2020-2021中考数学 相似 综合题及详细答案
2021年九年级数学中考一轮复习与相似三角形有关的综合性解答题专项训练(含答案)

2021年九年级数学中考一轮复习与相似三角形有关的综合性解答题专项训练(含答案)1.如图,△ABC和△BEC均为等腰直角三角形,且∠ACB=∠BEC=90°,AC=4,点P为线段BE延长线上一点,连接CP以CP为直角边向下作等腰直角△CPD,线段BE 与CD相交于点F(1)求证:;(2)连接BD,请你判断AC与BD有什么位置关系?并说明理由;(3)设PE=x,△PBD的面积为S,求S与x之间的函数关系式.2.如图,△ADE由△ABC绕点A按逆时针方向旋转90°得到,且点B的对应点D恰好落在BC的延长线上,AD,EC相交于点P.(1)求∠BDE的度数;(2)F是EC延长线上的点,且∠CDF=∠DAC.①判断DF和PF的数量关系,并证明;②求证:=.3.如图,在矩形ABCD中,AB=20,点E是BC边上的一点,将△ABE沿着AE折叠,点B刚好落在CD边上点G处;点F在DG上,将△ADF沿着AF折叠,点D刚好落在AG 上点H处,此时S△GFH:S△AFH=2:3,(1)求证:△EGC∽△GFH;(2)求AD的长;(3)求tan∠GFH的值.4.如图1,矩形ABCD中,点E为AB边上的动点(不与A,B重合),把△ADE沿DE翻折,点A的对应点为A1,延长EA1交直线DC于点F,再把∠BEF折叠,使点B的对应点B1落在EF上,折痕EH交直线BC于点H.(1)求证:△A1DE∽△B1EH;(2)如图2,直线MN是矩形ABCD的对称轴,若点A1恰好落在直线MN上,试判断△DEF的形状,并说明理由;(3)如图3,在(2)的条件下,点G为△DEF内一点,且∠DGF=150°,试探究DG,EG,FG的数量关系.5.如图1所示,在四边形ABCD中,点O,E,F,G分别是AB,BC,CD,AD的中点,连接OE,EF,FG,GO,GE.(1)证明:四边形OEFG是平行四边形;(2)将△OGE绕点O顺时针旋转得到△OMN,如图2所示,连接GM,EN.①若OE=,OG=1,求的值;②试在四边形ABCD中添加一个条件,使GM,EN的长在旋转过程中始终相等.(不要求证明)6.在四边形ABCD中,点E为AB边上的一点,点F为对角线BD上的一点,且EF⊥AB.(1)若四边形ABCD为正方形.①如图1,请直接写出AE与DF的数量关系;②将△EBF绕点B逆时针旋转到图2所示的位置,连接AE,DF,猜想AE与DF的数量关系并说明理由;(2)如图3,若四边形ABCD为矩形,BC=mAB,其它条件都不变,将△EBF绕点B 顺时针旋转α(0°<α<90°)得到△E'BF',连接AE',DF',请在图3中画出草图,并直接写出AE'与DF'的数量关系.7.如图,在Rt△ABC中,∠ACB=90°,AC=5cm,∠BAC=60°,动点M从点B出发,在BA边上以每秒2cm的速度向点A匀速运动,同时动点N从点C出发,在CB边上以每秒cm的速度向点B匀速运动,设运动时间为t秒(0≤t≤5),连接MN.(1)若BM=BN,求t的值;(2)若△MBN与△ABC相似,求t的值;(3)当t为何值时,四边形ACNM的面积最小?并求出最小值.8.在△ABC中,P为边AB上一点.(1)如图1,若∠ACP=∠B,求证:AC2=AP•AB;(2)若M为CP的中点,AC=2.①如图2,若∠PBM=∠ACP,AB=3,求BP的长;②如图3,若∠ABC=45°,∠A=∠BMP=60°,直接写出BP的长.9.阅读理解:我们知道,四边形具有不稳定性,容易变形,如图1,一个矩形发生变形后成为一个平行四边形,设这个平行四边形相邻两个内角中较小的一个内角为α,我们把的值叫做这个平行四边形的变形度.(1)若矩形发生变形后的平行四边形有一个内角是120度,则这个平行四边形的变形度是.猜想证明:(2)设矩形的面积为S1,其变形后的平行四边形面积为S2,试猜想S1,S2,之间的数量关系,并说明理由;拓展探究:(3)如图2,在矩形ABCD中,E是AD边上的一点,且AB2=AE•AD,这个矩形发生变形后为平行四边形A1B1C1D1,E1为E的对应点,连接B1E1,B1D1,若矩形ABCD的面积为4(m>0),平行四边形A1B1C1D1的面积为2(m>0),试求∠A1E1B1+∠A1D1B1的度数.10.如图,在△ABC中,AB=AC=10cm,BD⊥AC于点D,BD=8cm.点M从点A出发,沿AC的方向匀速运动,速度为2cm/s;同时直线PQ由点B出发,沿BA的方向匀速运动,速度为1cm/s,运动过程中始终保持PQ∥AC,直线PQ交AB于点P、交BC于点Q、交BD于点F.连接PM,设运动时间为t秒(0<t<5).(1)当t为何值时,四边形PQCM是平行四边形?(2)设四边形PQCM的面积为ycm2,求y与t之间的函数关系式;(3)是否存在某一时刻t,使S四边形PQCM=S△ABC?若存在,求出t的值;若不存在,说明理由;(4)连接PC,是否存在某一时刻t,使点M在线段PC的垂直平分线上?若存在,求出此时t的值;若不存在,说明理由.11.(1)模型探究:如图1,D、E、F分别为△ABC三边BC、AB、AC上的点,且∠B=∠C=∠EDF=a.△BDE与△CFD相似吗?请说明理由;(2)模型应用:△ABC为等边三角形,其边长为8,E为AB边上一点,F为射线AC上一点,将△AEF沿EF翻折,使A点落在射线CB上的点D处,且BD=2.①如图2,当点D在线段BC上时,求的值;②如图3,当点D落在线段CB的延长线上时,求△BDE与△CFD的周长之比.12.如图,在矩形ABCD中,点P是BC边上任意一点(点P不与B、C重合),连接AP,作PQ⊥AP,交CD于点Q,若AB=6,BC=8.(1)试证明:△ABP∽△PCQ;(2)当BP为多少时,CQ最长,最长是多少?(3)试探究,是否存在一点P,使△APQ是等腰直角三角形?13.如图,在平面直角坐标系中,点O为坐标原点,A点的坐标为(3,0),以OA为边作等边三角形OAB,点B在第一象限,过点B作AB的垂线交x轴于点C.动点P从O点出发沿着OC向点C运动,动点Q从B点出发沿着BA向点A运动,P,Q两点同时出发,速度均为1个单位/秒.当其中一个点到达终点时,另一个点也随之停止.设运动时间为t秒.(1)求线段BC的长;(2)过点Q作x轴垂线,垂足为H,问t为何值时,以P、Q、H为顶点的三角形与△ABC相似;(3)连接PQ交线段OB于点E,过点E作x轴的平行线交线段BC于点F.设线段EF 的长为m,求m与t之间的函数关系式,并直接写出自变量t的取值范围.14.课外兴趣小组活动时,老师提出了如下问题.如图1,△ABC中,若AB=12,AC=8,求BC边上的中线AD的取值范围.小颖在组内经过合作交流,得到了如下的解决方法:如图2,延长AD到点E,使DE=AD,连结BE.请根据小颖的方法思考:(1)由已知和作图能得到△ADC≌△EDB,依据是;A.SSS B.SAS C.AAS D.HL(2)由“三角形的三边关系”可求得AD的取值范围是.解后反思:题目中出现“中点”“中线”等条件,可考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集合到同一个三角形中.完成上题之后,小颖善于探究,她又提出了如下的问题,请你解答.(3)在△ABC中,D是BC上一点,连结AD,E是AD上一点,连结BE并延长交边AC 于点F.①如图3,若AD是△ABC的中线,且AF=EF,求证:AC=BE.②如图4,若E是BF的中点,求证:AF•CD=AC•BD15.如图,平面直角坐标系中,菱形OABC的边OA在x轴正半轴上,OA=10,cos∠COA =.一个动点P从点O出发,以每秒1个单位长度的速度沿线段OA方向运动,过点P作PQ⊥OA,交折线段OC﹣CB于点Q,以PQ为边向右作正方形PQMN,点N在射线OA上,当P点到达A点时,运动结束.设点P的运动时间为t秒(t>0).(1)C点的坐标为,当t=时N点与A点重合;(2)在整个运动过程中,设正方形PQMN与菱形OABC的重合部分面积为S,直接写出S与t之间的函数关系式和相应的自变量t的取值范围;(3)如图2,在运动过程中,过点O和点B的直线将正方形PQMN分成了两部分,请问是否存在某一时刻,使得被分成的两部分中有一部分的面积是菱形面积的?若存在,请求出对应的t的值;若不存在,请说明理由.16.如图,四边形ABCD是矩形.(1)如图1,E、F分别是AD、CD上的点,BF⊥CE,垂足为G,连接AG.①求证:;②若G为CE的中点,求证:sin∠AGB=;(2)如图2,将矩形ABCD沿MN折叠,点A落在点R处,点B落在CD边的点S处,连接BS交MN于点P,Q是RS的中点.若AB=2,BC=3,直接写出PS+PQ的最小值为.17.如图,四边形ABCD是正方形,点E、F分别是BC、CD上的点,且BE=CF,连接AE、BF交于点P.(1)如图①,判断AE和BF之间的数量关系和位置关系,并证明;(2)如图②,连接AF,点M是AF中点,若BE=2,CE=3,求线段PM的长度;(3)如图③,作CQ⊥BF于点Q,若△QAB∽△QEC,求证:点E是BC中点.参考答案:1.(1)证明:∵△BCE和△CDP均为等腰直角三角形,∴∠ECB=∠PCD=45°,∠CEB=∠CPD=90°,∴△BCE∽△DCP,∴;(2)解:AC∥BD,理由:∵∠PCE+∠ECD=∠BCD+∠ECD=45°,∴∠PCE=∠BCD,又∵=,∴△PCE∽△DCB,∴∠CBD=∠CEP=90°,∵∠ACB=90°,∴∠ACB=∠CBD,∴AC∥BD;(3)解:如图所示:作PM⊥BD于M,∵AC=4,△ABC和△BEC均为等腰直角三角形,∴BE=CE=4,∵△PCE∽△DCB,∴=,即=,∴BD=x,∵∠PBM=∠CBD﹣∠CBP=45°,BP=BE+PE=4+x,∴PM=sin45°•(4+x)=,∴△PBD的面积S=BD•PM=×x×=x2+2x.2.解:(1)∵△ADE由△ABC绕点A按逆时针方向旋转90°得到,∴AB=AD,∠BAD=90°,△ABC≌△ADE,在Rt△ABD中,∠B=∠ADB=45°,∴∠ADE=∠B=45°,∴∠BDE=∠ADB+∠ADE=90°.(2)①DF=PF.证明:由旋转的性质可知,AC=AE,∠CAE=90°,在Rt△ACE中,∠ACE=∠AEC=45°,∵∠CDF=∠CAD,∠ACE=∠ADB=45°,∴∠ADB+∠CDF=∠ACE+∠CAD,即∠FPD=∠FDP,∴DF=PF.②证明:过点P作PH∥ED交DF于点H,∴∠HPF=∠DEP,,∵∠DPF=∠ADE+∠DEP=45°+∠DEP,∠DPF=∠ACE+∠DAC=45°+∠DAC,∴∠DEP=∠DAC,又∵∠CDF=∠DAC,∴∠DEP=∠CDF,∴∠HPF=∠CDF,又∵FD=FP,∠F=∠F,∴△HPF≌△CDF(ASA),∴HF=CF,∴DH=PC,又∵,∴.3.(1)证明:∵四边形ABCD是矩形,由折叠对称知:∠AGE=∠B=90°,∠AHF=∠D=90°,∴∠GHF=∠C=90°,∠EGC+∠HGF=90°,∠GFH+∠HGF=90°,∴∠EGC=∠GFH,∴△EGC∽△GFH.(2)解:∵S△GFH:S△AFH=2:3,且△GFH和△AFH等高,∴GH:AH=2:3,∵将△ABE沿着AE折叠,点B刚好落在CD边上点G处,∴AG=AB=GH+AH=20,∴GH=8,AH=12,∴AD=AH=12.(3)解:在Rt△ADG中,DG===16,由折叠的对称性可设DF=FH=x,则GF=16﹣x,∵GH2+HF2=GF2,∴82+x2=(16﹣x)2,解得:x=6,∴HF=6,在Rt△GFH中,tan∠GFH=.4.解:(1)证明:由折叠的性质可知:∠DAE=∠DA1E=90°,∠EBH=∠EB1H=90°,∠AED=∠A1ED,∠BEH=∠B1EH,∴∠DEA1+∠HEB1=90°.∴∠DEA1=∠EHB1,∴△A1DE∽△B1EH;(2)结论:△DEF是等边三角形;理由如下:∵直线MN是矩形ABCD的对称轴,∴点A1是EF的中点,即A1E=A1F,在△A1DE和△A1DF中,∴△A1DE≌△A1DF(SAS),∴DE=DF,∠FDA1=∠EDA1,又∵△ADE≌△A1DE,∠ADF=90°.∴∠ADE=∠EDA1=∠FDA1=30°,∴∠EDF=60°,∴△DEF是等边三角形;(3)DG,EG,FG的数量关系是DG2+GF2=GE2,理由如下:由(2)可知△DEF是等边三角形;将△DGE顺时针旋转60°到△DG'F位置,如解图(1),∴G'F=GE,DG'=DG,∠GDG'=60°,∴△DGG'是等边三角形,∴GG'=DG,∠DGG'=60°,∵∠DGF=150°,∴∠G'GF=90°,∴G'G2+GF2=G'F2,∴DG2+GF2=GE2.5.解:(1)如图1,连接AC,∵点O、E、F、G分别是AB、BC、CD、AD的中点,∴OE∥AC、OE=AC,GF∥AC、GF=AC,∴OE∥GF,OE=GF,∴四边形OEFG是平行四边形;(2)①∵△OGE绕点O顺时针旋转得到△OMN,∴OG=OM、OE=ON,∠GOM=∠EON,∴=,∴△OGM∽△OEN,∴==.②添加AC=BD,如图2,连接AC、BD,∵点O、E、F、G分别是AB、BC、CD、AD的中点,∴OG=EF=BD、OE=GF=AC,∵AC=BD,∴OG=OE,∵△OGE绕点O顺时针旋转得到△OMN,∴OG=OM、OE=ON,∠GOM=∠EON,∴OG=OE、OM=ON,在△OGM和△OEN中,∵,∴△OGM≌△OEN(SAS),∴GM=EN.6.解:(1)①∵四边形ABCD为正方形,∴△ABD为等腰直角三角形,∴BD=AB,∵EF⊥AB,∴△BEF为等腰直角三角形,BF=BE,∴BD﹣BF=AB﹣BE,即DF=AE;故答案为DF=AE;②DF=AE.理由如下:∵△EBF绕点B逆时针旋转到图2所示的位置,∴∠ABE=∠DBF,∵=,=,∴=,∴△ABE∽△DBF,∴==,即DF=AE;(2)如图3,∵四边形ABCD为矩形,∴AD=BC=mAB,∴BD==AB,∵EF⊥AB,∴EF∥AD,∴△BEF∽△BAD,∴=,∴==,∵△EBF绕点B顺时针旋转α(0°<α<90°)得到△E'BF',∴∠ABE′=∠DBF′,BE′=BE,BF′=BF,∴==,∴△ABE′∽△DBF′,∴==,即DF′=AE′.7.解:(1)∵在Rt△ABC中,∠ACB=90°,AC=5,∠BAC=60°,∴∠B=30°,∴AB=2AC=10,.由题意知:BM=2t,,∴,∵BM=BN,∴,解得:.(2)分两种情况:①当△MBN∽△ABC时,则,即,解得:.②当△NBM∽△ABC时,则,即,解得:.综上所述:当或时,△MBN与△ABC相似.(3)过M作MD⊥BC于点D,则MD∥AC,∴△BMD∽△BAC,∴,即,解得:MD=t.设四边形ACNM的面积为y,∴y===.∴根据二次函数的性质可知,当时,y的值最小.此时,.8.解:(1)∵∠ACP=∠B,∠A=∠A,∴△ACP∽△ABC,∴,∴AC2=AP•AB;(2)①取AP的中点G,连接MG,设AG=x,则PG=x,BG=3﹣x,∵M是PC的中点,∴MG∥AC,∴∠BGM=∠A,∵∠ACP=∠PBM,∴△APC∽△GMB,∴,即,∴x=,∵AB=3,∴AP=3﹣,∴PB=;②过C作CH⊥AB于H,延长AB到E,使BE=BP,设BP=x.∵∠ABC=45°,∠A=60°,∴CH=,HE=+x,∵CE2=()2+(+x)2,∵PB=BE,PM=CM,∴BM∥CE,∴∠PMB=∠PCE=60°=∠A,∵∠E=∠E,∴△ECP∽△EAC,∴,∴CE2=EP•EA,∴3+3+x2+2x=2x(x++1),∴x=﹣1,∴PB=﹣1.9.解:(1)∵平行四边形有一个内角是120度,∴α=60°,∴==;故答案为:;(2)=,理由:如图1,设矩形的长和宽分别为a,b,变形后的平行四边形的高为h,∴S1=ab,S2=ah,sinα=,∴==,∵=,∴=;(3)∵AB2=AE•AD,∴A1B12=A1E1•A1D1,即=,∵∠B1A1E1=∠D1A1B1,∴△B1A1E1∽△D1A1B1,∴∠A1B1E1=∠A1D1B1,∵A1D1∥B1C1,∴∠A1E1B1=∠C1B1E1,∴∠A1E1B1+∠A1D1B1=∠C1B1E1+∠A1B1E1=∠A1B1C1,由(2)知=可知==2,∴sin∠A1B1C1=,∴∠A1B1C1=30°,∴∠A1E1B1+∠A1D1B1=30°.10.解:(1)假设四边形PQCM是平行四边形,则PM∥QC,∴AP:AB=AM:AC,∵AB=AC,∴AP=AM,即10﹣t=2t,解得:t=,∴当t=时,四边形PQCM是平行四边形;(2)∵PQ∥AC,∴△PBQ∽△ABC,∴△PBQ为等腰三角形,PQ=PB=t,∴,即,解得:BF=t,∴FD=BD﹣BF=8﹣t,又∵MC=AC﹣AM=10﹣2t,∴y=(PQ+MC)•FD=(t+10﹣2t)(8﹣t)=t2﹣8t+40;(3)不存在;∵S△ABC==×10×8=40,当S四边形PQCM=S△ABC时,y=t2﹣8t+40=40,解得:t=0,或t=20,都不合题意,因此不存在;(4)假设存在某一时刻t,使得M在线段PC的垂直平分线上,则MP=MC,过M作MH⊥AB,交AB于H,如图所示:∵∠A=∠A,∠AHM=∠ADB=90°,∴△AHM∽△ADB,∴,又∵AD==6,∴,∴HM t,AH=t,∴HP=10﹣t﹣t=10﹣t,在Rt△HMP中,MP2=+=t2﹣44t+100,又∵MC2=(10﹣2t)2=100﹣40t+4t2,∵MP2=MC2,∴t2﹣44t+100=100﹣40t+4t2,解得,t2=0(舍去),∴t=s时,点M在线段PC的垂直平分线上.11.解:(1)△BDE∽△CFD,理由:∠B=∠C=∠EDF=a,在△BDE中,∠B+∠BDE+∠BED=180°,∴∠BDE+∠BED=180°﹣∠B=180°﹣α,∵∠BDE+∠EDF+∠CDF=180°,∴∠BDE+∠CDF=180°﹣∠EDF=180°﹣α,∴∠BED=∠CDF,∵∠B=∠C,∴△BDE∽△CFD;(2)①设AE=x,AF=y,∵△ABC是等边三角形,∴∠A=∠B=∠C=60°,AB=BC=AC=8,由折叠知,DE=AE=x,DF=AF=y,∠EDF=∠A=60°,在△BDE中,∠B+∠BDE+∠BED=180°,∴∠BDE+∠BED=180°﹣∠B=120°,∵∠BDE+∠EDF+∠CDF=180°,∴∠BDE+∠CDF=180°﹣∠EDF=120°,∴∠BED=∠CDF,∵∠B=∠C=60°,∴△BDE∽△CFD,∴∵BE=AB﹣AE=8﹣x,CF=AC﹣AF=8﹣y,CD=BC﹣BD=6,∴,∴,∴,∴;②设AE=x,AF=y,∵△ABC是等边三角形,∴∠A=∠ABC=∠ACB=60°,AB=BC=AC=8,由折叠知,DE=AE=x,DF=AF=y,∠EDF=∠A=60°,在△BDE中,∠ABC+∠BDE+∠BED=180°,∴∠BDE+∠BED=180°﹣∠ABC=120°,∵∠BDE+∠EDF+∠CDF=180°,∴∠BDE+∠CDF=180°﹣∠EDF=120°,∴∠BED=∠CDF,∵∠ABC=∠ACB=60°,∴∠DBE=∠DCF=120°,∴△BDE∽△CFD,∴∵BE=AB﹣AE=8﹣x,CF=AF﹣AC=y﹣8,CD=BC+BD=10,∴,∴,∴=.∵△BDE∽△CFD,∴△BDE与△CFD的周长之比为==.12.解:(1)∵PQ⊥AP,∴∠APB+∠QPC=90°,而∠QPC+∠PQC=90°,∴∠APB=∠PQC,∵∠ABP=∠PCQ=90°,∴△ABP∽△PCQ;(2)∵△ABP∽△PCQ,∴,即,则CQ=﹣x2+x=﹣(x﹣4)2+≥,故当x=4时,CQ的最大值为,即BP为4时,CQ最长,最长是;(3)∵△APQ是等腰直角三角形,则P A=PQ,而△ABP∽△PCQ,则△ABP≌△PCQ(AAS),∴AB=PC=6,则BP=8﹣6=2,即BP=2时,△APQ是等腰直角三角形.13.(1)解:如图1,∵△AOB为等边三角形,∴∠BAC=∠AOB=60°.∵BC⊥AB,∴∠ABC=90°,∴∠ACB=30°,∠OBC=30°∴∠ACB=∠OBC,∴CO=OB=AB=OA=3,∴AC=6,∴BC=AC=;(2)如图2,过点Q作x轴垂线,垂足为H,则QH=AQ•sin60°=.需要分类讨论:当△PHQ∽△ABC时,=,即==,解得,t=0.同理,当△QHP∽△ABC时,t=1.综上所述,t=0或t=1;(3)解:如图1,过点Q作QN∥OB交x轴于点N.∴∠QNA=∠BOA=60°=∠QAN,∴QN=QA∴△AQN为等边三角形,∴NQ=NA=AQ=3﹣t,∴ON=3﹣(3﹣t)=t,∴PN=t+t=2t,∴OE∥QN.∴△POE∽△PNQ∴,∴,∴∵EF∥x轴,∴∠BFE=∠BCO=∠FBE=30°∴EF=BE,∴m=BE=OB﹣OE=(0<t<3).14.(1)解:在△ADC和△EDB中,,∴△ADC≌△EDB(SAS),故选:B;(2)解:∵△ADC≌△EDB,∴BE=AC,在△ABE中,AB﹣BE<AE<AB+BE,∴4<2AD<20,∴2<AD<10,故答案为:2<AD<10;(3)①证明:如图③,延长AD到点G,使DG=AD,连接BG.∵AD=DG,∠ADC=∠GDB,CD=DB,∴△ADC≌△GDB(SAS),∴AC=BG,∠DAC=∠G,∴BG∥AC,∴∠F AE=∠G,∵AF=EF,∴∠F AE=∠AEF,∴∠BEG=∠G,∴BE=BG,∴AC=BE.②证明:延长AD到H,使得EH=AE,连接BH.∵AE=EH,∠AEF=∠BEH,EF=EB,∴△AEF≌△HEB(SAS),∴BH=AF,∠H=∠EAF,∴BH∥AC,∴△BDH∽△CDA,∴=,∴=,∴AF•CD=AC•BD.15.解:(1)∵菱形OABC中,OA=10,∴OC=10,∵cos∠COA=,∴点C的坐标为:(6,8),∵动点P从点O出发,以每秒1个单位长度的速度沿线段OA方向运动,∵cos∠COA==,OP=t,∴OQ=t,∴QP=t,∵OA=10,N点与A点重合,∴t+t=10,∴t=∴t=时,N点与A点重合;(2)①,②,③,④8<t≤10,S=104﹣8t;(3)S菱形=80,直线OB过原点(0,0),B点(16,8),故直线OB解析式为,直线OB与PQ、MN分别交于E、F点,如图:①当0<t≤6,,,,,若,则,,若,则,,②当6<t≤8,,,,,若则,t=0(舍),若,则,t3=8;③8<t≤10,不存在符合条件的t值.16.(1)①证明:如图1中,∵四边形ABCD是矩形,∴∠CDE=∥BCF=90°,∵BF⊥CE,∴∠BGC=90°,∴∠BCG+∠FBC=∠BCG+∠ECD=90°,∴∠FBC=∠ECD,∴△FBC∽△ECD,∴=.②证明:如图1中,连接BE,GD.∵BF⊥CE,EG=CG,∴BF垂直平分线段EC,∴BE=CB,∠EBG=∠CBG,∵DG=CG,∴∠CDG=∠GCD,∵∠ADG+∠CDG=90°,∠BCG+∠ECD=90°,∴∠ADG=∠BCG,∵AD=BC,∴△ADG≌△BCG(SAS),∴∠DAG=∠CBG,∴∠DAG=∠EBG,∴∠AEB=∠AGB,∴sin∠AGB=sin∠AEB====.(2)如图2中,取AB的中点T,连接PT,CP.∵四边形MNSR与四边形MNBA关于MN对称,T是AB中点,Q是SR中点,∴PT=PQ,MN垂直平分线段BS,∴BP=PS,∵∠BCS=90°,∴PC=PS=PB,∴PQ+PS=PT+PC,当T,P,C共线时,PQ+PS的值最小,最小值===,∴PQ+PS的最小值为.故答案为.17.解:(1)AE=BF,AE⊥BF,证明:∵四边形ABCD是正方形,∴AB=BC,∠ABC=∠BCD=90°,∵BE=CF,∴△ABE≌△BCF(SAS),∴AE=BF,∠BAE=∠CBF,∵∠ABP+∠CBF=90°∴∠BAE+∠ABP=90°∴∠APB=90°,∴AE⊥BF;(2)∵四边形ABCD是正方形,∴BC=DC=AD,由(1)知,AE=BF,∵BE=2,CE=3,BE=CF,∴DF=DC﹣CF=BC﹣BE=CE=3,AD=BC=BE+CE=2+3=5,在Rt△ADF中,由勾股定理得,AF===,在Rt△APF中,∠APF=90°,点M是AF中点,∴;(3)∵CQ⊥BF,∴∠BQC=∠BCF=90°,又∠CBQ=∠FBC,∴△CBQ~△FBC,∴,∵AB=BC,BE=CF,∴,∵△QAB~△QEC,∴,∴,∴,∴BE=CE,∴点E是BC中点。
2020-2021备战中考数学——初中数学 旋转的综合压轴题专题复习附答案解析

2020-2021备战中考数学——初中数学旋转的综合压轴题专题复习附答案解析一、旋转1.操作与证明:如图1,把一个含45°角的直角三角板ECF和一个正方形ABCD摆放在一起,使三角板的直角顶点和正方形的顶点C重合,点E、F分别在正方形的边CB、CD上,连接AF.取AF中点M,EF的中点N,连接MD、MN.(1)连接AE,求证:△AEF是等腰三角形;猜想与发现:(2)在(1)的条件下,请判断MD、MN的数量关系和位置关系,得出结论.结论1:DM、MN的数量关系是;结论2:DM、MN的位置关系是;拓展与探究:(3)如图2,将图1中的直角三角板ECF绕点C顺时针旋转180°,其他条件不变,则(2)中的两个结论还成立吗?若成立,请加以证明;若不成立,请说明理由.【答案】(1)证明参见解析;(2)相等,垂直;(3)成立,理由参见解析.【解析】试题分析:(1)根据正方形的性质以及等腰直角三角形的知识证明出CE=CF,继而证明出△ABE≌△ADF,得到AE=AF,从而证明出△AEF是等腰三角形;(2)DM、MN的数量关系是相等,利用直角三角形斜边中线等于斜边一半和三角形中位线定理即可得出结论.位置关系是垂直,利用三角形外角性质和等腰三角形两个底角相等性质,及全等三角形对应角相等即可得出结论;(3)成立,连接AE,交MD于点G,标记出各个角,首先证明出MN∥AE,MN=AE,利用三角形全等证出AE=AF,而DM=AF,从而得到DM,MN数量相等的结论,再利用三角形外角性质和三角形全等,等腰三角形性质以及角角之间的数量关系得到∠DMN=∠DGE=90°.从而得到DM、MN的位置关系是垂直.试题解析:(1)∵四边形ABCD是正方形,∴AB=AD=BC=CD,∠B=∠ADF=90°,∵△CEF 是等腰直角三角形,∠C=90°,∴CE=CF,∴BC﹣CE=CD﹣CF,即BE=DF,∴△ABE≌△ADF,∴AE=AF,∴△AEF是等腰三角形;(2)DM、MN的数量关系是相等,DM、MN的位置关系是垂直;∵在Rt△ADF中DM是斜边AF的中线,∴AF=2DM,∵MN 是△AEF的中位线,∴AE=2MN,∵AE=AF,∴DM=MN;∵∠DMF=∠DAF+∠ADM,AM=MD,∵∠FMN=∠FAE,∠DAF=∠BAE,∴∠ADM=∠DAF=∠BAE,∴∠DMN=∠FMN+∠DMF=∠DAF+∠BAE+∠FAE=∠BAD=90°,∴DM⊥MN;(3)(2)中的两个结论还成立,连接AE,交MD于点G,∵点M为AF的中点,点N为EF的中点,∴MN∥AE,MN=AE,由已知得,AB=AD=BC=CD,∠B=∠ADF,CE=CF,又∵BC+CE=CD+CF,即BE=DF,∴△ABE≌△ADF,∴AE=AF,在Rt△ADF中,∵点M为AF的中点,∴DM=AF,∴DM=MN,∵△ABE≌△ADF,∴∠1=∠2,∵AB∥DF,∴∠1=∠3,同理可证:∠2=∠4,∴∠3=∠4,∵DM=AM,∴∠MAD=∠5,∴∠DGE=∠5+∠4=∠MAD+∠3=90°,∵MN∥AE,∴∠DMN=∠DGE=90°,∴DM⊥MN.所以(2)中的两个结论还成立.考点:1.正方形的性质;2.全等三角形的判定与性质;3.三角形中位线定理;4.旋转的性质.2.已知正方形ABCD的边长为4,一个以点A为顶点的45°角绕点A旋转,角的两边分别与BC、DC的延长线交于点E、F,连接EF,设CE=a,CF=b.(1)如图1,当a=42时,求b的值;(2)当a=4时,在图2中画出相应的图形并求出b的值;(3)如图3,请直接写出∠EAF绕点A旋转的过程中a、b满足的关系式.【答案】(1)422)b=8;(3)ab=32.【解析】试题分析:(1)由正方形ABCD的边长为4,可得AC=2,∠ACB=45°.再CE=a=2∠CAE=∠AEC,从而可得∠CAF的度数,既而可得 b=AC;(2)通过证明△ACF∽△ECA,即可得;(3)通过证明△ACF∽△ECA,即可得.试题解析:(1)∵正方形ABCD的边长为4,∴AC=42,∠ACB=45°.∵CE=a=42,∴∠CAE=∠AEC=452︒=22.5°,∴∠CAF=∠EAF-∠CAE=22.5°,∴∠AFC=∠ACD-∠CAF=22.5°,∴∠CAF=∠AFC,∴b=AC=CF=42;(2)∵∠FAE=45°,∠ACB=45°,∴∠FAC+∠CAE=45°,∠CAE+∠AEC=45°,∴∠FAC =∠AEC.又∵∠ACF=∠ECA=135°,∴△ACF∽△ECA,∴AC CFEC CA=,∴42442=,∴CF=8,即b=8.(3)ab=32.提示:由(2)知可证△ACF∽△ECA,∴∴AC CFEC CA=,∴4242a=,∴ab=32.3.已知正方形ABCD 中,E 为对角线BD 上一点,过E 点作EF⊥BD 交BC 于F,连接DF,G 为DF 中点,连接EG,CG.(1) 求证:EG=CG;(2) 将图①中△BEF 绕B 点逆时针旋转 45∘,如图②所示,取DF 中点G,连接EG,CG.问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由;(3) 将图①中△BEF 绕B 点旋转任意角度,如图③所示,再连接相应的线段,问(1)中的结论是否仍然成立?通过观察你还能得出什么结论(均不要求证明).【答案】解:(1)CG=EG(2)(1)中结论没有发生变化,即EG=CG.证明:连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点.在△DAG与△DCG中,∵ AD=CD,∠ADG=∠CDG,DG=DG,∴△DAG≌△DCG.∴ AG=CG.在△DMG与△FNG中,∵∠DGM=∠FGN,FG=DG,∠MDG=∠NFG,∴△DMG≌△FNG.∴ MG=NG在矩形AENM中,AM=EN.在Rt△AMG 与Rt△ENG中,∵ AM=EN, MG=NG,∴△AMG≌△ENG.∴ AG=EG∴ EG=CG.(3)(1)中的结论仍然成立.【解析】试题分析:(1)利用直角三角形斜边上的中线等于斜边的一半,可证出CG=EG.(2)结论仍然成立,连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点;再证明△DAG≌△DCG,得出AG=CG;再证出△DMG≌△FNG,得到MG=NG;再证明△AMG≌△ENG,得出AG=EG;最后证出CG=EG.(3)结论依然成立.还知道EG⊥CG;试题解析:解:(1)证明:在Rt△FCD中,∵G为DF的中点,∴,同理,在Rt△DEF中,,∴CG=EG;(2)(1)中结论仍然成立,即EG=CG;连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点,如图所示:在△DAG与△DCG中,∵AD=CD,∠ADG=∠CDG,DC=DC,∴△DAG≌△DCG,∴AG=CG,在△DMG与△FNG中,∵∠DGM=∠FGN,DG=FG,∠MDG=∠NFG,∴△DMG≌△FNG,∴MG=NG,在矩形AENM中,AM=EN.,在Rt△AMG与Rt△ENG中,∵AM=EN,MG=NG,∴△AMG≌△ENG,∴AG=EG,∴EG=CG,(3)(1)中的结论仍然成立,即EG=CG且EG⊥CG。
中考数学专题复习圆与相似的综合题及详细答案

中考数学专题复习圆与相似的综合题及详细答案一、相似1.如图,AB是半圆O的直径,AB=2,射线AM、BN为半圆O的切线.在AM上取一点D,连接BD交半圆于点C,连接AC.过O点作BC的垂线OE,垂足为点E,与BN相交于点F.过D点作半圆O的切线DP,切点为P,与BN相交于点Q.(1)若△ABD≌△BFO,求BQ的长;(2)求证:FQ=BQ【答案】(1)解:∵≌,∴,∵均为半圆切线,∴ .连接 ,则,∴四边形为菱形,∴DQ∥,∵均为半圆切线,∴∥,∴四边形为平行四边形∴,(2)证明:易得∽,∴ = ,∴ .∵是半圆的切线,∴ .过点作于点,则 .在中,,∴,解得:,∴∴【解析】【分析】(1)连接OP,由ΔABD≌ΔBFO可得AD=OB,由切线长定理可得AD=DP,于是易得OP=OA=DA=DP,根据菱形的判定可得四边形DAOP为菱形,则可得DQ∥AB,易得四边形DABQ为平行四边形,根据平行四边形的性质可求解;(2)过Q点作QK⊥AM于点K,由已知易证得ΔABD∽ΔBFO,可得比例式,可得BF与AD的关系,由切线长定理可得AD=DP,QB=QP ,解直角三角形DQK可求得BQ与AD 的关系,则根据FQ=BF−BQ可得FQ与AD的关系,从而结论得证。
2.如图1,经过原点O的抛物线y=ax2+bx(a≠0)与x轴交于另一点A(,0),在第一象限内与直线y=x交于点B(2,t).(1)求这条抛物线的表达式;(2)在第四象限内的抛物线上有一点C,满足以B,O,C为顶点的三角形的面积为2,求点C的坐标;(3)如图2,若点M在这条抛物线上,且∠MBO=∠ABO,在(2)的条件下,是否存在点P,使得△POC∽△MOB?若存在,求出点P的坐标;若不存在,请说明理由.【答案】(1)解:∵B(2,t)在直线y=x上,∴t=2,∴B(2,2),把A、B两点坐标代入抛物线解析式可得,解得,∴抛物线解析式为y=2x2﹣3x(2)解:如图1,过C作CD∥y轴,交x轴于点E,交OB于点D,过B作BF⊥CD于点F,∵点C是抛物线上第四象限的点,∴可设C(t,2t2﹣3t),则E(t,0),D(t,t),∴OE=t,BF=2﹣t,CD=t﹣(2t2﹣3t)=﹣2t2+4t,∴S△OBC=S△CDO+S△CDB= CD•OE+ CD•BF= (﹣2t2+4t)(t+2﹣t)=﹣2t2+4t,∵△OBC的面积为2,∴﹣2t2+4t=2,解得t1=t2=1,∴C(1,﹣1)(3)解:存在.设MB交y轴于点N,如图2,∵B(2,2),∴∠AOB=∠NOB=45°,在△AOB和△NOB中∴△AOB≌△NOB(ASA),∴ON=OA= ,∴N(0,),∴可设直线BN解析式为y=kx+ ,把B点坐标代入可得2=2k+ ,解得k= ,∴直线BN的解析式为y= x+ ,联立直线BN和抛物线解析式可得,解得或,∴M(﹣,),∵C(1,﹣1),∴∠COA=∠AOB=45°,且B(2,2),∴OB=2 ,OC= ,∵△POC∽△MOB,∴ = =2,∠POC=∠BOM,当点P在第一象限时,如图3,过M作MG⊥y轴于点G,过P作PH⊥x轴于点H,∵∠COA=∠BOG=45°,∴∠MOG=∠POH,且∠PHO=∠MGO,∴△MOG∽△POH,∴ = = =2,∵M(﹣,),∴MG= ,OG= ,∴PH= MG= ,OH= OG= ,∴P(,);当点P在第三象限时,如图4,过M作MG⊥y轴于点G,过P作PH⊥y轴于点H,同理可求得PH= MG= ,OH= OG= ,∴P(﹣,);综上可知存在满足条件的点P,其坐标为(,)或(﹣,)【解析】【分析】(1)根据已知抛物线在第一象限内与直线y=x交于点B(2,t),可求出点B的坐标,再将点A、B的坐标分别代入y=ax2+bx,建立二元一次方程组,求出a、b的值,即可求得答案。
2020-2021备战中考数学压轴题专题复习——平行四边形的综合含答案

2020-2021备战中考数学压轴题专题复习——平行四边形的综合含答案一、平行四边形1.如图,△ABC中,AD是边BC上的中线,过点A作AE∥BC,过点D作DE∥AB,DE与AC、AE分别交于点O、点E,连接EC.(1)求证:AD=EC;(2)当∠BAC=Rt∠时,求证:四边形ADCE是菱形.【答案】(1)见解析;(2)见解析.【解析】【分析】(1)先证四边形ABDE是平行四边形,再证四边形ADCE是平行四边形即可;(2)由∠BAC=90°,AD是边BC上的中线,得AD=BD=CD,即可证明.【详解】(1)证明:∵AE∥BC,DE∥AB,∴四边形ABDE是平行四边形,∴AE=BD,∵AD是边BC上的中线,∴BD=DC,∴AE=DC,又∵AE∥BC,∴四边形ADCE是平行四边形.(2) 证明:∵∠BAC=90°,AD是边BC上的中线.∴AD=CD∵四边形ADCE是平行四边形,∴四边形ADCE是菱形.【点睛】本题考查了平行四边形的判定、菱形的判定、直角三角形斜边中线定理.根据图形与已知条件灵活应用平行四边形的判定方法是证明的关键.2.如图(1)在正方形ABCD中,点E是CD边上一动点,连接AE,作BF⊥AE,垂足为G 交AD于F(1)求证:AF=DE;(2)连接DG,若DG平分∠EGF,如图(2),求证:点E是CD中点;(3)在(2)的条件下,连接CG,如图(3),求证:CG=CD.【答案】(1)见解析;(2)见解析;(3)CG=CD,见解析.【解析】【分析】(1)证明△BAF≌△ADE(ASA)即可解决问题.(2)过点D作DM⊥GF,DN⊥GE,垂足分别为点M,N.想办法证明AF=DF,即可解决问题.(3)延长AE,BC交于点P,由(2)知DE=CD,利用直角三角形斜边中线的性质,只要证明BC=CP即可.【详解】(1)证明:如图1中,在正方形ABCD中,AB=AD,∠BAD=∠D=90o,∴∠2+∠3=90°又∵BF⊥AE,∴∠AGB=90°∴∠1+∠2=90°,∴∠1=∠3在△BAF与△ADE中,∠1=∠3 BA=AD ∠BAF=∠D,∴△BAF≌△ADE(ASA)∴AF=DE.(2)证明:过点D作DM⊥GF,DN⊥GE,垂足分别为点M,N.由(1)得∠1=∠3,∠BGA=∠AND=90°,AB=AD ∴△BAG≌△ADN(AAS)∴AG=DN,又DG平分∠EGF,DM⊥GF,DN⊥GE,∴DM=DN,∴DM=AG,又∠AFG=∠DFM,∠AGF=∠DMF∴△AFG≌△DFM(AAS),∴AF=DF=DE=12AD=12CD,即点E是CD的中点.(3)延长AE,BC交于点P,由(2)知DE=CD,∠ADE=∠ECP=90°,∠DEA=∠CEP,∴△ADE≌△PCE(ASA)∴AE=PE,又CE∥AB,∴BC=PC,在Rt△BGP中,∵BC=PC,∴CG=12BP=BC,∴CG=CD.【点睛】本题属于四边形综合题,考查了正方形的性质,全等三角形的判定和性质,角平分线的性质定理,直角三角形斜边中线的性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考压轴题.3.(1)如图①,在矩形ABCD中,对角线AC与BD相交于点O,过点O作直线EF⊥BD,交AD 于点E ,交BC 于点F ,连接BE 、DF ,且BE 平分∠ABD .①求证:四边形BFDE 是菱形;②直接写出∠EBF 的度数;(2)把(1)中菱形BFDE 进行分离研究,如图②,点G 、I 分别在BF 、BE 边上,且BG=BI ,连接GD ,H 为GD 的中点,连接FH 并延长,交ED 于点J ,连接IJ 、IH 、IF 、IG.试探究线段IH 与FH 之间满足的关系,并说明理由;(3)把(1)中矩形ABCD 进行特殊化探究,如图③,当矩形ABCD 满足AB=AD 时,点E 是对角线AC 上一点,连接DE 、EF 、DF ,使△DEF 是等腰直角三角形,DF 交AC 于点G.请直接写出线段AG 、GE 、EC 三者之间满足的数量关系.【答案】(1)①详见解析;②60°.(2)IH =3FH ;(3)EG 2=AG 2+CE 2.【解析】【分析】(1)①由△DOE ≌△BOF ,推出EO =OF ,∵OB =OD ,推出四边形EBFD 是平行四边形,再证明EB =ED 即可.②先证明∠ABD =2∠ADB ,推出∠ADB =30°,延长即可解决问题.(2)IH =3FH .只要证明△IJF 是等边三角形即可.(3)结论:EG 2=AG 2+CE 2.如图3中,将△ADG 绕点D 逆时针旋转90°得到△DCM ,先证明△DEG ≌△DEM ,再证明△ECM 是直角三角形即可解决问题.【详解】(1)①证明:如图1中,∵四边形ABCD 是矩形,∴AD ∥BC ,OB =OD ,∴∠EDO =∠FBO ,在△DOE 和△BOF 中,EDO FBO OD OBEOD BOF ∠∠⎧⎪⎨⎪∠∠⎩=== , ∴△DOE ≌△BOF ,∴EO =OF ,∵OB =OD ,∴四边形EBFD 是平行四边形,∵EF ⊥BD ,OB =OD ,∴EB =ED ,∴四边形EBFD 是菱形.②∵BE 平分∠ABD ,∴∠ABE =∠EBD ,∵EB =ED ,∴∠EBD =∠EDB ,∴∠ABD =2∠ADB ,∵∠ABD +∠ADB =90°,∴∠ADB =30°,∠ABD =60°,∴∠ABE =∠EBO =∠OBF =30°,∴∠EBF =60°.(2)结论:IH=3FH .理由:如图2中,延长BE 到M ,使得EM =EJ ,连接MJ .∵四边形EBFD 是菱形,∠B =60°,∴EB =BF =ED ,DE ∥BF ,∴∠JDH =∠FGH ,在△DHJ 和△GHF 中,DHG GHF DH GHJDH FGH ∠∠⎧⎪⎨⎪∠∠⎩=== , ∴△DHJ ≌△GHF ,∴DJ =FG ,JH =HF ,∴EJ =BG =EM =BI ,∴BE =IM =BF ,∵∠MEJ =∠B =60°,∴△MEJ 是等边三角形,∴MJ =EM =NI ,∠M =∠B =60°在△BIF 和△MJI 中,BI MJ B M BF IM ⎧⎪∠∠⎨⎪⎩===,∴△BIF ≌△MJI ,∴IJ =IF ,∠BFI =∠MIJ ,∵HJ =HF ,∴IH ⊥JF ,∵∠BFI +∠BIF =120°,∴∠MIJ +∠BIF =120°,∴∠JIF =60°,∴△JIF 是等边三角形,在Rt △IHF 中,∵∠IHF =90°,∠IFH =60°,∴∠FIH =30°,∴IH=3FH .(3)结论:EG 2=AG 2+CE 2.理由:如图3中,将△ADG 绕点D 逆时针旋转90°得到△DCM ,∵∠FAD +∠DEF =90°,∴AFED 四点共圆,∴∠EDF =∠DAE =45°,∠ADC =90°,∴∠ADF +∠EDC =45°,∵∠ADF =∠CDM ,∴∠CDM +∠CDE =45°=∠EDG ,在△DEM 和△DEG 中,DE DE EDG EDM DG DM ⎧⎪∠∠⎨⎪⎩=== , ∴△DEG ≌△DEM ,∴GE =EM ,∵∠DCM =∠DAG =∠ACD =45°,AG =CM ,∴∠ECM =90°∴EC 2+CM 2=EM 2,∵EG =EM ,AG =CM ,∴GE 2=AG 2+CE 2.【点睛】考查四边形综合题、矩形的性质、正方形的性质、菱形的判定和性质,等边三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形,学会转化的思想思考问题.4.如图,在平行四边形ABCD 中,AD ⊥DB ,垂足为点D ,将平行四边形ABCD 折叠,使点B落在点D的位置,点C落在点G的位置,折痕为EF,EF交对角线BD于点P.(1)连结CG,请判断四边形DBCG的形状,并说明理由;(2)若AE=BD,求∠EDF的度数.【答案】(1)四边形BCGD是矩形,理由详见解析;(2)∠EDF=120°.【解析】【分析】(1)根据平行四边形的性质和折叠性质以及矩形的判定解答即可;(2)根据折叠的性质以及直角三角形的性质和等边三角形的判定与性质解答即可.【详解】解:(1)四边形BCGD是矩形,理由如下,∵四边形ABCD是平行四边形,∴BC∥AD,即BC∥DG,由折叠可知,BC=DG,∴四边形BCGD是平行四边形,∵AD⊥BD,∴∠CBD=90°,∴四边形BCGD是矩形;(2)由折叠可知:EF垂直平分BD,∴BD⊥EF,DP=BP,∵AD⊥BD,∴EF∥AD∥BC,∴AE PD1==BE BP∴AE=BE,∴DE是Rt△ADB斜边上的中线,∴DE=AE=BE,∵AE=BD,∴DE=BD=BE,∴△DBE是等边三角形,∴∠EDB=∠DBE=60°,∵AB∥DC,∴∠DBC=∠DBE=60°,∴∠EDF=120°.【点睛】本题考查了平行四边形的性质,折叠性质,等边三角形的性质和判定,主要考查学生运用定理进行推理和计算的能力,题目综合性比较强,有一定的难度5.已知AD是△ABC的中线P是线段AD上的一点(不与点A、D重合),连接PB、PC,E、F、G、H分别是AB、AC、PB、PC的中点,AD与EF交于点M;(1)如图1,当AB=AC时,求证:四边形EGHF是矩形;(2)如图2,当点P与点M重合时,在不添加任何辅助线的条件下,写出所有与△BPE面积相等的三角形(不包括△BPE本身).【答案】(1)见解析;(2)△APE、△APF、△CPF、△PGH.【解析】【分析】(1)由三角形中位线定理得出EG∥AP,EF∥BC,EF=12BC,GH∥BC,GH=12BC,推出EF∥GH,EF=GH,证得四边形EGHF是平行四边形,证得EF⊥AP,推出EF⊥EG,即可得出结论;(2)由△APE与△BPE的底AE=BE,又等高,得出S△APE=S△BPE,由△APE与△APF的底EP=FP,又等高,得出S△APE=S△APF,由△APF与△CPF的底AF=CF,又等高,得出S△APF=S△CPF,证得△PGH底边GH上的高等于△AEF底边EF上高的一半,推出S△PGH=12S△AEF=S△APF,即可得出结果.【详解】(1)证明:∵E、F、G、H分别是AB、AC、PB、PC的中点,∴EG∥AP,EF∥BC,EF=12BC,GH∥BC,GH=12BC,∴EF∥GH,EF=GH,∴四边形EGHF是平行四边形,∵AB=AC,∴AD⊥BC,∴EF⊥AP,∵EG∥AP,∴EF⊥EG,∴平行四边形EGHF是矩形;(2)∵PE是△APB的中线,∴△APE与△BPE的底AE=BE,又等高,∴S△APE=S△BPE,∵AP是△AEF的中线,∴△APE与△APF的底EP=FP,又等高,∴S△APE=S△APF,∴S△APF=S△BPE,∵PF是△APC的中线,∴△APF与△CPF的底AF=CF,又等高,∴S△APF=S△CPF,∴S△CPF=S△BPE,∵EF∥GH∥BC,E、F、G、H分别是AB、AC、PB、PC的中点,∴△AEF底边EF上的高等于△ABC底边BC上高的一半,△PGH底边GH上的高等于△PBC 底边BC上高的一半,∴△PGH底边GH上的高等于△AEF底边EF上高的一半,∵GH=EF,∴S△PGH=12S△AEF=S△APF,综上所述,与△BPE面积相等的三角形为:△APE、△APF、△CPF、△PGH.【点睛】本题考查了矩形的判定与性质、平行四边形的判定、三角形中位线定理、平行线的性质、三角形面积的计算等知识,熟练掌握三角形中位线定理是解决问题的关键.6.如图,在平面直角坐标系中,直线DE交x轴于点E(30,0),交y轴于点D(0,40),直线AB:y=13x+5交x轴于点A,交y轴于点B,交直线DE于点P,过点E作EF⊥x轴交直线AB于点F,以EF为一边向右作正方形EFGH.(1)求边EF的长;(2)将正方形EFGH沿射线FB10个单位的速度匀速平移,得到正方形E1F1G1H1,在平移过程中边F1G1始终与y轴垂直,设平移的时间为t秒(t>0).①当点F1移动到点B时,求t的值;②当G1,H1两点中有一点移动到直线DE上时,请直接写出此时正方形E1F1G1H1与△APE重叠部分的面积.【答案】(1)EF=15;(2)①10;②120;【解析】【分析】(1)根据已知点E(30,0),点D(0,40),求出直线DE的直线解析式y=-43x+40,可求出P点坐标,进而求出F点坐标即可;(2)①易求B(0,5),当点F1移动到点B时,1010=10;②F点移动到F'10t,F垂直x轴方向移动的距离是t,当点H运动到直线DE上时,在Rt△F'NF中,NFNF'=13,EM=NG'=15-F'N=15-3t,在Rt△DMH'中,43MHEM'=,t=4,S=12×(12+454)×11=10238;当点G运动到直线DE上时,在Rt△F'PK中,PKF K'=13,PK=t-3,F'K=3t-9,在Rt△PKG'中,PKKG'=31539tt--+=43,t=7,S=15×(15-7)=120.【详解】(1)设直线DE的直线解析式y=kx+b,将点E(30,0),点D(0,40),∴30040k bb+=⎧⎨=⎩,∴4340kb⎧=-⎪⎨⎪=⎩,∴y=﹣43x+40,直线AB与直线DE的交点P(21,12),由题意知F(30,15),∴EF=15;(2)①易求B(0,5),∴BF=10,∴当点F 1移动到点B 时,t =101010÷=10; ②当点H 运动到直线DE 上时,F 点移动到F'的距离是10t ,在Rt △F'NF 中,NF NF '=13, ∴FN =t ,F'N =3t ,∵MH'=FN =t ,EM =NG'=15﹣F'N =15﹣3t ,在Rt △DMH'中,43MH EM '=, ∴41533t t =-, ∴t =4, ∴EM =3,MH'=4,∴S =1451023(12)11248⨯+⨯=; 当点G 运动到直线DE 上时,F 点移动到F'10,∵PF =10∴PF'10t ﹣10,在Rt △F'PK 中,13PK F K =', ∴PK =t ﹣3,F'K =3t ﹣9,在Rt △PKG'中,PK KG '=31539t t --+=43, ∴t =7,∴S =15×(15﹣7)=120.【点睛】本题考查一次函数图象及性质,正方形的性质;掌握待定系数法求函数解析式,利用三角形的正切值求边的关系,利用勾股定理在直角三角形中建立边之间的联系,准确确定阴影部分的面积是解题的关键.7.如图所示,矩形ABCD 中,点E 在CB 的延长线上,使CE =AC ,连接AE ,点F 是AE 的中点,连接BF 、DF ,求证:BF ⊥DF .【答案】见解析.【解析】【分析】延长BF ,交DA 的延长线于点M ,连接BD ,进而求证△AFM ≌△EFB ,得AM =BE ,FB =FM ,即可求得BC +BE =AD +AM ,进而求得BD =BM ,根据等腰三角形三线合一的性质即可求证BF ⊥DF .【详解】延长BF ,交DA 的延长线于点M ,连接BD .∵四边形ABCD 是矩形,∴MD ∥BC ,∴∠AMF =∠EBF ,∠E =∠MAF ,又FA =FE ,∴△AFM ≌△EFB ,∴AM =BE ,FB =FM .∵矩形ABCD 中,∴AC =BD ,AD =BC ,∴BC +BE =AD +AM ,即CE =MD .∵CE =AC ,∴AC =CE = BD =DM .∵FB =FM ,∴BF ⊥DF .【点睛】本题考查了矩形的性质,全等三角形的判定和对应边相等的性质,等腰三角形三线合一的性质,本题中求证DB =DM 是解题的关键.8.如图,现将平行四边形ABCD沿其对角线AC折叠,使点B落在点B′处.AB′与CD交于点E.(1)求证:△AED≌△CEB′;(2)过点E作EF⊥AC交AB于点F,连接CF,判断四边形AECF的形状并给予证明.【答案】(1)见解析(2)见解析【解析】【分析】(1)由题意可得AD=BC=B'C,∠B=∠D=∠B',且∠AED=∠CEB',利用AAS证明全等,则结论可得;(2)由△AED≌△CEB′可得AE=CE,且EF⊥AC,根据等腰三角形的性质可得EF垂直平分AC,∠AEF=∠CEF.即AF=CF,∠CEF=∠AFE=∠AEF,可得AE=AF,则可证四边形AECF是菱形.【详解】证明:(1)∵四边形ABCD是平行四边形∴AD=BC,CD∥AB,∠B=∠D∵平行四边形ABCD沿其对角线AC折叠∴BC=B'C,∠B=∠B'∴∠D=∠B',AD=B'C且∠DEA=∠B'EC∴△ADE≌△B'EC(2)四边形AECF是菱形∵△ADE≌△B'EC∴AE=CE∵AE=CE,EF⊥AC∴EF垂直平分AC,∠AEF=∠CEF∴AF=CF∵CD∥AB∴∠CEF=∠EFA且∠AEF=∠CEF∴∠AEF=∠EFA∴AF=AE∴AF=AE=CE=CF∴四边形AECF是菱形【点睛】本题考查了折叠问题,全等三角形的判定和性质,平行四边形的性质,菱形的判定,熟练掌握这些性质和判定是解决问题的关键.9.问题情境在四边形ABCD 中,BA =BC ,DC ⊥AC ,过点D 作DE ∥AB 交BC 的延长线于点E ,M 是边AD 的中点,连接MB ,ME.特例探究(1)如图1,当∠ABC =90°时,写出线段MB 与ME 的数量关系,位置关系;(2)如图2,当∠ABC =120°时,试探究线段MB 与ME 的数量关系,并证明你的结论; 拓展延伸(3)如图3,当∠ABC =α时,请直接用含α的式子表示线段MB 与ME 之间的数量关系.【答案】(1)MB =ME ,MB ⊥ME ;(2)ME =3MB .证明见解析;(3)ME =MB·tan 2α. 【解析】【分析】(1)如图1中,连接CM .只要证明△MBE 是等腰直角三角形即可;(2)结论:EM=3MB .只要证明△EBM 是直角三角形,且∠MEB=30°即可; (3)结论:EM=BM•tan2α.证明方法类似; 【详解】(1) 如图1中,连接CM .∵∠ACD=90°,AM=MD ,∴MC=MA=MD ,∵BA=BC ,∴BM 垂直平分AC ,∵∠ABC=90°,BA=BC ,∴∠MBE=12∠ABC=45°,∠ACB=∠DCE=45°, ∵AB ∥DE ,∴∠ABE+∠DEC=180°,∴∠DEC=90°,∴∠DCE=∠CDE=45°,∴EC=ED ,∵MC=MD ,∴EM 垂直平分线段CD ,EM 平分∠DEC ,∴∠MEC=45°,∴△BME 是等腰直角三角形,∴BM=ME ,BM ⊥EM .故答案为BM=ME ,BM ⊥EM .(2)ME =3MB .证明如下:连接CM ,如解图所示.∵DC ⊥AC ,M 是边AD 的中点,∴MC =MA =MD .∵BA =BC ,∴BM 垂直平分AC .∵∠ABC =120°,BA =BC ,∴∠MBE =12∠ABC =60°,∠BAC =∠BCA =30°,∠DCE =60°. ∵AB ∥DE ,∴∠ABE +∠DEC =180°,∴∠DEC =60°,∴∠DCE =∠DEC =60°,∴△CDE 是等边三角形,∴EC =ED .∵MC =MD ,∴EM 垂直平分CD ,EM 平分∠DEC , ∴∠MEC =12∠DEC =30°, ∴∠MBE +∠MEB =90°,即∠BME =90°.在Rt △BME 中,∵∠MEB =30°,∴ME 3.(3) 如图3中,结论:EM=BM•tan 2.理由:同法可证:BM ⊥EM ,BM 平分∠ABC ,所以EM=BM•tan 2. 【点睛】本题考查四边形综合题、等腰直角三角形的判定和性质、等边三角形的判定和性质、等腰三角形的性质、锐角三角函数等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题.10.在矩形纸片ABCD 中,AB=6,BC=8,现将纸片折叠,使点D 与点B 重合,折痕为EF ,连接DF .(1)说明△BEF 是等腰三角形;(2)求折痕EF 的长.【答案】(1)见解析;(2).【解析】【分析】 (1)根据折叠得出∠DEF =∠BEF ,根据矩形的性质得出AD ∥BC ,求出∠DEF =∠BFE ,求出∠BEF =∠BFE 即可;(2)过E 作EM ⊥BC 于M ,则四边形ABME 是矩形,根据矩形的性质得出EM =AB =6,AE =BM ,根据折叠得出DE =BE ,根据勾股定理求出DE 、在Rt △EMF 中,由勾股定理求出即可.【详解】(1)∵现将纸片折叠,使点D 与点B 重合,折痕为EF ,∴∠DEF =∠BEF .∵四边形ABCD 是矩形,∴AD ∥BC ,∴∠DEF =∠BFE ,∴∠BEF =∠BFE ,∴BE =BF ,即△BEF 是等腰三角形;(2)过E 作EM ⊥BC 于M ,则四边形ABME 是矩形,所以EM =AB =6,AE =BM .∵现将纸片折叠,使点D与点B重合,折痕为EF,∴DE=BE,DO=BO,BD⊥EF.∵四边形ABCD是矩形,BC=8,∴AD=BC=8,∠BAD=90°.在Rt△ABE中,AE2+AB2=BE2,即(8﹣BE)2+62=BE2,解得:BE==DE=BF,AE=8﹣DE=8﹣==BM,∴FM=﹣=.在Rt△EMF中,由勾股定理得:EF==.故答案为:.【点睛】本题考查了折叠的性质和矩形性质、勾股定理等知识点,能熟记折叠的性质是解答此题的关键.11.如图,抛物线y=mx2+2mx+n经过A(﹣3,0),C(0,﹣32)两点,与x轴交于另一点B.(1)求经过A,B,C三点的抛物线的解析式;(2)过点C作CE∥x轴交抛物线于点E,写出点E的坐标,并求AC、BE的交点F的坐标(3)若抛物线的顶点为D,连结DC、DE,四边形CDEF是否为菱形?若是,请证明;若不是,请说明理由.【答案】(1)y=12x2+x﹣32;(2)F点坐标为(﹣1,﹣1);(3)四边形CDEF是菱形.证明见解析【解析】【分析】将A、C点的坐标代入抛物线的解析式中,通过联立方程组求得该抛物线的解析式;根据(1)题所得的抛物线的解析式,可确定抛物线的对称轴方程以及B、C点的坐标,由CE∥x轴,可知C、E关于对称轴对称。
2021年中考数学 专题汇编:相似三角形及其应用(含答案)

2021中考数学 专题汇编:相似三角形及其应用一、选择题(本大题共10道小题)1. 如图,在△ABC 中,D ,E 分别是AB ,AC 边上的点,DE ∥BC ,若AD=2,AB=3,DE=4,则BC 等于 ( )A .5B .6C .7D .82. (2020·永州)如图,在ABC 中,2//,3AE EF BC EB =,四边形BCFE 的面积为21,则ABC 的面积是( )A. 913B. 25C. 35D. 633. (2020·嘉兴) 如图,在直角坐标系中,△OAB 的顶点为O (0,0),A (4,3),B (3,0).以点O 为位似中心,在第三象限内作与△OAB 的位似比为13的位似图形△OCD ,则点C 坐标为( )A .(﹣1,﹣1)B .(4,13--) C .(41,3--) D .(﹣2,﹣1)4. (2019•巴中)如图ABCD ,F 为BC 中点,延长AD 至E ,使13DE AD =∶∶,连接EF 交DC 于点G ,则:DEG CFG S S △△=A .2∶3B .3∶2C .9∶4D .4∶95. (2020·河南)如图,在△ABC 中,∠ACB=90°,边BC 在x 轴上,顶点A ,B的坐标分别为(-2,6)和(7,0).将正方形OCDE 沿x 轴向右平移,当点E 落在AB 边上时,点D 的坐标为( )A. (32,2)B. (2,2)C. (114,2) D. (4,2)6. (2020·河北) 在图5所示的网格中,以点O 为位似中心,四边形ABCD 的位似图形是A.四边形NPMQB.四边形NPMRC.四边形NHMQD.四边形NHMR7. (2019•贺州)如图,在ABC △中,D E ,分别是AB AC ,边上的点,DE BC ∥,若23AD AB ==,,4DE =,则BC 等于A .5B .6C.7 D.88. 如图,在Rt△ABC中,∠C=90°,∠CAB的平分线交BC于D,DE是AB 的垂直平分线,垂足为E.若BC=3,则DE的长为()A. 1B. 2C. 3D. 49. (2020•丽水)如图,四个全等的直角三角形拼成“赵爽弦图”,得到正方形ABCD与正方形EFGH.连结EG,BD相交于点O、BD与HC相交于点P.若GO=GP,则ABCDEFGHSS正方形正方形的值是()A.12+B.22+C.52-D.15410. (2020·新疆)如图,在△ABC中,∠A=90°,D是AB的中点,过点D作BC的平行线交AC于点E,作BC的垂线交BC于点F,若AB=CE,且△DFE 的面积为1,则BC的长为·······················································()A.25B.5 C.45D.10二、填空题(本大题共8道小题)11. 如图,在△ABC中,∠ACD=∠B,若AD=2,BD=3,则AC长为.12. 在某一时刻,测得一根高为1.8 m的竹竿的影长为3 m,同时同地测得一栋楼的影长为90 m,则这栋楼的高度为m.13. (2020·郴州)在平面直角坐标系中,将AOB∆以点O为位似中心,32为位似比作位似变换,得到11OBA∆.已知)3,2(A,则点1A的坐标是.14. 如图,在R t△ABC中,∠ACB=90°,AC=3,BC=4,CD⊥AB,垂足为D,E为BC的中点,AE与CD交于点F,则DF的长为_________.FE DBC A15. (2019•泸州)如图,在等腰Rt ABC△中,90C=︒∠,15AC=,点E在边CB上,2CE EB=,点D在边AB上,CD AE⊥,垂足为F,则AD长为__________.16. (2020·杭州)如图是一张矩形纸片,点E在AB边上,把BCE△沿直线CE对折,使点B落在对角线AC上的点F处,连接DF.若点E,F,D在同一条直线上,2AE=,则DF=______,BE=______.FDBEAC17. 如图,在Rt△ABC中,∠BAC=90°,AB=15,AC=20,点D在边AC上,AD=5,DE⊥BC于点E,连接AE,则△ABE的面积等于________.18. (2020·长沙)如图,点P 在以MN 为直径的半圆上运动,(点P 与M ,N 不重合)PQ ⊥MN ,NE 平分∠MNP ,交PM 于点E ,交PQ 于点F . (1)PMPEPQPF +=____________. (2)若MN PM PN •=2,则NQMQ=____________. F E NMP三、解答题(本大题共4道小题) 19. (2020·凉山州)(7分)如图,一块材料的形状是锐角三角形ABC ,边BC =120 mm ,高AD =80mm ,把它加工成正方形零件,使正方形的一边在BC 上,其余两个顶点分别在AB 、AC 上,这个正方形零件的边长是多少?20. 如图,在Rt △ABC 中,∠ACB=90°,AB=10,BC=6,CD ∥AB ,∠ABC 的平分线BD 交AC 于点E ,求DE 的长.HKFEBA21. 已知:在等边△ABC中,D 、E 分别是AC 、BC 上的点,且∠BAE =∠CBD<60°,DH ⊥AB ,垂足为点H .(1)如图①,当点D 、E 分别在边AC 、BC 上时,求证:△ABE ≌△BCD ;(2)如图②,当点D 、E 分别在AC 、CB 延长线上时,探究线段AC 、AH 、BE 的数量关系;(3)在(2)的条件下,如图③,作EK ∥BD 交射线AC 于点K ,连接HK ,交BC 于点G ,交BD 于点P ,当AC =6,BE =2时,求线段BP 的长.22. 已知在△ABC中,AB 边上的动点D 由A 向B 运动(与A ,B 不重合),同时,点E 由点C 沿BC 的延长线方向运动(E 不与C 重合),连接DE 交AC 于点F ,点H 是线段AF 上一点.(1)如图①,若△ABC 是等边三角形,DH ⊥AC ,且D ,E 的运动速度相等,求HFAC的值.(2)如图②,若在△ABC 中,∠ABC=90°,∠ADH=∠BAC=30°,且点D ,E的运动速度之比是:1,求HFAC的值;(3)如图③,若在△ABC 中,AB=AC ,∠ADH=∠BAC=36°,记ACBC=m ,且点D ,E 的运动速度相等,试用含m 的代数式表示HFAC的值.图① 图② 图③2021中考数学 专题汇编:相似三角形及其应用-答案一、选择题(本大题共10道小题) 1. 【答案】B [解析]∵DE ∥BC ,∴△ADE ∽△ABC , ∴=,即=,解得BC=6,故选B .2. 【答案】B【详解】解:∵//EF BC ∴AEF B AFE C ∠=∠∠=∠, ∴AEF ABC ∽ ∵23AE EB = ∴25AE AB = ∴255242AEB ABCS S ⎛⎫==⎪⎝⎭ ∴421AEBBCFESS =四边形 ∵21BCFE S =四边形 ∴AEBS =4∴=25ABCS故选:B .3. 【答案】B【解析】本题考查了在坐标系中,位似图形点的坐标.在平面直角坐标系中,如果以原点为位似中心,画出一个与原图形位似的图形,使它与原图形的相似比为k ,那么与原图形上的点(x ,y )对应的位似图形上的点的坐标为(kx ,ky )或(–kx ,–ky ).由A (4,3),位似比k =13,可得C (413,--)因此本题选B .4. 【答案】D【解析】设DE x =,∵13DE AD =∶∶,∴3AD x =, ∵四边形ABCD 是平行四边形,∴AD BC ∥,3BC AD x ==, ∵点F 是BC 的中点,∴1322CF BC x ==, ∵AD BC ∥,∴DEG CFG △∽△,∴224()()392DEG CFG S DE x S CF x ===△△,故选D .5. 【答案】B【解析】∵点A ,B 的坐标分别为(-2,6)和(7,0),∴OC=2,AC=6,OB=7, ∴BC=9,正方形的边长为2.将正方形OCDE 沿x 轴向右平移,当点E 落在AB 边上时,设正方形与x 轴的两个交点分别为G 、F ,∵EF ⊥x 轴,EF=GF=DG=2,∴EF ∥AC ,D ,E 两点的纵坐标均为2, ∴EF BF AC BC ,即269BF ,解得BF=3.∴OG=OB-BF-GF=7-3-2=2,∴ D 点的横坐标为2,∴点D 的坐标为 (2,2).6. 【答案】A【解析】解析:连接AO 并延长AO 至点N ,连接BO 并延长PO 至点P, 连接CO 并延长CO 至点M, 连接DO 并延长DO 至Q ,可知12AO BO CO DO NO PO MO QO ====,所以以点O 为位似中心,四边形ABCD 的位似图形是四边形NPMQ ,故答案为A.7. 【答案】B【解析】∵DE BC ∥,∴ADE ABC △∽△, ∴AD DE AB BC=,即243BC =,解得:6BC =,故选B .8. 【答案】A【解析】∵AD 是∠BAC 的平分线,AC ⊥BC ,AE ⊥DE, ∴DC =DE ,AE =AC .又∵DE 是AB 的垂直平分线,∴BE =AE ,即AB =2AE =2AC, ∴∠B =30°.设DE =x ,则BD =3-x .在Rt △BDE 中,x 3-x=12,解得x =1,∴DE的长为1.9. 【答案】C【解析】∵四边形EFGH 为正方形,∴∠EGH =45°,∠FGH =90°,∵OG =GP ,∴∠GOP =∠OPG =67.5°,∴∠PBG =22.5°,又∵∠DBC =45°,∴∠GBC =22.5°,∴∠PBG =∠GBC ,∵∠BGP =∠BG =90°,BG =BG ,∴△BPG ≌△BCG ,∴PG =CG .设OG =PG =CG =x ,∵O为EG,BD的交点,∴EG=2x,FG2=x.∵四个全等的直角三角形拼成“赵爽弦图”,∴BF=CG=x,∴BG=x2+x,∴BC2=BG2+CG2()2222(21)422x x x=++=+,∴()22422222ABCDEFGHxSS x+==+正方形正方形,因此本题选D.10. 【答案】A【解析】本题考查了相似三角形的判定与性质,三角形的中位线定理.如答图,过点E作EG⊥BC于G,过点A作AH⊥BC于H.又因为DF⊥BC,所以DF∥AH∥EG,四边形DEGF是矩形.所以△BDF∽△BAH,DF=EG,所以DFAH=BDBA,因为D为AB中点,所以BDBA=12,所以DFAH =12.设DF=EG=x,则AH=2x.因为∠BAC=90°,所以∠B+∠C=90°,因为EG⊥BC,所以∠C+∠CEG=90°,所以∠B=∠CEG,又因为∠BHA=∠CGE=90°,AB=CE,所以△ABH≌△CEG,所以CG=AH=2x.同理可证△BDF∽△ECG,所以BFEG=BDEC,因为BD=12AB=12CE,所以BF=12EG=12x.在R t△BDF中,由勾股定理得BD=22DF BF+=221()2x x+=5x,所以AD=5x,所以CE=AB=2AD=5x.因为DE∥BC,所以AEAC=ADAB=12,所以AE=12AC=CE=5x.在R t△ADE中,由勾股定理得DE=22AD AE+=225()(5)2x x+=52x.因△DEF的面积为1,所以12DE·DF=1,即12×52x·x=1,解得x=255,所以DE=52×255=5,因为AD=BD,AE=CE,所以BC=2DE=25,因此本题选D.二、填空题(本大题共8道小题)11. 【答案】[解析]∵∠ACD=∠B,∠CAD=∠BAC,∴△ACD∽△ABC,∴=,即=,∴AC=或AC=-(舍去).12. 【答案】5413. 【答案】(,2)【解析】∵将△AOB 以点O 为位似中心,为位似比作位似变换,得到△A 1OB 1,A (2,3),∴点A 1的坐标是:(×2,×3),即A 1(,2).故答案为:(,2).14. 【答案】5485【解析】本题考查平行线分线段成比例定理,相似三角形的判定与性质.已知∠ACB =90°,AC =3, BC =4,由勾股定理,得AB =5.CD ⊥AB ,由三角形的面积,得CD =AC BC AB ⋅=125.易得△ABC ∽△ACD ∽△CBD ,由相似三角形对应边成比例,得AD =AC AC AB ⋅=95,BD =BC BC AB ⋅=165.过点E 作EG ∥AB 交CD于点G ,由平行线分线段成比例,得DG =12CD =65,EG =85,所以DF ADGF EG=,即956855DF DF =-,所以DF =,故答案为5485. GF E DB CA15. 【答案】92【解析】如图,过D 作DH AC ⊥于H ,则∠AHD =90°,∵在等腰Rt ABC △中,90C =︒∠,15AC =, ∴15AC BC ==,45CAD ∠=︒, ∴∠ADH =90°–∠CAD =45°=∠CAD , ∴AH DH =,∴CH =AC –AH =15–DH ,∵CF AE ⊥,∴90DHA DFA ∠=∠=︒,又∵∠ANH =∠DNF ,∴HAF HDF ∠=∠,∴ACE DHC △∽△,∴DH CH AC CE =, ∵2CE EB =,CE +BE =BC =15,∴10CE =, ∴151510DH DH -=, ∴9DH =,∴2292AD AH DH =+=,故答案为:92.16. 【答案】2 5-1【解析】设BE =x ,则AB =AE +BE =2+x .∵四边形ABCD 是矩形,∴CD =AB =2+x ,AB ∥CD ,∴∠DCE =∠BEC .由折叠得∠BEC =∠DEC ,EF =BE =x ,∴∠DCE =∠DEC .∴DE =CD =2+x .∵点D ,F ,E 在同一条直线上,∴DF =DE -EF =2+x -x =2.∵AB ∥CD ,∴△DCF ∽△EAF ,∴DC EA =DF EF .∴22x +=2x ,解得x 1=5-1,x 2=-5-1.经检验,x 1=5-1,x 2=-5-1都是分式方程的根.∵x >0,∴x =5-1,即BE =5-1.17. 【答案】78 【解析】如解图,过A 作AH ⊥BC ,∵AB =15,AC =20,∠BAC =90°,∴由勾股定理得,BC =152+202=25,∵AD =5,∴DC =20-5=15,∵DE ⊥BC ,∠BAC =90°,∴△CDE ∽△CBA ,∴CE CA =CD CB ,∴CE =1525×20=12.法一:BC·AH =AB·AC ,AH =AB·AC BC =15×2025=12,S △ABE =12×12×13=78.法二:DE =152-122=9,由△CDE ∽△CAH 可得,CD CA =ED HA ,∴AH =9×2015=12,S △ABE =12×12×13=78.18. 【答案】1;215- 【解析】本题考查了圆的基本性质,角平分线性质,平行相似,相似判定与性质,(1)作EH ⊥MN ,又∵MN 是直径,NE 平分∠MNP ,PQ ⊥MN ,∴易证出PE =EH =HF =PF ,EH ∥PQ ,∴△EMH ∽△PMQ ,∴PQ PF PQ EH PM ME ==,∴1=+=+PM PE PM ME PM PE PQ PF ; (2)由相似基本图射影型得:解得MN QN PN •=2又∵MN PM PN •=2,∴QN =PM ,设QN =PM =a ,MQ =b ,由相似基本图射影型得:解得MN MQ PM •=2,∴()b a b a +=2解得()251a b +-=或()251a b --=(舍去)∴215-==a b NQ MQ ; 因此本题答案为1;215-. F EQ N M P三、解答题(本大题共4道小题)19. 【答案】解:设这个正方形零件的边长为x mm ,则△AEF 的边EF 上的高AK =(80-x)mm .∵四边形EFHG 是正方形,∴EF ∥GH ,即EF ∥BC .∴△AEF ∽△ABC . ∴EF AK BC AD =,即8012080x x -=.∴x =48.∴这个正方形零件的边长是48 mm .20. 【答案】解:∵BD 平分∠ABC ,∴∠ABD=∠CBD.∵AB ∥CD ,∴∠D=∠ABD ,∴∠CBD=∠D ,∴CD=BC=6.在Rt △ABC 中,AC===8.∵AB ∥CD ,∴△ABE ∽△CDE ,∴====,∴CE=AE ,DE=BE ,即CE=AC=×8=3.在Rt △BCE 中,BE===3, ∴DE=BE=×3=.21. 【答案】(1)证明:∵△ABC 为等边三角形,∴∠ABC =∠C =∠CAB =60°,AB =BC ,在△ABE 和△BCD 中,⎩⎨⎧∠BAE =∠CBDAB =BC∠ABE =∠BCD, ∴△ABE ≌△BCD (ASA);(2)解:∵△ABC 为等边三角形,∴∠ABC =∠CAB =60°,AB =BC ,∴∠ABE =∠BCD =180°-60°=120°.∴在△ABE 和△BCD 中,⎩⎨⎧∠BAE =∠CBDAB =BC∠ABE =∠BCD, ∴△ABE ≌△BCD (ASA),∴BE =CD .∵DH ⊥AB ,∴∠DHA =90°,∵∠CAB =60°,∴∠ADH =30°,∴AD =2AH ,∴AC =AD -CD =2AH -BE ;(3)解:如解图,作DS ⊥BC 延长线于点S ,作HM ∥AC 交BC 于点M ,解图∵AC =6,BE =2,∴由(2)得AH =4,BH =2,与(1)同理可得BE =CD =2,CE =8,∵∠SCD =∠ACB =60°,∴∠CDS =30°,∴CS =1,SD =3,BS =7,∵BD 2=BS 2+SD 2=72+(3)2,∴BD =213,∵EK ∥BD ,∴△CBD ∽△CEK ,∴CB CE =CD CK =BD EK ,∴CK =CD ·CE CB =2×86=83,EK =CE ·BD CB =8×2136=8133. ∵HM ∥AC ,∴∠HMB =∠ACB =60°,∴△HMB 为等边三角形,BM =BH =HM =2, CM =CB -BM =4,又∵HM ∥AC ,∴△HMG ∽△KCG ,∴HM KC =MG CG ,即382=MG 4-MG,∴MG =127,BG =267,EG =407, ∵EK ∥BD ,∴△GBP ∽△GEK ,∴BP EK =GB GE , ∴BP =261315.22. 【答案】(1)过点D 作DG ∥BC 交AC 于点G ,解图①∵△ABC 是等边三角形,∴△AGD 是等边三角形,∴AD =GD ,由题意知CE =AD ,∴CE =GD∵DG ∥BC ,∴∠GDF =∠CEF ,在△GDF 与△CEF 中,GDF CEF GFD EFC CE GD ⎧⎪⎨⎪=∠=∠∠∠⎩=, ∴△GDF ≌△CEF (AAS ),∴CF =GF , ∵DH ⊥AG ,∴AH =GH ,∴AC =AG +CG =2GH +2GF =2(GH +GF )=2HF , ∴AC HF=2; (2)如解图②,过点D 作DG ∥BC 交AC 于点G ,解图②由题意知,点D ,E 3:1, ∴3,AD CE = ∵∠ABC =90°,∠BAC =30°,∴3,AD GD = ∴,AD AD CE GD = ∴GD =CE ,∵DG ∥BC ,∴∠GDF=∠CEF ,在△GDF 和△CEF 中,,GDF CEF GFD EFC GD CE ∠=∠∠=∠⎧⎪⎨⎪⎩=∴△GDF ≌△CEF (AAS ),∴CF =GF ,∵∠ADH =∠BAC =30°,∴AH =HD ,∵∠AGD =∠HDG =60°,∴GH =HD ,∴AH =HG ,∴AC =AG +CG =2GH +2GF =2(GH +GF )=2HF , ∴AC HF=2; (3)如解图③,过点D 作DG ∥BC 交AC 于点G ,解图③∵DG ∥BC ,∴△AGD ∽△ACB ,∴=,GD BC m AG AC = ∵∠ADH =∠BAC =36°,AC=AB ,∴∠GHD =∠HGD =72°,∴GD =HD =AH , ∴=,AH GD m AG AG= ∵AD =CE , ∴==,GD GD GD m AD AG CE = ∵DG ∥BC ,∴△GDF ∽△ECF ,∴=,GD GF m CE CF= ∴GH +FG =m (AH +FC )=m (AC-HF ), 即HF =m (AC-HF ),∴1.=AC m HF m +。
2020-2021学年最新孝感市中考仿真模拟数学试题及答案

中考数学试题一、精心选一选,相信自己的判断!(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中只有一项是符合题目要求的,不读、错涂或涂的代号超过一个,一律得0分) 1.14-的倒数是( ) A .4 B .-4 C .14D .16 2.如图,直线//AD BC ,若142∠=o ,78BAC ∠=o ,则2∠的度数为( )A .42oB .50oC .60oD .68o3.下列某不等式组的解集在数轴上表示如图所示,则该不等式组是( )A .1313x x -<⎧⎨+<⎩B .1313x x -<⎧⎨+>⎩C .1313x x ->⎧⎨+>⎩D .1313x x ->⎧⎨+<⎩4.如图,在Rt ABC ∆中,90C ∠=o ,10AB =,8AC =,则sin A 等于( )A .35B .45C .34D .435.下列说法正确的是( )A .了解“孝感市初中生每天课外阅读书籍时间的情况”最适合的调查方式是全面调查B .甲乙两人跳绳各10次,其成绩的平均数相等,22S S >甲乙,则甲的成绩比乙稳定C .三张分别画有菱形,等边三角形,圆的卡片,从中随机抽取一张,恰好抽到中心对称图形卡片的概率是13D .“任意画一个三角形,其内角和是360o”这一事件是不可能事件6.下列计算正确的是( )A .2571a a a -+=B .222()a b a b +=+C .2222+=D .325()a a =7.如图,菱形ABCD 的对角线AC ,BD 相交于点O ,10AC =,24BD =,则菱形ABCD 的周长为( )A .52B .48C .40D .208.已知43x y +=,3x y -=,则式子44()()xy xy x y x y x y x y-++--+的值是( ) A .48 B .123 C .16 D .129.如图,在ABC ∆中,90B ∠=o,3AB cm =,6BC cm =,动点P 从点A 开始沿AB 向点以B 以1/cm s 的速度移动,动点Q 从点B 开始沿BC 向点C 以2/cm s 的速度移动.若P ,Q 两点分别从A ,B 两点同时出发,P 点到达B 点运动停止,则PBQ ∆的面积S 随出发时间t 的函数关系图象大致是( )A .B .C .D .10.如图,ABC ∆是等边三角形,ABD ∆是等腰直角三角形,90BAD ∠=o,AE BD ⊥于点E ,连CD 分别交AE ,AB 于点F ,G ,过点A 作AH CD ⊥交BD 于点H ,则下列结论:①15ADC ∠=o ;②AF AG =;③AH DF =;④AFG CBG ∆∆:;⑤(31)AF EF =-.A .5B .4C .3D .2二、细心填一填,试试自己的身手!(本大题共6小题,每小题3分,共18分,请将结果直接填写在答题卡相应位置上)11.一年之中地球与太阳之间的距离随时间而变化,1个天文单位是地球与太阳的平均距离,即149600000千米,用科学记数法表示1个天文单位是 千米.12.如图是一个几何体的三视图(图中尺寸单位:cm ),根据图中数据计算,这个几何体的表面积为 2cm .13.如图,抛物线2y ax =与直线y bx c =+的两个交点坐标分别为(2,4)A -,(1,1)B ,则方程2ax bx c =+的解是 .14.已知O e 的半径为10cm ,AB ,CD 是O e 的两条弦,//AB CD ,16AB cm =,12CD cm =,则弦AB 和CD 之间的距离是 cm .15.我国古代数学家杨辉发现了如图所示的三角形,我们称之为“杨辉三角”,从图中取一列数:1,3,6,10,…,记11a =,23a =,36a =,410a =,…,那么11110210a a a +-+的值是 .16.如图,在平面直角坐标系中,正方形ABCD 的顶点A 的坐标为(1,1)-,点B 在x 轴正半轴上,点D 在第三象限的双曲线6y x=上,过点C 作//CE x 轴交双曲线于点E ,连接BE ,则BCE ∆的面积为 .三、用心做一做,显显自己的能力!(本大题共8小题,满分72分.解答写在答题卡上)17.计算2(3)4124cos30-+-+-o.18.如图,B ,E ,C ,F 在一条直线上,已知//AB DE ,//AC DF ,BE CF =,连接AD .求证:四边形ABED 是平行四边形.19.在孝感市关工委组织的“五好小公民”主题教育活动中,我市蓝天学校组织全校学生参加了“红旗飘飘,引我成长”知识竞赛,赛后随机抽取了部分参赛学生的成绩,按从高分到低分将成绩分成A ,B ,C ,D ,E 五类,绘制成下面两个不完整的统计图:根据上面提供的信息解答下列问题:(1)D 类所对应的圆心角是________度,样本中成绩的中位数落在________类中,并补全条形统计图;(2)若A 类含有2名男生和2名女生,随机选择2名学生担任校园广播“孝心伴我行”节目主持人,请用列表法或画树状图求恰好抽到1名男生和1名女生的概率.20.如图,ABC ∆中,AB AC =,小聪同学利用直尺和圆规完成了如下操作:①作BAC ∠的平分线AM 交BC 于点D ;②作边AB 的垂直平分线EF ,EF 与AM 相交于点P ;③连接PB ,PC .请你观察图形解答下列问题:(1)线段PA ,PB ,PC 之间的数量关系是________;(2)若70ABC ∠=o,求BPC ∠的度数. 21.已知关于x 的一元二次方程(3)(2)(1)x x p p --=+.(1)试证明:无论p 取何值此方程总有两个实数根;(2)若原方程的两根1x ,2x 满足222121231x x x x p +-=+,求p 的值.22.“绿水青山就是金山银山”,随着生活水平的提高,人们对饮水品质的需求越来越高.孝感市槐荫公司根据市场需求代理A 、B 两种型号的净水器,每台A 型净水器比每台B 型净水器进价多200元,用5万元购进A 型净水器与用4.5万元购进B 型净水器的数量相等.(1)求每台A 型、B 型净水器的进价各是多少元?(2)槐荫公司计划购进A 、B 两种型号的净水器共50台进行试销,其中A 型净水器为x 台,购买资金不超过9.8万元.试销时A 型净水器每台售价2500元,B 型净水器每台售价2180元.槐荫公司决定从销售A 型净水器的利润中按每台捐献(7080)a a <<元作为公司帮扶贫困村饮水改造资金,设槐荫公司售完50台净水器并捐献扶贫资金后获得的利润为W ,求W 的最大值.23.如图,ABC ∆中,AB AC =,以AB 为直径的O e 交BC 于点D ,交AC 于点E ,过点D 作DF AC ⊥于点F ,交AB 的延长线于点G .(1)求证:DF 是O e 的切线;(2)已知25BD =,2CF =,求AE 和BG 的长.24.如图1,在平面直角坐标系xOy 中,已知点A 和点B 的坐标分别为(2,0)A -,(0,6)B -,将Rt AOB ∆绕点O 按顺时针分别旋转90o ,180o得到1Rt AOC ∆,Rt EOF ∆,抛物线1C 经过点C ,A ,B ;抛物线2C 经过点C ,E ,F .(1)点C 的坐标为________,点E 的坐标为________;抛物线1C 的解析式为________,抛物线2C 的解析式为________;(2)如果点(,)P x y 是直线BC 上方抛物线1C 上的一个动点.①若PCA ABO ∠=∠,求P 点的坐标;②如图2,过点P 作x 轴的垂线交直线BC 于点M ,交抛物线2C 于点N ,记h PM NM =+,求h 与x 的函数关系式.当52x -≤≤-时,求h 的取值范围.数学参考答案一、选择题1-5: BCBAD 6-10: AADCB二、填空题11. 81.49610⨯12. 16π13.12x=-,21x=14. 2或14 15. 11 16. 7三、解答题17.解:原式3 94234=++-⨯132323=+-13=.18.证明:∵//AB DE,∴B DEF∠=∠,∵//AC DF,∴ACB F∠=∠,∵BE CF=,∴BE CE CF CE+=+,∴BC EF=.在ABC∆和DEF∆中,B DEFBC EFACB F∠=∠⎧⎪=⎨⎪∠=∠⎩,∴()ABC DEF ASA∆≅∆, ∴AB DE=,∵//AB DE,∴四边形ABED是平行四边形.19.解:(1)72,C补全统计图如图所示(2)画树状图:由树状图可以看出共有12种等可能情况,其中抽出一名男生和一名女生有8种情况,即()82123P ==抽到一名男生和一名女生. 20.解:(1)线段PA ,PB ,PC 之间的数量关系是:PA PB PC ==(或相等).(2)∵AM 平分BAC ∠,AB AC =,70ABC ∠=o, ∴AD BC ⊥,9020BAD CAD ABC ∠=∠=-∠=o o, ∵EF 是线段AB 的垂直平分线,∴PA PB =,∴20PBA PAB ∠=∠=o, ∵BPD ∠是PAB ∆的外角,∴40BPD PAB PBA ∠=∠+∠=o, ∴40BPD CPD ∠=∠=o, ∴80BPC BPD CPD ∠=∠+∠=o. 21.解:(1)证明:∵(3)(2)(1)x x p p --=+,∴22560x x p p -+--=, 22(5)4(6)p p ∆=----22252444441p p p p =-++=++22(21)0p =+≥.∴无论p 取何值此方程总有两个实数根.(2)由(1)知:原方程可化为22560x x p p -+--=,∴125x x +=,2126x x p p =--,又222121231x x x x p +-=+,∴221212()331x x x x p +-=+, ∴22253(6)31p p p ---=+, 2225183331p p p -++=+,∴36p =-,∴2p =-.22.解:(1)设A 型净水器每台进价m 元,则B 型净水器每台进价(200)m -元, 依题意得5000045000200m m =-, 解之得:2000m =,经检验:2000m =是原方程的解,2001800m -=(元), ∴A 型净水器每台进价2000元,B 型净水器每台进价1800元.(2)由题意得:20001800(50)98000x x +-≤,∴40x ≤,又因为(25002000)(21801800)(50)W x x ax =-+---(120)19000a x =-+.当7080a <<时,1200a ->,W 随x 增大而增大.∴当40x =时,W 有最大值(120)40190002380040a a -⨯+=-, W 的最大值是(2380040)a -元.23.解:(1)连OD ,AD ,∵AB AC =,AB 是O e 的直径,∴AD BC ⊥,BD CD =,∴//OD AC ,∵DF AC ⊥,∴OD DF ⊥,∴DF 是O e 的切线.(2)连BE ,∵BD =CD BD ==∵2CF =,∴4DF ==, ∴28BE DF ==,∵cos cos C ABC =∠,∴CF BDCD AB =AB=, ∴10AB =,∴6AE ==.∵BE AC ⊥,DF AC ⊥,∴//BE GF ,∴AEB AFG ∆∆:, ∴AB AE AG AF =,1061026BG =++, ∴103BG =.24.解:(1)(6,0)C -,(2,0)E ,1C :21462y x x =---,2C :21262y x x =--+. (2)①若点P 在x 轴的上方,且PCA ABO ∠=∠时,则1CA 与抛物线1C 的交点即为所求的P 点,设直线1CA 的解析式为:11y k x b =+.∴111062k b b =-+⎧⎨=⎩,解得11132k b ⎧=⎪⎨⎪=⎩,∴直线1CA 的解析式为:123y x =+. 联立21462123y x x y x ⎧=---⎪⎪⎨⎪=+⎪⎩,解得1183109x y ⎧=-⎪⎪⎨⎪=⎪⎩或2260x y =-⎧⎨=⎩,∴810(,39P -); 若点P 在x 轴的下方,且PCA ABO ∠=∠时,则直线1CA 关于x 轴对称的直线2CA 与抛物线1C 的交点即为所求的P 点.设直线2CA 的解析式为:22y k x b =+.∴222062k b b =-+⎧⎨-=⎩,解得22132k b ⎧=-⎪⎨⎪=-⎩,∴直线2CA 的解析式为:123y x =--. 联立21462123y x x y x ⎧=---⎪⎪⎨⎪=--⎪⎩,解得114349x y ⎧=-⎪⎪⎨⎪=-⎪⎩或2260x y =-⎧⎨=⎩, ∴414(,39P --); ∴符合条件的点P 的坐标为810(,39P -)或414(,39P --). ②设直线BC 的解析式为:y kx b =+,∴066k b b =-+⎧⎨-=⎩,解得16k b =-⎧⎨=-⎩,∴直线BC 的解析式为:6y x =--, 过点B 作BD MN ⊥于点D ,则2BM BD =, ∴222BM BD x ==, 2h PM NM BM =++()()2P M N M y y y y x =-+-+22P N M y y y x =+--221146262(6)222x x x x x x =-----+---- 2612x x =--+,2612h x x =--+, 2(3)21h x =-++,当3x =-时,h 的最大值为21.∵52x -≤≤-,当5x =-时,2(53)2117h =--++=; 当2x =-时,2(23)2120h =--++=; 当52x -≤≤-时,h 的取值范围是1721h ≤≤.。
2020-2021年河北省中考数学试题及答案(Word版)
2021年河北省中考数学试卷及答案2021年河北省中考数学试卷及答案(1——34页)2020年河北省中考数学试卷及答案(35——45页)一、选择题(本大题有16个小题,共42分。
1~10小题各3分,11~16小题各2分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)如图,已知四条线段a ,b ,c ,d 中的一条与挡板另一侧的线段m 在同一直线上,请借助直尺判断该线段是( )A .aB .bC .cD .d2.(3分)不一定相等的一组是( )A .a +b 与b +aB .3a 与a +a +aC .a 3与a •a •aD .3(a +b )与3a +b3.(3分)已知a >b ,则一定有﹣4a □﹣4b ,“□”中应填的符号是( )A .>B .<C .≥D .=4.(3分)与√32−22−12结果相同的是( )A .3﹣2+1B .3+2﹣1C .3+2+1D .3﹣2﹣15.(3分)能与﹣(34−65)相加得0的是( )A .−34−65B .65+34C .−65+34D .−34+656.(3分)一个骰子相对两面的点数之和为7,它的展开图如图,下列判断正确的是()A .A 代B .B 代C .C 代D .B 代7.(3分)如图1,▱ABCD 中,AD >AB ,∠ABC 为锐角.要在对角线BD 上找点N ,M ,使四边形ANCM 为平行四边形,现有图2中的甲、乙、丙三种方案,则正确的方案( )A .甲、乙、丙都是B .只有甲、乙才是C .只有甲、丙才是D .只有乙、丙才是8.(3分)图1是装了液体的高脚杯示意图(数据如图),用去一部分液体后如图2所示,此时液面AB =( )A .1cmB .2cmC .3cmD .4cm 9.(3分)若√33取1.442,计算√33−3√33−98√33的结果是( )A .﹣100B .﹣144.2C .144.2D .﹣0.0144210.(3分)如图,点O 为正六边形ABCDEF 对角线FD 上一点,S △AFO =8,S △CDO =2,则S 正六边形ABCDEF 的值是( )A.20B.30C.40D.随点O位置而变化11.(2分)如图,将数轴上﹣6与6两点间的线段六等分,这五个等分点所对应数依次为a1,a2,a3,a4,a5,则下列正确的是()A.a3>0B.|a1|=|a4|C.a1+a2+a3+a4+a5=0D.a2+a5<012.(2分)如图,直线l,m相交于点O.P为这两直线外一点,且OP=2.8.若点P关于直线l,m的对称点分别是点P1,P2,则P1,P2之间的距离可能是()A.0B.5C.6D.713.(2分)定理:三角形的一个外角等于与它不相邻的两个内角的和.已知:如图,∠ACD是△ABC的外角.求证:∠ACD=∠A+∠B.证法1:如图,∵∠A+∠B+∠ACB=180°(三角形内角和定理),又∵∠ACD+∠ACB=180°(平角定义),∴∠ACD+∠ACB=∠A+∠B+∠ACB(等量代换).∴∠ACD=∠A+∠B(等式性质).证法2:如图,∵∠A=76°,∠B=59°,且∠ACD=135°(量角器测量所得)又∵135°=76°+59°(计算所得)∴∠ACD =∠A +∠B (等量代换).下列说法正确的是( )A .证法1还需证明其他形状的三角形,该定理的证明才完整B .证法1用严谨的推理证明了该定理C .证法2用特殊到一般法证明了该定理D .证法2只要测量够一百个三角形进行验证,就能证明该定理14.(2分)小明调查了本班每位同学最喜欢的颜色,并绘制了不完整的扇形图1及条形图2(柱的高度从高到低排列).条形图不小心被撕了一块,图2中“( )”应填的颜色是( )A .蓝B .粉C .黄D .红 15.(2分)由(1+c 2+c −12)值的正负可以比较A =1+c 2+c 与12的大小,下列正确的是( )A .当c =﹣2时,A =12B .当c =0时,A ≠12C .当c <﹣2时,A >12D .当c <0时,A <12 16.(2分)如图,等腰△AOB 中,顶角∠AOB =40°,用尺规按①到④的步骤操作: ①以O 为圆心,OA 为半径画圆;②在⊙O 上任取一点P (不与点A ,B 重合),连接AP ;③作AB 的垂直平分线与⊙O 交于M ,N ;④作AP 的垂直平分线与⊙O 交于E ,F .结论Ⅰ:顺次连接M ,E ,N ,F 四点必能得到矩形;结论Ⅱ:⊙O 上只有唯一的点P ,使得S 扇形FOM =S 扇形AOB .对于结论Ⅰ和Ⅱ,下列判断正确的是( )A .Ⅰ和Ⅱ都对B .Ⅰ和Ⅱ都不对C .Ⅰ不对Ⅱ对D .Ⅰ对Ⅱ不对二、填空题(本大题有3个小题,每小题有2个空,每空2分,共12分)17.(4分)现有甲、乙、丙三种不同的矩形纸片(边长如图).(1)取甲、乙纸片各1块,其面积和为 ;(2)嘉嘉要用这三种纸片紧密拼接成一个大正方形,先取甲纸片1块,再取乙纸片4块,还需取丙纸片 块.18.(4分)如图是可调躺椅示意图(数据如图),AE 与BD 的交点为C ,且∠A ,∠B ,∠E 保持不变.为了舒适,需调整∠D 的大小,使∠EFD =110°,则图中∠D 应 (填“增加”或“减少”) 度.19.(4分)用绘图软件绘制双曲线m :y =60x 与动直线l :y =a ,且交于一点,图1为a =8时的视窗情形.(1)当a =15时,l 与m 的交点坐标为 ;(2)视窗的大小不变,但其可视范围可以变化,且变化前后原点O 始终在视窗中心. 例如,为在视窗中看到(1)中的交点,可将图1中坐标系的单位长度变为原来的12,其可视范围就由﹣15≤x≤15及﹣10≤y≤10变成了﹣30≤x≤30及﹣20≤y≤20(如图2).当a=﹣1.2和a=﹣1.5时,l与m的交点分别是点A和B,为能看到m在A和B之间的一整段图象,需要将图1中坐标系的单位长度至少变为原来的1k,则整数k=.三、解答题(本大题有7个小题,共66分。
2020-2021中考数学——平行四边形的综合压轴题专题复习含答案解析
2020-2021中考数学——平行四边形的综合压轴题专题复习含答案解析一、平行四边形1.如图,在正方形ABCD中,E是边BC上的一动点(不与点B、C重合),连接DE、点C 关于直线DE的对称点为C′,连接AC′并延长交直线DE于点P,F是AC′的中点,连接DF.(1)求∠FDP的度数;(2)连接BP,请用等式表示AP、BP、DP三条线段之间的数量关系,并证明;(3)连接AC,若正方形的边长为2,请直接写出△ACC′的面积最大值.【答案】(1)45°;(2)BP+DP2AP,证明详见解析;(32﹣1.【解析】【分析】(1)证明∠CDE=∠C'DE和∠ADF=∠C'DF,可得∠FDP'=12∠ADC=45°;(2)作辅助线,构建全等三角形,证明△BAP≌△DAP'(SAS),得BP=DP',从而得△PAP'是等腰直角三角形,可得结论;(3)先作高线C'G,确定△ACC′的面积中底边AC为定值2,根据高的大小确定面积的大小,当C'在BD上时,C'G最大,其△ACC′的面积最大,并求此时的面积.【详解】(1)由对称得:CD=C'D,∠CDE=∠C'DE,在正方形ABCD中,AD=CD,∠ADC=90°,∴AD=C'D,∵F是AC'的中点,∴DF⊥AC',∠ADF=∠C'DF,∴∠FDP=∠FDC'+∠EDC'=12∠ADC=45°;(2)结论:BP+DP2AP,理由是:如图,作AP'⊥AP交PD的延长线于P',∴∠PAP'=90°,在正方形ABCD中,DA=BA,∠BAD=90°,∴∠DAP'=∠BAP,由(1)可知:∠FDP=45°∵∠DFP=90°∴∠APD=45°,∴∠P'=45°,∴AP=AP',在△BAP和△DAP'中,∵BA DABAP DAP AP AP'=⎧⎪∠=∠⎨='⎪⎩,∴△BAP≌△DAP'(SAS),∴BP=DP',∴DP+BP=PP'=2AP;(3)如图,过C'作C'G⊥AC于G,则S△AC'C=12AC•C'G,Rt△ABC中,AB=BC2,∴AC22(2)(2)2+=,即AC为定值,当C'G最大值,△AC'C的面积最大,连接BD,交AC于O,当C'在BD上时,C'G最大,此时G与O重合,∵CD =C 'D =2,OD =12AC =1, ∴C 'G =2﹣1,∴S △AC 'C =112(21)2122AC C G '•=⨯-=-. 【点睛】 本题考查四边形综合题、正方形的性质、等腰直角三角形的判定和性质、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.2.如图,四边形ABCD 中,∠BCD =∠D =90°,E 是边AB 的中点.已知AD =1,AB =2. (1)设BC =x ,CD =y ,求y 关于x 的函数关系式,并写出定义域;(2)当∠B =70°时,求∠AEC 的度数;(3)当△ACE 为直角三角形时,求边BC 的长.【答案】(1)()22303y x x x =-++<<;(2)∠AEC =105°;(3)边BC 的长为2117+. 【解析】试题分析:(1)过A 作AH ⊥BC 于H ,得到四边形ADCH 为矩形.在△BAH 中,由勾股定理即可得出结论.(2)取CD 中点T ,连接TE ,则TE 是梯形中位线,得ET ∥AD ,ET ⊥CD ,∠AET =∠B =70°.又AD =AE =1,得到∠AED =∠ADE =∠DET =35°.由ET 垂直平分CD ,得∠CET =∠DET =35°,即可得到结论.(3)分两种情况讨论:①当∠AEC =90°时,易知△CBE ≌△CAE ≌△CAD ,得∠BCE =30°, 解△ABH 即可得到结论.②当∠CAE =90°时,易知△CDA ∽△BCA ,由相似三角形对应边成比例即可得到结论. 试题解析:解:(1)过A 作AH ⊥BC 于H .由∠D =∠BCD =90°,得四边形ADCH 为矩形. 在△BAH 中,AB =2,∠BHA =90°,AH =y ,HB =1x -,∴22221y x =+-,则()22303y x x x =-++<<(2)取CD 中点T ,联结TE ,则TE 是梯形中位线,得ET ∥AD ,ET ⊥CD ,∴∠AET =∠B =70°.又AD=AE=1,∴∠AED=∠ADE=∠DET=35°.由ET垂直平分CD,得∠CET=∠DET=35°,∴∠AEC=70°+35°=105°.(3)分两种情况讨论:①当∠AEC=90°时,易知△CBE≌△CAE≌△CAD,得∠BCE=30°,则在△ABH中,∠B=60°,∠AHB=90°,AB=2,得BH=1,于是BC=2.②当∠CAE=90°时,易知△CDA∽△BCA,又2224AC BC AB x=-=-,则2241174AD CA xxAC CB x-±=⇒=⇒=-(舍负)易知∠ACE<90°,所以边BC的长为117+.综上所述:边BC的长为2或1172+.点睛:本题是四边形综合题.考查了梯形中位线,相似三角形的判定与性质.解题的关键是掌握梯形中常见的辅助线作法.3.如图,在平行四边形ABCD中,AD⊥DB,垂足为点D,将平行四边形ABCD折叠,使点B落在点D的位置,点C落在点G的位置,折痕为EF,EF交对角线BD于点P.(1)连结CG,请判断四边形DBCG的形状,并说明理由;(2)若AE=BD,求∠EDF的度数.【答案】(1)四边形BCGD是矩形,理由详见解析;(2)∠EDF=120°.【解析】【分析】(1)根据平行四边形的性质和折叠性质以及矩形的判定解答即可;(2)根据折叠的性质以及直角三角形的性质和等边三角形的判定与性质解答即可.【详解】解:(1)四边形BCGD 是矩形,理由如下,∵四边形ABCD 是平行四边形,∴BC ∥AD ,即BC ∥DG ,由折叠可知,BC =DG ,∴四边形BCGD 是平行四边形,∵AD ⊥BD ,∴∠CBD =90°,∴四边形BCGD 是矩形;(2)由折叠可知:EF 垂直平分BD ,∴BD ⊥EF ,DP =BP ,∵AD ⊥BD ,∴EF ∥AD ∥BC , ∴AE PD 1BE BP== ∴AE =BE , ∴DE 是Rt △ADB 斜边上的中线,∴DE =AE =BE ,∵AE =BD ,∴DE =BD =BE ,∴△DBE 是等边三角形,∴∠EDB =∠DBE =60°,∵AB ∥DC ,∴∠DBC =∠DBE =60°,∴∠EDF =120°.【点睛】本题考查了平行四边形的性质,折叠性质,等边三角形的性质和判定,主要考查学生运用定理进行推理和计算的能力,题目综合性比较强,有一定的难度4.如图①,四边形ABCD 是知形,1,2AB BC ==,点E 是线段BC 上一动点(不与,B C 重合),点F 是线段BA 延长线上一动点,连接,,,DE EF DF EF 交AD 于点G .设,BE x AF y ==,已知y 与x 之间的函数关系如图②所示.(1)求图②中y 与x 的函数表达式;(2)求证:DE DF ⊥;(3)是否存在x 的值,使得DEG △是等腰三角形?如果存在,求出x 的值;如果不存在,说明理由【答案】(1)y =﹣2x +4(0<x <2);(2)见解析;(3)存在,x =54或552-或32. 【解析】【分析】(1)利用待定系数法可得y 与x 的函数表达式;(2)证明△CDE ∽△ADF ,得∠ADF =∠CDE ,可得结论;(3)分三种情况:①若DE =DG ,则∠DGE =∠DEG ,②若DE =EG ,如图①,作EH ∥CD ,交AD 于H ,③若DG =EG ,则∠GDE =∠GED ,分别列方程计算可得结论.【详解】(1)设y =kx +b ,由图象得:当x =1时,y =2,当x =0时,y =4,代入得:24k b b +=⎧⎨=⎩,得24k b =-⎧⎨=⎩, ∴y =﹣2x +4(0<x <2);(2)∵BE =x ,BC =2∴CE =2﹣x , ∴211,4222CE x CD AF x AD -===-, ∴CE CD AF AD=, ∵四边形ABCD 是矩形,∴∠C =∠DAF =90°,∴△CDE ∽△ADF ,∴∠ADF =∠CDE ,∴∠ADF +∠EDG =∠CDE +∠EDG =90°,∴DE ⊥DF ;(3)假设存在x 的值,使得△DEG 是等腰三角形,①若DE =DG ,则∠DGE =∠DEG ,∵四边形ABCD 是矩形,∴AD ∥BC ,∠B =90°,∴∠DGE =∠GEB ,∴∠DEG =∠BEG ,在△DEF 和△BEF 中,FDE B DEF BEF EF EF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△DEF ≌△BEF (AAS ),∴DE =BE =x ,CE =2﹣x ,∴在Rt △CDE 中,由勾股定理得:1+(2﹣x )2=x 2,x =54; ②若DE =EG ,如图①,作EH ∥CD ,交AD 于H ,∵AD ∥BC ,EH ∥CD ,∴四边形CDHE 是平行四边形,∴∠C =90°,∴四边形CDHE 是矩形,∴EH =CD =1,DH =CE =2﹣x ,EH ⊥DG ,∴HG =DH =2﹣x ,∴AG =2x ﹣2,∵EH ∥CD ,DC ∥AB ,∴EH ∥AF ,∴△EHG ∽△FAG ,∴EH HG AF AG =, ∴124222x x x -=--,∴125522x x ==(舍), ③若DG =EG ,则∠GDE =∠GED ,∵AD ∥BC ,∴∠GDE =∠DEC ,∴∠GED =∠DEC ,∵∠C =∠EDF =90°,∴△CDE ∽△DFE , ∴CE DE CD DF=, ∵△CDE ∽△ADF , ∴12DE CD DF AD ==, ∴12CE CD =, ∴2﹣x =12,x =32,综上,x =54或32. 【点睛】本题是四边形的综合题,主要考查了待定系数法求一次函数的解析式,三角形相似和全等的性质和判定,矩形和平行四边形的性质和判定,勾股定理和逆定理等知识,运用相似三角形的性质是解决本题的关键.5.如图,在平面直角坐标系中,直线DE 交x 轴于点E (30,0),交y 轴于点D (0,40),直线AB :y =13x +5交x 轴于点A ,交y 轴于点B ,交直线DE 于点P ,过点E 作EF ⊥x 轴交直线AB 于点F ,以EF 为一边向右作正方形EFGH .(1)求边EF 的长;(2)将正方形EFGH 沿射线FB 个单位的速度匀速平移,得到正方形E 1F 1G 1H 1,在平移过程中边F 1G 1始终与y 轴垂直,设平移的时间为t 秒(t >0). ①当点F 1移动到点B 时,求t 的值;②当G 1,H 1两点中有一点移动到直线DE 上时,请直接写出此时正方形E 1F 1G 1H 1与△APE 重叠部分的面积.【答案】(1)EF=15;(2)①10;②120;【解析】【分析】(1)根据已知点E(30,0),点D(0,40),求出直线DE的直线解析式y=-43x+40,可求出P点坐标,进而求出F点坐标即可;(2)①易求B(0,5),当点F1移动到点B时,1010=10;②F点移动到F'10t,F垂直x轴方向移动的距离是t,当点H运动到直线DE上时,在Rt△F'NF中,NFNF'=13,EM=NG'=15-F'N=15-3t,在Rt△DMH'中,43MHEM'=,t=4,S=12×(12+454)×11=10238;当点G运动到直线DE上时,在Rt△F'PK中,PKF K'=13,PK=t-3,F'K=3t-9,在Rt△PKG'中,PKKG'=31539tt--+=43,t=7,S=15×(15-7)=120.【详解】(1)设直线DE的直线解析式y=kx+b,将点E(30,0),点D(0,40),∴30040k bb+=⎧⎨=⎩,∴4340kb⎧=-⎪⎨⎪=⎩,∴y=﹣43x+40,直线AB与直线DE的交点P(21,12),由题意知F(30,15),∴EF=15;(2)①易求B(0,5),∴BF=10,∴当点F1移动到点B时,t=1010=10;②当点H 运动到直线DE 上时,F 点移动到F'的距离是10t , 在Rt △F'NF 中,NF NF '=13, ∴FN =t ,F'N =3t , ∵MH'=FN =t ,EM =NG'=15﹣F'N =15﹣3t , 在Rt △DMH'中,43MH EM '=, ∴41533t t =-, ∴t =4, ∴EM =3,MH'=4,∴S =1451023(12)11248⨯+⨯=; 当点G 运动到直线DE 上时,F 点移动到F'10, ∵PF =10∴PF'10t ﹣10, 在Rt △F'PK 中,13PK F K =',∴PK=t﹣3,F'K=3t﹣9,在Rt△PKG'中,PKKG'=31539tt--+=43,∴t=7,∴S=15×(15﹣7)=120.【点睛】本题考查一次函数图象及性质,正方形的性质;掌握待定系数法求函数解析式,利用三角形的正切值求边的关系,利用勾股定理在直角三角形中建立边之间的联系,准确确定阴影部分的面积是解题的关键.6.如图1,在正方形ABCD中,AD=6,点P是对角线BD上任意一点,连接PA,PC过点P 作PE⊥PC交直线AB于E.(1)求证:PC=PE;(2)延长AP交直线CD于点F.①如图2,若点F是CD的中点,求△APE的面积;②若ΔAPE的面积是21625,则DF的长为(3)如图3,点E在边AB上,连接EC交BD于点M,作点E关于BD的对称点Q,连接PQ,MQ,过点P作PN∥CD交EC于点N,连接QN,若PQ=5,MN=72,则△MNQ的面积是【答案】(1)略;(2)①8,②4或9;(3)5 6【解析】【分析】(1)利用正方形每个角都是90°,对角线平分对角的性质,三角形外角等于和它不相邻的两个内角的和,等角对等边等性质容易得证;(2)作出△ADP和△DFP的高,由面积法容易求出这个高的值.从而得到△PAE的底和高,并求出面积.第2小问思路一样,通过面积法列出方程求解即可;(3)根据已经条件证出△MNQ是直角三角形,计算直角边乘积的一半可得其面积.【详解】(1) 证明:∵点P 在对角线BD 上,∴△ADP ≌△CDP ,∴AP=CP , ∠DAP =∠DCP ,∵PE ⊥PC ,∴∠EPC=∠EPB+∠BPC=90°,∵∠PEA=∠EBP+∠EPB=45°+90°-∠BPC=135°-∠BPC,∵∠PAE=90°-∠DAP =90°-∠DCP ,∠DCP=∠BPC-∠PDC=∠BPC-45°,∴∠PAE=90°-(∠BPC-45°)= 135°-∠BPC,∴∠PEA=∠PAE,∴PC=PE;(2)①如图2,过点P 分别作PH ⊥AD,PG ⊥CD,垂足分别为H 、G.延长GP 交AB 于点M.∵四边形ABCD 是正方形,P 在对角线上,∴四边形HPGD 是正方形,∴PH=PG,PM ⊥AB,设PH=PG=a,∵F 是CD 中点,AD =6,则FD=3,ADF S n =9,∵ADF S n =ADP DFP S S +n n =1122AD PH DF PG ⨯+⨯, ∴1163922a a ⨯+⨯=,解得a=2, ∴AM=HP=2,MP=MG-PG=6-2=4,又∵PA=PE,∴AM=EM,AE=4,∵APE S n =1144822EA MP ⨯=⨯⨯=, ②设HP =b,由①可得AE=2b,MP=6-b,∴APE S n =()121626225b b ⨯⨯-=, 解得b=2.4 3.6或, ∵ADF S n =ADP DFP S S +n n =1122AD PH DF PG ⨯+⨯,∴11166222b DF b DF ⨯⨯+⨯=⨯, ∴当b=2.4时,DF=4;当b =3.6时,DF =9,即DF 的长为4或9;(3)如图,∵E 、Q 关于BP 对称,PN ∥CD,∴∠1=∠2,∠2+∠3=∠BDC=45°,∴∠1+∠4=45°,∴∠3=∠4,易证△PEM ≌△PQM, △PNQ ≌△PNC,∴∠5=∠6, ∠7=∠8 ,EM=QM,NQ=NC,∴∠6+∠7=90°,∴△MNQ 是直角三角形,设EM=a,NC=b 列方程组222252372 a b a b ⎧+=⎪⎪⎨⎛⎪+= ⎪⎝⎭⎩, 可得12ab=56, ∴MNQ 56S V =, 【点睛】本题是四边形综合题目,考查了正方形的性质、等腰直角三角形的判定与性质、全等三角形的判定与性质等知识;本题综合性强,有一定难度,熟练掌握正方形的性质,证明三角形全等是解决问题的关键.要注意运用数形结合思想.7.如图①,在矩形ABCD 中,点P 从AB 边的中点E 出发,沿着E B C --速运动,速度为每秒2个单位长度,到达点C 后停止运动,点Q 是AD 上的点,10AQ =,设PAQ ∆的面积为y ,点p 运动的时间为t 秒,y 与t 的函数关系如图②所示.(1)图①中AB = ,BC = ,图②中m = .(2)当t =1秒时,试判断以PQ 为直径的圆是否与BC 边相切?请说明理由:(3)点p 在运动过程中,将矩形沿PQ 所在直线折叠,则t 为何值时,折叠后顶点A 的对应点A '落在矩形的一边上.【答案】(1)8,18,20;(2)不相切,证明见解析;(3)t=12、5、173. 【解析】【分析】 (1)由题意得出AB=2BE ,t=2时,BE=2×2=4,求出AB=2BE=8,AE=BE=4,t=11时,2t=22,得出BC=18,当t=0时,点P 在E 处,m=△AEQ 的面积=12AQ×AE=20即可; (2)当t=1时,PE=2,得出AP=AE+PE=6,由勾股定理求出34PQ 为直径的圆的圆心为O',作O'N ⊥BC 于N ,延长NO'交AD 于M ,则MN=AB=8,O'M ∥AB ,MN=AB=8,由三角形中位线定理得出O'M=12AP=3,求出O'N=MN-O'M=5<圆O'的半径,即可得出结论;(3)分三种情况:①当点P 在AB 边上,A'落在BC 边上时,作QF ⊥BC 于F ,则QF=AB=8,BF=AQ=10,由折叠的性质得:PA'=PA ,A'Q=AQ=10,∠PA'Q=∠A=90°,由勾股定理求出22AQ QF '-,得出A'B=BF-A'F=4,在Rt △A'BP 中,BP=4-2t ,PA'=AP=8-(4-2t )=4+2t ,由勾股定理得出方程,解方程即可;②当点P 在BC 边上,A'落在BC 边上时,由折叠的性质得:A'P=AP ,证出∠APQ=∠AQP ,得出AP=AQ=A'P=10,在Rt △ABP 中,由勾股定理求出BP=6,由BP=2t-4,得出2t-4=6,解方程即可;③当点P 在BC 边上,A'落在CD 边上时,由折叠的性质得:A'P=AP ,A'Q=AQ=10,在Rt △DQA'中,DQ=AD-AQ=8,由勾股定理求出DA'=6,得出A'C=CD-DA'=2,在Rt △ABP 和Rt △A'PC 中,BP=2t-4,CP=BC-BP=22-2t ,由勾股定理得出方程,解方程即可.【详解】(1)∵点P 从AB 边的中点E 出发,速度为每秒2个单位长度,∴AB=2BE ,由图象得:t=2时,BE=2×2=4,∴AB=2BE=8,AE=BE=4,t=11时,2t=22,∴BC=22-4=18,当t=0时,点P在E处,m=△AEQ的面积=12AQ×AE=12×10×4=20;故答案为8,18,20;(2)当t=1秒时,以PQ为直径的圆不与BC边相切,理由如下:当t=1时,PE=2,∴AP=AE+PE=4+2=6,∵四边形ABCD是矩形,∴∠A=90°,∴PQ=2222106234AQ AP+=+=,设以PQ为直径的圆的圆心为O',作O'N⊥BC于N,延长NO'交AD于M,如图1所示:则MN=AB=8,O'M∥AB,MN=AB=8,∵O'为PQ的中点,∴O''M是△APQ的中位线,∴O'M=12AP=3,∴O'N=MN-O'M=5<34,∴以PQ为直径的圆不与BC边相切;(3)分三种情况:①当点P在AB边上,A'落在BC边上时,作QF⊥BC于F,如图2所示:则QF=AB=8,BF=AQ=10,∵四边形ABCD是矩形,∴∠A=∠B=∠BCD=∠D=90°,CD=AB=8,AD=BC=18,由折叠的性质得:PA'=PA,A'Q=AQ=10,∠PA'Q=∠A=90°,∴22AQ QF'-,∴A'B=BF-A'F=4,在Rt△A'BP中,BP=4-2t,PA'=AP=8-(4-2t)=4+2t,由勾股定理得:42+(4-2t)2=(4+2t)2,解得:t=12;②当点P在BC边上,A'落在BC边上时,连接AA',如图3所示:由折叠的性质得:A'P=AP,∴∠APQ'=∠A'PQ,∵AD∥BC,∴∠AQP=∠A'PQ,∴∠APQ=∠AQP,∴AP=AQ=A'P=10,在Rt△ABP中,由勾股定理得:BP=22108-=6,又∵BP=2t-4,∴2t-4=6,解得:t=5;③当点P在BC边上,A'落在CD边上时,连接AP、A'P,如图4所示:由折叠的性质得:A'P=AP,A'Q=AQ=10,在Rt△DQA'中,DQ=AD-AQ=8,由勾股定理得:22108-,∴A'C=CD-DA'=2,在Rt△ABP和Rt△A'PC中,BP=2t-4,CP=BC-BP=18-(2t-4)=22-2t,由勾股定理得:AP2=82+(2t-4)2,A'P2=22+(22-2t)2,∴82+(2t-4)2=22+(22-2t)2,解得:t=173;综上所述,t为12或5或173时,折叠后顶点A的对应点A′落在矩形的一边上.【点睛】四边形综合题目,考查了矩形的性质、折叠变换的性质、勾股定理、函数图象、直线与圆的位置关系、三角形中位线定理、等腰三角形的判定、以及分类讨论等知识.8.定义:我们把三角形被一边中线分成的两个三角形叫做“友好三角形”.性质:如果两个三角形是“友好三角形”,那么这两个三角形的面积相等.理解:如图①,在△ABC中,CD是AB边上的中线,那么△ACD和△BCD是“友好三角形”,并且S△ACD=S△BCD.应用:如图②,在矩形ABCD中,AB=4,BC=6,点E在AD上,点F在BC上,AE=BF,AF 与BE交于点O.(1)求证:△AOB和△AOE是“友好三角形”;(2)连接OD,若△AOE和△DOE是“友好三角形”,求四边形CDOF的面积.探究:在△ABC中,∠A=30°,AB=4,点D在线段AB上,连接CD,△ACD和△BCD是“友好三角形”,将△ACD沿CD所在直线翻折,得到△A′CD,若△A′CD与△ABC重合部分的面积等于△ABC面积的,请直接写出△ABC的面积.【答案】(1)见解析;(2)12;探究:2或2.【解析】试题分析:(1)利用一组对边平行且相等的四边形是平行四边形,得到四边形ABFE是平行四边形,然后根据平行四边形的性质证得OE=OB,即可证得△AOE和△AOB是友好三角形;(2)△AOE和△DOE是“友好三角形”,即可得到E是AD的中点,则可以求得△ABE、△ABF的面积,根据S四边形CDOF=S矩形ABCD-2S△ABF即可求解.探究:画出符合条件的两种情况:①求出四边形A′DCB是平行四边形,求出BC和A′D推出∠ACB=90°,根据三角形面积公式求出即可;②求出高CQ,求出△A′DC的面积.即可求出△ABC的面积.试题解析:(1)∵四边形ABCD是矩形,∴AD∥BC,∵AE=BF,∴四边形ABFE是平行四边形,∴OE=OB,∴△AOE和△AOB是友好三角形.(2)∵△AOE和△DOE是友好三角形,∴S△AOE=S△DOE,AE=ED=AD=3,∵△AOB与△AOE是友好三角形,∴S△AOB=S△AOE,∵△AOE≌△FOB,∴S△AOE=S△FOB,∴S△AOD=S△ABF,∴S四边形CDOF=S矩形ABCD-2S△ABF=4×6-2××4×3=12.探究:解:分为两种情况:①如图1,∵S△ACD=S△BCD.∴AD=BD=AB,∵沿CD折叠A和A′重合,∴AD=A′D=AB=×4=2,∵△A′CD与△ABC重合部分的面积等于△ABC面积的,∴S△DOC=S△ABC=S△BDC=S△ADC=S△A′DC,∴DO=OB,A′O=CO,∴四边形A′DCB是平行四边形,∴BC=A′D=2,过B作BM⊥AC于M,∵AB=4,∠BAC=30°,∴BM=AB=2=BC,即C和M重合,∴∠ACB=90°,由勾股定理得:AC=,∴△ABC的面积是×BC×AC=×2×2=2;②如图2,∵S△ACD=S△BCD.∴AD=BD=AB,∵沿CD折叠A和A′重合,∴AD=A′D=AB=×4=2,∵△A′CD与△ABC重合部分的面积等于△ABC面积的,∴S△DOC=S△ABC=S△BDC=S△ADC=S△A′DC,∴DO=OA′,BO=CO,∴四边形A′BDC是平行四边形,∴A′C=BD=2,过C作CQ⊥A′D于Q,∵A′C=2,∠DA′C=∠BAC=30°,∴CQ=A′C=1,∴S△ABC=2S△ADC=2S△A′DC=2××A′D×CQ=2××2×1=2;即△ABC的面积是2或2.考点:四边形综合题.9.如图,现将平行四边形ABCD沿其对角线AC折叠,使点B落在点B′处.AB′与CD交于点E.(1)求证:△AED≌△CEB′;(2)过点E作EF⊥AC交AB于点F,连接CF,判断四边形AECF的形状并给予证明.【答案】(1)见解析(2)见解析【解析】【分析】(1)由题意可得AD=BC=B'C,∠B=∠D=∠B',且∠AED=∠CEB',利用AAS证明全等,则结论可得;(2)由△AED≌△CEB′可得AE=CE,且EF⊥AC,根据等腰三角形的性质可得EF垂直平分AC,∠AEF=∠CEF.即AF=CF,∠CEF=∠AFE=∠AEF,可得AE=AF,则可证四边形AECF是菱形.【详解】证明:(1)∵四边形ABCD是平行四边形∴AD=BC,CD∥AB,∠B=∠D∵平行四边形ABCD沿其对角线AC折叠∴BC=B'C,∠B=∠B'∴∠D=∠B',AD=B'C且∠DEA=∠B'EC∴△ADE≌△B'EC(2)四边形AECF是菱形∵△ADE≌△B'EC∴AE=CE∵AE=CE,EF⊥AC∴EF垂直平分AC,∠AEF=∠CEF∴AF=CF∵CD∥AB∴∠CEF=∠EFA且∠AEF=∠CEF∴∠AEF=∠EFA∴AF=AE∴AF=AE=CE=CF∴四边形AECF是菱形【点睛】本题考查了折叠问题,全等三角形的判定和性质,平行四边形的性质,菱形的判定,熟练掌握这些性质和判定是解决问题的关键.10.小明在矩形纸片上画正三角形,他的做法是:①对折矩形纸片ABCD(AB>BC),使AB 与DC重合,得到折痕EF,把纸片展平;②沿折痕BG折叠纸片,使点C落在EF上的点P 处,再折出PB、PC,最后用笔画出△PBC(图1).(1)求证:图1中的PBC是正三角形:(2)如图2,小明在矩形纸片HIJK上又画了一个正三角形IMN,其中IJ=6cm,且HM=JN.①求证:IH=IJ②请求出NJ的长;(3)小明发现:在矩形纸片中,若一边长为6cm,当另一边的长度a变化时,在矩形纸片上总能画出最大的正三角形,但位置会有所不同.请根据小明的发现,画出不同情形的示意图(作图工具不限,能说明问题即可),并直接写出对应的a的取值范围.【答案】(1)证明见解析;(2)①证明见解析;②12-63(3)33<a<43,a>43【解析】分析:(1)由折叠的性质和垂直平分线的性质得出PB=PC,PB=CB,得出PB=PC=CB即可;(2)①利用“HL”证Rt△IHM≌Rt△IJN即可得;②IJ上取一点Q,使QI=QN,由Rt△IHM≌Rt△IJN知∠HIM=∠JIN=15°,继而可得∠NQJ=30°,设NJ=x,则IQ=QN=2x、QJ=3x,根据IJ=IQ+QJ求出x即可得;(3)由等边三角形的性质、直角三角形的性质、勾股定理进行计算,画出图形即可.(1)证明:∵①对折矩形纸片ABCD(AB>BC),使AB与DC重合,得到折痕EF∴PB=PC∵沿折痕BG折叠纸片,使点C落在EF上的点P处∴PB=BC∴PB=PC=BC∴△PBC是正三角形:(2)证明:①如图∵矩形AHIJ∴∠H=∠J=90°∵△MNJ是等边三角形∴MI=NI在Rt △MHI 和Rt △JNI 中MI NI MH NJ=⎧⎨=⎩ ∴Rt △MHI ≌Rt △JNI (HL )∴HI=IJ②在线段IJ 上取点Q ,使IQ=NQ∵Rt △IHM ≌Rt △IJN ,∴∠HIM=∠JIN ,∵∠HIJ=90°、∠MIN=60°,∴∠HIM=∠JIN=15°,由QI=QN 知∠JIN=∠QNI=15°,∴∠NQJ=30°,设NJ=x ,则IQ=QN=2x ,QJ=22=3QN NJ -x ,∵IJ=6cm ,∴2x+3x=6,∴x=12-63,即NJ=12-63(cm ).(3)分三种情况:①如图:设等边三角形的边长为b ,则0<b≤6,则tan60°3=2ab ,∴3b , ∴0<b≤32=33 ②如图当DF与DC重合时,DF=DE=6,∴a=sin60°×DE=63=33,当DE与DA重合时,a=643 sin603==︒,∴33<a<43;③如图∵△DEF是等边三角形∴∠FDC=30°∴DF=643 cos303==︒∴a>3点睛:本题是四边形的综合题目,考查了折叠的性质、等边三角形的判定与性质、旋转的性质、直角三角形的性质、正方形的性质、全等三角形的判定与性质等知识;本题综合性强,难度较大.11.如图1所示,(1)在正三角形ABC中,M是BC边(不含端点B、C)上任意一点,P 是BC延长线上一点,N是∠ACP的平分线上一点,若∠AMN=60°,求证:AM=MN.(2)若将(1)中“正三角形ABC”改为“正方形ABCD”,N是∠DCP的平分线上一点,若∠AMN=90°,则AM=MN是否成立?若成立,请证明;若不成立,说明理由.(3)若将(2)中的“正方形ABCD”改为“正n边形A1A2…A n“,其它条件不变,请你猜想:当∠A n﹣2MN=_____°时,结论A n﹣2M=MN仍然成立.(不要求证明)【答案】0 (2)180 nn【解析】分析:(1)要证明AM=MN,可证AM与MN所在的三角形全等,为此,可在AB上取一点E,使AE=CM,连接ME,利用ASA即可证明△AEM≌△MCN,然后根据全等三角形的对应边成比例得出AM=MN.(2)同(1),要证明AM=MN,可证AM与MN所在的三角形全等,为此,可在AB上取一点E,使AE=CM,连接ME,利用ASA即可证明△AEM≌△MCN,然后根据全等三角形的对应边成比例得出AM=MN.详(1)证明:在边AB上截取AE=MC,连接ME.在正△ABC中,∠B=∠BCA=60°,AB=BC.∴∠NMC=180°-∠AMN-∠AMB=180°-∠B-∠AMB=∠MAE,BE=AB-AE=BC-MC=BM,∴∠BEM=60°,∴∠AEM=120°.∵N是∠ACP的平分线上一点,∴∠ACN=60°,∴∠MCN=120°.在△AEM与△MCN中,∠MAE=∠NMC,AE=MC,∠AEM=∠MCN,∴△AEM≌△MCN(ASA),∴AM=MN.(2)解:结论成立;理由:在边AB上截取AE=MC,连接ME.∵正方形ABCD中,∠B=∠BCD=90°,AB=BC.∴∠NMC=180°-∠AMN-∠AMB=180°-∠B-∠AMB=∠MAB=∠MAE,BE=AB-AE=BC-MC=BM,∴∠BEM=45°,∴∠AEM=135°.∵N是∠DCP的平分线上一点,∴∠NCP=45°,∴∠MCN=135°.在△AEM与△MCN中,∠MAE=∠NMC,AE=MC,∠AEM=∠MCN,∴△AEM≌△MCN(ASA),∴AM=MN.(3)由(1)(2)可知当∠A n-2MN等于n边形的内角时,结论A n-2M=MN仍然成立;即∠A n-2MN=()02180nn-时,结论A n-2M=MN仍然成立;故答案为[()02180nn-].点睛:本题综合考查了正方形、等边三角形的性质及全等三角形的判定,同时考查了学生的归纳能力及分析、解决问题的能力.难度较大.12.正方形ABCD的边长为1,对角线AC与BD相交于点O,点E是AB边上的一个动点(点E不与点A、B重合),CE与BD相交于点F,设线段BE的长度为x.(1)如图1,当AD=2OF时,求出x的值;(2)如图2,把线段CE绕点E顺时针旋转90°,使点C落在点P处,连接AP,设△APE 的面积为S,试求S与x的函数关系式并求出S的最大值.【答案】(1)x=﹣1;(2)S=﹣(x﹣)2+(0<x<1),当x=时,S的值最大,最大值为,.【解析】试题分析:(1)过O作OM∥AB交CE于点M,如图1,由平行线等分线段定理得到CM=ME,根据三角形的中位线定理得到AE=2OM=2OF,得到OM=OF,于是得到BF=BE=x,求得OF=OM=解方程,即可得到结果;(2)过P作PG⊥AB交AB的延长线于G,如图2,根据已知条件得到∠ECB=∠PEG,根据全等三角形的性质得到EB=PG=x,由三角形的面积公式得到S=(1﹣x)•x,根据二次函数的性质即可得到结论.试题解析:(1)过O作OM∥AB交CE于点M,如图1,∵OA=OC,∴CM=ME,∴AE=2OM=2OF,∴OM=OF,∴,∴BF=BE=x,∴OF=OM=,∵AB=1,∴OB=,∴,∴x=﹣1;(2)过P作PG⊥AB交AB的延长线于G,如图2,∵∠CEP=∠EBC=90°,∴∠ECB=∠PEG,∵PE=EC,∠EGP=∠CBE=90°,在△EPG与△CEB中,,∴△EPG≌△CEB,∴EB=PG=x,∴AE=1﹣x,∴S=(1﹣x)•x=﹣x2+x=﹣(x﹣)2+,(0<x<1),∵﹣<0,∴当x=时,S的值最大,最大值为,.考点:四边形综合题13.已知点O是△ABC内任意一点,连接OA并延长到E,使得AE=OA,以OB,OC为邻边作▱OBFC,连接OF与BC交于点H,再连接EF.(1)如图1,若△ABC为等边三角形,求证:①EF⊥BC;②EF=BC;(2)如图2,若△ABC为等腰直角三角形(BC为斜边),猜想(1)中的两个结论是否成立?若成立,直接写出结论即可;若不成立,请你直接写出你的猜想结果;(3)如图3,若△ABC是等腰三角形,且AB=AC=kBC,请你直接写出EF与BC之间的数量关系.【答案】(1)见解析;(2)EF⊥BC仍然成立;(3)EF=BC【解析】试题分析:(1)由平行四边形的性质得到BH=HC=BC,OH=HF,再由等边三角形的性质得到AB=BC,AH⊥BC,根据勾股定理得到AH=BC,即可;(2)由平行四边形的性质得到BH=HC=BC,OH=HF,再由等腰直角三角形的性质得到AB=BC,AH⊥BC,根据勾股定理得到AH=BC,即可;(3)由平行四边形的性质得到BH=HC=BC,OH=HF,再由等腰三角形的性质和AB=AC=kBC得到AB=BC,AH⊥BC,根据勾股定理得到AH=BC,即可.试题解析:(1)连接AH,如图1,∵四边形OBFC是平行四边形,∴BH=HC=BC,OH=HF,∵△ABC是等边三角形,∴AB=BC,AH⊥BC,在Rt△ABH中,AH2=AB2﹣BH2,∴AH==BC,∵OA=AE,OH=HF,∴AH是△OEF的中位线,∴AH=EF,AH∥EF,∴EF⊥BC,BC=EF,∴EF⊥BC,EF=BC;(2)EF⊥BC仍然成立,EF=BC,如图2,∵四边形OBFC是平行四边形,∴BH=HC=BC,OH=HF,∵△ABC是等腰三角形,∴AB=BC,AH⊥BC,在Rt△ABH中,AH2=AB2﹣BH2=(BH)2﹣BH2=BH2,∴AH=BH=BC,∵OA=AE,OH=HF,∴AH是△OEF的中位线,∴AH=EF,AH∥EF,∴EF⊥BC,BC=EF,∴EF⊥BC,EF=BC;(3)如图3,∵四边形OBFC是平行四边形,∴BH=HC=BC,OH=HF,∵△ABC是等腰三角形,∴AB=kBC,AH⊥BC,在Rt△ABH中,AH2=AB2﹣BH2=(kBC)2﹣(BC)2=(k2-)BC2,∴AH=BH=BC,∵OA=AE,OH=HF,∴AH是△OEF的中位线,∴AH=EF,AH∥EF,∴EF⊥BC,BC=EF,∴EF=BC.考点:四边形综合题.14.如图,现有一张边长为4的正方形纸片ABCD,点P为正方形AD边上的一点(不与点A、点D重合),将正方形纸片折叠,使点B落在P处,点C落在G处,PG交DC于H,折痕为EF,连接BP、BH.(1)求证:∠APB=∠BPH;(2)当点P在边AD上移动时,求证:△PDH的周长是定值;(3)当BE+CF的长取最小值时,求AP的长.【答案】(1)证明见解析.(2)证明见解析.(3)2.【解析】试题分析:(1)根据翻折变换的性质得出∠PBC=∠BPH,进而利用平行线的性质得出∠APB=∠PBC即可得出答案;(2)首先证明△ABP≌△QBP,进而得出△BCH≌△BQH,即可得出PD+DH+PH=AP+PD+DH+HC=AD+CD=8;(3)过F作FM⊥AB,垂足为M,则FM=BC=AB,证明△EFM≌△BPA,设AP=x,利用折叠的性质和勾股定理的知识用x表示出BE和CF,结合二次函数的性质求出最值.试题解析:(1)解:如图1,∵PE=BE,∴∠EBP=∠EPB.又∵∠EPH=∠EBC=90°,∴∠EPH-∠EPB=∠EBC-∠EBP.即∠PBC=∠BPH.又∵AD∥BC,∴∠APB=∠PBC.∴∠APB=∠BPH.(2)证明:如图2,过B作BQ⊥PH,垂足为Q.由(1)知∠APB=∠BPH,又∵∠A=∠BQP=90°,BP=BP,在△ABP和△QBP中,,∴△ABP≌△QBP(AAS),∴AP=QP,AB=BQ,又∵AB=BC,∴BC=BQ.又∠C=∠BQH=90°,BH=BH,在△BCH和△BQH中,,∴△BCH≌△BQH(SAS),∴CH=QH.∴△PHD的周长为:PD+DH+PH=AP+PD+DH+HC=AD+CD=8.∴△PDH的周长是定值.(3)解:如图3,过F作FM⊥AB,垂足为M,则FM=BC=AB.又∵EF为折痕,∴EF⊥BP.∴∠EFM+∠MEF=∠ABP+∠BEF=90°,∴∠EFM=∠ABP.又∵∠A=∠EMF=90°,在△EFM和△BPA中,,∴△EFM≌△BPA(AAS).∴EM=AP.设AP=x在Rt△APE中,(4-BE)2+x2=BE2.解得BE=2+,∴CF=BE-EM=2+-x,∴BE+CF=-x+4=(x-2)2+3.当x=2时,BE+CF取最小值,∴AP=2.考点:几何变换综合题.15.(本题14分)小明在学习平行线相关知识时总结了如下结论:端点分别在两条平行线上的所有线段中,垂直于平行线的线段最短.小明应用这个结论进行了下列探索活动和问题解决.问题1:如图1,在Rt△ABC中,∠C=90°,AC=4,BC=3,P为AC边上的一动点,以PB,PA为边构造□APBQ,求对角线PQ的最小值及PQ最小时的值.(1)在解决这个问题时,小明构造出了如图2的辅助线,则PQ的最小值为,当PQ最小时= _____ __;(2)小明对问题1做了简单的变式思考.如图3,P为AB边上的一动点,延长PA到点E,使AE=nPA(n为大于0的常数).以PE,PC为边作□PCQE,试求对角线PQ长的最小值,并求PQ最小时的值;问题2:在四边形ABCD中,AD∥BC,AB⊥BC,AD=1,AB=2,BC=3.(1)如图4,若为上任意一点,以,为边作□.试求对角线长的最小值和PQ最小时的值.(2)若为上任意一点,延长到,使,再以,为边作□.请直接写出对角线长的最小值和PQ最小时的值.【答案】问题1:(1)3,;(2)PQ=,=.问题2:(1)=4,.(2)PQ的最小值为..【解析】试题分析:问题1:(1)首先根据条件可证四边形PCBQ是矩形,然后根据条件“四边形APBQ是平行四边形可得AP=QB=PC,从而可求的值.(2)由题可知:当QP⊥AC 时,PQ最小.过点C作CD⊥AB于点D.此时四边形CDPQ为矩形,PQ=CD,在Rt△ABC中,∠C=90°,AC=4,BC=3,利用面积可求出CD=,然后可求出AD=,由AE=nPA可得PE=,而PE=CQ=PD=AD-AP=,所以AP=.所以=.问题2:(1)设对角线与相交于点.Rt≌Rt.所以AD=HC,QH=AP.由题可知:当QP⊥AB时,PQ最小,此时=CH=4,根据条件可证四边形BPQH为矩形,从而QH=BP=AP.所以.(2)根据题意画出图形,当AB 时,的长最小,PQ的最小值为..试题解析:问题1:(1)3,;(2)过点C作CD⊥AB于点D.由题意可知当PQ⊥AB时,PQ最短.所以此时四边形CDPQ为矩形.PQ=CD,DP=CQ=PE.因为∠BCA=90°,AC=4,BC=3,所以AB=5.所以CD=.所以PQ=.在Rt△ACD中AC=4,CD=,所以AD=.因为AE=nPA,所以PE==CQ=PD=AD-AP=.所以AP=.所以=.问题2:(1)如图2,设对角线与相交于点.所以G是DC的中点,作QH BC,交BC的延长线于H,因为AD//BC,所以.所以.又,所以Rt≌Rt.所以AD=HC,QH=AP.由图知,当AB时,的长最小,即=CH=4.易得四边形BPQH为矩形,所以QH=BP=AP.所以.(若学生有能力从梯形中位线角度考虑,若正确即可评分.但讲评时不作要求)(2)PQ的最小值为..考点:1.直角三角形的性质;2.全等三角形的判定与性质;3.平行四边形的性质;4矩形的判定与性质.。
专题20 母子形相似模型-2021年中考数学解题方法归纳提升(解析版)
专题20 母子形相似模型一、单选题1.古希腊数学家发现“黄金三角形”很美.顶角为36︒的等腰三角形,称为“黄金三角形”.如图所示,ABC中,AB AC =,36A ∠=︒,其中10.6182BC AC =≈,又称为黄金比率,是著名的数学常数.作ABC ∠的平分线,交AC 于1C ,得到黄金三角形1BCC ;作11//C B BC 交AB 于1B ,121//B C BC 交AC 于2C ,得到黄金三角形112B C C △;作22//C B BC 交AB 于2B ,231//B C BC 交AC 于3C ,得到黄金三角形233B C C △;依此类推,我们可以得到无穷无尽的黄金三角形.若BC 的长为1,那么56C C 的长为( )A 2B .9-C .4-D 【答案】B【分析】 黄金三角形是一个等腰三角形,它的顶角为36°,每个底角为72°.它的腰与它的底成黄金比.当底角被平分时,角平分线分对边也成黄金比,并形成两个较小的等腰三角形.这两三角形之一相似于原三角形,从而利用相似三角形的性质得出规律,即可得到答案.【详解】解:∵AB AC =,36A ∠=︒,72,ABC ACB ∴∠=∠=︒1BC 平分ABC ∠,1136,CBC ABC A ∴∠=∠=︒=∠ 1172,BCC BC C ∠=∠=︒111,BC AC BC ∴===172,ACB BCC ∠=∠=︒1ABC BCC ∴∽,设1CC x =,则1,AB AC x ==+ 则1AB BC BC CC =, 11,1x x+∴= 210,x x ∴+-=∵12x -±=, 又0x >,∵x =.经检验:12x =符合题意,1CC ∴= 同理:11112,AB C B C C ∽11//,B C BC11,AB C ABC ∴∽1112BCC B C C ∴∽,∵121111112C C B C AC BC BC CC BC AC AC AC =====,∵2121322C C ⎛⎫-== ⎪ ⎪⎝⎭,同理:3232C C ==⎝⎭,……,)62561292C C ⎛⎫===- ⎪ ⎪⎝⎭故选B .【点睛】本题考查了相似三角形的性质与方程思想,相似三角形的对应边的比相等,同时考查了二次根式的乘方运算;解题时要注意方程思想的应用.2.如图,∵ABC 中,D 、E 分别是BC 、AC 边上一点,F 是AD 、BE 的交点,CE=2AE ,BF=EF ,EN∵BC 交AD 于N ,若BD=2,则CD 长度为( )A .6B .7C .8D .9【答案】A【分析】根据平行线的性质得到相等的角,再结合BF=EF 先证明∵NEF∵∵DBF ,即可得到NE=BD=2,再证明∵ANE∵∵ADC ,根据相似三角形的对应边成比例求解.【详解】解:∵NE∵BC ,∵∵NEF=∵DBF ,∵ENF=∵BDF ,又∵BF=EF ,∵∵NEF∵∵DBF ,∵NE=BD=2.∵NE∵BC ,∵∵ANE∵∵ADC ,∵NE AE CD AC=, ∵CE=2AE ,∵13NE AE CD AC ==, ∵CD=6.故答案选:A .【点睛】本题主要考查了平行线的性质、全等三角形的判定与性质和相似三角形的判定与性质,主要注意数形结合思想的应用.二、解答题3.如图,四边形ABCD 和四边形AEFG 都是正方形,C ,F ,G 三点在一直线上,连接AF 并延长交边CD 于点M .(1)求证:∵MFC ∵∵MCA ;(2)求证∵ACF ∵∵ABE ;(3)若DM =1,CM =2,求正方形AEFG 的边长.【答案】(1)证明见解析;(2)证明见解析;(3. 【分析】 (1)由正方形的性质得45ACD AFG ∠=∠=︒,进而根据对顶角的性质得CFM ACM ∠=∠,再结合公共角,根据相似三角形的判定得结论;(2)根据正方形的性质得AF AC AE AB=,再证明其夹角相等,便可证明ACF ABE ∽△△; (3)由已知条件求得正方形ABCD 的边长,进而由勾股定理求得AM 的长度,再由MFC MCA △∽△,求得FM ,进而求得正方形AEFG 的对角线长,便可求得其边长.【详解】解:(1)四边形ABCD 是正方形,四边形AEFG 是正方形,45ACD AFG ∴∠=∠=︒,CFM AFG ∠=∠,CFM ACM ∴∠=∠,CMF AMC ∠=∠,MFC MCA ∴△∽△;(2)四边形ABCD 是正方形,90ABC ∴∠=︒,45BAC ∠=︒,AC ∴=,同理可得AF =,∴AF AC AE AB= 45EAF BAC ∠=∠=︒,CAF BAE ∴∠=∠,ACF ABE ∴△∽△;(3)1DM =,2CM =,123AD CD ∴==+=,AM ∴=MFC MCA △∽△, ∴CM FMAM CM =2FM =,FM ∴=,AF AM FM ∴=-=,∴AG即正方形AEFG . 【点睛】本题主要考查了正方形的性质,相似三角形的性质与判定,勾股定理,关键是掌握相似模型及证明方法和正方形性质.4.在矩形ABCD的CD边上取一点E,将∵BCE沿BE翻折,使点C恰好落在AD边上点F处.(1)如图1,若BC=2BA,求∵CBE的度数;(2)如图2,当AB=5,且AF⋅FD=10时,求BC的长;(3)如图3,延长EF,与∵ABF的角平分线交于点M,BM交AD于点N,当NF=12AD时,求ABBC的值.【答案】(1)15°;(2)(3)3 5【分析】(1)由折叠的性质得出BC=BF,∵FBE=∵EBC,根据直角三角形的性质得出∵AFB=30°,可求出答案;(2)证明∵FAB∵∵EDF,由相似三角形的性质得出AF ABDE DF=,可求出DE=2,求出EF=3,由勾股定理求出AF,即可求出BC的长;(3)过点N作NG∵BF于点G,证明∵NFG∵∵BFA,1 2NG FG NFAB FA BF===,设AN=x,设FG=y,则AF=2y,由勾股定理得出(2x)2+(2y)2=(2x+y)2,解出y=43x,则可求出答案.【详解】解:(1)∵四边形ABCD是矩形,∵∵C=90°,∵将∵BCE沿BE翻折,使点C恰好落在AD边上点F处,∵BC=BF,∵FBE=∵EBC,∵C=∵BFE=90°,∵BC=2AB,∵BF=2AB,∵∵AFB=30°,∵四边形ABCD是矩形,∵AD//BC,∵∵AFB=∵CBF=30°,∵∵CBE=12∵FBC=15°;(2)∵将∵BCE沿BE翻折,使点C恰好落在AD边上点F处,∵∵BFE=∵C=90°,CE=EF,又∵矩形ABCD中,∵A=∵D=90°,∵∵AFB+∵DFE=90°,∵DEF+∵DFE=90°,∵∵AFB=∵DEF,∵∵FAB∵∵EDF,∵AF AB DE DF=,∵AF•DF=AB•DE,∵AF•DF=10,AB=5,∵DE=2,∵CE=DC-DE=5-2=3,∵EF=3,∵DF==∵AF==∵BC=AD=AF+DF=+=(3)过点N作NG∵BF于点G,∵NF=12AD∵NF=12 BF,∵∵NFG=∵AFB,∵NGF=∵BAF=90°,∵∵NFG∵∵BFA,∵12 NG FG NFAB FA BF===,设AN=x,∵BN平分∵ABF,AN∵AB,NG∵BF,∵AN=NG=x,AB=BG=2x,设FG=y,则AF=2y,∵AB2+AF2=BF2,∵(2x)2+(2y)2=(2x+y)2,解得y=43 x,∵BF=BG+GF=410233x x x+=.∵231053AB AB xBC BF x===.【点睛】本题考查了矩形的性质,直角三角形的性质,折叠的性质,角平分线的性质,相似三角形的判定与性质,勾股定理等知识,熟练掌握折叠的性质及矩形的性质是解题的关键.5.已知正方形ABCD的边长为4,点E在边BC上,点F在边CD上,且CF BE=,AE和BF交于点G.(1)如图,求证:∵AE BF=∵AE BF⊥(2)连接CG并延长交AB于点H,∵若点E 为BC 的中点(如图),求BH 的长.∵若点E 在BC 边上滑动(不与点,B C 重合),当CG 取得最小值时,求BE 的长.【答案】(1)∵证明见解析;∵证明见解析;(2)∵43;∵2 【分析】(1)∵由正方形的性质得出AB=BC=4,∵ABC=∵BCD=90°,由SAS 证明∵ABE∵∵BCF ,即可得出结论;∵由∵得:∵ABE∵∵BCF ,得出∵BAE=∵CBF ,证出∵AGB=90°,即可得出结论;(2)∵由直角三角形的性质得出CF=BE=12BC=2,由勾股定理得出1)得:AE∵BF ,则∵BGE=∵ABE=90°,证明∵BEG∵∵AEB ,得出12GE BE BG AB ==,设GE=x ,则BG=2x ,在Rt∵BEG 中,由勾股定理得出方程,解方程得出=BH BG CF FG =,即可得出BH 的长; ∵由(1)得:∵AGB=90°,得出点G 在以AB 为直径的圆上,设AB 的中点为M ,当C 、G 、M 在同一直线上时,CG 为最小值,求出GM=12AB=BM=2,由平行线得出CF BM CG GM==1,证出CF=CG=BE ,设CF=CG=BE=a ,则CM=a+2,在Rt∵BCM 中,由勾股定理得出方程,解方程即可.【详解】(1)证明:∵∵四边形ABCD 是正方形,∵AB=BC=4,∵ABC=∵BCD=90°,在∵ABE 和∵BCF 中,AB BC ABC BCD BE CF ⎧⎪∠∠⎨⎪⎩===,∵∵ABE∵∵BCF (SAS ),∵AE=BF ;∵由∵得:∵ABE∵∵BCF,∵∵BAE=∵CBF,∵∵CBF+∵ABF=90°,∵∵BAE+∵ABF=90°,∵∵AGB=90°,∵AE∵BF;(2)解:∵如图2所示:∵E为BC的中点,∵CF=BE=12BC=2,∵BF=22254=2+,由(1)得:AE∵BF,∵∵BGE=∵ABE=90°,∵∵BEG=∵AEB,∵∵BEG∵∵AEB,∵12 GE BEBG AB==,设GE=x,则BG=2x,在Rt∵BEG中,由勾股定理得:x2+(2x)2=22,解得:x=25,∵BG=2×25=455,∵AB∵CD,∵BH BGCF FG=,即2BH=解得:BH=43;∵由(1)得:∵AGB=90°,∵点G在以AB为直径的圆上,设AB的中点为M,由图形可知:当C、G、M在同一直线上时,CG为最小值,如图3所示:∵AE∵BF,∵∵AGB=90°,∵GM=12AB=BM=2,∵AB∵CD,∵CF BMCG GM==1,∵CF=CG,∵CF=BE,∵CF=CG=BE,设CF=CG=BE=a,则CM=a+2,在Rt∵BCM中,由勾股定理得:22+42=(a+2)2,解得:a=25-2,即当CG取得最小值时,BE的长为25-2.【点睛】本题是四边形综合题目,考查了正方形的性质、全等三角形的判定与性质、勾股定理、相似三角形的判定与性质、平行线的性质、直角三角形的性质等知识;本题综合性强,证明三角形全等和三角形相似是解题关键.6.如图,已知双曲线()0k y x x=>经过Rt OAB ∆斜边的中点D ,与直角边AB 相交于点C ,若OBC ∆的面积为3,求k 的值.【答案】2k =【分析】过点D 做DE x ⊥轴,可得12OED OCA S S k ∆∆==,再根据OAB OED ∆∆∽可得2OAB S k ∆=,最后根据2213OBC OAB OCA S S k S k ∆∆∆===--即可求得k 的值. 【详解】解:过点D 做DE x ⊥轴,垂足为E ,∵Rt OAB ∆中,90OAB ∠=︒,∵DE AB ∥∵D 为Rt OAB ∆斜边OB 的中点,∵DE 为Rt OAB ∆的中位线∵OAB OED ∆∆∽且12OD OB =∵双曲线的解析式是k y x=∵12OED OCA S S k ∆∆==,2OAB S k ∆= 2213OBC OAB OCA S S k S k ∆∆∆===-- 解得2k =【点睛】 主要考查了反比例函数k y x =中k 的几何意义,相似三角形的性质和判定.过双曲线上任意一点引x 轴、y 轴垂线,所得三角形面积为1||2k 是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k 的几何意义.7.已知,如图,∵ABC 中,AB =2,BC =4,D 为BC 边上一点,BD =1,AD +AC =8.(1)找出图中的一对相似三角形并证明;(2)求AC 长.【答案】(1)∵BAD ∵∵BCA ,理由见详解;(2)163 【分析】(1)由题意易得1=2BD AB AB BC =,然后由∵B 是公共角,问题可证; (2)由(1)可得1=2AD AC ,再由AD +AC =8可求解. 【详解】解:(1)∵BAD∵∵BCA ,理由如下:AB =2,BC =4,BD =1,∴121,=242BD AB AB BC ==, ∴1=2BD AB AB BC =, 又∵B=∵B ,∴∵BAD∵∵BCA ;(2)由(1)得:1=2AD AC ,即2AC AD =,AD +AC =8, ∴28AD AD +=,解得:83AD =, ∴163AC =. 【点睛】本题主要考查相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解题的关键.8.如图,在∵ABC 中,∵ACB =90°,AB =10, AC =8,CD 是边AB 的中线.动点P 从点C 出发,以每秒5个单位长度的速度沿折线CD -DB 向终点B 运动.过点P 作PQ ∵AC 于点Q ,以PQ 为边作矩形PQMN ,使点C 、N 始终在PQ 的异侧,且23PN PQ =.设矩形PQMN 与∵ACD 重叠部分图形的面积是S ,点P 的运动时间为()t s (t>0).(1)当点P 在边CD 上时,用含t 的代数式表示PQ 的长.(2)当点N 落在边AD 上时,求t 的值.(3)当点P 在CD 上时,求S 与t 之间的函数关系式.(4)连结DQ ,当直线DQ 将矩形PQMN 分成面积比为1:2的两部分时,直接写出t 的值.【答案】(1)3PQ t =;(2)45t =;(3)2246056346024125t t s t t t ⎧⎛⎫<≤ ⎪⎪⎪⎝⎭=⎨⎛⎫⎪-+-<≤ ⎪⎪⎝⎭⎩;(4)14或23或43或74 【分析】(1)证明∵ABC∵∵CPQ ,利用相似三角形的性质解决问题即可.(2)如图2,当点N 落在边AD 上时,根据AM+MQ+CQ=8,构建方程即可解决问题.(3)分三种情形:∵如图1中,当0<t≤45时,重叠部分是矩形PQMN .∵如图3-1,当45<t≤1时,重叠部分是五边形PQMKJ,根据S=S矩形PQMN-S∵NKJ,求解即可.∵如图3-2中,当1<t≤2时,重叠部分是五边形KQMJD,根据S=S∵ADC-S∵CQK-S∵AMJ,求解即可.(4)分四种情形:∵如图4-1中,设DQ交MN于J,当MJ=2JN时,直线DQ将矩形PQMN分成面积比为1:2的两部分.∵如图4-2中,设DQ交PN于J,当PJ=2JN时,直线DQ将矩形PQMN分成面积比为1:2的两部分.∵如图4-3中,设DQ交PN于J,当PJ=2JN时,直线DQ将矩形PQMN分成面积比为1:2的两部分.∵如图4-4中,设DQ交MN于J,当MJ=2JN时,直线DQ将矩形PQMN分成面积比为1:2的两部分.【详解】解:(1)如图1中,在∵ABC中,∵∵ACB=90°,AB=10,AC=8,由勾股定理,得AB2=AC2+BC2.∵BC=6.∵CD是边AB的中线,∵CD=AD=5.∵∵ACD=∵CAD.∵∵CQP=∵ACB,∵∵ABC∵∵CPQ.∵PQ CP BC AB=,∵5 610 PQ t=∵PQ=3t.(2)如图2,当点N落在边AD上时,∵AM+MQ+CQ=8∵4t+2t+4t=8.解得t=45.(3)如图1中,当0<t≤45时,重叠部分是矩形PQMN,S=6t2.如图3-1,当45<t≤1时,重叠部分是五边形PQMKJ,S=S矩形PQMN-S∵NKJ=6t2-12×34(10t-8)(10t-8)=-632t2+60t-24.如图3-2中,当1<t≤2时,重叠部分是五边形KQMJD,S=S∵ADC-S∵CQK-S∵AMJ=12-12•(6-3t)(8-4t)-12×2t×2t×3 4=-152t2+24t-12,综上所述,2246056346024125t tst t t⎧⎛⎫<≤⎪⎪⎪⎝⎭=⎨⎛⎫⎪-+-<≤⎪⎪⎝⎭⎩.(4)∵如图4-1中,设DQ交MN于J,当MJ=2JN时,直线DQ将矩形PQMN分成面积比为1:2的两部分.作DK∵AC于K.∵PQ=MN=3t,MJ=2JM,∵MJ=MQ=2t,∵∵DQK=45°,∵DK∵BC,AD=DB,∵AK=KC,∵DK=KQ=12BC=3,∵CQ=1,∵4t=1,∵t=14.∵如图4-2中,设DQ交PN于J,当PJ=2JN时,直线DQ将矩形PQMN分成面积比为1:2的两部分.∵PJ∵CQ , ∵PJ DP CQ DC =,∵455345t t t -=, ∵t=23∵如图4-3中,设DQ 交PN 于J ,当PJ=2JN 时,直线DQ 将矩形PQMN 分成面积比为1:2的两部分.∵PJ∵AQ ,∵PJ DP AQ AD=, ∵55 5443t t t-= , ∵t=43∵如图4-4中,设DQ 交MN 于J ,当MJ=2JN 时,直线DQ 将矩形PQMN 分成面积比为1:2的两部分.同法可证MQ=MJ=2t,∵∵AQD=45°,由∵可知CQ=1,∵8-4t=1,∵t=74,综上所述,满足条件的t的值为14,23,43,74.【点睛】本题属于四边形综合题,考查了矩形的性质,解直角三角形,平行线分线段成比例定理,多边形的面积等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考压轴题.9.如图,小明欲测量一座古塔的高度,他拿出一根标杆竖直插在地面上,然后自己退后,使眼睛通过标杆的顶端刚好看到塔顶,若小明眼睛离地面1.5m,标杆顶端离地面2.4m,小明到标杆的距离DF=2m,标杆到塔底的距离DB=30m,求这座古塔的高度.【答案】14.3m【分析】先根据小明、竹竿、古塔均与地面垂直,EH∵AB可知,BH=DG=EF=1.5m,再小明眼睛离地面1.5m,竹杆顶端离地面2.4m求出CG的长,由于CD∵AB可得出∵EGC∵∵EHA,再根据相似三角形的对应边成比例可求出AH的长,进而得出AB的长.【详解】解:∵小明、竹杆、古塔均与地面垂直,EH∵AB,∵BH=DG=EF=1.5m ,EG=DF ,GH=DB ,∵小明眼睛离地面1.5m ,竹杆顶端离地面2.4m ,∵CG=CD -EF=2.3-1.5=0.8m ,∵CD∵AB ,∵∵EGC ~∵EHA∵DF=2m DB=30m , ∵EG EH =CG AH ,即2302+= 0.8AH,解得:AH=12.8m , ∵AB=AH+BH=12.8+1.5=14.3m ,答:古塔的高度是14.3m .【点睛】本题考查了相似三角形的应用,先根据题意得出相似三角形,再根据相似三角形的对应边成比例得出结论是解题的关键.10.如图,PA ,PB 为O 的两条切线,A ,B 为切点,BO 的延长线交O 于点D ,交PA 的延长线于点C ,连接OP ,AD .(1)求证://AD OP ;(2)若2AP AC =,求tan OPB ∠的值.【答案】(1)见解析;(2)tan 5OPB ∠=. 【分析】(1)如图,作辅助线,证明∵APO=∵BPO 得OP AB ⊥,再由BD 为O 的直径可得AB∵AD ,从而可得结论;(2)设AC a =,则2AP a =,由勾股定理得OA =C CAO BP ∽△△可求出a =从而通过解直角三角形可得结论.【详解】(1)证明:连接AB 交OP 于点E ,∵PA ,PB 为O 的两条切线,∵AP BP =,BPO APO ∠=∠,∵OP AB ⊥.∵BD 为O 的直径,∵90DAB OEA ∠=︒=∠,∵//OP AD .(2)∵2AP AC =,∵设AC a =,则2AP a =.∵//OP AD , ∵12CD AC DO AP ==.不妨设1CD =,则22OD CD ==.在Rt AOC △中,OA ==∵AP ,BP 为O 的切线,∵90OAC OBP ∠=∠=︒.∵C CAO BP ∽△△, ∵OA BP AC BC=.25a =,解得a =.∵2tan25OB OPB BP a ∠====. 【点睛】 此题考查了切线的性质、解直角三角形以及相似三角形的判定与性质,熟练掌握相关性质定理与判定定理是解答此题的关键.11.如图,AB 是O 的直径,AD BD 、是O 的弦,BC 是O 的切线,切点为B ,//OC AD ,BA CD 、的延长线相交于点E .(1)求证:CD 是O 的切线; (2)若O 的半径为4,3ED AE =,求AE 的长.【答案】(1)见解析;(2)=1AE .【分析】(1)连接OD ,由题意易证∵CDO∵∵CBO ,然后根据三角形全等的性质可求证;(2)由题意易得∵EDA∵∵EBD ,然后根据相似三角形的性质及3ED AE =可求解.【详解】(1)证明:连接OD ,如图所示:AD∵OC ,∴∵DAO=∵COB ,∵ADO=∵COD , 又OA=OD ,∴∵DAO=∵ADO ,∴∵COD=∵COB ,OD=OB ,OC=OC ,∴∵CDO∵∵CBO ,∴∵CDO=∵CBO ,BC 是O 的切线,∴∵CBO=∵CDO=90°,点D 在O 上,∴CD 是O 的切线;(2)由(1)图可得:∵ADO+∵EDA=90°,∵ODB=∵DBO ,AB 是O 的直径,∴∵ADB=90°,即∵ADO+∵ODB=90°,∴∵EDA=∵ODB=∵DBO ,又∵E=∵E ,∴∵EDA∵∵EBD ,∴2ED AE EB =⋅, O 的半径为4,3ED AE =,∴AB=8,EB=AE+8,∴()298AE AE AE =⋅+,解得:=1AE .【点睛】 本题主要考查圆的切线定理与判定定理和相似三角形的判定与性质,熟练掌握圆的切线定理及判定定理是解题的关键.12.如图,ABC 中,,,AB AC AB AC =⊥点D E 、分别是BC AC 、的中点,AF BE ⊥与点F .(1)求证:2AE FE BE =⋅;(2)求AFC ∠的大小;(3)若1DF =,求ABF 的面积.【答案】(1)证明见解析;(2)135︒;(3)2.【分析】(1)先根据相似三角形的判定可得AEF BEA ~,再根据相似三角形的性质即可得证;(2)先根据等腰直角三角形的判定与性质可得45ACB ∠=︒,再根据相似三角形的判定可得CEF BEC ~,然后根据相似三角形的性质可得45CFE BCE ∠=∠=︒,最后根据角的和差即可得;(3)设2AB AC a ==,从而可得AB =,再根据相似三角形的性质、勾股定理可得,55FA a BF a ==,从而可得BF BC BD BE =,然后根据相似三角形的判定与性质可得BD DF BE EC =,从而可求出a 的值,最后根据直角三角形的面积公式即可得.【详解】(1),AF BE AB AC ⊥⊥,90AFE BAE ∴∠=∠=︒,在AEF 和BEA △中,AFE BAE AEF BEA ∠=∠⎧⎨∠=∠⎩, AEF BEA ∴~,AE FE BE AE∴=, 2AE FE BE ∴=⋅; (2),AB AC AB AC =⊥,ABC ∴是等腰直角三角形,45ABC ACB ∴∠=∠=︒,由(1)可知,AE FE BE AE=, AE BE FE AE∴=, 点E 是AC 的中点,AE CE ∴=,CE BE FE CE∴=, 在CEF △和BEC △中,CE BE FE CE CEF BEC⎧=⎪⎨⎪∠=∠⎩,CEF BEC ∴~,45CFE BCE ∴∠=∠=︒,又AF BE ⊥,90AFE ∴∠=︒,9045135AFE CFE AFC ∠=∴∠+∠=︒+︒=︒;(3)设2(0)AB AC a a ==>, ABC 是等腰直角三角形,BC ∴==,点D E 、分别是BC AC 、的中点,,AE CE a BD CD ∴====,在Rt ABE △中,BE ==,BC BE ∴==, 由(1)知,AEF BEA ~,AE FA BE AB∴=2FA a =,解得FA=,在Rt ABF中,5BF a==,BF BCBD BE∴===,在BDF和BEC△中,BF BCBD BEDBF EBC⎧=⎪⎨⎪∠=∠⎩,BDF BEC∴~,BD DFBE EC∴=DFa=,解得5DF a=,又1DF =,15a=,解得a=FA BF∴====则ABF的面积为11222FA BF⋅==.【点睛】本题考查了相似三角形的判定与性质、等腰直角三角形的判定与性质、勾股定理等知识点,熟练掌握相似三角形的判定与性质是解题关键.13.如图,在ABC∆中,CD AB⊥于D,BE AC⊥于E,试说明:(1)ABE ACD(2)AD BC DE AC ⋅=⋅【答案】(1)见解析;(2)见解析【分析】(1)直接根据相似三角形的判定证明即可;(2)首先根据相似三角形的性质得出AE AB AD AC=,进而证明∵ADE ∵∵ACB ,最后根据相似三角形的性质即可证明.【详解】解:(1)∵CD ∵AB 于D ,BE ∵AC 于E ,∵∵AEB =∵ADC =90°,在∵ABE 和∵ACD 中 90ADC AEB A A∠=∠=︒⎧⎨∠=∠⎩ ∵∵ABE ∵∵ACD ;(2)∵∵ABE ∵∵ACD , ∵AE AB AD AC=. 在∵ADE 和∵ACB 中,AE AB AD AC A A⎧=⎪⎨⎪∠=∠⎩ ∵∵ADE ∵∵ACB ∵AD DE AC BC= ∵AD ·BC =DE ·AC .【点睛】本题主要考查相似三角形的判定及性质,掌握相似三角形的判定及性质是解题的关键.14.如图,在边长为4的正方形ABCD中,点E为对角线AC上一动点(点E与点A,C不重合),连接DE,作EF∵DE交射线BA于点F,过点E作MN∵BC分别交CD,AB于点M、N,作射线DF交射线CA于点G.(1)求证:EF=DE;(2)当AF=2时,求GE的长.【答案】(1)见解析;(2)3【分析】(1)根据正方形的性质以及EF∵DE,证明∵DME∵∵ENF即可;(2)根据勾股定理计算出DF,根据平行线的性质得到DC DGAF FG,计算出DG,FG的值,利用特殊角的锐角三角函数计算出DE的值,最后证明∵DGE∵∵AGF,利用相似比列出方程即可求出GE的值.【详解】(1)证明:∵四边形ABCD是正方形,且MN∵BC,∵四边形ANMD是矩形,∵BAC=45°,∵∵ANM=∵DMN=90°,EN=AN=DM,∵∵DEM+∵EDM=90°,∵EF∵DE,∵∵DEM+∵FEN=90°,∵∵EDM=∵FEN,∵在∵DME与∵ENF中∵DME=∵ENF=90°,DM=EN,∵EDM=∵FEN,∵∵DME∵∵ENF(ASA),∵EF=DE;(2)∵四边形ABCD是正方形,∵AB∵DC,∵DAB=90°,∵DF==∵DC DGAF FG=,即42=,解得:DG=3,∵FG=DF-,又∵DE=EF,EF∵DE,∵∵DEF是等腰直角三角形,∵∵EDF=45°,DE=EF=sin45DF︒==∵∵GAF=∵GDE=45°,又∵∵DGE=∵AGF,∵∵DGE∵∵AGF,∵DE GEAF GF=3=,解得:3GE=,∵3GE=.【点睛】本题考查了正方形的性质以及相似三角形的性质及判定,第(1)问的解题关键是证明∵DME∵∵ENF,第(2)问的解题关键是通过相似三角形的性质列出方程.15.如图,在∵ABC中,D为BC边上的一点,且AC=CD=4,BD=2,求证:∵ACD∵∵BCA.【答案】证明见解析.【分析】根据AC=CD=4,BD=2,可得AC CDBC AC=,根据∵C =∵C,即可证明结论.【详解】解:∵AC=CD =4,BD =2∵AC BC ==CD AC == ∵AC CD BC AC = ∵∵C =∵C∵∵ACD ∵∵BCA .【点睛】本题考查了相似三角形的性质和判定,掌握知识点是解题关键.16.如图,在矩形ABCD 中,点E 是BC 边上的一点,且AE BD ⊥垂足为点,2F DAE BAE ∠=∠.()1:BE DF =_ .()2若四边形EFDC 的面积为22,求BEF 的面积.【答案】(1)1:3(2)2【分析】 (1)由题意根据已知条件得到∵DAE=60°,∵BAE=30°,由直角三角形的性质可得BD=2AB ,AB=2BF ,以此即可求解;(2)根据题意通过证明∵BEF∵∵BDC ,可得21(12)BEF BCD S EF SCD==,进行分析即可求解. 【详解】解:(1)∵四边形ABCD 为矩形,∵DAE=2∵BAE ,∵∵DAE=60°,∵BAE=30°,又∵AE∵BD ,∵BAD=90°,∵BD=2AB ,AB=2BF ,∵BD=4BF ,∵DF=3BF ,∵BF :DF=1:3,故答案为:1:3;(2)∵∵BAE=30°∵∵AEB=60°,∵AE∵BD ,∵∵DBC=30°,∵BFE=∵BCD=90°∵122CD BD BF BF ===,,∵EF =, ∵∵FBE=∵CBD ,∵BFE=∵DCB ,∵∵BEF∵∵BDC , ∵21(12)BEF BCD SEF S CD ==, ∵四边形EFDC 的面积为22,∵12S ∵BEF =S ∵BCD =S ∵BEF +S 四边形EFDC ,∵S ∵BEF =2. 【点睛】本题考查相似三角形的判定和性质与矩形的性质以及直角三角形的性质,利用相似三角形的判定定理证明∵BEF∵∵BDC 是解答本题的关键.17.如图,抛物线215:324L y x x =--与x 轴正半轴交于点A ,与y 轴交于点B .(1)求直线AB 的解析式及抛物线顶点坐标;(2)如图1,点P 为第四象限且在对称轴右侧抛物线上一动点,过点P 作PC x ⊥轴,垂足为C ,PC 交AB 于点D ,求PD BD +的最大值,并求出此时点P 的坐标;(3)如图2,将抛物线215:324L y x x =--向右平移得到抛物线L ',直线AB 与抛物线L '交于M ,N 两点,若点A 是线段MN 的中点,求抛物线L '的解析式.【答案】(1)直线AB 的解析式为334y x =-,抛物线顶点坐标为5121,432⎛⎫- ⎪⎝⎭;(2)当134x =时,PD BD +的最大值为16932; 1357,432P ⎛⎫- ⎪⎝⎭;(3)21133242y x x =-+. 【分析】 (1)先根据函数关系式求出A 、B 两点的坐标,设直线AB 的解析式为y kx b =+,利用待定系数法求出AB 的解析式,将二次函数解析式配方为顶点式即可求得顶点坐标;(2)过点D 作DE y ⊥轴于E ,则//DE OA .求得AB=5,设点P 的坐标为2155,34244x x x x ⎛⎫⎛⎫--<< ⎪⎪⎝⎭⎝⎭,则点D 的坐标为3,34x x ⎛⎫- ⎪⎝⎭,ED=x ,证明BDE BAO ∽,由相似三角形的性质求出54BD x =,用含x 的式子表示PD ,配方求得最大值,即可求得点P 的坐标;(3)设平移后抛物线L '的解析式21121()232y x m =--,将L′的解析式和直线AB 联立,得到关于x 的方程,设()()1122,,,M x y N x y ,则12,x x 是方程2232520416x m x m ⎛⎫-++-= ⎪⎝⎭的两根,得到12324x x m ⎛⎫+=+ ⎪⎝⎭,点A 为MN 的中点,128x x +=,可求得m 的值,即可求得L′的函数解析式.【详解】(1)在215324y x x =--中, 令0y =,则2153024x x --=,解得123,42x x =-=, ∵(4,0)A .令0x =,则3y =-,∵()0,3B -.设直线AB 的解析式为y kx b =+,则403k b b +=⎧⎨=-⎩,解得:343k b ⎧=⎪⎨⎪=-⎩, ∵直线AB 的解析式为334y x =-. 2215151213242432y x x x ⎛⎫=--=-- ⎪⎝⎭, ∵抛物线顶点坐标为5121,432⎛⎫- ⎪⎝⎭(2)如图,过点D 作DE y ⊥轴于E ,则//DE OA .∵4,3OA OB ==,∵5AB ===,设点P 的坐标为2155,34244x x x x ⎛⎫⎛⎫--<< ⎪⎪⎝⎭⎝⎭, 则点D 的坐标为3,34x x ⎛⎫- ⎪⎝⎭, ∵ED x =.∵//DE OA , ∵BDE BAO ∽, ∵BD ED BA OA=, ∵54BD x =, ∵54BD x =.而2231513324242PD x x x x x ⎛⎫=----=-+ ⎪⎝⎭, ∵22215113113169224242432PD BD x x x x x x ⎛⎫+=-++=-+=--+ ⎪⎝⎭, ∵102-<,544x <<,由二次函数的性质可知: 当134x =时,PD BD +的最大值为16932. 2235313513573344444432x x ⎛⎫--=⨯-⨯-=- ⎪⎝⎭, ∵1357,432P ⎛⎫- ⎪⎝⎭.(3)设平移后抛物线L '的解析式21121()232y x m =--, 联立23341121()232y x y x m ⎧=-⎪⎪⎨⎪=--⎪⎩, ∵2311213()4232x x m -=--,整理,得:2232520416x m x m ⎛⎫-++-= ⎪⎝⎭, 设()()1122,,,M x y N x y ,则12,x x 是方程2232520416x m x m ⎛⎫-++-= ⎪⎝⎭的两根, ∵12324x x m ⎛⎫+=+ ⎪⎝⎭. 而A 为MN 的中点,∵128x x +=, ∵3284m ⎛⎫+= ⎪⎝⎭,解得:134m =. ∵抛物线L '的解析式2211312111332432242y x x x ⎛⎫=--=-+ ⎪⎝⎭. 【点睛】本题考查二次函数的图象和性质、相似三角形的判定与性质、待定系数法求一次函数解析式,解题的关键是熟练掌握二次函数的图象和性质.18.已知:如图,在ABC 中,D 是AC 上一点,联结BD ,且∵ABD =∵ACB∵∵1∵求证:∵ABD∵∵ACB ;∵2∵若AD=5,AB= 7,求AC 的长.【答案】(1)见详解;(2)495 【详解】(1)证明:∵∵A=∵A,∵ABD =∵ACB,∵∵ABD∵∵ACB.(2)解: ∵∵ABD∵∵ACB , ∵AB AD AC AB=,∵757AC =, ∵495AC = 19.如图,在Rt∵ABC 中,∵C=90°,AC=4cm ,BC=3cm .动点M ,N 从点C 同时出发,均以每秒1cm 的速度分别沿CA 、CB 向终点A ,B 移动,同时动点P 从点B 出发,以每秒2cm 的速度沿BA 向终点A 移动,连接PM ,PN ,设移动时间为t (单位:秒,0<t <2.5).(1)当t 为何值时,以A ,P ,M 为顶点的三角形与∵ABC 相似?(2)是否存在某一时刻t ,使四边形APNC 的面积S 有最小值?若存在,求S 的最小值;若不存在,请说明理由.【答案】(1)32;(2)当32t =时,四边形APNC 的面积S 有最小值,其最小值是215. 【分析】根据勾股定理求得AB=5cm .(1)分∵AMP∵∵ABC 和∵APM∵∵ABC 两种情况讨论:利用相似三角形的对应边成比例来求t 的值. (2)如图,过点P 作PH∵BC 于点H ,构造平行线PH∵AC ,由平行线分线段成比例求得以t 表示的PH 的值;然后根据“S=S ∵ABC ﹣S ∵BPH ”列出S 与t 的关系式()24321S=0 2.5525t t ⎛⎫-+<< ⎪⎝⎭,则由二次函数最值的求法即可得到S 的最小值.【详解】解:∵如图,在Rt∵ABC 中,∵C=90°,AC=4cm ,BC=3cm .∵根据勾股定理,得AB 5cm =.(1)以A ,P ,M 为顶点的三角形与∵ABC 相似,分两种情况: ∵当∵AMP∵∵ABC 时,AP AM AC AB =,即52445t t --=,解得32t =; ∵当∵APM∵∵ABC 时,AM AP AC AB =,即45245t t --=,解得t=0(不合题意,舍去).综上所述,当32t =时,以A 、P 、M 为顶点的三角形与∵ABC 相似. (2)存在某一时刻t ,使四边形APNC 的面积S 有最小值.理由如下:假设存在某一时刻t ,使四边形APNC 的面积S 有最小值.如图,过点P 作PH∵BC 于点H .则PH∵AC ,∵PH BP AC BA=, 即245PH t =. ∵85t PH =. ∵ABC BPN S S S =-△△()118343225t t =⨯⨯-⨯-⋅ ()24321=0 2.5525t t ⎛⎫-+<< ⎪⎝⎭. ∵405>, ∵S 有最小值. 当32t =时,S 最小值=215. 答:当32t =时,四边形APNC 的面积S 有最小值,其最小值是215. 20.如图,点A 在x 轴正半轴上,点B 在y 轴正半轴上,OA =OB ,点C 的坐标为(﹣1,0),OA :OC =3:1,抛物线y =ax 2+bx +c 经过点A 、B 、C ,顶点为D .(1)求a 、b 、c 的值;(2)若直线y =13x +n 与x 轴交于点E ,与y 轴交于点F . ∵当n =﹣1时,求∵BAF ﹣∵BAD 的值;∵若直线EF 上有点H ,使∵AHC =90°,求n 的取值范围.【答案】(1)a =-1,b=2,c=3;(2)∵∵BAF ﹣∵BAD =45°;∵n的取值范围n. 【分析】(1)根据已知条件得到点A 、B 、C 的坐标,代入抛物线y =ax 2+bx +c 中即可求解;(2)∵根据已知条件求得点F 、点D 坐标,进而求得AB 、BD 、AD 的长,由勾股定理可知ABD △为直角三角形,然后证明∵OAF ∵∵BAD ,即∵OAF =∵BAD ,根据等角转换即可求解;∵根据已知条件直线EF 上有点H ,使∵AHC =90°,则以AC 为直径的圆∵G 与直线EF 有公共点,当直线EF 在x 下方与∵G 相切时,∵EGK ∵∵EFO ,即GK EG FO EF=,设E (﹣3n ,0),F (0,n ),n <0,根据相似比可求出n 的值,当直线EF 在x 下方与∵G 相切时,∵EGK ∵∵EFO ,同理可得n 的值,综上即可得到n 的取值范围.【详解】(1)∵点C 的坐标为(﹣1,0),OA :OC =3:1,∵A ((3,0),∵OA =OB ,∵B (0,3),把A 、B 、C 三点都代入二次函数的解析式得,93030a b c c a b c ++=⎧⎪=⎨⎪-+=⎩,解得,123abc=-⎧⎪=⎨⎪=⎩;(2)∵n=﹣1,∵y=13x+n=13x﹣1,∵F(0,﹣1)∵OF=1,由(1)知,抛物线的解析式为y=﹣x2+2x+3=﹣(x﹣1)2+4,∵D(1,4),∵A(3,0),B(0,3),∵OA=3,AB=BD,AD=∵BD2+AB2=AD2,∵∵ABD=∵AOF=90°,∵2OFBD==,2OABA==,∵OF OABD BA=,∵∵OAF∵∵BAD,∵∵OAF=∵BAD,∵OA=OB=3,∵AOB=90°,∵∵OAB=45°,∵∵BAF﹣∵BAD=∵OAB+∵OAF﹣∵BAD=45°;∵直线EF上有点H,使∵AHC=90°,则以AC为直径的圆∵G与直线EF有公共点,如图,当直线EF在x下方与∵G相切时,则∵EGK∵∵EFO,∵GK EG FO EF=,∵A(3,0),C(﹣1,0),∵GK=12AC=2,G(1,0),∵直线y=13x+n与x轴交于点E,与y轴交于点F.∵E(﹣3n,0),F(0,n),n<0,∵OF=﹣n,EF=,∵2n=-,解得,n=13+-或0(舍);经检验,n=如图,当直线EF在x下方与∵G相切时,则∵EGK∵∵EFO,∵GK EG OF EF=,∵A(3,0),C(﹣1,0),∵GK=12AC=2,G(1,0),∵直线y=13x+n与x轴交于点E,与y轴交于点F.∵E(-3n,0),F(0,n),n>0,∵OF=n,EF n,2n=,解得,n或0(舍);经检验,n=13是该方程的根,∵若直线EF上有点H,使∵AHC=90°,则n的取值范围n.【点睛】本题主要考查了二次函数与图形的综合应用,涉及求二次函数解析式、相似三角形的性质与判定、图形运动问题等,根据题意找到相似三角形并灵活运用相似比是解题关键.21.如图,点A在线段EB上,且EA=12AB,以AB直径作∵O,过点E作射线EM交∵O于D、C两点,且AD CD=.过点B作BF∵EM,垂足为点F.(1)求证:CD•CB=2CF•EA;(2)求tan∵CBF的值.【答案】(1)见解析;(2)tan∵CBF.【分析】(1)连接BD,根据圆周角定理,由AB为直径得到∵ADB=90°,再根据题意即可证明∵ABD∵∵CBF,根据相似三角形的性质即可得出AD•CB=CF•AB,最后根据等量代换即可得证;(2)连接OD,过O作OH∵CD于点H,设∵O的半径为r,CD=x,则CH=DH=12x,根据AD CD=易证∵EOD∵∵EBC,根据相似三角形的性质得出OD EO EDBC EB EC==,再根据题意及等量代换即可求得ED=2CD=2x,根据勾股定理可表示出OH,根据BF∵EM得出平行,即可HF、CF,再根据勾股定理求得BF,最后根据an∵CBF=CFBF代入即可得出答案.【详解】(1)连接BD,如图1,∵AB是∵O的直径,∵∵ADB=90°,∵BF∵EM,∵∵BFC=90°,∵∵ADB=∵CFB=90°,∵∵BCF=∵BAD,∵∵ABD∵∵CBF,∵AD AB CF CB=,∵AD•CB=CF•AB,∵AD=CD,AE=12 AB,∵CD•CB=CF•2AE,即CD•CB=2CF•EA;(2)连接OD ,过O 作OH ∵CD 于点H ,设∵O 的半径为r ,CD =x ,如图2,则CH =DH =12x , ∵AD CD =,∵∵AOD =∵ABC ,∵OD ∵BC ,∵∵EOD ∵∵EBC , ∵OD EO ED BC EB EC==, ∵EA =12AB =OA =OB =r , ∵23EO EB =, ∵23OD ED BC EC ==, ∵BC =3322OD r =, ED =23EC , ∵ED =2CD =2x ,∵OH == ∵BF ∵EM ,∵OH ∵BF , ∵2EH EO HF OB==, ∵HF =12EH =1152224x x x ⎛⎫+= ⎪⎝⎭, ∵CF =HF ﹣CH =34x ,∵BF ==, ∵EF 2+BF 2=EB 2, ∵()222239349416x x r x r ⎛⎫++-= ⎪⎝⎭, ∵r 2=2x 2,∵BF==, ∵tan∵CBF=343x CF BF ==.【点睛】本题考查了圆周角定理、相似三角形的判定及性质、勾股定理、求角的正切,添加合适的辅助线是解题的关键.三、填空题22.如图,正方形ABCD 中,BC=2,点M 是边AB 的中点,连接DM ,DM 与AC 交于点P ,点F 为DM 中点,点E 为DC 上的动点.当∵DFE=45°时,则DE= _____ .【答案】56. 【分析】 如图,连接EF .首先求出DM 、DF 的长,证明DEF DPC ∽∆∆,可得DF DE DC DP =,即求出DE . 【详解】 解:四边形ABCD 是正方形,2AB BC CD DA ∴====,90DAB ∠=︒,45DCP ∠=︒,∵点M 是边AB 的中点,1AM BM ∴==,在Rt ADM ∆中,DM =//AM CD , ∴12AM MP DC PD ==, ∵2DP PM =,23DP DM ∴==, ∵点F 为DM 中点,∵12DF DM == ∵45DCP DFE ∠=∠=︒,CDP FDE ∠=∠∵CDP FDE ∵DP DC DE DF=即有5265322DP DF DE DC ===. 故答案是:56. 【点睛】 本题考查正方形的性质、相似三角形的判定和性质、勾股定理、平行线分线段成比例定理等知识,解题的关键是正确寻找相似三角形解决问题.23.如图,在边长为4正方形ABCD 中,以AB 为腰向正方形内部作等腰ABE △,点G 在CD 上,且3CG DC =.连接BG 并延长,与AE 交于点F ,与AD 延长线交于点H .连接DE 交BH 于点K .若2·AE BF BH =,则CDE S =△____.【答案】165【分析】作EM AB ⊥于M ,EM 交CD 于N ,根据勾股定理可得BG ,再由相似三角形的性质可得BH ,继而判定BAF BHA ∽△△,并求得BF 的长,由全等三角形的性质可得ME ,利用线段的和差求得EN ,进而由三角形面积公式即可求解.【详解】作EM AB ⊥于M ,EM 交CD 于N ,如图,则EN CD ⊥,∵3CG DG =,∵1DG =,3CG =,在Rt BCG中,5BG ==,∵//DG AB ,∵HDG HAB ∽△△. ∵HG DG HB AB =即514HB HB -=解得203HB = ∵2·AE BF BH =,而AB AE =,∵2·AB BF BH =,即::AB BF BH AB =,而ABF HBA ∠=∠,∵BAF BHA ∽△△.∵90BFA BAH ∠=∠=︒,∵BF∵AE . ∵224122053AB BF BH===, ∵∵BME =EFB ,∵MBE =∵FEB ,BE =EB ,∵∵BME∵∵EFB (AAS ), ∵125ME BF ==,∵128455EN =-=, ∵18164255CDE S ∆=⨯⨯=. 故答案为:165. 【点睛】本题考查相似三角形的判定和性质、勾股定理、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线求得关键线段的长解决问题.24.如图,在ABC 中,45ABC ∠=︒,AB =AD AE =,DAE 90∠=︒,CE =,则CD 的长为______.【答案】5【分析】在CD 上取点F ,使DEF ADB ∠∠=,证明ADB DEF ∽,求解4DF =,再证明CEF CDE ∽,利用相似三角形的性质求解CF 即可得到答案.【详解】解:在CD 上取点F ,使DEF ADB ∠∠=,AD AE =,DAE 90∠=︒,=DE ∴==,ABC 45∠=︒,ADE 45∠=︒,且ADC ADE EDC=ABD BAD ∠∠∠=+∠+∠,BAD EDC ∠∠∴=,BDA DEF ∠∠=,ADB ∴∵DEF ,DF DEAB AD∴==45,EFD ABD ∠=∠=︒AB 2=DF 4∴=,又45CDE C AED ∠∠∠=︒=+,45,EFD CEF C ∠=∠+∠=︒CEF CDE ∠∠∴=,,C C ∠=∠CEF ∴∵CDE ,CE DC CF CE ∴=,又DF 4,CE ==CF = CF 1∴=或CF 5(=舍去),经检验:1CF =符合题意,CD CF 45∴=+=.故答案为:5.本题考查的是等腰直角三角形的性质,勾股定理的应用,分式方程与一元二次方程的解法,相似三角形的判定与性质,掌握以上知识是解题的关键.25.如图D 、E 分别是AB 、AC 上的点,DE∵BC ,∵ABC 的内角平分线AQ 交DE 于点P ,过点P 作直线交AB 、AC 于R 、S ,若23,9AS AR AC AB BC ===,则DE=________.。
2020-2021学年江苏省宿迁市中考数学模拟试卷(3)及答案解析
江苏省宿迁市中考数学模拟试卷(3)一、选择题1.以下方程中,一定是关于x的一元二次方程的是()A. aX2+bx+c=0B. 2x2+3x=2x (x-1)C. (k2+1) x2-2x=6D. x2-篇+1=02.下列下列说法中,正确的是()A.平分一条直径的弦必垂直于这条直径B.平分一条弧的直线垂直于这条弧所对的弦C.弦的垂线必经过这条弦所在圆的圆心D.在一个圆内平分一条弧和平分它所对的弦的直线必经过这个圆的圆心3.点P到。
上各点的最大距离为5,最小距离为1,则。
的半径为()A. 2B. 4C. 2 或3D. 4 或64.在平面直角坐标系中,以点(2, 1)为圆心,1为半径的圆,必与()A. x轴相交B. y轴相交C. x轴相切D. y轴相切5.边长为a的正六边形的内切圆的半径为()A. 2aB. aC. ।D.二、6.边长为4的正方形的外接圆与内切圆组成的圆环的面积为()A. 2 冗B. 4 冗C. 8 冗D. 16 冗7 .关于x 的一元二次方程x - mx+2m- 1=0的两个实数根分别是x 1、X 2,且X i +% =7, 则(xi - x2)2的值是( )A. 1B. 12C. 13D. 258 .如图,已知。
过正方形ABCD 的顶点A 、B,且与CD 边相切,若正方形的边长 为2,则圆的半径为( )A B I" C .当D.19 .如图,王虎使一长为4cm,宽为3cm 的长方形木板,在桌面上做无滑动的翻滚(顺 时针方向)木板上点A 位置变化为A 一A-A,其中第二次翻滚被桌面上一小木块挡 住,使木板与桌面成30°角,则点A 翻滚到A 2位置时共走过的路径长为( )A. 10cmB. 4 2mC.10 .已知等腰△ ABC 的三个顶点都在半径为5的。
上,如果底边BC 的长为8,那、填空题么BC边上的高为11.方程d定二x的根是12.如图,在直角坐标系中,以点P为圆心的圆弧与x轴交于A、B两点,已知P (4, 2)和A (2, 0),则点B的坐标是13.如图,是一个隧道白截面,如果路面AB宽为8米,净高CD为8米,那么这个隧道所在圆的半径OA是米.14.如图,在RtAABC中,/C=90°, AC=4, BC=2,分别以AC、BC为直径画半圆,则图中阴影部分的面积为(结果保留九)15.半径相等的圆内接正三角形、正方形、正六边形的边长之比为16.如图所示,小华从一个圆形场地的A点出发,沿着与半径OA夹角为a的方向行走,走到场地边缘B后,再沿着与半径OB夹角为a的方向折向行走.按照这种方式,小华第五次走到场地边缘时处于弧AB上,此时/ AOE=56,则a的度数是三、解答题(共52分)17.用恰当的方法解下列方程(1)x2- 10x+25=7(2)3x (x- 1) =2- 2x.18. 一根横截面为圆形的下水管道的直径为1米,管内有少量的污水(如图),此时的水面宽AB为0.6米.(1)求此时的水深(即阴影部分的弓形高);(2)当水位上升到水面宽为0.8米时,求水面上升的高度.19.已知:如图,△ ABC中,AC=BC以BC为直径的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020-2021中考数学相似综合题及详细答案一、相似1.阅读下列材料,完成任务:自相似图形定义:若某个图形可分割为若干个都与它相似的图形,则称这个图形是自相似图形.例如:正方形ABCD中,点E、F、G、H分别是AB、BC、CD、DA边的中点,连接EG,HF交于点O,易知分割成的四个四边形AEOH、EBFO、OFCG、HOGD均为正方形,且与原正方形相似,故正方形是自相似图形.任务:(1)图1中正方形ABCD分割成的四个小正方形中,每个正方形与原正方形的相似比为________;(2)如图2,已知△ABC中,∠ACB=90°,AC=4,BC=3,小明发现△ABC也是“自相似图形”,他的思路是:过点C作CD⊥AB于点D,则CD将△ABC分割成2个与它自己相似的小直角三角形.已知△ACD∽△ABC,则△ACD与△ABC的相似比为________;(3)现有一个矩形ABCD是自相似图形,其中长AD=a,宽AB=b(a>b).请从下列A、B两题中任选一条作答.A:①如图3﹣1,若将矩形ABCD纵向分割成两个全等矩形,且与原矩形都相似,则a=________(用含b的式子表示);②如图3﹣2若将矩形ABCD纵向分割成n个全等矩形,且与原矩形都相似,则a=________(用含n,b的式子表示);B:①如图4﹣1,若将矩形ABCD先纵向分割出2个全等矩形,再将剩余的部分横向分割成3个全等矩形,且分割得到的矩形与原矩形都相似,则a=________(用含b的式子表示);②如图4﹣2,若将矩形ABCD先纵向分割出m个全等矩形,再将剩余的部分横向分割成n 个全等矩形,且分割得到的矩形与原矩形都相似,则a=________(用含m,n,b的式子表示).【答案】(1)(2)(3);;或;或【解析】【解答】(解:(1)∵点H是AD的中点,∴AH= AD,∵正方形AEOH∽正方形ABCD,∴相似比为: == ;故答案为:;( 2 )在Rt△ABC中,AC=4,BC=3,根据勾股定理得,AB=5,∴△ACD与△ABC相似的相似比为:,故答案为:;( 3 )A、①∵矩形ABEF∽矩形FECD,∴AF:AB=AB:AD,即 a:b=b:a,∴a= b;故答案为:②每个小矩形都是全等的,则其边长为b和 a,则b: a=a:b,∴a= b;故答案为:B、①如图2,由①②可知纵向2块矩形全等,横向3块矩形也全等,∴DN= b,Ⅰ、当FM是矩形DFMN的长时,∵矩形FMND∽矩形ABCD,∴FD:DN=AD:AB,即FD: b=a:b,解得FD= a,∴AF=a﹣ a= a,∴AG= = = a,∵矩形GABH∽矩形ABCD,∴AG:AB=AB:AD即 a:b=b:a得:a= b;Ⅱ、当DF是矩形DFMN的长时,∵矩形DFMN∽矩形ABCD,∴FD:DN=AB:AD即FD: b=b:a解得FD= ,∴AF=a﹣ = ,∴AG= = ,∵矩形GABH∽矩形ABCD,∴AG:AB=AB:AD即:b=b:a,得:a= b;故答案为:或;②如图3,由①②可知纵向m块矩形全等,横向n块矩形也全等,∴DN= b,Ⅰ、当FM是矩形DFMN的长时,∵矩形FMND∽矩形ABCD,∴FD:DN=AD:AB,即FD: b=a:b,解得FD= a,∴AF=a﹣ a,∴AG= = = a,∵矩形GABH∽矩形ABCD,∴AG:AB=AB:AD即 a:b=b:a得:a= b;Ⅱ、当DF是矩形DFMN的长时,∵矩形DFMN∽矩形ABCD,∴FD:DN=AB:AD即FD: b=b:a解得FD= ,∴AF=a﹣,∴AG= = ,∵矩形GABH∽矩形ABCD,∴AG:AB=AB:AD即:b=b:a,得:a= b;故答案为: b或 b.【分析】由题意可知,用相似多边形的性质即可求解。
相似多边形的性质是;相似多边形的对应边的比相等。
相似多边形的对应边的比等于相似比。
(1)由题意知,小正方形的边长等于大正方形的边长的一半,所以其相似比为;(2)在直角三角形BC中,由勾股定理易得AB=5,而CD AB,所以用面积法可求得CD=,所以相似比===;(3)A、①由题意可得,解得;②同理可得; ,解得,;B、①最小的矩形的长和宽与大矩形的场和宽的对应方式有两种,所以分两种情况来解:Ⅰ、当FM是矩形DFMN的长时,由题意可得成比例线段,,,解得FD=,则AF的长也可用含a的代数式表示,而AG=GF=AF,再根据矩形GABH∽矩形ABCD,得到相对应的比例式即可求得a=b;Ⅱ、当DF是矩形DFMN的长时,同理可得a=b;②同①中的两种情况类似。
2.如图,矩形OABC的两边在坐标轴上,点A的坐标为(10,0),抛物线y=ax2+bx+4过点B,C两点,且与x轴的一个交点为D(﹣2,0),点P是线段CB上的动点,设CP=t (0<t<10).(1)请直接写出B、C两点的坐标及抛物线的解析式;(2)过点P作PE⊥BC,交抛物线于点E,连接BE,当t为何值时,∠PBE=∠OCD?(3)点Q是x轴上的动点,过点P作PM∥BQ,交CQ于点M,作PN∥CQ,交BQ于点N,当四边形PMQN为正方形时,请求出t的值.【答案】(1)解:在y=ax2+bx+4中,令x=0可得y=4,∴C(0,4),∵四边形OABC为矩形,且A(10,0),∴B(10,4),把B、D坐标代入抛物线解析式可得,解得,∴抛物线解析式为y= x2+ x+4;(2)解:由题意可设P(t,4),则E(t, t2+ t+4),∴PB=10﹣t,PE= t2+ t+4﹣4= t2+ t,∵∠BPE=∠COD=90°,当∠PBE=∠OCD时,则△PBE∽△OCD,∴,即BP•OD=CO•PE,∴2(10﹣t)=4( t2+ t),解得t=3或t=10(不合题意,舍去),∴当t=3时,∠PBE=∠OCD;当∠PBE=∠CDO时,则△PBE∽△ODC,∴,即BP•OC=DO•PE,∴4(10﹣t)=2( t2+ t),解得t=12或t=10(均不合题意,舍去)综上所述∴当t=3时,∠PBE=∠OCD(3)解:当四边形PMQN为正方形时,则∠PMC=∠PNB=∠CQB=90°,PM=PN,∴∠CQO+∠AQB=90°,∵∠CQO+∠OCQ=90°,∴∠OCQ=∠AQB,∴Rt△COQ∽Rt△QAB,∴,即OQ•AQ=CO•AB,设OQ=m,则AQ=10﹣m,∴m(10﹣m)=4×4,解得m=2或m=8,①当m=2时,CQ==,BQ==,∴sin∠BCQ==,sin∠CBQ==,∴PM=PC•sin∠PCQ= t,PN=PB•sin∠CBQ=(10﹣t),∴ t =(10﹣t),解得t=,②当m=8时,同理可求得t=,∴当四边形PMQN为正方形时,t的值为或【解析】【分析】(1)先求出抛物线与y轴的交点C的坐标,再根据矩形ABCO及点A的坐标为(10,0),求出点B的坐标,然后利用待定系数法,将点B、D的坐标分别代入函数解析式求出二次函数解析式。
(2)设P(t,4),利用抛物线的解析式表示出点E的坐标,可求出PB、PE的长,再分情况讨论:当∠PBE=∠OCD时,可证△PBE∽△OCD,利用相似三角形的性质,的长BP•OD=CO•PE,建立关于t的方程,求出符合题意的t的值;当∠PBE=∠CDO时,可得△PBE∽△ODC,利用相似三角形的性质得出BP•OC=DO•PE,建立关于t的方程,求出t 的值,综上所述就可得出符合题意的t的值。
(3)当四边形PMQN为正方形时,则∠PMC=∠PNB=∠CQB=90°,PM=PN,再证明Rt△COQ∽Rt△QAB,利用相似三角形的性质得出OQ•AQ=CO•AB,设OQ=m,则AQ=10﹣m,建立关于m的方程,求出m的值,再分别根据m的值求出CQ、BQ的长,再利用解直角三角形用含t的代数式分别表示出PM、PN的长,由PM=PN可得出关于t的方程,再解方程,就可求出符合题意的t的值。
3.如图,点A、B、C、D是直径为AB的⊙O上的四个点,CD=BC,AC与BD交于点E。
(1)求证:DC2=CE·AC;(2)若AE=2EC,求之值;(3)在(2)的条件下,过点C作⊙O的切线,交AB的延长线于点H,若S△ACH=,求EC之长.【答案】(1)证明:∵CD=BC,∴∠DAC=∠CDB,又∵∠ACD=∠DCE,∴△ACD∽△DCE,∴,∴DC2=CE·AC;(2)解:设EC=k,则AE=2k,∴AC=3k,由(1)DC2=CE·AC=3k2,DC= k,连接OC,OD,∵CD=BC,∴OC平分∠DOB,∴BC=DC= k,∵AB是⊙O的直径,∴在Rt△ACB中,,∴OB=OC=OD= k,∴∠BOD=120°,∴∠DOA=60°,∴AD=AO,∴(3)解:∵CH是⊙O的切线,连接CO,∴OC⊥CH.∵∠COH=60°,∠H=30°,过C作CG⊥AB于G,设EC=k,∵∠CAB=30°,∴,又∵∠H=∠CAB=30°,∴AC=CH=3k,∴AH=,∵S△ACH=,∴,∴k2=4,k=2,即EC=2.【解析】【分析】(1)要证DC2=CE·AC,只需证△ACD∽△DCE即可求解;(2)连接OC,OD,根据已知条件AE=2EC可用含k的代数式表示线段AE、CE、AC,由(1)可将CD用含K的代数式表示,在Rt△ACB中,由勾股定理可将AB用含K的代数式表示,结合已知条件和圆的性质可求解;(3)过C作CG⊥AB于G,设EC=k,由30度角所对的直角边等于斜边的一半可将CG用含K的代数式表示,根据三角形ACH的面积=AH CG=9即可求解。
4.如图,在中,,点M是AC的中点,以AB为直径作分别交于点.(1)求证:;(2)填空:若,当时, ________;连接,当的度数为________时,四边形ODME是菱形.【答案】(1)证明:∵∠ABC=90°,AM=MC,∴BM=AM=MC,∴∠A=∠ABM.∵四边形ABED是圆内接四边形,∴∠ADE+∠ABE=180°,又∠ADE+∠MDE=180°,∴∠MDE=∠MBA,同理证明:∠MED=∠A,∴∠MDE=∠MED,∴MD=ME(2)2;【解析】【解答】解:(2)①由(1)可知,∠A=∠MDE,∴DE∥AB,∴ =.∵AD=2DM,∴DM:MA=1:3,∴DE= AB= ×6=2.故答案为:2.②当∠A=60°时,四边形ODME是菱形.理由如下:连接OD、OE.∵OA=OD,∠A=60°,∴△AOD是等边三角形,∴∠AOD=60°.∵DE∥AB,∴∠ODE=∠AOD=60°,∠MDE=∠MED=∠A=60°,∴△ODE,△DEM都是等边三角形,∴OD=OE=EM=DM,∴四边形OEMD是菱形.故答案为:60°.【分析】(1)要证MD=ME,只须证∠MDE=∠MED即可。