信道抑制测试需要两个信号源,接收器灵敏度测试和/或误码率测试只需要使用一个射频信号源。

如果待测器件是用于移动电话的,那么测试者可能要根据移动电话标准的需要进行调制信号类型的测试。移动电话功率放大器需要结合调制信号源(例如矢量信号发生器)进行测试。在选择某种矢量信号发生器之前,要评估一下该信号发生器在不同调制信号之间的切换速度,以确保其能够提供最快的测试时间。

网络分析仪

除了频谱分析仪和矢量信号分析仪,第三类分析仪就是网络分析仪。网络分析仪包含一个内置的射频信号源和一个测试射频器件的宽带(或窄带)探测器。网络分析仪以x-y坐标、极坐标或史密斯圆图的形式输出显式器件的特性。

从本质上来看,网络分析仪测量的是器件的S参数。矢量网络分析仪可以提供幅值和相位信息,可以以很高的精度判断这些器件在某个宽频段上的传输损耗与增益。通过矢量网络分析仪,还可以测量出回波损耗(反射系数)和阻抗匹配,进行相位测量和群延迟测量。

网路分析仪主要用于分析诸如滤波器和放大器之类的元件。值得注意的是,网络分析采用的是未经调制的连续波,分析仪的校准十分重要。利用制造商提供的校准工具包可以实现网络分析仪的校准。

由于网络分析仪在一台仪器内集成了信号源和测量功能,而且分析仪具有较宽的频率范围,因此这类仪器的价格比较昂贵。

典型应用

需要同时使用四种主要的射频测试仪器的一个应用实例就是功率放大器(PA)的测试。

信号源可以提供输入信号,功率计或频谱分析仪可以测量输出功率。如果精度非常重要,例

如在测量最大功率时,那么就需要使用功率计进行输出测量。

PA的输入匹配对于从事射频发射器的设计者来说是一个关键参数。放大所有供给PA的功率,不因反射而损耗实际的功率,这是非常重要的。因此,PA制造商都会指明并测量PA的回波损耗(即S11),这是网络分析仪可以测量出的。另外,如果仅仅需要测量标量幅值,那么可以通过一个耦合器将一个信号源和一个频谱分析仪(或功率计)结合起来,测量反射功率的幅值。相比使用网络分析仪来看,这种方法唯一的缺点就是配置过程更加复杂,需要使用额外的无源射频元件。对于回波损耗标量的测量,功率计能够实现更精确的功率测量。

对于输入阻抗与输出阻抗(一般为50欧姆)不匹配的负载,PA向这样的负载传输功率的能力是衡量该PA在真实条件下性能的一个重要指标,因为在真实条件下负载(例如天线)不一定恰好具有50欧姆的特性输入阻抗。在这种情况下,非50欧姆的电阻负载就会切换到该PA的输出端。这种负载将迫使PA输出高达20:1的VSWR(理想匹配的情况下,50欧的负载将会得到将近1:1的VSWR)。PA必须能够正确工作,在存在大量反射功率的情况下为负载提供一些功率。

某些输出测量需要进行频谱分析。用于广播或移动电话领域(或者其他符合FCC规定的应用)的射频PA要求在PA工作频道的相邻频道内不能产生多余的功率。对相邻信道功率、互调失真和谐波失真的测量就是测量PA在真正传输信道之外所产生的功率。对于这些测量而言,动态范围、在存在大信号(例如载波信号)的情况下测量小信号的能力就成为频谱分析仪的一项重要指标。例如,如果某个PA的指标表明它的相邻信道功率(对于某类调制机制,或者对于某种特殊的移动电话标准)是60dBc(载波下分贝),那么该频谱分析仪的动态范围(在所需的测试条件下)必定比谐波功率、相邻信道功率或互调分量的最小容许功率至少大6dB。

邻信道功率必须采用调制信号进行测量,也就是说必须考虑信号源的邻信道性能。信号源的邻信道功率输出必须比功率放大器产生的最大容许邻信道功率至少小6dB。

对于谐波的测量,分析仪的频率范围必须比该PA的最大工作频率(3dB带宽频率)大三倍,以充分捕捉最大工作频率的三次谐波功率。此外,频谱分析仪的动态范围和本底噪声必须至少比待测值低6dB,才能很好的测量三次谐波分量;必须具有合理的信噪比,才能实现精确和可复现的测量。谐波测量显示的是PA产生的失真大小。过多的失真会对调制性能产生负面影响。

当不同频率的信号或不同频率的信号分量成为PA输入时,互调失真就决定了PA产生了多少失真。产生这样的测试信号需要两个信号源。而一个双输出的信号源是不够用的,因为它的两个输出信号之间没有充分的隔离。信号源会产生自身的互调失真,这会导致过高放大器失真测量,带来测量结果的错误。

针对移动电话市场和某些市场领域(例如WLAN应用)而设计的PA也经常要进行调制质量的测试,在这些应用领域中一般采用比较复杂的调

制机制。这类测试通常要测量误差矢量幅值(EVM)。

结束语

上述对主要射频理论的简要介绍旨在帮助读者回顾一下相关知识。这些对射频测试仪器的概述将为读者针对测试的需求选择合适的测试仪器提供一些总体上的指导。在大多数情况下,测试者将会用到这四种测试仪器中的一种或几种:信号源、功率计、频谱分析仪和网络分析仪。

二、

查看文章

微带线和带状线(microstrip and stripline) (zz)

2008-09-07 10:38

1.微带线是一根带状导(信号线).与地平面之间用一种电介质隔离开。如果线的厚度、宽度以及与地平面之间的距离是可控制的,则它的特性阻抗也是可以控制的。

2.带状线是一条置于两层导电平面之间的电介质中间的铜带线。如果线的厚度和宽度、介质的介电常数以及两层导电平面间的距离是可控的,那么线的特性阻抗也是可控的.

单位长度微带线的传输延迟时间,仅仅取决于介电常数而与线的宽度或间隔无关

微带线速度块,抗干扰能力弱,带状线速度慢些,抗干扰能力强些

因为微带线一面是FR4(或者其他电介质)一面是空气(介电常数低)因此速度很快,利于走对速度要求高的信号(例如差分线,通常为高速信号,同时抗干扰比较强)

带状线两边都有电源或者地层,因此阻抗容易控制,同时屏蔽较好,但是信号速度慢些。

通常同样的介质条件微带线的损耗小(线宽),带状线的损耗大(线细,有过孔)。

当设计一个电路板时,首先要考虑的是需要多少布线层(routing layer)及电源平面(在可接受的成本价格内)。层数之决定在于功能规格、杂讯免疫力、信号分类、需布线之net、trace数目、阻抗之控制、VLSI元件密度、汇流排之布线,等等。适当使用microstrip及stripline方式以在PCB层面压制射频辐射。在PCB内之平面(Ground或VCC)是压制PCB内Common-mode RF之重要方法之一,理由是这平面会降低高频电源分布阻抗(power distribution impedance)。

Microstrip:指PCB之外层的trace,经一介电物质邻接一整平面(solid plane). Microstrip方式提供PCB上之RF压制,同时也可容许比sctripline较快之clock及逻辑讯号。此较快之clock及逻辑讯号是因为较小之耦合电容及较低之空载传输延迟。Microstrip的缺点是此PCB 外部信号层会辐射RF能量时入环境,对非在此层之上下加入金属屏蔽。

Stripline:信号层介于两个solid planes (V oltage或Ground)之间。Stripline有达到较佳RF辐射防制,但只能用在较低之传输速度,因信号层介于两个Solid planes之间,两平面间会有电容性耦合,导致降低高速信号之边缘速率(edge rate), Stripline之电容耦合效应在边缘速率快于1ns之信号较为显著,使用Stripline的主要效应是对内部trace之RF能量之完整屏蔽,

因而对射频有较佳之抑制能力。

要注意的是辐射仍然会从其他无件产生,虽然内部之trace可不令其产生辐射,其它之内部边线(bond接线、无件脚、插座、内部连线能及其他类似者)仍会产生问题。随着系统、元件、trace之阻抗,会存在阻抗不匹配(impedande mismatch)之问题,此不匹配之阻抗会使RF能量由内部trace耦合到其他电路或是自由空间(free space)。使元件之接脚电感最小(minimizing lead impedance)可降低辐射现象。

微带线和带状线的阻抗计算:

a.微带线(microstrip) Z={87/[sqrt(Er+1.41)]}ln[5.98H/(0.8W+T)]

其中,W为线宽,T为走线的铜皮厚度,H为走线到参考平面的距离,Er是PCB板材质的介电常数(dielectricconstant)。此公式必须在0.1<(W/H)<2.0及1<(Er)<15的情况才能应用。

b.带状线(stripline) Z=[60/sqrt(Er)]ln{4H/[0.67π(T+0.8W)]}

其中,H为两参考平面的距离,并且走线位于两参考平面的中间。此公式必须在W/H<0.35及T/H<0.25的情况才能应用。

三、阻抗匹配与史密斯圆图的基本原理(zz)

2008-09-07 10:18

摘要:本文利用史密斯圆图作为RF阻抗匹配的设计指南。文中给出了反射系数、阻抗和导纳的作图范例,并用作图法设计了一个频率为60MHz的匹配网络。

实践证明:史密斯圆图仍然是计算传输线阻抗的基本工具。

在处理RF系统的实际应用问题时,总会遇到一些非常困难的工作,对各部分级联电路的不同阻抗进行匹配就是其中之一。一般情况下,需要进行匹配的电路包括天线与低噪声放大器(LNA)之间的匹配、功率放大器输出(RFOUT)与天线之间的匹配、LNA/VCO输出与混频器输入之间的匹配。匹配的目的是为了保证信号或能量有效地从“信号源”传送到“负载”。在高频端,寄生元件(比如连线上的电感、板层之间的电容和导体的电阻)对匹配网络具有明显的、不可预知的影响。频率在数十兆赫兹以上时,理论计算和仿真已经远远不能满足要求,为了得到适当的最终结果,还必须考虑在实验室中进行的RF测试、并进行适当调谐。需要用计算值确定电路的结构类型和相应的目标元件值。

有很多种阻抗匹配的方法,包括:

计算机仿真:由于这类软件是为不同功能设计的而不只是用于阻抗匹配,所以使用起来比较复杂。设计者必须熟悉用正确的格式输入众多的数据。设计人员还需要具有从大量的输出结果中找到有用数据的技能。另外,除非计算机是专门为这个用途制造的,否则电路仿真软件不可能预装在计算机上。

手工计算:这是一种极其繁琐的方法,因为需要用到较长(“几公里”)的计算公式、并且被处理的数据多为复数。

经验:只有在RF领域工作过多年的人才能使用这种方法。总之,它只适合于资深的专家。

史密斯圆图:本文要重点讨论的内容。

本文的主要目的是复习史密斯圆图的结构和背景知识,并且总结它在实际中的应用方法。讨论的主题包括参数的实际范例,比如找出匹配网络元件的数值。当然,史密斯圆图不仅能够为我们找出最大功率传输的匹配网络,还能帮助设计者优化噪声系数,确定品质因数的影响以及进行稳定性分析。

基础知识

在介绍史密斯圆图的使用之前,最好回顾一下RF环境下(大于100MHz) IC连线的电磁波传播现象。这对RS-485传输线、PA和天线之间的连接、LNA和下变频器/混频器之间的连接等应用都是有效的。

大家都知道,要使信号源传送到负载的功率最大,信号源阻抗必须等于负载的共轭阻抗,即:

Rs+ jXs= RL- jXL

图2. 表达式Rs+ jXs= RL- jXL的等效图

在这个条件下,从信号源到负载传输的能量最大。另外,为有效传输功率,满足这个条件可以避免能量从负载反射到信号源,尤其是在诸如视频传输、RF或微波网络的高频应用环境更是如此。

史密斯圆图

史密斯圆图是由很多圆周交织在一起的一个图。正确的使用它,可以在不作任何计算的前提下得到一个表面上看非常复杂的系统的匹配阻抗,唯一需要作的就是沿着圆周线读取并

跟踪数据。

史密斯圆图是反射系数(伽马,以符号Γ表示)的极座标图。反射系数也可以从数学上定义为单端口散射参数,即s11。

史密斯圆图是通过验证阻抗匹配的负载产生的。这里我们不直接考虑阻抗,而是用反射系数ΓL,反射系数可以反映负载的特性(如导纳、增益、跨导),在处理RF频率的问题时ΓL 更加有用。

我们知道反射系数定义为反射波电压与入射波电压之比:

图3. 负载阻抗

负载反射信号的强度取决于信号源阻抗与负载阻抗的失配程度。反射系数的表达式定义为:

由于阻抗是复数,反射系数也是复数。

为了减少未知参数的数量,可以固化一个经常出现并且在应用中经常使用的参数。这里Zo(特性阻抗)通常为常数并且是实数,是常用的归一化标准值,如50Ω、75Ω、100Ω和600Ω。于是我们可以定义归一化的负载阻抗:

据此,将反射系数的公式重新写为:

从上式我们可以看到负载阻抗与其反射系数间的直接关系。但是这个关系式是一个复数,所以并不实用。我们可以把史密斯圆图当作上述方程的图形表示。

为了建立圆图,方程必需重新整理以符合标准几何图形的形式(如圆或射线)。

首先,由方程2.3求解出;

并且

令等式 2.5的实部和虚部相等,得到两个独立的关系式:

重新整理等式2.6,经过等式2.8至2.13得到最终的方程2.14。这个方程是在复平面(Γr, Γi)上、圆的参数方程(x-a)2+ (y-b)2 = R2,它以(r/r+1, 0)为圆心,半径为1/1+r.

更多细节参见图4a。

图4a. 圆周上的点表示具有相同实部的阻抗。例如,r=1的圆,以(0.5, 0)为圆心,半径为0.5。它包含了代表反射零点的原点(0, 0) (负载与特性阻抗相匹配)。以(0,0)为圆心、半径为1的圆代表负载短路。负载开路时,圆退化为一个点(以1,0为圆心,半径为零)。与此对应的是最大的反射系数1,即所有的入射波都被反射回来。

在作史密斯圆图时,有一些需要注意的问题。下面是最重要的几个方面:

所有的圆周只有一个相同的,唯一的交点(1, 0)。

代表0Ω、也就是没有电阻(r = 0)的圆是最大的圆。

无限大的电阻对应的圆退化为一个点(1, 0)

实际中没有负的电阻,如果出现负阻值,有可能产生振荡。

选择一个对应于新电阻值的圆周就等于选择了一个新的电阻。

作图

经过等式2.15至2.18的变换,2.7式可以推导出另一个参数方程,方程2.19。

同样,2.19也是在复平面(Γr, Γi)上的圆的参数方程(x-a)2 + (y-b)2 = R2,它的圆心为(1, 1/x),半径1/x。

更多细节参见图4b。

图4b. 圆周上的点表示具有相同虚部x的阻抗。例如,x=1的圆以(1, 1)为圆心,半径为1。所有的圆(x为常数)都包括点(1, 0)。与实部圆周不同的是,x既可以是正数也可以是负数。这说明复平面下半部是其上半部的镜像。所有圆的圆心都在一条经过横轴上1点的垂直线上。

完成圆图

为了完成史密斯圆图,我们将两簇圆周放在一起。可以发现一簇圆周的所有圆会与另一簇

圆周的所有圆相交。若已知阻抗为r + jx,只需要找到对应于r和x的两个圆周的交点就可以得到相应的反射系数。

可互换性

上述过程是可逆的,如果已知反射系数,可以找到两个圆周的交点从而读取相应的r和x 的值。过程如下:

确定阻抗在史密斯圆图上的对应点

找到与此阻抗对应的反射系数(Γ)

已知特性阻抗和Γ,找出阻抗

将阻抗转换为导纳

找出等效的阻抗

找出与反射系数对应的元件值(尤其是匹配网络的元件,见图7)

推论

因为史密斯圆图是一种基于图形的解法,所得结果的精确度直接依赖于图形的精度。下面是一个用史密斯圆图表示的RF应用实例:

例:已知特性阻抗为50Ω,负载阻抗如下:

Z1= 100 + j50Ω Z2= 75 -j100Ω Z3= j200Ω Z4= 150Ω

Z5= ∞ (开路) Z6= 0 (短路) Z7= 50Ω Z8= 184 -j900Ω

对上面的值进行归一化并标示在圆图中(见图5):

z1= 2 + j z2= 1.5 -j2 z3= j4 z4= 3

z5= 8 z6= 0 z7= 1 z8= 3.68 -j18S

图5. 史密斯圆图上的点

现在可以通过图5的圆图直接解出反射系数Γ。画出阻抗点(等阻抗圆和等电抗圆的交点),只要读出它们在直角坐标水平轴和垂直轴上的投影,就得到了反射系数的实部Γr和虚部Γi (见图6)。

该范例中可能存在八种情况,在图6所示史密斯圆图上可以直接得到对应的反射系数Γ:

Γ1= 0.4 + 0.2j Γ2= 0.51 - 0.4j Γ3= 0.875 + 0.48j Γ4= 0.5

Γ5= 1 Γ6= -1 Γ7= 0 Γ8= 0.96 - 0.1j

图6. 从X-Y轴直接读出反射系数Γ的实部和虚部

用导纳表示

史密斯圆图是用阻抗(电阻和电抗)建立的。一旦作出了史密斯圆图,就可以用它分析串联和并联情况下的参数。可以添加新的串联元件,确定新增元件的影响只需沿着圆周移动到它们相应的数值即可。然而,增加并联元件时分析过程就不是这么简单了,需要考虑其它的参数。通常,利用导纳更容易处理并联元件。

我们知道,根据定义Y = 1/Z,Z = 1/Y。导纳的单位是姆欧或者Γ-1(早些时候导纳的单位是西门子或S)。并且,如果Z是复数,则Y也一定是复数。

所以Y = G + jB (2.20), 其中G叫作元件的“电导”,B称“电纳”。在演算的时候应该小心谨慎,按照似乎合乎逻辑的假设,可以得出:G = 1/R及B = 1/X,然而实际情况并非如此,这样计算会导致结果错误。

用导纳表示时,第一件要做的事是归一化,y = Y/Yo,得出y = g + jb。但是如何计算反射系数呢?通过下面的式子进行推导:

结果是G的表达式符号与z相反,并有Γ(y) = -Γ(z).

如果知道z,就能通过将的符号取反找到一个与(0,0)的距离相等但在反方向的点。围绕原点旋转180°可以得到同样的结果(见图7)。

图7. 180°度旋转后的结果

当然,表面上看新的点好像是一个不同的阻抗,实际上Z和1/Z表示的是同一个元件。(在史密斯圆图上,不同的值对应不同的点并具有不同的反射系数,依次类推)出现这种情况的原因是我们的图形本身是一个阻抗图,而新的点代表的是一个导纳。因此在圆图上读出的数值单位是姆欧。

尽管用这种方法就可以进行转换,但是在解决很多并联元件电路的问题时仍不适用。

导纳圆图

在前面的讨论中,我们看到阻抗圆图上的每一个点都可以通过以Γ复平面原点为中心旋转180°后得到与之对应的导纳点。于是,将整个阻抗圆图旋转180°就得到了导纳圆图。这种方法十分方便,它使我们不用建立一个新图。所有圆周的交点(等电导圆和等电纳圆)自然出现在点(-1, 0)。使用导纳圆图,使得添加并联元件变得很容易。在数学上,导纳圆图由下面的公式构造:

解这个方程

接下来,令方程3.3的实部和虚部相等,我们得到两个新的独立的关系:

从等式3.4,我们可以推导出下面的式子:

它也是复平面(Γr, Γi)上圆的参数方程(x-a)2 + (y-b) 2 = R2 (方程3.12),以(-g/g+1, 0)为圆心,半径为1/(1+g)。

从等式 3.5,我们可以推导出下面的式子:

同样得到(x-a)2 + (y-b)2 = R2型的参数方程(方程3.17)。

求解等效阻抗

当解决同时存在串联和并联元件的混合电路时,可以使用同一个史密斯圆图,在需要进行从z到y或从y到z的转换时将图形旋转。

考虑图8所示网络(其中的元件以Zo= 50Ω进行了归一化)。串联电抗(x)对电感元件而言为正数,对电容元件而言为负数。而电纳(b)对电容元件而言为正数,对电感元件而言为负数。

图8. 一个多元件电路

这个电路需要进行简化(见图9)。从最右边开始,有一个电阻和一个电感,数值都是1,我们可以在r=1的圆周和I=1的圆周的交点处得到一个串联等效点,即点A。下一个元件是并联元件,我们转到导纳圆图(将整个平面旋转180°),此时需要将前面的那个点变成导纳,记为A'。现在我们将平面旋转180°,于是我们在导纳模式下加入并联元件,沿着电导圆逆时针方向(负值)移动距离0.3,得到点B。然后又是一个串联元件。现在我们再回到阻抗圆图。

图9. 将图8网络中的元件拆开进行分析

在返回阻抗圆图之前,还必需把刚才的点转换成阻抗(此前是导纳),变换之后得到的点记为B',用上述方法,将圆图旋转180°回到阻抗模式。沿着电阻圆周移动距离1.4得到点C就增加了一个串联元件,注意是逆时针移动(负值)。进行同样的操作可增加下一个元件(进行平面旋转变换到导纳),沿着等电导圆顺时针方向(因为是正值)移动指定的距离(1.1)。这个点记为D。最后,我们回到阻抗模式增加最后一个元件(串联电感)。于是我们得到所需的值,z,位于0.2电阻圆和0.5电抗圆的交点。至此,得出z=0.2 + j0.5。如果系统的特性阻抗是50Ω,有Z = 10 + j25Ω (见图10)。

图10. 在史密斯圆图上画出的网络元件

逐步进行阻抗匹配

史密斯圆图的另一个用处是进行阻抗匹配。这和找出一个已知网络的等效阻抗是相反的过程。此时,两端(通常是信号源和负载)阻抗是固定的,如图12所示。我们的目标是在两者之间插入一个设计好的网络已达到合适的阻抗匹配。

图11. 阻抗已知而元件未知的典型电路

初看起来好像并不比找到等效阻抗复杂。但是问题在于有无限种元件的组合都可以使匹配网络具有类似的效果,而且还需考虑其它因素(比如滤波器的结构类型、品质因数和有限的可选元件)。

功率计E4418B中文使用说明书

E4418B功率计 和 E4412A型功率传感器使用手册 安捷仑技术公司

E4418B功率计 使用手册 目录 第一章:准备工作 第二章:功率计操作 第三章:参考菜单 第四章:错误信息 第五章:规格

第一章:准备工作 第一节:打开功率计 1.接上电源线,打开功率计开关,此时功率指示灯亮(绿色),功率计将自检,如果自检不成功,错误指示灯将亮,请与安捷仑技术公司售后服务部联系。 注意:输入电压的范围应在交流85伏到264伏之间。在极低的环境温度下,本仪器需要预热几分钟。 2.按照面板屏幕的显示按软键调整对比度,如果软键未出现,重复按预置键(Prev)直到出现。 3.接上功率传感器。 4.在精确测量前应保证至少预热30分钟。测量前信号要调零、校正传感器。 第二节:前面板各键的功能 1.预置键。Preset/local 2.显示键。在前面板的左边从上数第二和第三个键。▲▼表示在上下窗口之间选择,另一个表示是否分两个窗口 显示。 3.电源开/关键。在前面板的左下角。 4.系统/输入键和软键菜单。System/inputs 5.保存/重置键。Save/Recall

6.专用“窗口”键和软键菜单Meas/Setup,Rel/Offset,dBm/W 7.专用“频道”键和软键菜单Frequency/Cal Fac,Zero/Cal。8.频道输入插座CHANNEL 9.功率参考输出插座POWER REF 10.上下左右箭头键 11.与菜单相关的键Prev和More键 12.软键指显示屏右边4个未标字的键,它们是选择键。 第三节:显示形式 分两个窗口显示时,上面是数字式显示,下面是逻辑式显示。1.窗口顶端菜单条。显示“LCL”自身状态。“ERR”错误信息。 2.单或双窗口显示区。 3.测量结果区。 4.测量单位显示区。 5.逻辑式显示区。 6.当前显示菜单的页数选择区。。 7.任何软键显示区。 8.菜单目录显示区。 9.测量结果超出限制显示区。 10.相关模式打开后的显示区。 11.偏置设定后的显示区。

射频测量指标参数

射频指标 1)频率误差 定义 :发射机的频率误差是指测得的实际频率与理论期望的频率之差。它是通过测量手机的I/Q 信号并通过相位误差做线性回归,计算该回归线的斜率即可得到频率误差。频率误差是唯一要求在衰落条件下也要进行测试的发射机指标。 测试目的 :通过测量发射信号的频率误差可以检验发射机调制信号的质量和频率稳定 度。频 率误差小,则表示频率合成器能很快地切换频率,并且产生出来的信号足够稳 定。只有信号 频率稳定,手机才能与基站保持同步。若频率稳定达不到要求 (±0.1ppm),手机将出现信 号弱甚至无信号的故障,若基准频率调节范围不 够,还会出现在某一地方可以通话但在另一 地方不能正常通话的故障。 条件参数 : GSM 频段选 1、62、124 三个信道,功率级别选 最大LEVEL5 ;DCS 频段选 512、698、885 三个信道,功率级别选最 大LEVEL0 进行测试。 GSM 频段的频率误差范围为+90HZ —— -90HZ ,频率误差小 于40HZ 时为最好,大于40HZ 小于 60HZ 时为良好,大于60HZ 小于 90HZ 时为一般,大 于90HZ 时为不合格; DCS 频段的频率误差范围为 +180HZ —— -180HZ ,频率误差小于 80HZ 时为最好,大于 80HZ 小于 100HZ 时为良好,大 于100HZ 小于 180HZ 时为一般,大于180HZ 时为不合格。 2)相位误差 定义 :发射机的相位误差是指测得的实际相位与理论期望的相位之差。理论上的相位 轨迹可 根据一个已知的伪随机比特流通过0.3 GMSK 脉冲成形滤波器得到。相位轨迹可看作与载 波 相位相比较的相位变化曲线。连续的1 将引起连续的 90 度相位的递减,而连续的0 将引起连续的 90 度相位的递 增。 峰值相位误差表示的是单个抽样点相位误差中最恶略的情况,而均方根误差表示的是所有 点 相位误差的恶略程度,是一个整体性的衡量。 测试目的 :通过测试相位误差了解手机发射通路的信号调制准确度及其噪声特性。可以看出 调制器是否正常工作,功率放大器是否产生失真,相位误差的大小显示了I 、Q 数位类比转 换器和高斯滤波器性能的好坏。发射机的调制信号质量必须保持一定的指标,才能当存在着各种外界干扰源时保持无线链路上的低误码率。 测试方法 :在业务信道( TCH )激活 PHASE ERROR 即可观测到相位误差值。测试时通过 综合测试仪 MU200 产生比特流进行调制后送给手机,并指令手机处于环回模式。然后去捕 捉 手机的一个突发信号,对其进行均匀相位抽样,抽样周期为调制信号周期的1/2,最后根据

射频通过式功率计的应用

射频通过式功率计的应用 一、通过式功率计的工作原理 射频功率可由两类仪器来测量:热偶式功率计和通过式功率计。 1.1 热偶功率计 热偶式测试法是先将射频功率转换为热能,测出其所产生的能量的总和,再将其转换为相应的功率读数(瓦特)。在热偶式测量法中,其测试结果基本上不受信号波形的影响。但热偶式功率计的成本,物理尺寸,测试响应时间,所需的附件设备,电缆和交流电源都决定了它不能得到广泛的应用。 1.2 通过式功率计 早在1952年,BIRD公司的创始人J. Raymond Bird发明了通过式功率计原理——Thruline?技术。从此,通过式功率测量法成为射频功率测量的工业标准一直至今。在工程应用及工程计量中,通过式功率计的作用是任何其它功率测试手段所无法替代的。 Thruline?通过式功率测量法的原理如下(见图1): 图1、通过式功率测量法图图2、连续波(CW)功率计的代表产品—BIRD 43 通过式射频功率计实际上是一种信号激励装置,采用了一个无源的二极管射频传感器。在同轴线的一侧装有一个定向的,半波二极管检波电路,并将其接到一个已校正的表头以读出有效值功率。检波电路与传输线通过介质耦合,并根据置于传输线旁的传感器的方向取样出正向和反射功率。 Thruline?功率计的代表产品是BIRD公司的43型功率计(见图2),它自发明以来已经有超过25万台在全世界范围得到应用。43采用了无源线性二极管检波技术,可以测量单载频的FM,PM和CW信号的功率,或者与校准信号的峰均功率比完全一致的信号。 二、模拟调制和数字调制的射频信号 不同的射频调制信号的功率测量方法是不同的,让我们首先来比较一下不同的调制信号各有什么特点。 2.1 连续波(CW)和模拟调制信号 图3所示为连续波(CW)信号的波形,其特点是峰值包络是恒定的,FM和PM信号也同样。

微波基本参数的测量原理

微波基本参数的测量 一、实验目的 1、了解各种微波器件; 2、了解微波工作状态及传输特性; 3、了解微波传输线场型特性; 4、熟悉驻波、衰减、波长(频率)和功率的测量; 5、学会测量微波介质材料的介电常数和损耗角正切值。 二、实验原理 微波系统中最基本的参数有频率、驻波比、功率等。要对这些参数进行测量,首先要了解电磁波在规则波导内传播的特点,各种常用元器件及仪器的结构原理和使用方法,其次是要掌握一些微波测量的基本技术。 1、导行波的概念: 由传输线所引导的,能沿一定方向传播的电磁波称为“导行波”。导行波的电场E 或磁场H 都是x 、y 、z 三个方向的函数。导行波可分成以下三种类型: (A) 横电磁波(TEM 波): TEM 波的特征是:电场E 和磁场H 均无纵向分量,亦即:0=Z E ,0=Z H 。电场E 和磁场H ,都是纯横向的。TEM 波沿传输方向的分量为零。所以,这种波是无法在波导中传播的。 (B) 横电波(TE 波): TE 波即是横电波或称为“磁波”(H 波),其特征是0=Z E ,而0≠Z H 。亦即:电场E 是纯横向的,而磁场H 则具有纵向分量。 (C) 横磁波(TM 波): TM 波即是横磁波或称为“电波”(E 波),其特征是0=Z H ,而0≠Z E 。亦即:磁场H 是纯横向的,而电场E 则具有纵向分量。 TE 波和TM 波均为“色散波”。矩形波导中,既能传输mm TE 波,又能传输mm TM 波(其中m 代表电场或磁场在x 方向半周变化的次数,n 代表电场或磁场在y 方向半周变化的次数)。 2、波导管: 波导管是引导微波电磁波能量沿一定方向传播的微波传输系统,有同轴线波导管和微带等,波导的功率容量大,损耗小。常见的波导管有矩形波导和圆波导,本实验用矩形波导。 矩形波导的宽边定为x 方向,内尺寸用a 表示。窄边定为y 方向,内尺寸用b 表示。10TE 波以圆频率ω自波导管开口沿着z 方向传播。在忽略损耗,且管内充满均匀介质(空气)下,波导管内电磁场的各分量可由麦克斯韦方程组以及边界条件得到: ()sin()j t z o y x E j e ωβωμππα-=-, ()sin()j t z o x x H j e ωβμαππα -=

RF测试的基础知识

1. 什么是RF 答:RF 即Radio frequency 射频,主要包括无线收发信机。 2. 当今世界的手机频率各是多少(CDMA,GSM、市话通、小灵通、模拟手机等) 答:EGSM RX: 925-960MHz, TX:880-915MHz; CDMA cellular(IS-95)RX: 869-894MHz, TX:824-849MHz。 3. 从事手机Rf工作没多久的新手,应怎样提高 答:首先应该对RF系统(如功能性)有个系统的认识,然后可以选择一些芯片组,研究一个它们之间的连通性(connectivities among them)。 4. RF仿真软件在手机设计调试中的作用是什么 答:其目的是在实施设计之前,让设计者对将要设计的产品有一些认识。 5. 在设计手机的PCB时的基本原则是什么 答:基本原则是使EMC(电磁兼容性)最小化。 6. 手机的硬件构成有RF/ABB/DBB/MCU/PMU,这里的ABB、DBB和PMU等各代表何意答:ABB是Analog BaseBand, DBB是Ditital Baseband,MCU往往包括在DBB芯片中。 PMU是Power Management Unit,现在有的手机PMU和ABB在一个芯片上面。将来这些芯片(RF,ABB,DBB,MCU,PMU)都会集成到一个芯片上以节省成本和体积。 7. DSP和MCU各自主要完成什么样的功能二者有何区别

答:其实MCU和DSP都是处理器,理论上没有太大的不同。但是在实际系统中,基于效率的考虑,一般是DSP处理各种算法,如信道编解码,加密等,而MCU处理信令和与大部分硬件外设(如LCD等)通信。 8. 刚开始从事RF前段设计的新手要注意些什么 答:首先,可以选择一个RF专题,比如PLL,并学习一些基本理论,然后开始设计一些简单电路,只有在调试中才能获得一些经验,有助加深理解。 9. 推荐RF仿真软件及其特点 答:Agilent ADS仿真软件作RF仿真。这种软件支持分立RF设计和完整系统设计。详情可查看Agilent网站。 10. 哪里可以下载关于手机设计方案的相应知识,包括几大模快、各个模块的功能以及由此对硬件的性能要求等内容 答:可以看看和,或许有所帮助。关于TI的wireless solution,可以看看中的wireless communications. 11. 为什么GSM使用GMSK调制,而W-CDMA采用HPSK调制 答:主要是由于GSM和WCDMA标准所定。有兴趣的话,可以看一些有关数字调制的书,了解使用不同数字调制技术的利与弊。 12. 如何解决LCD model对RF的干扰 答:PCB设计过程中,可以在单个层中进行LCD布线。 13. 手机设计过程中,在新增加的功能里,基带芯片发射数据时对FM产生噪声干扰,如何解决这个问题

不看不知道 射频功率测试,就是这么简单

不看不知道射频功率测试,就是这么简单 自从第一台无线电发射机诞生之日起,工程师们就开始关心射频功率测量问题,知道今天这依然是个热门话题。无论是在实验室,产线上还是教学中,功率测量都是必不可少的。 在无线电发展初期,测试工程师所面对的大多数是连续波、调幅、调频、调相或脉冲信号,这些信号都是有规律可循的。例如,连续波(如图1)调频或调相信号的功率测量都是很简单,只需要测量其平均功率;调幅信号(如图2)的功率与其调制深度有关,而脉冲信号的特性是以脉冲宽度和占空比来表达。对于以上这些模拟或模拟调制信号,射频功率测量所关心的基本上都是平均功率和峰值功率。 而现在,特别是20世纪90年代以后,数字通信开始快速发展,射频功率测量的重点也开始有些变化。因为数字调制信号(如图3)的包络无规律可循,其最大和最小电平会随机变化,而且变化量很大。为了描述这类信号的特征,引入了一些新的描述方法,如领道功率,突发功率,通道功率等。很多传统的功率计已经无法满足数字信号功率的测量要求,一部分功率测量的任务已经开始由频谱分析仪来完成。 下面我们介绍常见的几种射频功率测量方法,在此之前我们还需要明确一件事在频域测试测量中,为什么习惯以功率来描述信号强度,而不是像时域测试测量中常用的电压和电流?那是因为在射频电路中,由于传输线上存在驻波,电压和电流失去了唯一性,所以射频信号的大小一般用功率来表示,国际通用的功率单位为W,mW,dBm。 频谱分析仪和功率计都是可以测量射频功率的,其中功率计又分为吸收式功率计与通过式功率计两种。 同样是功率测量,不同的测试仪器和测试方法所关注的重点是不同的。 射频功率的测量方法: 频谱分析仪测量吸收式功率测量通过式功率测量

一体化通过式功率计GC 8320

GC 8320一体化通过式功率计 GC8320是澳大利亚 司专门为现代移动通信系统的功率测量而设计的一款高性能的通过 GC8320采用独特的、前沿技术的设计,大 大降低了仪表操作的复杂程度,使之成为目前仪表领域中独一无 二,功能全面,使用方便的一体化通过式功率计。 基本功能: 门支持GSM900/1800, SCDMA, WCDMA, CDMA2000 频段 人性化用户界面及3.5英寸高清晰度 式功率计 标准N型微波接口,支持各种发射及天馈系统 高精度,正反向功率、驻波比、回损、负载功率及温度 测试 平均功率、峰值功率、突发平均功率、峰均比/ 通过式功率测量重要性介绍 : 一个典型的射频发射系统由三个基本部分组成:发射 机,馈线和天线。发射机发出的功率通过馈线输送到天线, 由天线辐射出去。如果发射系统的各个部分之间具有良好的

分析,尤其是正向功率和驻波比的分析,可以快速地缩小故障范围。 例如,把通过式功率计插入到天线和馈线之间,如果监测数据显示正向功率稳定而驻波比不稳,则提示故障在天线系统;如果驻波比很稳定而正向功率不稳,则提示故障可能在发射机,也可能在馈线,此时只要把通过式功率计插入到发射机的输出端和馈线之间,再做一次监测,如果正向功率仍显示不稳定,则提示故障在发射机,否则,故障就在馈线系统。 订货须知 : 订货时请按需要选择一下频段,如需要其他特殊频段,请提前告知。 ● GSM900 ● GSM1800 ● WCDMA ● CDMA800 ● CDMA1900 ● CDMA 2000 ● TD-SCDMA ● WiMAX 标准配件 : ● 电源适配器 ● 1.2米USB-A 转USB-B 数据线 ● 用户手册 ● 便携包

射频和微波开关测试系统基础

射频和微波开关测试系统基础 无线通信产业的巨大成长意味着对于无线设备的元器件和组件的测试迎来了大爆发,包括对组成通信系统的各种RF IC 和微波单片集成电路的测试。这些测试通常需要很高的频率,普遍都在GHz范围。本文讨论了射频和微波开关测试系统中的关键问题,包括不同的开关种类,RF开关卡规格,和有助于测试工程师提高测试吞吐量并降低测试成本的RF开关设 计中需要考虑的问题。 射频开关和低频开关的区别 将一个信号从一个频点转换到另一个频点看起来挺容易的,但要达成极低的信号损耗该如何实现呢?设计低频和直流(DC)信号的开关系统都需要考虑它们特有的参数,包括接触电位、 建立时间、偏置电流和隔离特性等。 高频信号,与低频信号类似,需要考虑其特有的参数,它们会影响开关过程中的信号性能,这些参数包括VSWR(电压驻波比)、插入损耗、带宽和通道隔离等等。另外,硬件因素,比如端接、连接器类型、继电器类型,也会极大的影响这些参数。 开关种类和构造 继电器内的容性是限制开关的信号频率的常见因素。继电器的材料和物理特性决定了其构成的内部电容。比如,在超过40GHz的射频和微波开关中,在机电继电器中采用了特殊的接触架构来获得更好的性能。图1显示了一个典型的构造,共同端接位于两个开关端接之间。所有信号的连接线路都是同轴线,来保证最佳的信号完整性(SI)。在这种情况下,连接器是SMA母头。对于更加复杂的开关结构,共同端接被各个开关端接以放射状围绕。 一系列复杂的开关拓扑在RF开关中得以采用。矩阵式开关可以实现每个输入与每个输出的连接。有两种类型的矩阵在微波开关架构中得以采用——blocking和non-blocking架构。一个blocking矩阵可将任意一个输入和任意一个输出进行连接,因此其他的输入和输出就不能同时连接。这对只需在一个时刻切换到一个信号频率的应用是一个有效的低成本方案,信号完整性也更好,因为有更少的继电器路径,特别是避免了相位延迟的问题。而non-blocking 矩阵允许多个路径的同时连接,这种架构具有更多的继电器和线缆,因此灵活性更强,不过 价格也更高。 层叠开关架构是多位置开关的一种替代形式。它采用多个继电器将一个输入连接到多个输出。路径长度(同时决定了相位延迟)是由信号经过的继电器的数量决定的。 树形架构是层叠开关架构的一种替代。相比层叠架构,对于同等规格的系统,树形技术需要更多的继电器,然而,选定的路经和其他不用的路经之间的隔离会更好,这样降低了继电器和通道之间的crosstalk。树形架构具备一些优势,包括无端接残余(unterminated stubs),各个通道特性也会相似。然而,在选定路经上具有多个继电器意味着损耗会更大,信号完整性 也令人堪忧。 RF开关卡架构 在测试仪器主机上的RF开关卡应用中,为保证信号完整性,需要理解许多电性能指标。

光功率计使用说明

ON/OFF 为关闭或接通电源入/Select 按键一次则显示另一个设置波长,设置波长可往复顺序循环。 W/dBm 主机开机后以dBm为单位显示,按键后在W和dBm 之间转换。 Ref 按Ref键,将测量值转换成相对差值以dB为单位显示。 ... 光功率计的使用要和光源配合使用,要想知道光源发出的光是多少个DB,就用一条尾纤的A端链接光源B端连接光功率计计,显示在光功率计的数值,就是光源发出的光是多少个DB,一般光源发出的光是7个DB左右。 值得注意的是光源和光功率计要选择同样的波长测试,例如:光源选择的是1310nm,光功率计要选择同样的。 但若要光缆发生故障时,因设备还在发光,一般不要用OTDR测试,需要注意设备与OTDR发出的同样的光,有可能把设备或者OTDR毁坏,要用光功率计测试,OTDR一般测试备用纤芯,因为主要还要看在用纤芯的好坏,就需要先把一条尾纤连接光功率计与在用纤芯,看是否能受到光,收到光是多少个DB。 一般基站小于36DB或者更小,就达到最大值了,若是一般的直放站就要10个DB左右。 若是监控、光纤上网等一般需要数据的,还要更小,因为怕丢数据。 如果购买光源光功率计的话,建议购买3M的。 光功率计使用说明书 一、概述 本仪器测量精度高,稳定可靠。是一种智能化的、高性能的通用光功率计。采用了精确的软件校准 技术,可测量不同波长的光功率,具有好的性价比。是光电器件、光无源器件、光纤、光缆、光纤通 信设备的测量,以及光纤通信系统工程建設和维护的必备测量工具。 二.技术条件 2.1 性能指标 a.光波长范围: 850 ~1550 nm b.光功率测量范围:-70 ~+10 dBm c.显示分辨率: 0.01 dB d.准确度: ±5%(-70 ~+3 dBm ) 非线性:≤ 4%(-70 ~+3 dBm ) e.环境条件: 工作温度 0 ~55℃ 工作湿度≤ 85% f.电源: AC 220伏/50Hz ±10% 2.基本功能 a.显示方式:线性(mw/μw/ nw),对数(dBm)、相对測量(dB); b.自动功能:自动量程,自动调零,量程保持,平均处理,相对测量 处理, 波长校准; 三.原理

射频测量指标参数

射频指标 1)频率误差 定义:发射机的频率误差是指测得的实际频率与理论期望的频率之差。它是通过测量手机的I/Q信号并通过相位误差做线性回归,计算该回归线的斜率即可得到频率误差。频率误差是唯一要求在衰落条件下也要进行测试的发射机指标。 测试目的:通过测量发射信号的频率误差可以检验发射机调制信号的质量和频率稳定度。频率误差小,则表示频率合成器能很快地切换频率,并且产生出来的信号足够稳定。只有信号频率稳定,手机才能与基站保持同步。若频率稳定达不到要求(±0.1ppm),手机将出现信号弱甚至无信号的故障,若基准频率调节范围不够,还会出现在某一地方可以通话但在另一地方不能正常通话的故障。 条件参数: GSM频段选1、62、124三个信道,功率级别选最大LEVEL5;DCS频段选512、698、885三个信道,功率级别选最大LEVEL0进行测试。GSM频段的频率误差范围为+90HZ ——-90HZ,频率误差小于40HZ时为最好,大于40HZ小于60HZ时为良好,大于60HZ 小于90HZ时为一般,大于90HZ时为不合格;DCS频段的频率误差范围为+180HZ——-180HZ,频率误差小于80HZ时为最好,大于80HZ小于100HZ时为良好,大于100HZ小于180HZ时为一般,大于180HZ时为不合格。 2)相位误差 定义:发射机的相位误差是指测得的实际相位与理论期望的相位之差。理论上的相位轨迹可根据一个已知的伪随机比特流通过0.3 GMSK脉冲成形滤波器得到。相位轨迹可看作与载波相位相比较的相位变化曲线。连续的1将引起连续的90度相位的递减,而连续的0将引起连续的90度相位的递增。 峰值相位误差表示的是单个抽样点相位误差中最恶略的情况,而均方根误差表示的是所有点相位误差的恶略程度,是一个整体性的衡量。 测试目的:通过测试相位误差了解手机发射通路的信号调制准确度及其噪声特性。可以看出调制器是否正常工作,功率放大器是否产生失真,相位误差的大小显示了I、Q数位类比转换器和高斯滤波器性能的好坏。发射机的调制信号质量必须保持一定的指标,才能当存在着各种外界干扰源时保持无线链路上的低误码率。 测试方法:在业务信道(TCH)激活PHASE ERROR即可观测到相位误差值。测试时通过综合测试仪MU200产生比特流进行调制后送给手机,并指令手机处于环回模式。然后去捕捉手机的一个突发信号,对其进行均匀相位抽样,抽样周期为调制信号周期的1/2,最后根据抽样的正常突发中的样点计算出相位轨迹和误差。 测试条件:GSM频段选1、62、124三个频道,功率级别选最大LEVEL5;DCS频段选512、

如何选择射频测试仪器

如何选择射频测试仪器 当前,基于射频原理的无线通信产品俯拾即是,其数量的增长速度也非常惊人。从蜂窝电话和无线PDA,到支持WiFi的笔记本电脑、蓝牙耳机、射频身份标签、无线医疗设备和Zigbee传感器,射频设备的市场规模在飞速扩大。要想进行全面的生产测试并提高测试产能,测试工程师们必须懂得选用最适合的仪器完成这些测试工作。那么,如何选择射频测试仪器呢? 一、射频信号源的选择 所有的射频信号源都能产生连续(CW)射频正弦波信号。某些信号发生器也能够产生模拟调制射频信号(如AM信号或脉冲射频信号),矢量信号发生器采用IQ调制器产生各种模拟或数字调制信号。 射频信号源进一步可以分成很多种,包括固定频率CW正弦波输出源、扫描输出一个频段非固定频率CW正弦波的扫频源、模拟信号发生器以及增加模拟和数字调制功能的矢量信号发生器。 如果测试需要激励信号,那么就需要射频信号源。射频信号源的关键指标是频率与幅值范围、幅值精度和调制质量(对于产生调制信号的信号源而言)。频率调谐速度和幅值稳定时间对于减少测试时间也是非常关键的。 矢量信号发生器是一种高性能的信号源,通常结合任意波形发生器一起产生某些调制信号。通过任意波形发生器可以使矢量信号发生器产生任意类型的模拟或数字调制信号。这种发生器可以在内部产生多种基带波形,在某些情况下,也可以在外部产生某种基带波形然后载入到仪器中。如果测试规范要求被测的元件、设备或系统按照待测设备最终使用中的处理调制方式进行测试,那么这种情况下通常需要使用矢量信号发生器。 如果测试规范需要进行接收器灵敏度测试、误码率测试、相邻信道抑制、双音互调抑制、或双音互调失真的测试,那么也需要使用射频信号源。双音互调测试和相邻信道抑制测试需要两个信号源,接收器灵敏度测试和/或误码率测试只需要使用一个射频信号源。 如果待测器件是用于移动电话的,那么测试者可能要根据移动电话标准的需要进行调制信

激光功率计使用

光功率计使用说明 一、概述 通常光功率计采用了精确的校准技术,可测量不同波长的光功率,是光电器件、光无源器件、光纤、光缆、光纤通信设备的测量,以及光纤通信系统工程建設和维护的必备的测量工具。 二.技术条件 2.1 性能指标 a.光波长范围: 850 ~1550 nm b.光功率测量范围:-70 ~+10 dBm c.显示分辨率: 0.01 dB d.准确度: ±5%(-70 ~+3 dBm ) 非线性:≤ 4%(-70 ~+3 dBm ) e.环境条件: 工作温度 0 ~55℃ 工作湿度≤ 85% f.电源: AC 220伏/50Hz ±10% 2.基本功能 a.显示方式:线性(mw/μw/ nw),对数(dBm)、相对測量(d B); b.自动功能:自动量程,自动调零,量程保持,平均处理,相对测量

处理, 波长校准; 三.原理 光功率计由五部分组成, 即光探測器、程控放大器和程控滤波器、A/ D转换器、微处理器以及控制面板与数码显示器。其原理方框图如下(图1): A/D变换器 P I N I/V 程控放大器和滤波器 C P U 控制面板和显示器 图 1. 光功率计原理方块图 被測光由PIN光探测器检测转换为光电流,由后续斩波稳定程控放大器将电流信号转换成电压信号,即实现I/V转换并放大,经程控滤波器滤除斩波附加分量及干扰信号后,送至A/D转换器,变成相应于输入光功率电平的数字信号,由微处理器(CPU)进行数据处理,再由数码显示器显示其数据。CPU可根据注入光功率的大小自动设置量程状态和滤波器状态,同时,可由面板输入指令(通过CPU)控制各部分完成指定工作。不注入光的情况下,可指令仪器自动调零。 四.使用 4.1 面板说明

射频功率测量电路设计

射频功率测量电路设计 近年来,随着3G 技术的快速发展,在进行通信系统设计时,射频功率的 控制和测量十分重要。本文以美国ADI 公司的AD8318 单片射频功率测量芯片为核心,设计了基于对数放大器检测方法的射频功率测量电路,该方法具有动 态范围大,频率范围广,精度高和温度稳定性好的特点。 1 测量原理 射频功率测量方法有多种多样,其中对数放大器检测法是射频测量的主要方 向之一,下面从对数放大器内部结构进行分析,研究对数放大检测器如何检测 射频信号。 射频信号检测的实质是如何实现将功率信号无失真地转换成电压信号,而这 个转换工作则由对数放大检测器来完成,因此,对数放大检测器是射频测量的 关键。它的核心是对数放大器,对数放大器之间采用直接耦合方式,分成N 级,每级由对数放大器和检波器组成。每级的输出送到求和器,由求和输出经低通 滤波器后得到一个电压信号。N 一般取值为5~9 级,级数越多,单级增益越小,则输出特性曲线越趋向于线性,这里以5 级为例进行分析,具体电路如图 1 所示。 该对数放大检测器的传递函数为:U0=Ks(Pin-b) (1)式中:b 为截距;Ks 为对数检测器的斜率,是一个常数;Pin 是输入信号的功率。在一定的动态范围内,可通过Matlab 仿真软件得到对数放大器的特性曲线,如图2 所示。 从图2 可知,线性动态范围约为-3~67 dBm,在此范围内,输出电压与输入功率之间呈线性关系。图2 的横坐标是输入信号的功率,纵坐标为输出电压和 误差值。在坐标系上作图可知,该特性曲线的斜率约为18 mV/dB,截距约为93 dBm,已知输入信号的情况下,可根据式(1)得到输出电压的大小。若输入信

光功率计操作及注意事项

光功率计操作及注意事项 一、用途 用于测量绝对光功率或通过一段光纤的光功率相对损耗。是最基本的光纤设备,非常像电子学中的万用表。在光纤测量中,光功率计是重负荷常用表。通过测量发射端机或光网络的绝对功率,一台光功率计就能够判断光端设备的性能。用光功率计与稳定光源组合使用,则能够测量连接损耗、检验连续性,并帮助评估光纤线路传输质量。 二、操作方法 针对用户的具体应用,要选择适合的光功率计,应该关注以下各点: 1、选择最优的探头类型和接口类型 2、比价校准精度和制造校准程序,与你的光纤和接头要求范围相匹配。 3、确定这些型号与你的测量范围和显示分辨率相一致。 4、具备直接插入损耗测量的dB功能。 三、注意事项 光功率的单位是dbm,在光纤收发器或交换机的说明书中有它的发光和接收光功率,通常发光小于0dbm,接收端能够接收的最小光功率称为灵敏度,能接收的最大光功率减去灵敏度的值的单位是db(dbm-dbm=db),为动态范围,光功率减去接收灵敏度是允许的光纤衰耗值。测试时实际的发光功率减去实际接收到的光功率的值就是光纤衰耗(db)。端接收到的光功率最佳值是能接收的最大光功率-(动态

范围/2),每种光收发器和光模块的动态范围不一样,为15-30db左右。 有的说明书会只有发光功率和传输距离两个参数,出的传输距离,大多是0.5db/km。用最小传输距离除以0.5,就是能接收的最大光功率,如果接收的光功率高于这个值,光收发器可能会被烧坏。用最大传输距离除以0.5,就是灵敏度,如果接收的光功率低于这个值,链路可能会不通。 光纤的连接有两种方式,一种是固定连接一种是活动连接,固定连接就是熔接,是用专用设备通过放电,将光纤熔化使两段光纤连接在一起,优点是衰耗小,缺点是操作复杂灵活性差。活动连接是通过连接器,通常在ODF上连接尾纤,优点是操作简单灵活性好,缺点是衰耗大,一般说来一个活动连接的衰耗相当于一公里光纤。光纤的衰耗可以这样估算:包括固定和活动连接,每公里光纤衰耗0.5db,如果活动连接相当少,这个值可以为0.4db,单纯光纤不包括活动连接,可以减少至0.3db,理论值纯光纤为0.2db/km;为保险计大多数情况下以0.5为好。 光纤测试TX与RX必须分别测试,在单纤情况下由于仅使用一纤,所以只需测试一次.

射频功率的快速测量法

射频功率的快速测量法 作者:Joshua Israelsohn RF(射频)电磁场中充满着音乐的喧闹声和电话交谈、寻呼信号、电子邮件和因特网业务的各种嘈杂声。RF零部件、RF系统以及对RF功率测量的需求正扩大到传统的话音通信、无线局域网(WLAN)、码分多址(CDMA)和第三代移动通信(G3)手机以及长途电话费电子收费系统等各种应用领域。 便携式RF产品的激增引发对RF功率测量的极大改进。在模拟RF链路方面,沿用了几十年的传统的测量方法仍在使用。但是如果采用现代化的功率计进行这种测量时,测试人员就会发现,在进行数据记录或数据分析时,现代的更简单的传感器和计量器标定、更容易的传感器更换和计算机接口对测量RF功率更为精确、便捷。现代化的RF功率计也更小、更轻,在某些情况下还可以用电池供电,从而使野外测量像在实验室一样简单而精确。 数字RF链路,特别是采用扩频调制技术的数字RF链路,已向传统的测量方法发出了挑战。基于处理器的RF功率计能够进行数字链路测量,而以前用分析仪进行这种测量,成本是现在的2~5倍。同时,最复杂的数字RF技术,如CDMA(码分多址)代表未来的发展方向:即制造商必须将RF功率测量能力置入无线手机和基站,使之作为RF链路控制的组成部分。这样做将可以有效地利用RF信道利用率,并获得优良的话音质量。 测量方法 测量RF功率有许多好的方法。因频段、功率电平和所测信号的调制技术以及精度、范围和成本不同,测量的方法也不尽相同。对于传统的模拟信号而言,RF功率测量,无论是测量均方根值(rms)还是最大值,都是十分简便的。 大多数概念性的简单方法采用热电传感器来测量(见图1、参考文献1)。这种方法最接近于直接实现均方根值功率的数学定义:交流信号的加热能力与直流信号的加热能力的比较。这里,缓冲放大器采用与RF输入信号一样的信号激励加热部件。加热部件的热量与温度传感器(一般用热电耦)密切相关,但两者在电气上是隔离开的。伺服放大器以平衡方式激励相匹配的一对加热器/传感器,直至直流伺服器传递的功率与输入的RF信号的功率相等为止。 输出电压与输入电压的均方根值相等。因此,用户可以利用附加电路在模拟域计算信号功率,方法是:在显示之前,信号仍在数字域,则附加电路的数据流为:PRF=Vo2/R,其中PRF表示RF功率,Vo表示传感器的输出电压,R表示加热器电阻。 这种测量的主要误差来源是加热器的绝对电阻、匹配和温度系数的公差。因为绝对电阻表示为功率计算的换算因子,用户必须按照特定的探测器示例标定平方函数。热电耦的匹配和热传递(从一个单元到另一个单元,或从一种环境到另一种环境,或两个单元之间)会增加误差预算。幸运的是,传感器的精心设计能够使单元之间的热串扰减少到最小,而且传感器设计或功率计接口可包括环境补偿或校准。现有的商用传感器,与小型半敞开式(benchtop)或手持式功率计一起,能够使所有的误差变小,并有利于精密测量。 热电型RF传感器的一个优点是,它能独立地正确计算波峰因子的均方根值(附文"波峰余值")。而缺点是,热电传感器反应速度较慢,且反应时间不可调,这是由于这种传感器是利用热机械原理而不是利用热电原理决定的。 另一方面,二极管传感器正好使这两种特性颠倒(图2)。峰值检测器、二极管传感器能从根本上显示可调整的电气动态特性,但要求波峰因子补偿。如果用户使用已知的测试信号,或良好的波峰因子估算方法,而且知道传感器和功率计提供哪样的波峰因子补偿,那么这一特性就会使二极管传感器既相当便宜又非常精确。除速度更快和反应时间电气可调节外,二极管检测器可使噪声降低3个数量级,但这些检测器常常局限于300mW的小信号测量。 在热电和二极管传感器之间,市售的小型功率计能够适应各种信号频率、动态范围和复杂的

射频与微波技术知识点总结

射频/微波的特点: 1.频率高 2.波长短 3.大气窗口 4.分子谐振 微波频率:300MHz-3000GHz 波长:0.1mm-1m 独特的特点:RF/MW 的波长与自然界物体尺寸相比拟 在RF/MW 波段,由于导体的趋肤效应、介质损耗效应、电磁感应等影响,期间区域不再是单纯能量的集中区,而呈现分布特性。 长线概念:通常把RF/MW 导线(传输线)称为长线,传统的电路理论已不适合长线! RF/MW 系统的组成: 传输线:传输RF/MW 信号 微波元器件:完成微波信号的产生、放大、变换等和功率的分配、控制及滤波 天线:辐射或接收电磁波 微波、天线与电波传播的关系:(简答) 微波: 对象:如何导引电磁波在微波传输系统中的有效传输 目的:希望电磁波按一定要求沿微波传输系统无辐射的传输; 天线 任务:将导行波变换为向空间定向辐射的电磁波,或将在空间传播的电磁波变为微波设备中的导行波 作用:1.有效辐射或接收电磁波;2.把无线电波能量转换为导行波能量 电波传播 分析和研究电波在空间的传播方式和特点 常用传输线机构:矩形波导 共面波导 同轴线 带状线 微带线 槽线 分析方法 称为传输线的特性阻抗 特性阻抗Z0通常是个复数, 且与工作频率有关。 它由传输线自身分布参数决定而与负载及信源无关, 故称为特性阻抗 对于均匀无耗传输线, R=G=0, 传输线的特性阻抗为 此时, 特性阻抗Z0为实数, 且与频率无关。 常用的平行双导线传输线的特性阻抗有250Ω, 400Ω和600Ω三种。 常用的同轴线的特性阻抗有50 Ω 和75Ω两种。 均匀无耗传输线上任意一点的输入阻抗与观察点的位置、传输线的特性阻抗、终端负载阻抗及工作频率有关, 且一般为复数, 故不宜直接测量。 无耗传输线上任意相距λ /2处的阻抗相同, 一般称之为λ /2重复性。 传输线上电压和电流以波的形式传播, 在任一点的电压或电流均由沿-z 方向传播的行波(称为入射波)和沿+z 方向传播的行波(称为反射波)叠加而成。 传播常数γ: α为衰减常数, 单位为dB/m β为相移常数 对于均匀无耗传输线来说, 由于β与ω成线性关系, 故导行波的相速与频率无关, 也称为无色散波。当传输线有损耗时, β不再与ω成线性关系, 使相速υp 与频率ω有关,这就称为色散特性。 定义传输线上任意一点 z 处的反射波电压(或电流)与入射波电压(或电流)之比为电压(或电流)反射系数(越小越好) 当Zl=Z0时, Γl=0, 即负载终端无反射, 此时传输线上反射系数处处为零, 一般称之为负载匹配。而当Zl ≠Z0时, 负载端就会产生一反射波, 向信源方向传播, 若信源阻抗与传输线特性阻抗不相等时, 则它将再次被反射。 定义传输线上波腹点电压振幅与波节点电压振幅之比为电压驻波比, 用ρ表示: 0L Z C =)j /()j (0C G L R Z ωω++=βωωγj )j )(j (+=++≈a C G L R min max U U =ρ

射频基础知识点

一、频谱分析仪部分 什么是频谱分析仪? 频谱分析仪是研究电信号频谱结构的仪器,用于信号失真度、调制度、谱纯度、频率稳定度和交调失真等信号参数的测量,可用以测量放大器和滤波器等电路系统的某些参数,是一种多用途的电子测量仪器。我们现在所用的频谱仪大部分是扫频调谐超外差频谱分析仪。 频谱仪工作原理 输入信号经衰减器以限制信号幅度,经低通输入滤波器滤除不需的频率,然后经混频器与本振(LO)信号混频将输入信号转换到中频(IF)。LO的频率由扫频发生器控制。随着LO频率的改变,混频器的输出信号(它包括两个原始信号,它们的和、差及谐波,)由分辨力带宽滤波器滤出本振比输入信号高的中频,并以对数标度放大或压缩。然后用检波器对通过IF滤波器的信号进行整流,从而得到驱动显示垂直部分的直流电压。随着扫频发生器扫过某一频率范围,屏幕上就会画出一条迹线。该迹线示出了输入信号在所显示频率范围内的频率成分。 输入衰减器 保证频谱仪在宽频范围内保持良好匹配特性,以减小失配误差;保护混频器及其它中频处理电路,防止部件损坏和产生过大的非线性失真。 混频器 完成信号的频谱搬移,将不同频率输入信号变换到相应中频。在低频段(<3G Hz)利用高混频和低通滤波器抑制镜像干扰;在高频段(>3GHz)利用带通跟踪滤波器抑制镜像干扰。 本振(LO) 它是一个压控振荡器,其频率是受扫频发生器控制的。其频率稳定度锁相于参考源。 扫频发生器 除了控制本振频率外,它也能控制水平偏转显示,锯齿波扫描使频谱仪屏幕上从左到右显示信号,然后重复这个扫描不断更新迹线。扫频宽度(Span)是从左fstart到右fstop10格的频率差,例如:Span=1MHz,则100kHz/div.

射频功率计基础知识

功率计三种分类详解 功率计是测量电功率的仪器。搞射频微波的各位亲们相比不陌生,功率计基本上也是和信号源、频谱仪、网络分析仪并行的几个大件之一,当然没有前面几个大哥那么昂贵 图1 功率测量仪器的组成 功率计分类 一、按照连接方式分类 射频或微波功率计按照在测试系统中的连接方式不同,又可分为:终端式和通过式两种。 终端式功率计把功率计探头作为测试系统的终端负载,功率计吸收全部待测功率,由功率指示器直接读取功率值。由于需要吸收全部入射功率,终端式功率计常用于测试小信号。 终端式功率计有如下特点: (1)在常见的射频和微波功率测量仪器中,终端式功率计的幅度测量精度是最高的,超越了频谱仪或者信号分析仪,典型测量精度可以达到±1.6%. (2)不能测量大功率。通常上限为+20dBm,下限为-60dBm左右。 (3)可以测量各种调制信号的平均功率、峰值功率、突发功率等。 通过式功率计,它是利用某种耦合装置,如定向耦合器、耦合环、探针等从传输的功率中按一定的比例耦合出一部分功率,送入功率计度量,传输的总功率等于功率计指示值乘以比例系数。通过式功率计的业内先驱是Bird,射频微波的老人应该都知道。下图就是典型的通过式功率计的原理框图:

图2. 通过式功率计的原理框图 通过式功率计的主要特点; (1)通过式功率计具有大功率测量能力。理论上来说,只要传输线可以通过的功率,通过式功率计都可以测量。所以广电上动辄上千瓦的功率,都是由通过式功率计来测量的。 (2)通过式功率计很难做到宽带,这是由于里面的定向耦合器的限制。 (3)由于定向耦合器的耦合度存在,通过式功率计不能用于太小的功率测量。这个和终端式功率计正好各有所长。 二、按照灵敏度和测量范围分类 射频或微波功率计按灵敏度和测量范围分类,可以分为测热电阻型功率计、热电偶型功率计、量热式功率计、晶体检波式功率计。 测热电阻型功率计使用热变电阻做功率传感元件。热变电阻值的温度系数较大。被测信号的功率被热变电阻吸收后产生热量,使其自身温度升高,电阻值发生显著变化,利用电阻电桥测量电阻值的变化,显示功率值。 热电偶型功率计热电偶型功率计中的热偶结直接吸收高频信号功率,结点温度升高,产生温差电势,电势的大小正比于吸收的高频功率值。这种功率计的测量精度比较高,一般用于比较精确的功率测量。

浅谈射频功率计

浅谈射频功率计 射频功率计是用来测量发射机射频输出功率的仪器,简称功率计。还有测量交直流功率的功率计和测量光波、激光的光功率计。 一、功率计分类 依测量方式、工作原理、量程大小、被测信号形式和传输线类型等进行分类。 ※根据功率计接入传输系统的方式可分为吸收(终端)式和通过 式功率计。 ※功率计依所用的变换器可分为热效应功率计(如量热式功率计、测热电阻功率计和热电式功率计等)、有质功率计、电子式功率计(二极管功率计和霍耳效应功率计)、铁氧体功率计和量子干涉效应功率计等。 ※根据测量的功率量程可分为小功率计、中功率计和大功率计。一般功率量程小于10毫瓦者为小功率计(又称为微功率计)。微功率计一般用于科研和计量,属于专业应用。10毫瓦至10瓦者为中功率计,大于10瓦的为大功率计。 ※根据被测信号形式分为连续波功率计和脉冲功率计。 ※根据传输线类型分为同轴功率计和波导功率计。 A、通过式功率计 通过式功率计有输入和输出两个端口,工作时串联在发射机和天线之间,可以实现在线检测和在线监测。其独立检测发射机输出功率,需要在功率计的天线输出端口上安装匹配负载。通过式功率计只有在

负载匹配的情况下,其测量读数才能确保一定的准确度。 通过式功率计内部大部分都采用耦合方式进行检测(超短波使用微带结构)。 优点:电路简单可以做成定向耦合器电路检测天馈系统中正向和反向功率,还可以加入驻波比指示功能。 缺点:工作频率比较窄,如果做成宽带形式则带内测量波动比较大难以保证测量准确度。大部分通过式功率计测量范围包含短波和超短波(UHF)的宽频驻波比/功率计,其内部短波和超短波检测电路是分开的,通常输入输出也是分开的两组端口。 通过式功率计典型厂家鸟牌,钻石、安捷伦、罗德斯瓦茨。 B、吸收式功率计 吸收式功率计又称为终端式功率计,只有一个输入口,用来离线检测发射机的输出功率。 传统吸收式功率计内部结构有耦合测量型、电热偶型、热敏电阻型。晶体二极管检波型。 *耦合测量型相当于内置匹配负载的通过式功率计,确保负载匹配良好。 *电热偶型功率计电热偶采用两种不同的金属材料组成,通过检测热结点的温差电势来指示功率。 *热敏电阻型功率计采用自动平衡电桥来检测热敏电阻承受到功率发热后的电阻变化来指示功率,具有线性好测量频率特别宽的特点。在实际电路中,采取一些温度补偿措施来减少环境温度变化对热

相关文档
最新文档