高压动态无功补偿及滤波装置(TCR型SCV)

高压动态无功补偿及滤波装置(TCR型SCV)
高压动态无功补偿及滤波装置(TCR型SCV)

高压动态无功补偿及滤波装置(TCR型SCV)

设备概述

SVC装置由晶闸管控制电抗器(TCR)和高压无源滤波器(FC)构成。控制系统根据负荷工作状态改变与电抗器串联的晶闸管的导通角,从而改变电抗器提供的感性无功,起到平滑调节供电系统无功功率的作用。

SVC=FC+TCR

TCR: Thyristor Controlled Reactor晶闸管控制电抗器

SCV: Static Var Compensator静止型动态无功补偿装置

[高压动态无功补偿及滤波装置主要设备构成]

1.全数字控制柜

2.晶闸管阀组

3.主电抗器

4.纯水冷却系统

滤波回路

[SVC高压动态无功补偿及滤波装置简介]

. 基于DSP的全数字控制系统,具有运算速度快、处理数据量大,实现实时控制量计算。

采用柜式结构,实现外来干扰屏蔽,抗干扰能力优越。

控制整个系统的运行。

采用卧式结构,晶闸管叠装压接式,纯水冷却、内取能、内阻尼、空气绝缘、BOD保护。

晶闸管选用ABB优质产品,电气性能良好,串联使用控制电抗器的投入与切除。

主电抗器,通过晶闸管阀组连接到SVC系统中,成为SVC 最重要的部分。

电抗器为空心、干式、铜线或铝线环氧固化型,线形度高、噪音小、动热稳定性好,绝缘冷却、内取能、内阻尼、空气

绝缘、BOD保护。

晶闸管选用ABB优质产品,电气性能良好,串联使用控制电抗器的投入与切除。

主电抗器,通过晶闸管阀组连接到SVC系统中,成为SVC 最重要的部分。

电抗器为空心、干式、铜线或铝线环氧固化型,线形度高、噪音小、动热稳定性好,绝缘强度高,散热好。

通过晶闸管的相位控制达到动态无功补偿的目的。

主要设备采用国外著名公司进口元件,主循环泵、等离子交换机、精密过滤器等核心机构采用不锈钢316L材质。

PLC程序控制,保护、报警功能完备。

无腐蚀,无污染,符合环保要求。

[TCR型SVC技术特点]

1. 动态相应时间快,实现平滑调节。

采用基于DSP的全数字化控制,动态相应时间小于10ms.

2.运行可靠,保护措施齐全,维护量小。

系统信息传递采用光缆传递,光电方式转换,抗干扰能力好。

3.控制灵活,调节方式多样。

可按无功电压或无功功率投切,可手动/自动转换,分相投切。

4.采用封闭纯水冷却系统,冷却效率高,运行可靠。

5.可以实现电能质量根本优化。

装置投运后功率因数可达以上,消除电压波动及闪变,三相平衡符合国际标准。

SVC工作原理

TCR+FC型SVC全称如下:

SVC的调节器自动跟踪负荷(具有严重冲击无功功率)的工作状态,发出与冲击负荷相关的TCR晶闸阀的触发脉冲。通过光电转换及高压光缆的传递,使触发脉冲触发各晶闸管。不同的触发角,改变了TCR主抗器的电流量,从而改变了TCR回路的感性无功率量。

通过TCR回路的感性无功功率的跟随作用,使用户流入电网的无功功率趋于零(或一定值)见图1、2、3。

由于晶闸管阀及电子设备的动态响应很快,即实现了动态补偿的功能。依靠FC回路的作用,滤除谐波电流,见图4。

通过调节器的检测,运算和调节作用使SVC平衡负荷的不对称有功负荷,抑制电网的负序分量。

图1:TCR+FC型SVC主回路接线图

图2:TCR电流及触发角关系图等效回路电流及触发器

图3:动态无功补偿原理

负载工作在不同的状态所产生的无功功率也是不同的,例如当负载起动时,

所消耗的无功功率很大,功率因素很低,补偿器无功功率Q

LS

降为0,此时容性

无功功率Q

C 全部用于补偿负载无功功率Q

L

。当负载进入等速运行阶段后,所需

的无功功率减小,电容器会产生过补偿,TCR的控制器提供一部分感性无功功率

Q

LS

,以补偿容性无功功率的多余部分。当负载停止时,补偿器全部容量投入,

用于补偿过剩的容性无功功率Q

C

控制器感性无功功率Q

LS 对负载的感性无功功率Q

L

和电容器组的容性无功功

率Q

C

起平衡作用,以使系统电压及功率因数保持为恒定值。

图4:FC兼滤波器与电网等效筒图及工作原理

图5:无功补偿和有功平衡原理

A-a 相有功过多引起的电压三角形变动(虚线三角形)B-b 相有功过多引起的电压三角形变动(虚线三角形)

TCR+FC总框图

调节器原理图

SVC装置设备构成介绍

晶闸管阀及纯水机

晶闸管叠装压接式、纯水冷却、内取能、内阻尼、空气绝缘,BOD保护。由并联晶闸管多个串联组成,其过电压保护采用国际上

先进的BOD器件,它与其他电子器件一起构成晶闸管二次触发回路,使晶闸管免受过电压冲击而损坏。选用世界名牌ABB产优质晶闸管电气特性优良,也可根据用户要求选用国产晶闸管。光电转换,自动完成各高电位电子单元循检,高压光缆传递信号。纯水机提供高纯水作为TCR阀的冷却介质。(水一水型及水一风型)

2.主电抗器

空心、干式、铝线环氧固化型,线性度高,噪音小,动热稳定性好,损耗小,绝缘强度高,散热好。相当于一个可控的感性负载,通过电子调节器和反并联连接的可控硅阀的相位控制,改变补偿电抗器的电流大小,从而达到动态无功补偿的目的。

阀的触发监控系统

脉冲编码,光发送,光接收,微机实时监控TCR晶闸管运行状况。TCR阀是高压电力电子设备,它必须解决弱电触发系统与强电高压系统的电位隔离问题。我们采用ABB及西门子公司的光电转换技术,使这一难题得到解决;同时也解决了高压晶管阀工作时的检测问题,它能在低压侧直接运算显示、报警、跳闸。

4.调节器

调节器是晶闸管开关的控制系统,采用西门子或我公司的全数字控制系统(ABB公司技术),通过测量、比较、放大、移相触发环节,按一定的调节规律产生晶闸管开关所需要的触发脉冲,控制其触发角大小,调节补充电控器的电流,达到所要求的无功功率。

矢量运算、逻辑判别、锁频、锁相、线性化处理,有源滤波、数字触发、运算快,响应时间5-10ms,触发精度≤1个电角度。

程序控制及继电保护: 用DSP实现SVC程序投切及继电保护,用工控计算机实现SVC自动化管理体。

5.滤波电容器组

金属全膜带内熔丝电容器、外设外迷人丝、CT、ZNO、放电线圈、构架等

SVC高压动态补偿装置应用举例

[电弧炉]

电弧炉作为非线性及无规律负荷接入电网,将会对电网产生一系列不良影响,其中主要问题是:导致电网严重三相不平衡,产生负序电流产生高次谐波,其中普遍存在如2、4偶次谐波与3、5、7次等奇次谐波共存的状况,使电压畸变更为复杂化存在严重的电压闪变,功率因数低。

彻底解决上述问题的唯一方法是用户必须安装具有快速响应速度的动态无功补偿器(SVC)。三伊公司生产的SVC系统响应时间小于10ms,完全可以满足严格的技术要求,向电弧炉快速提供无功电流并且稳定母线电网电压,增加冶金有功功率的输出,提高生产效率,并且最大限度的降低闪变的影响,SVC具有的分相补偿功能可以消除电弧炉造成的三相不平衡,滤波装置可以消除有害的高次谐波并通过向系统提供容性无功来提高功率因数。

[轧机及其他大型电机对称负载]

引起电网电压降及电压波动,严重时使电气设备不能正常工作,降低了生产效率使功率因数降低

负载的传动装置中会产生有害高次谐波,主要是以5、7、11、13次为代表的奇次谐波及旁频,会使电网电压产生严重畸变安装SVC系统可以完美的解决上述问题,保持母线电压平稳,无谐波干扰,功率因数接近1。

[城市二级变电站(66kv/10kv)]

在区域电网中,一般采用分级投切电容器组的方式来补偿系统无功,改善功率因数,这种方式只能向系统提供容性无功,并且不能随负载变化而实现快速精确调节,在保证母线功率因数的同时,容易造成向系统倒送无功,抬高母线电压,危害用电设备及系统稳定性。

SVC系统可以快速精确的进行容性及感性无功补偿,使SVC在稳定母线电压、提高功率因数的同时,彻底、方便地解决了无功倒送的问题。并且,安装新的SVC系统时,可以充分利用原有的固定电容器组,只需增加晶闸管相控电抗器(TCR)部分即可,用最少的投资取得最佳的效果,成为改善区域电网供电质量的最有效方法。

[远距离电力传输]

全球电力目前正在趋向于大功率电网,长距离输电,高能量消耗,同时也迫使输配电系统不得不更加有效,SVC可以明显提高电力系

统输配电性能,这已在世界范围内得到了广泛的证明,即当在不同的电网条件下,为保证一个平衡的电压时,可以在电网的一处或多处适合的位置上安装SVC系统,以达到如下目的:

1.稳定弱系统电压

2.减少传输损耗

3.增加传输能力,使现有电网发挥最大效率

4.提高瞬变稳态极限

5.增加小干扰下的阻尼

6.增强电压控制及稳定性

7.阻尼功率震荡

[电力机车供电]

电力机车运输方式在保护环境的同时也对电网造成了严重的“污染”,因电力机车为单相供电,这种单相负荷就造成了供电网的严重三相不平衡及低的功率因数,目前世界各国解决这一问题的唯一途径就是在铁路沿线适当位置安装SVC系统,通过SVC的分相快速补偿功能来平衡三相电网,并通过滤波装置来提高功率因数。

混合动态滤波补偿装置产品介绍—安科瑞 胡烨

混合动态滤波补偿装置产品简介 安科瑞胡烨 江苏安科瑞电器制造有限公司江苏江阴214405 摘要:本文从产品功能和适用场所方面介绍了安科瑞混合动态滤波补偿装置产品,阐述了其基本原理、市场需求前景并分析了其产品应用优势。 关键词:安科瑞混合动态滤波补偿装置,基本原理,市场需求,优势 1、引言 由于电力电子技术的快速发展,电网中出现了大量非线性负载和不平衡负荷(如LED灯、UPS、变频器等)以及新的发电方式与储能方式的推广使用(其中有大量的整流与逆变器)。这些设备的使用导致了电能质量问题的产生,并时刻影响着日常生产工作。因此有许多场合在无功补偿的同时,必须进行谐波治理。如使用静止无功发生器+有源滤波器两种设备来治理,不仅投入成本高,占地面积也较大,而混合动态滤波补偿装置正是将此两种产品功能有机结合在同一个产品中形成的,此时用混合动态滤波补偿装置来进行治理的优势就十分明显。 2、混合动态滤波补偿装置原理介绍 混合动态滤波补偿装置的特点在于可将静止无功发生器与有源电力滤波器的功能有机组合在同一个模块中,使用一个控制器控制无功+谐波两种输出。 它将电力电子技术、计算机技术和现代控制系统应用于电力系统,通过对装置输出电流相位的控制,从感性到容性整个范围进行连续的无功调节,快速补偿系统对无功功率的需求;同时采集并计算出线路中的谐波电流分量,通过调节三相桥式电路交流侧输出与电网中谐波幅值相等,方向相反的补偿电流从而达到谐波治理的目的。其应用可克服LC补偿器等传统的无功补偿器响应速度慢、补偿效果不能精确控制、容易与电网发生并联谐振和投切震荡等缺点;还可避免传统电容柜对有源滤波器工作产生的不良影响。它在一个单柜内可同时实现有源滤波及SVG型无功补偿,并将两种功能结合在一个模块中智能调节输出比例,最大限度利用了各自的优点,大幅提高了应用效率。

滤波补偿无功补偿的区别

滤波补偿与无功补偿的区别 一、综述 普通无功补偿装臵实现无功功率补偿是通过投切400V的普通电容器来实现的。 普通电容器的电压等级是400V,过压能力是1.1倍,过流能力是1.3倍。谐波会叠加在基波上对电容器产生冲击,使电容器处于过压过流的状态,极易产生电容器的损坏或谐振事故。电容器的故障会使功率因数下降,功率因数低于0.9供电公司会进行处罚。 滤波补偿装臵实现无功功率补偿是通过投切电容电抗LC串联电路来实现的。 滤波电容器的电压等级是480V,过压能力是1.1倍,过流能力是2.0倍。串联滤波电抗器会对电容器实现保护,同时电容器的技术参数较高,所以能实现电容补偿的安全运行。电容电抗串联回路具有调谐频率(P7-189Hz),对低于这个频率的基波呈容性实现无功补偿的功能,对于高于这个频率的谐波电流呈感性,呈现低阻抗的滤波功能,也就是说在实现无功功率补偿的同时滤除系统中的谐波。 二、从谐波对电力系统的影响来说明普通无功补偿与滤波补偿的区别 谐波造成电网污染,电网电压的严重畸变,影响线路的稳定运行和电网的质量,近年来供电部门对此越来越重视,要求用户将系统谐波的畸变率控制在安全线以下,所以普通的无功补偿装臵会淡出市场

被滤波补偿所取代。 三、对电力设备的影响来说明普通无功补偿与滤波补偿的区别 A、由于谐波趋肤效应的影响,电缆电线过热,绝缘老化加速,易损坏并导致线间短路和接地故障引起电气火灾和人身电击事故;造成能源浪费同时降低电缆铜排使用寿命; B、变压器和马达的过热,损坏甚至于烧毁; 补偿功率因数的装臵上还可能由于谐波的放大,产生并联电容器过热、损坏或谐振事故; C、断路器及漏电保护装臵、接触器、热继电器等电气保护元件过热,失灵,误动作,接地保护装臵功能失常; D、中性线过负荷、发热,甚至于烧损、着火; E、谐波导致继电保护装臵误动作,导致开关元件误动作,使电气测量仪表计量不准确; F、谐波在负载与负载间相互影响,降低了生产设备的操作精度与工艺准确度。 普通无功补偿完全没有消谐功能,滤除谐波最经济的方法就是使用滤波补偿装臵来实现无功补偿与滤除谐波的双功能。 四、产生对计算机网络、通信、有线电视等弱电系统设备的干扰,从这方面说明普通无功补偿与滤波补偿的区别 现代工程项目非常重视弱电系统的安全运行,所以滤波补偿装臵取代无功补偿装臵是科技发展的需要。

无功补偿控制器

无功补偿控制器 产品概述 JKWZ-200无功补偿与配电监测控制器(以下简称控制器) ,具有无功补偿、数据采集、通讯等功能,适用于交流50Hz、0.4kV低压配电系统的监测及无功补偿控制,以达到最大限度的节能降耗、提高电网质量的目的,该产品经过十多年的持续改进应用,有近万只的连续运行,产品稳定可靠。 1. 数以电压、功率因数、无功功率等综合判定条件投切电容,无投切振荡,无投切呆区,具有控制精度高,装置补偿效果好。 JKWZ无功补偿控制器 2. 多种投切模式,共补、分补、混合补偿多达12路6种组合。 3. 支持短信模式,短信息和手机兼容,可以使用手机直接查看或设置参数。

4. 中文液晶显示,界面友好。可分相分级对三相不平衡的配电系统无功进行精确补偿。 5. 具有过压、欠压,并能故障闭锁,保护补偿装置;控制器数据可通过485通讯上传至主控室,便于管理。 6. 控制器对外联系的部分均采用多种信号隔离措施---如电磁隔离、光电隔离等,以提高控制器的抗干扰能力。 7. 自适应频率算法,输入信号在45-55Hz之间变化,均可实现正常数据采集功能。相位自动识别,接线简单。 8. 器具有功耗低、安装方便、匹配方式灵活多样、适应多种运行环境等特点。 9. 路板采用多层表面贴装技术,减少了电路体积,减少发热,提高了控制器的可靠性。 10. 控制器采用整体面板、封闭机箱,强弱电严格分开,同时在软件设计上也采取相应的抗干扰措施,控制器的抗干扰能力大大提高,对外的电磁辐射也满足相关标准。 11. 在采样回路中,选用高精度、高稳定的16位AD模数转换器件,保证正常运行的高精度,避免因环境改变或长期运行而造成采样误差增大。

低压无功补偿控制器设计开题报告

毕业设计(论文) 开题报告 课题名称低压无功补偿控制器设计 系别 专业班 姓名 评分 导师(签名) 2011年5月6日 中国石油大学胜利学院

低压无功补偿控制器设计 开题报告 1国内外研究现状 早期的无功补偿装置为同步调相机和并联电容器。同步调相机可理解为专门用来产生无功功率的同步电机,可根据需要控制同步电机的励磁,使其工作在过励磁或欠励磁的状态下,从而发出大小不同的容性或感性无功功率,因此同步调相机可对系统无功进行动态补偿。但是它属于旋转设备,运行中的损耗和噪声都比较大,运行维护复杂,成本高,且响应速度慢,难以满足快速动态补偿的要求。并联电容器简单经济,灵活方便,但其阻抗固定,不能跟踪负荷无功需求的变化即不能实现对无功功率的动态补偿。 随着电力电子技术的发展,近几年出现了多种电力系统无功补偿新技术。电力电子技术是无功补偿技术的基础,电力电子器件向快速、高电压、大功率发展,使采用电力电子器件的无功补偿从根本上改变了交流输电网过去基本只依靠机械型、慢速、间断及不精确的控制的局面,从而为交流输电网提供了空前快速、连续和精确的控制以及优化潮流功率的能力。随着电力电子器件的发展,无功补偿控制器在其性能和功能上也出现不同的发展阶段。无功补偿控制器己由基于SCR的静止无功补偿器(Static Var Compensator-SVC)、晶闸管控制串联电容补偿器(Thyristor Controlled Series Compensator-TCSC)发展到基于GTO的静止无功发生器(Static Var Generator-SVG)、静止同步串联补偿器(StaticSynchoronous Series Compensator-SSSC)、统一潮流控制器(Unified Power FlowController-UPFC)、可转换静止补偿器(Convertible Static Compensator-CSC)等。 (1)静止无功补偿器(SVC) 早期的静止无功补偿装置是饱和电抗器(Saturated Reactor-SC)型,1967年英国GEC公司制成了全世界上第一批饱和电抗器型SVC。饱和电抗器与同步调相机相比,具有静止型的优点,响应速度快,但因其铁心需磁化到饱和状态,因而损耗和噪声都很大,而且存在非线性电路的一些特殊问题,所以未能占据静止无功补偿装置的主流。由于使用晶闸管的SVC具有优良的性能,所以十多年来占据了静止无功补偿装置的主导地位。因此,SVC一般专指使用晶闸管的静补装置。

电力SVG动态无功补偿及有源滤波教材

SVG动态无功补偿及有源滤波治理装置运行规范 35kv-110kV电力 二○一四年一月

目录 第一章总则 (1) 第二章 SVG技术指标 (2) 第三章 SVG设备日常巡检维护 (3) 第四章 SVG设备定期保养 (4) 第五章缺陷管理及异常处理 (5) 第六章培训要求 (6) 第七章备品备件管理 (7)

第一章总则 第一条:凡是安装有变压器地方及大型用电设备旁边都应该配备无功补偿装置(这是国家电力部门的规定)。 第二条:特别是那些功率因数较低的变电站、发电厂、工矿、企业必须安装。大型的异步电机、变压器、电焊机、冲床、车床群、空压机、压力机、吊车、电气列车等尤其需要。 第三条:加装补偿设备是改善供电状况、提高电能利用率的有效措施,规范适用于国家电网公司所属范围内35kV SVG 动态无功偿及有源滤波治理装置。 第二章SVG的技术指标 一、SVG的产品特征 第四条:专用软件无功功率补偿,不过载,不存在过补和欠补问题。 第五条:输出无功功率从容性到感性连续变化,可实现动态、连续、同步补偿。 第六条:电流源特性,输出无功电流不受母线电压影响。 第七条:不产生谐波,具备抑制谐波的功能,更保障系统安全。

第八条:抑制电压波动和闪变,维持受电端电压,加强系统电压稳定性。 第九条:补偿系统无功功率,提高功率因素,降低线损,节能降耗,降低生产成本 二、SVG的技术指标 电气特征额定电压(V)AC10kv±15%,AC35kv±15%,AC110kv±15%工作频率(HZ)50±5% 额定补偿容量(Kvar)-15Mvar ~+15Mvar 无功调节范围额定感性到额定容性无功负载平滑连续可调功率因素≥0.98 同步(动态)响应时 间 <5ms 有功功率损耗<3.5%额定功率下 过载能力专用软件控制,不过载 运行方式多台可并联运行,连续工作 平均无故障时间MTBF ≥10万小时 控制特征开关频率12.8KHZ 控制器DSP控制器 控制连接光纤,或电气连接 遥信,遥测根据用户需要按合同要求提供遥信、遥测功能 机构特征尺寸(高×宽×深)2200×800×1000 重量(Kg) ≈70≈90≈110≈150≈190≈21 防护等级IP IP3XD或根据用户需求定制 颜色可按合同要求提供外壳颜色 冷却方式强迫风冷 整体结构落地式 安装方式室内安装,固定方式可选、进线方式可选 环境条件环境温度-25℃~+40℃(户内-5℃~+40℃)存储温度-40℃~+65℃ 相对湿度最大95%,无凝露(正常工作状态)海拔高度安装海拔小于1000米 电磁兼 容 符合GB/T.7251-2005或GB/T3791-2005条款

低压无功补偿及滤波装置技术要求Word

低压无功补偿及滤波装置技术要求 一、控制器部分 1.工作电源:86--256VAC 2.测量精度:相间电压≤0.5% 线电流≤0.5% 无功功率≤1% 功率因数≤1% 3.控制器动态响应时间t ﹤30ms 4.每组电容器可设定为长期接通或断开 5.按无功功率需求投切电容器,杜绝投切震荡 6.在线设定PT、CT、运行电压范围、动作延时时间、报警限值 7.具有温度测量及保护功能 8.具有谐波测量和保护功能 二、投切单元部分 投切单元的组成结构及优点 采用电容器、电抗器、投切开关、保护装置一体化的电容器投切开关单元,以便于补偿装置的安装、容量的增减及现场维护。紧凑型设计,整体结构紧凑,外形美观;母线式开关直接挂接在母排上,无需螺丝固定。 母排无需打孔连接,连接方便。 节省安装空间,安装容量大。 安装快捷、方便。 减少布线,易于维护。 标准化、紧密和坚固的优化设计、方便系统扩充容量。 合理的结构设计,单元的通用性好,适合GGD、GCS、GCK、MNS等各种型号柜体的安装。 四种不同容量的投切单元,可满足各种容量的补偿柜的投切精度的需求。 其中投切单元的主要器件技术要求如下: 1、投切开关: 1)无触点开关: a通过反并联晶闸管投切电容器组 b.动作时间要求不大于20ms c电容器组投入时涌流控制在额定电流的1.7倍以内,切除时无过电压产生。 d具有超温保护功能 e可频繁投切电容器组 2)智能复合开关 a采用可控硅投切电容器组、继电器运行的工作方式 b可选5-12VDC电平控制和485通讯控制 c即可控制△接电容器又可分别控制Y接电容器组的每一相 d工作内阻为零、无功耗、不产生谐波 接触器 a采用主触头本身有抑制涌流作用的电容器专用接触器 b接触器在电容器组退出工作时具备放电功能

无功补偿装置的设计要求

无功补偿装置的设计要求 对于电压为lOkV及以下、单组容量为1000kvar及以下的无功补偿电容装置的设计要求如下。 ①电容器装置载流部分(开关设备及导体等)的长期允许电流,G 1214T1UF高压不应小于电容器额定电流的1. 35倍,低压不应小于电容器额定电流的1.5倍。 ②电容器组应装设放电装置,使电容器组两端的电压从峰值(2倍额定电压)降至50V所需的时间,对高压电容器最长为5min,对低压电容器最长为1min。 ③高压电容器组宜接成中性点不接地星形,容量较小时也可接成三角形;低压电容器组应接成三角形。 ④高压电容器组应直接与放电装置连接,中间不应设置开关设备或熔断器。低压电容器组和放电设备之间,可设自动接通的接点。 ⑤电容器组应装设单独的控制和保护装置,但为提高单台用电设备功率因数用的电容器组,可与该设备共用控制和保护装置。 ⑥单台电容器应设置专用熔断器作为电容器内部故障保护,熔丝额定电流为电容器额定电流的1.5~2倍。 ⑦当装设电容器装置附近高次谐波含量超过规定允许值时,应在回路中设置抑制谐波的串联电抗器,串联电抗器也可兼作限制合闸涌流的电抗器。 ⑧电容器的额定电压与电力网的标称电压相同时,应将电容器的

外壳和支架接地。 当电容器的额定电压低于电力网的标称电压时,应将每相电容器的支架绝缘,其绝缘等级应和电力网的标称电压相配合。 ⑨装配式高压电容器组在室内安装时,下层电容器的底部距离地面不应小于0. 20m,上层电容器的底部距离地面不宜大于2. 50m,电容器装置顶部至屋顶净距不应小于1m,电容器布置不宜超过三层。 装配式电容器组当单列布置时,网门与墙距离不应小于1.30m;当双列布置时,网门之间距离不应小于1.50m。 ⑩电容器外壳之间(宽面)的净距不宜小于0.lOm,但成套电容器装置除外。 ⑩设置在民用主体建筑中的低压电容器应采用非可燃性油浸式电容器或干式电容器。

浅谈无功补偿与无源滤波

浅谈无功补偿与无源滤波 用电设备正常工作不但要从电源取得有功功率,还需要获取无功功率。如果电网中的无功功率不足,用电设备就没有足够的能力建立正常工作的电磁场,导致端电压下降,从而影响用电设备的正常运行。 电网输出的功率包括两部分:一是有功功率:直接消耗电能,把电能转变为机械能、热能、化学能或声能,利用这些能作功,这部分功率称为有功功率;二是无功功率:不消耗电能,只是把电能转换为另一种形式的能,这种能作为电气设备能够作功的必备条件,并且,这种能是在电网中与电能进行周期性转换,这部分功率称为无功功率。 实际上用电设备正常工作不但要从电源取得有功功率,还需要获取无功功率。如果电网中的无功功率不足,用电设备就没有足够的能力建立正常工作的电磁场,导致端电压下降,从而影响用电设备的正常运行。但是从发电机和高压输电线供给的无功功率远远满足不了负荷的需要,所以在电网中常常使用一些无功补偿装置来补充无功功率,以保证用户对无功功率的需要,这样用电设备才能在额定电压下工作。无功补偿是把具有容性功率负荷的装置与感性功率负荷并联接在同一电路,能量在两种负荷之间相互交换,这样,感性负荷所需要的无功功率可由容性负荷输出的无功功率补偿。

无功补偿可以增加电网中有功功率的比例常数,减少发、供电设备的设计容量,减少投资,降低线损等。在无功补偿中,串联电抗的无功补偿电容器能够达到避免谐振滤除谐波等功能,在IEC标准中,将电容器与串联电抗器构成的设备统称为滤波器。无源滤波器由LC等被动元件组成,将其设计为某频率下极低阻抗,对相应频率谐波电流进行分流,其行为模式为提供被动式谐波电流旁路通道。采用电力滤波装置就近吸收谐波源所产生的谐波电流,是抑制谐波污染的有效措施。 。 通常采用由电力电容器、电抗器和电阻器适当组合而成的无源滤波装置进行滤波,其实质就是根据电容电阻固有的阻抗特性,对某一特定频率的谐波呈低阻抗,为负载谐波电流提供较低的阻抗通道,与电网阻抗形成分流的关系,使大部分该频率的谐波流入滤波器,而不流入电网,其滤波特性由系统和滤波器的阻抗比所决定,所以滤波器一旦制成,性能参数难以变动,滤波特性受系统参数的影响较大;当波电流增大时,滤波器负担随之加重,可能造成滤波器过载;除此之外,无源滤波器只能消除特定的几次谐波,而对某些次谐波会产生放大作用。以上诸多缺点大大限制了无源滤波器的应用场合。

正泰nwkG无功补偿控制器说明书

NWK-G系列 智能型无功补偿控制器 使用说明书 一、简介 NWK-G系列智能型无功功率自动补偿控制器是低压配电系统补偿无功功率专用仪器,可与各型号低压静电电容屏配套使用。NWK1-G型(开孔尺寸为本113×113mm),NWK2-G型(开孔尺寸为162×102),输出路数各有4、6、8、10路四种规格。本机博采国内外先进技术,采用进口单片机控制,具有体积小、重量轻、功能完善、操作简单、抗干扰能力强、运行稳定可靠、补偿精确等突出优点。依据JB/T9663-1999国家最新专业标准设计,一次性通过机械工业部天津电气传动研究所发配电及电控设备检测所的型式试验,主要性能指标达到国内先进水平,是低压电容屏厂家首选产品。 二、功能特点 1、采用国外先进芯片,增加了断电记忆功能。即在系统断电及控制器复位时,参数及程序自动记忆,不丢失;供电恢复后控制器仍按断电前所设定的参数进入自动运行状态,实现无人操作化。 2、LED数字显示电网功率因素,显示范围:滞后(0.00~0.99),超前(0.00~0.99)。 3、通过面板三个功能键能完成数字显示COSφ设定值,延时设定值,过压设定值的设定。简明的人机对话,使操作极为方便。 4、当电网电压超过本机过压设定值时,COSφ表自动转换显示为电网当前的电压值,同时自动快速逐级切除已投入的电容组。 5、判别取样电流极性(自动识别极性),并自动转换。给安装调试使用带来极大方便。 6、当取样讯号线开路或无输入取样电流信号时,本机数字COSφ自动显示https://www.360docs.net/doc/ff19061191.html,。 7、输出动作程序为先接通先分断,先分断先接通的循环工作方式及适应于就地补偿装置动作程序要求的1、2、2、2、2、1编码工作方式。 8、具有手动/自动转换,置自动时,本机自动跟踪电网功率因素及无功电流,控制电容器自动投入或切除,置手动时在本机上能实现手投或手切。 9、有超前、滞后、过压、欠流LED指示灯指示。LED提示编程输入。 10、抗干扰能力强,能抵御从电网直接输入的幅值2000V的干扰脉冲,高于国家专业标准。 三、使用条件 1、海拔高度不超过1000米。 2、环境温度不高于+40℃,24小时内平均温度不超过+35℃,最低环境温度不低于-10℃。 3、空气相对湿度不大于85%(在25℃时)。 4、周围环境,无易燃易爆的介质存在,无导电尘埃及腐蚀性气体存在。 5、电网电压波动范围不大于本机额定电压±10%。 五、安装方式 NWK1-G外型采用42L6系列仪表结构,外形尺寸120×120×80mm,安装开孔113×113mm,嵌入深度为80mm,侧面设安装孔,紧固附件的挂钩插入孔内,旋附件上的螺丝即把控制器固定在屏上。 六、接线方法 1、控制器电压U1、U3接B相、C1、图2) 2、取样电流端I1、I2必须取自总负荷(总柜)A相电流互感器次级,不得取自电容屏。 开孔 3、COM为控制器输出端1~10组内部继电器的公共源,交流接触器J线圈电压220V。 NWK1-G型接线图(图1)略 (如果接触器线圈电压为380V,公共端接火线) 控制固态继电器接线图(图2)略

高低压无功补偿装置设计选型结构

高低压无功补偿装置设计选型结构 1、装置主要由并联电容器、电容器专用熔断器、串联电抗器、放电线圈、氧化锌避雷器、隔离接地开关、支柱绝缘子、连接母线和电容器构架等设备组成。若采用双星形接线中性点不平衡电流保护或单星形接线桥差保护,应有电流互感器。 2、串联电抗器串接在电容器组的回路中,用于抵制高次谐波和限制合闸涌流。 用于抵制5次用以上谐波时,电抗器可按Xl/Xc=4.5%-6%配置。 用于抵制3次用以上谐波时,电抗器可按Xl/ Xc=12%-13%配置。 仅用于限制涌流时,电抗器可按Xl/ Xc=0.5%-1%配置。 3、氧化锌避雷器并接在电容器组线路上,以限制投切电容器所引起的操作过电压。 4、放电线圈并接于电容器组的两端,当电容器组继开电源时,能将电容器两端剩余电压在5秒~20秒内自电压峰值降至0.1倍额定电压或50V以下。 5、根据装置所装置设备(电容器、电抗器等)的布置可分为片架式、柜式、围栏式、模块式、集合式和户外箱式等形式。 片架式 结构即以片架(包括直梁、横梁和横档等)为计量单位的零部件,通过螺栓等系列标准件连接而成电容器组构架,其四周为网门。装置具有价格低、运输方便等特点。6kV和10kV等电压等级的装置适宜采用该结构形式。 柜式 结构即将所配置的元器件均装在类似高压开关柜的构架上,柜门用钢板网或镀锌钢板网制成。装置由电抗器柜、放电柜和电容器柜等三部分组成。装置具有外观整齐,方便安装等特点。6kV和10kV等电压等级容量在300kvar~3000kvar 的装置适宜采用该结构形式。 模块式 结构即将设备安装在用型材制成的单元模块上,安装时只需层层或行行拼接即可。该结构又分立式电容器安装和卧式电容器安装两种形式,且单元电容器宜采用内熔丝电容器,具有外形整齐、安装方便等特点。6kV和10kV等电压等级的装置适宜采用该结构形式。 集合式 结构即由密集型电容器等设备组成的电容器组。具有占地面积小、安装维护方便等特点。6kV、10kV和35kV等电压等级的装置适宜采用该结构形式。 围栏式 结构即将可拆式网门护栏在电容器组和电抗器等设备的四周,围栏和设备间留有检修通道。35kV等电压等级的装置适且采用该结构形式。 户外箱式

无功补偿装置SVG简介

高压SVG培训 我是思源清能电气电子有限公司,服务工程师,张治福,我的手机号是: 第一章装置电气原理与构成 1.1电气原理 SVG装置的主电路采用链式逆变器拓扑结构,Y形连接,10kV装置每相由12个功率单元串联组成,6kV装置每相由8个功率单元串联组成,运行方式为N+1模式。下图所示为SVG装置的连接原理图。

图1-1 10kV装置的连接原理图 图1-2 6kV装置的连接原理图 10kV装置的电气原理如下图。 图1-3 10kV装置的电气原理图 1.2装置构成 SVG装置主要由五个部分组成:控制柜、功率柜、启动柜、连接电抗器和冷却系统。这里采用风冷。

1.2.1控制柜 控制柜由控制器、显示操作面板、控制电源、继电器、空气开关等部分组成。 控制电源提供了DC24V和DC5V电源系统,为控制器和继电器操作供电。 操作面板包括了液晶屏显示、信号指示灯。操作部分包括启机按钮、停机按钮和复位按钮。 空气开关的功能如下表所示。 表2-1 空气开关功能表

第二章装置的控制面板说明 2.1 装置的运行状态 SVG装置带电时,运行在五种工作状态:待机、充电、运行、跳闸、放电。各状态说明和转换关系如下: 1)待机状态 装置上电后立即进入待机状态,然后进行自检。若无任何故障且状态正常,装置复位后,则点亮就绪灯。若在就绪情况下收到用户启机命令,则闭合主断路器。主断路器闭合后即转入充电状态。 2)充电状态 表示装置的直流电容正在充电,由于装置为自励启动,主断路器闭合即表示装置已经进入了充电状态。若在主断路器闭合后直流电压充电到超过直流设定值,则自动闭合启动开关以短路充电电阻,启动开关闭合后延时10s自动转入并网运行状态。 3)运行状态 表示装置处于并网运行的工作状态,可以在各种控制方式下输出电流,达到补偿无功、负序或谐波的效果。若在此过程中出现报警,报警指示灯亮,不影响装置正常运行;若在此过程中出现过流、同步丢失等可恢复故障,装置将闭锁,待手动或自动复位消除故障后,装置将重新解锁运行;若在此过程中出现严重故障或收到停机命令,装置将发跳闸命令,并转到跳闸状态。 4)跳闸状态 表示装置正在执行跳闸指令。一进入跳闸状态,装置就立刻发跳闸命令。检测到主断路器断开后进入放电状态。 5)放电状态 表示装置正在放电。主断路器断开后,直流电容将缓慢下降直至为0。该状态时持续10s后装置自动转入待机状态。 2.2 控制柜屏面说明 装置提供了液晶操作面板、控制按钮和远程后台三种方式对装置进行操作。

动态无功补偿及滤波装置

NSVC-2000I系列动态无功补偿及滤波装置 一、简介 NSVC-2000I动态无功补偿及滤波装置,使用无触点电子开关代替原来的机械开关,并采用了基于DSP大规模集成电路数字信号处理技术,综合国外先进技术与清华大学、东南大学、江苏大学电气工程学院联合开发的数字化的智能控制器,克服了投入时的浪涌电流及切除时的操作过电压,其动作时间≤16ms,同时还显示所有与配电系统相关的电气参数,可实现远程控制、显示、打印等功能。该系列产品多种功能已达到国内领先或国际先进水平。 电力系统的用户中有的使用大量负荷频繁变化的设备,如轧钢机、电弧炉、变频装置、中频炉、软启动等负载产生的高次谐波也随之注入电网,引起电压和电流的畸变,使用电环境恶化,影响用电设备的正常工作。为此装置中设计有谐振点偏移的功能,可以有效地避免高次谐波的并联谐振,滤除谐波,且无大电流产生,保证应有的电网配电质量。 其功能:节能、增容、稳压、滤波 1、无功补偿及滤波使总电流减小,电能损耗降低,即节能。 2、实现无功就地补偿,增加配电电源设备的供电能力,即增容。 3、动态无功补偿响应速度快、实时性强,无电压闪变,使输出电压稳定,即稳压。 4、动态无功补偿装置可滤除谐波,消除谐波干扰,即滤波。 二、主要特点 1、基于DSP大规模集成电路数字信号处理技术,对采集参数进行无功计算,输出投 切控制信号;响应速度快、实时性强,快速跟随补偿,提高配电系统功率因数及 运行的稳定性。动态响应时间≤16ms。 2、控制原理为等压零电流平滑地、连续地、快速地投切电容器组,无投切浪涌电流、 无电压闪变。零电流切除,无操作过电压。克服了原老式无功补偿装置即PFC系 统投切时产生的瞬变过程,避免电容器的过热、胀肚,可使装置寿命达到10年以 上。 3、控制器具有大屏幕液晶显示,可采样、计算、显示系统的电压、电流、功率因数、 谐波、有功、无功、有功电度、无功电度等22种电气参数,可存储3个月的用电 量,并通过RS232/RS485通讯口与上位机连接,实现数据显示、打印及远距离控 制的功能。

智能无功补偿器的设计和实现

修改稿收到日期:2010-03-22。 第一作者董鹏飞,男,1984年生,现为郑州大学自动化专业在读硕士研究生;主要研究方向为模式识别与智能系统。 智能无功补偿器的设计和实现 Desi g n and I m p l e mentati o n o f I ntelli g ent Co mpensator for Reacti v e Power 董鹏飞 李建华 李 盛 (郑州大学电气工程学院,河南郑州 450001) 摘 要:针对电力系统中无功补偿装置的发展现状,通过对无功补偿原理和方式的分析研究,设计了基于P I C18F4520单片机的智能无功功率补偿控制仪。该控制仪以九域图原理作为投切电容器的依据,并通过RS 232/485串行口与GPRS 模块连接,实现与主控中心进行实时数据的传输和交换。实测应用证明,该系统避免了复杂的参数计算,简化了系统结构,且价格低廉、软件编程简单、抗干扰能力强。 关键词:无功补偿 控制器 功率因数 串口通信 GPRS 中图分类号:T M 46 文献标志码:A Abstract :In accordance w it h t he current stat us o f reacti ve po w er compensati on i n electric po w er syste m,t hrough anal y sis and research on the co mpensation pri nci ple and mode ,t he compensati on controll er based on P I C18F4520si ng l e chi p co mputer has been desi gned .The contro ll er a dopts t he ni ne zone graphic t heory as t he criteria o f connecti ng or disconnecti ng the capac i tor ,and t hrough RS 232/485serial port to connect w ith GPRS modul e t o m i ple ment rea l tm i e dat a trans m i ssi on and exchange w ith ma i n contro l center .T he rea l t est verifi es t ha t t he complicated ca l cu l ati on of the parameters is avo i ded by the syste m ;and t he s yste mati c structure is sm i p lified .The syste m features l o w cos,t ease program m i ng and off ers h i gh anti i nterf erence capability . K ey words :Compensati on for reactive power Controller Power fact or Seri a l co mmunica ti on GPRS 0 引言 随着国民经济的发展,工厂自动化和办公自动化程度的不断提高,电子设备对供电电源的供电质量要求也越来越高。工厂内碳硅炉的整流设备、电焊机和电子设备等会产生大量的无功功率及高次谐波,这将会严重污染电网,降低电网的运载能力和电能损耗,影响电子设备的正常运行 [1] 。为提高用户的用电质量、 净化电网、提高电网的运载能力、降低电能损耗,避免随之引起的危害和损失,应对无功功率进行治理,而电力网络性能要求的提高增加了无功补偿控制装置的成本。为了解决成本与性能之间的矛盾,设计了以P I C18F4520单片机为核心的智能无功功率补偿装置,系统在降低网损的同时,也有效地提高了配电系统的电压质量。 1 系统的总体结构设计 在电力系统中,由于各用电器的参变量基本相同,通过对这些参变量的数据分析,基本上可以实现对线 路中的设施进行自动控制的目的。无功补偿方式一般采用三相固定补偿、三相动态补偿和单相动态补偿相结合的方式。系统框架如图1所示。 图1 系统架构图F i g .1 Structure of t he sy stem 系统一般在强交电磁场环境中工作,为防止干扰信 号所造成的开关误动作,系统必须具有较强的抗干扰能力。因此,控制器的数据处理部分选用抗干扰能力和计算能力强的PI C18F4520单片机,输入端信号采用双光耦合的线性耦合器件进行隔离。同时,为保证提供的变量以及参变量数据的精度,前级采样互感器采用精度为 5%的互感器,运放采用失真较小的L M 134系列,A /D 转换部分采用AD7656。此外,系统选用20MH z 晶振, 智能无功补偿器的设计和实现 董鹏飞,等

静止型动态无功补偿成套装置技术规范

35kV SVG型静止型动态无功补偿成套装置技术规范 1总则 1.l 本设备技术规范书适用于XXXXXXXXXXXXXXXXXXXX工程XXkV 动态无功补偿与谐波治理装置,它提出了该设备的功能设计、结构、性能、安装和试验等方面的技术要求。 1.2 本设备技术规范书提出的是最低限度的技术要求,并未对一切技术细节作出规定,也未充分引述有关标准和规范的条文,供方应提供符合工业标准和本协议要求的优质产品。 1.3 如果供方没有以书面形式对本技术规范书的条文提出异议,则意味着供方提供的设备完全符合本技术规范书的要求。 l.4 本设备技术规范书所使用的标准如遇与供方所执行的标准不一致时,按较高标准执行。 1.5 本设备技术规范书经供、需双方确认后作为订货合同的技术附件,与合同正文具有同等的法律效力。 1.6 本设备技术规范书未尽事宜,由甲、乙双方协商确定。 2工程概况 2.1环境条件 周围空气温度 最高温度 ℃ 37.8 最低温度 ℃ -37 最大日温差 K 25 1 日照强度 W/cm2 (风速 0.5m/s) 0.1 2 海拔高度 m 1805 最大风速 m/s 23.7 3 离地面高10m处,30年一遇10min平均最大风速 4 环境相对湿度(在25℃时)平均值 65% 地震烈度(中国12级度标准) 8 水平加速度 g 0.30 垂直加速度 g 0.15 5 地震波为正弦波,持续时间三个周波,安全系数1.67 污秽等级 III 泄漏比距 3.1cm/kV 6 最高运行电压条件下,制造厂根据实际使用高海拔进行修正,并提供 高海拔修正值 7 覆冰厚度(风速不大于15m/s时) 10 批注 [s1]: 需根据现场实际情况进行更改 第1页

简析变电设计中无功补偿装置的设计方式

简析变电设计中无功补偿装置的设计方式 发表时间:2018-02-08T15:52:08.367Z 来源:《防护工程》2017年第29期作者:孙超 [导读] 随着社会经济发展水平的不断提高,电网建设规模逐渐扩大,但是我国的国情决定了变电站分布不均的现实情况。 国网冀北电力有限公司秦皇岛供电公司河北省秦皇岛市 066000 摘要:随着社会经济发展水平的不断提高,电网建设规模逐渐扩大,但是我国的国情决定了变电站分布不均的现实情况。无功补偿装置,能够有效提高电网电能的传送质量,对于减少电网运行过程中的线路损耗问题起到良好的促进作用。在变电设计工作中做好无功补偿装置的设计工作,能够有效维持电网运行的安全性和稳定性,同时在很大程度上还能够促进社会经济的发展,保障人们的生产生活。本文就变电设计中无功补偿装置的设计方式进行分析。 关键词:变电设计;无功补偿装置;设计方式 在经济建设快速发展过程中,电网建设与电网普及覆盖面不断扩大,但是由于我国电网建设起步较晚,易出现供电不良、供电分布不均等现象,这对城市用电造成了一定的影响,而无功传输可以减少电网电压输送损耗,因此为了能够更好的提高电网电能输送量,为居民用电量提供有效保障,加强变电设计中无功补偿装置设计方式研究就显得越发重要。 1 变电设计中进行无功补偿的必要性 电力传输系统中最常见的用电设备有变压器、异步电动机、输电线路等,大部分设备都是属于感性负荷性质的元件,在运行的过程中应该要向这些设备提供相应的无功功率,无功电源主要有发电机、静电电容器、静止补偿器等,无功功率的产生一般不会产生太多的能耗,但是无功功率在传输的过程中会产生电压以及功率的损耗。如果是由发电企业直接向用户提供无功功率,则会导致输电线路以及变压器因为输送大量的无功功率造成能量损耗,对经济效益是一种损耗。因此在电能的传输过程中,为了最大限度地减少无功功率在传输过程中的损耗,提高输电、配电设备的功率,应该要加强无功补偿设备的配置,按照分级补偿和就地平衡的原则进行合理的布局。合理地布置无功功率的补偿容量,改变电力网的无功潮流分布,可以减少电能传输网络中的有功功率的损耗以及电压的损耗。从而对用户端使用的电能的质量进行改进。在进行无功补偿装置的设置过程中,应该要根据电网的电压、系统的稳定性、无功平衡等多方面的要素,对补偿装置的设置地点、补偿装置的容量、种类形式等进行确认。电气的安装过程中,应该要从安装地点的自然环境、各种装置的接线方式、布置形式等方面出发,避免装置引起的操作过电压和谐振过电压对电能产生影响。 2 无功补偿的概念和原理 在供电系统中,所谓的无功补偿是对无功功率补偿的简称,主要功能是提高供电效率,降低输电线路损耗以及供电变压器,提高电网的功率因数,改善供电环境。所以,无功补偿在电力系统中占据着不可缺少的地位。对无功补偿装置进行合理的配置,可以提高供电质量,减少电网损失,假如选择不合适的电网,就可能导致电压不断波动,谐波不断增大等诸多问题。在电网输出的功率中,包括了无功功率和有功功率两部分,无功功率不可以直接消耗电能,把电能转化成另一种形式的能,而这种能是电气设备做功不可缺少的条件,与此同时,它还可以实现和电能的周期性转换;有功功率主要是直接消耗电能,把它转化成其他形式的能,比如化学能、热能等,并且利用这些能做功。 所说的无功补偿的原理指的是,把具有感性功率负荷的装置和具有容性功率负荷的装置在同一个电路上实现并联,使能量可以在两种负荷之间可以相互流通,进而利用容性负荷输出的无功功率,对感性负荷所需要的无功功率进行补偿。从实质方面分析,就是用交流电容器代替原来的变压器或者电网,进而提供相应的无功功率。 3 变电设计中无功补偿装置的设计方式 3.1 调相机设计 在进行变电设计无功补偿装置设计时,调相机设计是以往最常使用的一种设计方式,具体而言,调相机无功补偿设计方式应用过程中,主要是利用了同步调相机这一装置设备,此种装置设备与发电机的原理大致相同,是通过励磁运行作用让电力系统中接收到无功功率,而当欠励磁运行时,电力系统又可以将感性电磁再次传输出去,这样就实现最佳的无功负荷运行效果。因此在进行调相机无功补偿设计时,重要的就是对励磁运行装置进行调节控制,从而实现同步调相机对装置中无功功率电压的吸收或者输出,为电力系统的安全运行提供最大限度的保障。但是值得注意的是,在进行调相机无功补偿设计时,由于同步调相机属于旋转式机械,在运用的过程中有功损耗比较大,因此若是使用的同步调相机容量比较小,易造成成本方面的浪费,因此在电网系统运行需求量不断增加的今天,利用调相机进行无功补偿设计还应不断进行改进。 3.2 电容器设计 电容器设计也是变电设计中无功补偿装置设计的一种常见方式,电容器无功补偿设计,就是在电网中并联电容器,从而实现容性负载提升,这样电网系统在进行容性功率吸收或者输出时,就可以更好的实现线路中感性负荷方面的无功要求,进而实现最佳的无功补偿效果。同时利用电容器进行无功补偿设计,投资费用比较少,并且调试方便,既可以集中式的进行使用,也可以分散性的进行设置,因此此种设计当时的灵活性是比较好的。由于电容器无功补偿设计具有如此多的优势,因此有数据调查显示,在我国已经有90%的电网系统利用电容器设计进行无功补偿。但是在利用电容器进行无功补偿时,必须要保障无功功率与节点电压数值之间呈现一种正比例关系,这样才能减少电力系统之中电压的损耗,若是在进行电容器无功补偿设计时,无法满足这一要求,实际补偿效果也会受到一定的影响,这是现下应用电容器无功补偿设计方式的一大难点,为此还需不断的加强电容器无功补偿设计方式方面的研究。 3.3 无功补偿器(SVC)设计 无功补偿器是第二代无功补偿装置,通常而言是指静止无功补偿器,其应用范围有输电系统的负载无功补偿以及波阻补偿。具有代表性的有晶闸管投切电抗器(TCR)、晶闸管控制电抗器+固定电容器(TCR+FC)、晶闸管投切电容器(TSC)。实现无功补偿的原理就是通过控制晶闸管触发角,来改变接入系统的等效电纳,从而实现调节系统中无功功率的输出的目的。但是该种装置尚存在问题:由于晶管具备班控的特点,一旦被触发导通,则只有等到流经它的电流不超过维持电流之后才能够关断,因此在半个电源周期时间范围内,反并联

动态无功补偿装置

动态无功补偿装置 随着现代电力电子技术的发展,产生了一些静止形态的动态无功补偿装置。电力电子装置不仅可以发送而且还可以吸收无功功率,其本身也成为产生无功的功率源。在许多情况下,动态补偿有功功率或在补偿无功的同时也补偿部分有功功率,对改善电能质量会有更好的效果。随着电网中精密电能用户的增多,要求电网必须提供与用户所要求的质量指标相适应的电能。近年来,为了进一步提高配电电能质量指标,出现了多种动态的改善电能指标的电力电子设备。这些提高电能质量和供电可靠性的技术称为契约电力(custom power)。补偿技术发展的初期,人们已经注意到补偿无功功率和补偿系统参数存在某些相同的效果,有时甚至会产生更适合用户的效果,因此,补偿参数技术在电网中有着重要的应用领域。最常用的是串联电容输电补偿,他对减少电压变动,提高电力系统稳定性起到重要的作用。 本文对电力系统中为提高电能质量所使用的各种补偿技术及动态补偿方式作了概括性的介绍,重点叙述了补偿技术的发展及其技术前景,讨论了正在开展的新的补偿技术以及补偿用能源的合理使用,并表明了对当前电网中应用各种补偿方式的看法和评价。电力电子技术应用于电网和用户后使电网上产生了更多的无功和谐波,而用于滤波的技术实际上与补偿技术是相互联系也是相互影响的,因此,对滤波技术的进展也作了介绍。 1并联无功补偿 1.1同步调相机 同步调相机是最早用于电网的无功补偿设备,适合于电网电压调节。但调相机的反应速度较慢,因此对瞬时电压波动效果较差。他以励磁电流调节来改变发出电压,从电压的幅值大小决定无功功率的输出,同步电机的启动和运行需要很大的维护工作量,这是他的弱点。同步调相机运行中转子有惯性,在故障瞬间调相机向系统输出短路电流,增大系统的短路容量。对系统容量偏小而且电网短路电流不够大的电网(如直流输电的受端),同步调相机还是有显著作用的。但是,在一般电网中,由于短路容量往往偏大,甚至于需要采取限流措施,不适合采用同步调相机。目前,除了需要加大短路容量外,作为无功和电压补偿的同步调相机已经被完全淘汰。 1.2静止无功补偿器(static var compansator,SVC) 平滑动态补偿是指所补充进电网的无功电流,他是按照电网无功需求的变化而变化的。由于无功是与电压直接联系的,所以调节无功在很大程度上是为了系统电压的质量和电压支撑。 静止无功补偿器目前主要有以下2种类型,一种是晶闸管投切电容器(TSC),另一种是晶闸管控制电抗器(TCR)。TSC与普通电容器不同之处,在于用晶闸管代替了断路器作电容器组的投切。TCR则连续调节电抗器电流大小,使无功按要求变化,下面分别说明其特点。 1.2.1晶闸管投切电容器(TSC)

浅谈10KV动态无功补偿装置

龙源期刊网 https://www.360docs.net/doc/ff19061191.html, 浅谈10KV动态无功补偿装置 作者:李晓林 来源:《管理观察》2009年第24期 摘要:近年来,大功率高压电机在神东矿区被广泛应用,一部运量4000T/h的胶带机就需要8台500KW或5台1000KW驱动电机,总功率达到4000到5000KW。一个6.3米大采高综采工作面的装机功率约在8000KW左右,单靠静态投列电容器补偿无功功率,提高功率因数已无法满足稳定生产供电需要,因为在设备运行与停机检修时感性负荷(电动机)变化较大,在运行时投入适 合容量的电容器使功率因数达到0.95以上,在停机检修时将导致10KV母线电压升高,导致其他设备无法使用。动态无功补偿装置的应用即可解决这一难题。 关键词无功功率补偿;电力电容器;tcr+fc型svc系统 1功率因数和无功功率补偿的基本概念 1.1功率因数:电网中的电气设备和电动机、变压器等属于既有电感又有电阻的电感性负载,电感性负载的电压和电流的相量间存在着一个相位差,相位角的余弦COSφ即是功率因数,它是有功功率与视在功率之比即COSφ=P/S。功率因数是反映电力用户用电设备合理使用状况、电能利用程度及用电管理水平的一个重要技术指标。 1.2无功功率补偿:把具有容性功率的装置与感性负荷联接在同一电路,当容性装置释放能量时,感性负荷吸收能量,而感性负荷释放能量时,容性装置吸收能量,能量在相互转换,感性负荷所 吸收的无功功率可由容性装置输出的无功功率中得到补偿。 2无功补偿的目的与效果 2.1补偿无功功率,提高功率因数 在电网运行中,因大量非线性负载的运行,除了要消耗有功功率外,还要消耗一定的无功功率。负荷电流在通过线路、变压器时将会产生功率与电能损耗,由电能损耗公式可知,当线路或变压器输送的有功功率和电压不变时,线损与功率因数的平方成反比。功率因数越低电网所需

相关文档
最新文档