北大电磁学讲义之2.5 磁力

合集下载

电磁学课件 第八章 静磁能

电磁学课件 第八章 静磁能

所以
讨论
要分析磁化功的具体形式及其后果,必须考虑介质 r r r r r 的磁化规律,即 M和H 的函数关系。 dB = μ (dH + dM ) 0 下面来具体分析。
1. 线性(无损耗)磁介质
r r 这时 M = χ m H
因此 所以
r r 所以 dM = χ m dH
r r r r r r r r μ 0 H ⋅ dM = μ 0 H ⋅ ( χ m dH ) = μ 0 χ m ( H ⋅ dH ) = μ 0 M ⋅ dH
所以
(δWm ) I = δA'−δA = 2(δWm ) I − δA
⇒ (δWm ) I = δA
物理意义:当维持各载流线圈电流不变时,磁力作 功等于系统磁能的增加,原因就是因为外界即电源同时参 与作功,且作功量正好是磁力作功的两倍。
r r 利用 δA = F ⋅ δr 和 (δWm ) I = δA 可得: r F = (∇Wm ) I
(2) 当研究载流导线在外磁场中受到的磁力时,可用 载流导线在外磁场中的静磁能代替 Wm ,而不必计入载流 线圈和外磁场本身的自能。 前面已经得出结论:
Wm = ∑ I i ∫∫
i =1
N
Si
r r r B (ri ) ⋅ dS
r r 这是N个载流线圈置于一外磁场 B(ri ) 中,系统在外磁
场中的静磁能。 当外磁场为均匀磁场时,
dψ = Ndφ = NSdB
与此同时,电源克服感应电动势所作的元功为: dψ dA' = −εIdt = I dt = Idψ = INdφ = NSIdB dt dq dψ 其中再次利用了 dA' = −ε dq ,而 ε = − 和 i = dt dt

张三慧《大学物理学:力学、电磁学》(第3版)(B版)(课后习题 磁 力)【圣才出品】

张三慧《大学物理学:力学、电磁学》(第3版)(B版)(课后习题 磁 力)【圣才出品】

第13章 磁 力13.1 某一粒子的质量为0.5 g ,带有2.5×10-8C的电荷。

这一粒子获得一初始水平速度6.0×104m/s ,若利用磁场使这粒子仍沿水平方向运动,则应加的磁场的磁感应强度的大小和方向各如何?解:粒子仍沿水平方向运动时,它受的重力应被磁力平衡,即由此得此磁场方向应垂直于速度,水平向左。

13.2 如图13-1,一电子经过A 点时,具有速率v0=1×107m/s 。

(1)欲使这电子沿半圆自A 至C 运动,试求所需的磁场大小和方向;(2)求电子自A 运动到C所需的时间。

图13-1解:(1)对电子的圆运动用牛顿第二定律由此得(2)所需时间应为13.3 把2.0×103eV的一个正电子,射入磁感应强度B=0.1 T的匀强磁场中,其速度矢量与B成89°角,路径成螺旋线,其轴在B的方向。

试求这螺旋线运动的周期T、螺距h和半径r。

解:正电子的速率为作螺旋运动的周期为螺距为半径为13.4 估算地球磁场对电视机显像管中电子束的影响。

假设加速电势差为2.0×104V,如电子枪到屏的距离为0.2 m,试计算电子束在大小为0.5×10-4T的横向地磁场作用下约偏转多少?假定没有其他偏转磁场,这偏转是否显著?解:电子离开电子枪的速度为如图13-2所示,电子的偏转距离为此偏转比较大,但由于全画面电子束均有此偏转,故对图像无影响。

图13-213.5 北京正负电子对撞机中电子在周长为240 m的储存环中作轨道运动。

已知电子的动量是1.49×10-18kg·m/s,求偏转磁场的磁感应强度。

解:由R=mv/(eB)=p/(eB)可得13.6 蟹状星云中电子的动量可达10-16kg·m/s,星云中磁场约为10-8T,这些电子的回转半径多大?如果这些电子落到星云中心的中子星表面附近,该处磁场约为108T,它们的回转半径又是多少?解:13.7 在一汽泡室中,磁场为20 T,一高能质子垂直于磁场飞过时留下一半径为3.5 m的圆弧径迹。

高考物理最新电磁学知识点之磁场全集汇编附解析

高考物理最新电磁学知识点之磁场全集汇编附解析

高考物理最新电磁学知识点之磁场全集汇编附解析一、选择题1.如图所示,在两个水平放置的平行金属板之间,存在相互垂直的匀强电场和匀强磁场.一束带电粒子(不计重力)沿着直线通过两板间而不发生偏转,则这些粒子一定具有相同的( )A .质量mB .初速度vC .电荷量qD .比荷q m 2.如图所示,边长为L 的等边三角形导线框用绝缘细线悬挂于天花板,导线框中通一逆时针方向的电流,图中虚线过ab 边中点和ac 边中点,在虚线的下方有一垂直于导线框向里的匀强磁场,此时导线框通电处于静止状态,细线的拉力为F 1;保持其他条件不变,现虚线下方的磁场消失,虚线上方有相同的磁场同时电流强度变为原来一半,此时细线的拉力为F 2 。

已知重力加速度为g ,则导线框的质量为A .2123F F g +B .212 3F F g -C .21F F g -D .21 F F g+ 3.如图所示,虚线为两磁场的边界,左侧磁场垂直纸面向里,右侧磁场垂直纸面向外,磁感应强度大小均为B 。

一边长为L 、电阻为R 的单匝正方形导体线圈abcd ,水平向右运动到图示位置时,速度大小为v ,则( )A .ab 边受到的安培力向左,cd 边受到的安培力向右B .ab 边受到的安培力向右,cd 边受到的安培力向左C .线圈受到的安培力的大小为222B L v RD.线圈受到的安培力的大小为22 4B L vR4.如图所示,用一细线悬挂一根通电的直导线ab(忽略外围电路对导线的影响),放在螺线管正上方处于静止状态,与螺线管轴线平行,可以在空中自由转动,导线中的电流方向由a指向b。

现给螺线管两端接通电源后(螺线管左端接正极),关于导线的受力和运动情况,下列说法正确的是()A.在图示位置导线a、b两端受到的安培力方向相反导线ab始终处于静止B.从上向下看,导线ab从图示位置开始沿逆时针转动C.在图示位置,导线a、b两端受到安培力方向相同导线ab摆动D.导线ab转动后,第一次与螺线管垂直瞬间,所受安培力方向向上5.如图为洛伦兹力演示仪的结构图.励磁线圈产生的匀强磁场方向垂直纸面向外,电子束由电子枪产生,其速度方向与磁场方向垂直.电子速度大小可通过电子枪的加速电压来控制,磁场强弱可通过励磁线圈的电流来调节.下列说法正确的是()A.仅增大励磁线圈的电流,电子束径迹的半径变大B.仅提高电子枪的加速电压,电子束径迹的半径变大C.仅增大励磁线圈的电流,电子做圆周运动的周期将变大D.仅提高电子枪的加速电压,电子做圆周运动的周期将变大6.如图所示,把一重力不计的通电直导线水平放在蹄形磁铁磁极的正上方,导线可以自由转动和平动,当导线通入图示方向的电流I时,从上往下看,导线的运动情况是()A.顺时针方向转动,同时下降B.顺时针方向转动,同时上升C.逆时针方向转动,同时下降D.逆时针方向转动,同时上升7.如图所示,某种带电粒子由静止开始经电压为U 1的电场加速后,射人水平放置,电势差为U 2的两导体板间的匀强电场中,带电粒子沿平行于两板方向从两板正中间射入,穿过两板后又垂直于磁场方向射入边界线竖直的匀强磁场中,则粒子入磁场和射出磁场的M 、N 两点间的距离d 随着U 1和U 2的变化情况为(不计重力,不考虑边缘效应)( )A .d 随U 1变化,d 与U 2无关B .d 与U 1无关,d 随U 2变化C .d 随U 1变化,d 随U 2变化D .d 与U 1无关,d 与U 2无关8.如图,条形磁铁平放于水平桌面上,在它的正中央上方固定一根直导线,导线与磁场垂直,现给导线中通以垂直于纸面向外的电流,则下列说法正确的是( )A .桌面对磁铁的支持力增大B .桌面对磁铁的支持力减小C .桌面对磁铁的支持力不变D .以上说法都有可能9.一回旋加速器当外加磁场一定时,可把质子加速到v ,它能把氚核加速到的速度为 ( )A .vB .2vC .3vD .23v 10.三根通电长直导线a 、b 、c 平行且垂直纸面放置,其横截面如图所示,a 、b 、c 恰好位于直角三角形的三个顶点,∠c =90︒,∠a =37︒。

大学物理 电磁感应 课件 PPT

大学物理 电磁感应 课件 PPT
解:设DE中点为坐标原点,在DE上距原点为x处取线元dx,两长 直导线在dx处的磁场为
B
B1
B2
0I 2
[ r
1 l
x
r
1 l
] x
2
2
d i
vBdx
0 Iv [ 2 r
dx l
x
r
dx l
] x
l
2
2
i
2
d i
l
0 Iv ln
r l r
2
Example 1
设空间有磁场存在的圆柱形区域的半径为R=5cm,磁感应强度 对时间的变化率为dB/dt=0.2T/s,试计算离开轴线的距离r等于2cm、 5cm及10cm处的涡旋电场。
B dl 0 I
i
L
cP d
b
c
d
a
B dl a B dl b B dl c B dl d B dl
b
2a B dl 2BL
又:
0
I 0iL, 所以
B 0i
2
例题:一无限大平行板电容器极板间的电场强度为E,一 均匀磁场B与E垂直,现有一电子(-e,m)从负极出来,初 速度为零。求:电子刚好不能到达正极板的距离d。
求棒AC两端的电势差。
O
D
C
B A
复习
一、法拉第电磁感应定律 d
dt
二、动生电动势
闭合回路
i
v
B
dl
l
不闭合回路
b
i a v B dl
三、感生电动势
L
Ek
dl
d dt
四、感生电场与静电场
例行3放.置一一长矩直形导线线圈中,通线有圈正平弦面交与流长电直i导线I在m 同si一n w平,t面在内长,直求导任线一旁瞬平

张三慧大学物理《电磁学》PPT课件

张三慧大学物理《电磁学》PPT课件

资料
原子核表面 中子星表面 目前最强人工磁场 太阳黑子内部 太阳表面 地球表面 人体
15.2 磁通量 磁场中的高斯定理
1. 磁感应线 用磁感应线描述磁场的方法是:在磁场中画一 簇曲线,曲线上每一点的切线方向与该点的磁场方 向一致,这一簇曲线称为磁感应线。
①方向: 曲线上一点的切 线方向和该点的磁场 方向一致。 ②大小:
S
稳恒磁场的高斯定理反映稳恒磁场是无源场。
又称磁通密度 (magnetic flux density)
直线电流的磁感应线
I I
B
圆电流的磁感应线
B
I
I
通电螺线管的磁感应线
I
中子星的磁感应线
2. 磁通量(magnetic flux) 通过磁场中任一面积的磁感应线数称为通过 该面的磁通量,用m 表示。 ①均匀磁场,磁感应线垂直通过S
m B dS BdS cos
3.磁场中的高斯定理
高斯定理的微分形式
B 0
m B dS 0
S
─穿过任意闭合曲面的磁通量为零。 这是无磁单极的必然结果。
C 型、 U 型 永磁体的外部磁 感应线
m B dS 0
4、奥斯特实验
5、平行电流间的相互作用力
I F I F
二、磁力与电荷的运动的关系 在上述磁的基本现象中,平行电流的相互作用可 以说是运动电荷之间的相互作用,因为电流是电荷 的定向运动形成的,其他的都是永磁体。为什么说 他们也是运动电荷的相互作用呢?这是因为永磁体 也是由分子和原子组成的,在分子内部,电子和质 子等带电粒子的运动也形成微小的电流,叫做分子 电流。当成为磁体时,其内部的分子电流的方向按 一定的方式排列起来了。因此他们之间的相互作用 也是运动电荷之间的相互作用的表现。 结论:在所有情况下,磁力都是运动电荷之间 的相互作用的表现。

电磁学 北大 王稼军 讲义 ppt 3.2动生和感生

电磁学 北大 王稼军 讲义 ppt 3.2动生和感生

0 I 0 sin t x a 0 NIbav 旋 ln 动 2x( x a) 2 x
2013-7-27 北京大学物理学院王稼军编
感 动
小结
非静电力
d 动+ 感= (v B ) dl E 旋 dl dt L ( L)
v:棒在磁场中运动速度
u:电子相对于导体的定向运动速度 v+u:电子总速度 F总:电子以速度v+u在磁场中运动
所受洛仑兹力——不做功 F ev B对电子做正功
F ' eu B
2013-7-27
阻碍导体棒运动做负功——安培力
北京大学物理学院王稼军编
证明 PF+PF’=0
涡旋电场的性质:
E势
E旋
变化的磁场
产生原因
电力线 性质
静电荷激发
E势 dl 0
L
不闭合
E旋 dl 0
L
闭合
保守场 有源、无旋场
2013-7-27
非保守场 无源、有旋场
北京大学物理学院王稼军编
d B A dS dl E旋 dl s t dt t ( L) ( L)
2013-7-27 北京大学物理学院王稼军编
磁矢势与磁场中带电粒子的动量 p169-p175 /p185 -p191

从加速器的带电粒子的运动方程
B竖直向上 A在方向上 轨道上A相同
p mv qA 常量 p mv qA 常量
正则动量 动理动量 磁势动量
0 NIb d x a 0 NIba dN v ln dt 2 dt x 2x( x a) A-B-C-D-A

电磁学PPT

电磁学PPT
第16章 电磁场
§16.1 法拉第电磁感应定律 §16.2 动生电动势 §16.3 感生电动势 §16.4 自感和互感 §16.5 磁场的能量 §16.6 位移电流 §16.7 麦克斯韦方程组 §16.8 电磁波
1
§1 法拉第电磁感应定律
NS
1. 电磁感应现象
B
b
Fm v
G
a
当穿过一个闭合导体回路所包围的面积内的磁通量发 生变化时(不论这种变化是由什么原因引起的),在导体 回路中就有电流产生。这种现象称为电磁感应现象。
求:任意时刻 t,线框中感应电动势的表达式
解:
t时刻B: 20xI
I
b
×
B
a
c
x
l v
mdm
xa
x
0I ldx 2x
a dx d
0Il lnxa 2 x
14
dm
dt
0 Il 2
x
x
a
x
x x2
a
dx dt
0Il a v 2 x(x a)
方向:楞次定律
m20Illnxxa
15
例3. 若上题中 v = 0,I = I0sin t,则结果如何?
1851年,曾被一致推选为英国皇家学会会长,但被他 坚决推辞掉了。1867年8月25日,他坐在书房的椅子上安 祥地离开了人世。遵照他的遗言,在他的墓碑上只刻了名 字和生死年月。
5
二 、 楞次定律
表述:闭合回路感应电流的方向,总是使感应 电流的磁场阻碍引起感应电流的磁通量的变化
N
S
N
S
6
楞次(1804~1865)俄国物理学家。
L
Er
d
l

我的电磁学讲义10:磁感应强度毕奥-萨伐尔定律

我的电磁学讲义10:磁感应强度毕奥-萨伐尔定律

我的电磁学讲义10:磁感应强度毕奥-萨伐尔定律磁感应强度为了描述电场的分布,我们引⼊电场强度⽮量\vec{E},同样,为了描述磁场的分布,我们也需要引⼊⼀个新的⽮量,这个⽮量就是磁感应强度\vec{B}。

两个电流元的磁相互作⽤⼒满⾜安培定律\begin{equation*} \mathrm d\vec{F}_{12}=k\frac{I_2\mathrm d\vec{l}_2\times (I_1\mathrm d\vec{l}_1\times \hat{r_{12}})}{r_{12}^2}=\frac{\mu_0}{4\pi}\frac{I_2\mathrm d\vec{l}_2\times (I_1\mathrm d\vec{l}_1\times \hat{r_{12}})}{r_{12}^2} \end{equation*}在国际单位制中,\frac{\mu_0}{4\pi}=10^{-7}\mathrm {N/A^2}。

元电流之间的安培⼒的表达式分成两项:\begin{equation*} \mathrm d\vec{F}_{12}=I_2\mathrm d\vec{l}_2\times \mathrm d\vec{B} \end{equation*}\begin{equation*} \mathrm d\vec{B}=\frac{\mu_0}{4\pi}\frac{I_1\mathrm d\vec{l}_1\times \hat{r_{12}}}{r_{12}^2} \end{equation*}把电流元I_2 \mathrm d\vec{l} \_2看做试探电流元,则\mathrm d \vec{B}则为电流元I_1\mathrm d\vec{l} \_1的磁场在电流元I_2\mathrmd\vec{l} \_2所在位置处的磁感应强度。

整个回路1对电流元I_2\mathrm d\vec{l}_2的作⽤⼒为\begin{equation*} \begin{split} \mathrm d\vec{F}_{2}=&\frac{\mu_0}{4\pi}\oint_{L_1}\frac{I_2\mathrm d\vec{l}_2\times (I_1\mathrmd\vec{l}_1\times \hat{r_{12}})}{r_{12}^2}=\frac{\mu_0}{4\pi}I_2d\vec{l}_2\times\mathrm \oint_{L_1}\frac{ I_1\mathrm d\vec{l}_1\times\hat{r_{12}}}{r_{12}^2} \\ =&I_2d\vec{l}_2\times \vec{B} \end{split} \end{equation*}上式中\begin{equation*} \vec{B}=\frac{\mu_0}{4\pi}\oint_{L_1}\frac{I_1\mathrm d\vec{l}_1\times \hat{r_{12}}}{r_{12}^2} \end{equation*}即为闭合回路L_1的磁场在电流元I_2\mathrm d\vec{l}_2所在位置处的磁感应强度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档