2021年第五次中考模拟试卷-数学

合集下载

2021年江西省中考数学第五次大联考试卷(含解析)

2021年江西省中考数学第五次大联考试卷(含解析)

2021年江西省中考数学第五次大联考试卷一、选择题(共6小题).1.锐角三角函数tan45°的值为()A.B.C.D.12.如图,这是一个由2个大小不一样的圆柱组成的几何体,则该几何体的主视图是()A.B.C.D.3.在Rt△ABC中,∠C=90°,AC=2,AB=6,则下列结论正确的是()A.sin A=B.cos B=C.tan A=2D.tan B=4.如图,AB是⊙O的直径,直线PA与⊙O相切于点A,PO交⊙O于点C,连接BC.若∠BCO=α,则∠P的大小为()A.2αB.90°﹣2αC.45°﹣2αD.45°+2α5.已知关于x的方程x2+kx+2=0的两个根为x1,x2,且++x1x2=0,则k的值为()A.0B.2C.4D.86.如图,在平面直角坐标系xOy中,直线l与x轴平行,且直线l分别与反比例函数y=(x>0)和y=(x<0)的图象交于点P和点Q.若△POQ的面积为10,则k的值为()A.10B.12C.﹣10D.﹣12二、填空题(共6小题).7.已知反比例函数y=(m为常数)的图象在每个象限内,y都随x的增大而减小,则m的取值范围是.8.如图,BE与CD交于点A,∠C=∠E,AC=2,BC=4,AE=1.5,则DE=.9.在一个不透明的口袋中,放入标有数字1,2,2,3,4的五个小球(除数字外完全相同),从中随机摸出一个小球后放回,再随机摸出一个小球,则两次摸出的小球标号之和为5的概率为.10.如图,在△ABC中,AD是BC边上的高,cos C=,AB=6,AC=6,则BC的长为.11.如图,已知⊙O的半径为2,△ABC内接于⊙O,∠ACB=135°,则弓形ACB(阴影部分)的面积为.12.定义:有一组邻边相等,并且它们的夹角是直角的凸四边形叫做等腰直角四边形.如图,在矩形ABCD中,AB=6,BC=9,P是对角线AC上一点,且AP:PC=2:3,过点P 作直线分别交边AD,BC于点E,F,使四边形ABFP是等腰直角四边形,则AE的长是.三、(本大题共5小题,每小题6分,共30分)13.(1)计算:﹣||﹣2cos45°;(2)解方程:2x2﹣5x+1=0.14.如图,D是△ABC的BC边上一点,E为AD上一点,若∠DAC=∠B,CD=CE,试说明△ACE∽△BAD.15.小贤同学总是不爱整理自己的物品,他的床头抽屉里放着3只白袜子和1双黑袜子,这些袜子除了颜色不同外没有任何区别,并且袜子在抽屉里是散开混在一起的.(1)若小贤从抽屉里随机摸出一只袜子,则摸到白袜子的概率是.(2)若小贤从抽屉中随机一次性摸出两只袜子,请用列表法或画树状图法求小贤摸出的袜子恰好颜色相同的概率.16.如图,在△ABC中,AB为半圆的直径,请仅用无刻度的直尺分别按下列要求作图(保留作图痕迹).(1)如图1,点C在半圆外,作△ABC的高CD.(2)如图2,点C在半圆内,作△ABC的高CE.17.如图,一次函数y=kx+b与反比例函数y=(其中mk≠0)的图象交于A(﹣4,2),B(2,n)两点.(1)求一次函数和反比例函数的表达式.(2)请直接写出当一次函数值大于反比例函数值时x的取值范围.四、(本大题共3小题,每小题8分,共24分)18.某药研所研发了一种治疗某种疾病的新药,经测试发现:新药在人体的释放过程中,10分钟内(含10分钟),血液中含药量y(微克)与时间x(分钟)的关系满足y=k1x;10分钟后,y与x的关系满足反比例函数y=(k2>0).部分实验数据如表:时间x(分钟)…1015…含药量y(微克)…3020…(1)分别求当0≤x≤10和x>10时,y与x之间满足的函数关系式.(2)据测定,当人体中每毫升血液中的含药量不低于3微克时,治疗才有效,那么该药的有效时间是多少?19.某次台风来袭时,一棵笔直且垂直于地面的大树AB被刮倾斜7°(∠BAB′=7°)后在C处折断倒在地上,树的顶部恰好接触到地面D处(如图),测得∠ADC=37°,AD =5米.(1)填空:∠ACD的度数为.(2)求这棵大树AB的高.(结果精确到0.1米,参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.73)20.如图,在平行四边形ABCD中,AD=4,CD=6,过点D作DE⊥AB,垂足为E,连接CE,F为线段CE上一点,且∠DFE=∠A.(1)求证:△DFC∽△CBE.(2)若DF=,求DE的长.五、(本大题共2小题,每小题9分,共18分)21.如图,以△ABC的AC边为直径作⊙O,交AB于点D,E是AC上一点,连接DE并延长交⊙O于点F,连接AF,且∠AFD=∠B.(1)求证:BC是⊙O的切线.(2)当AE=AD时,①若∠FAC=25°时,求∠B的大小;②若OA=5,AD=6,求DE的长.22.在Rt△ABC中,∠ABC=90°,AB=BC,点E在射线CB上运动.连接AE,将线段AE绕点E顺时针旋转90°得到EF,连接CF.(1)如图1,点E在点B的左侧运动.①当BE=1,BC=时,则∠EAB=°;②猜想线段CA,CF与CE之间的数量关系为.(2)如图2,点E在线段CB上运动时,第(1)问中线段CA,CF与CE之间的数量关系是否仍然成立?如果成立,请说明理由;如果不成立,请求出它们之间新的数量关系.(3)点E在射线CB上运动,BC=,设BE=x,以A,E,C,F为顶点的四边形面积为y,请直接写出y与x之间的函数关系式(不用写出x的取值范围).六、(本大题共12分)23.如图,直线y=﹣x+n与x轴交于点A(3,0),与y轴交于点B,抛物线y=﹣x2+bx+c 经过点A,B.(1)求抛物线的解析式.(2)M是抛物线对称轴上的一点连接BM,CM,求BM+CM的最小值.(3)若E(m,0)为x轴正半轴上一动点,过点E作直线ED⊥x轴,交直线AB于点D,交抛物线于点P,连接BP,BC,当∠PBD+∠CBO=45°时,请求出m的值.参考答案一、选择题(共6小题).1.锐角三角函数tan45°的值为()A.B.C.D.1解:根据锐角三角函数的意义可得,tan45°=1,故选:D.2.如图,这是一个由2个大小不一样的圆柱组成的几何体,则该几何体的主视图是()A.B.C.D.解:从正面看,选项A中的图形比较符合题意,故选:A.3.在Rt△ABC中,∠C=90°,AC=2,AB=6,则下列结论正确的是()A.sin A=B.cos B=C.tan A=2D.tan B=解:在Rt△ABC中,∠C=90°,AC=2,AB=6,所以BC==4,所以sin A====cos B,tan A===,tan B===2,故选:A.4.如图,AB是⊙O的直径,直线PA与⊙O相切于点A,PO交⊙O于点C,连接BC.若∠BCO=α,则∠P的大小为()A.2αB.90°﹣2αC.45°﹣2αD.45°+2α解:∵OC=OB,∴∠OBC=∠BCO=α,∴∠AOP=2∠OBC=2α,∵PA是⊙O的切线,∴PA⊥AB,∴∠PAO=90°,∴∠P=90°﹣∠AOP=90°﹣2α,故选:B.5.已知关于x的方程x2+kx+2=0的两个根为x1,x2,且++x1x2=0,则k的值为()A.0B.2C.4D.8解:由题意知,x1+x2=﹣k,x1•x2=2.则由++x1x2=0得到:+x1x2=+2=0,即+2=0.解得k=4.故选:C.6.如图,在平面直角坐标系xOy中,直线l与x轴平行,且直线l分别与反比例函数y=(x>0)和y=(x<0)的图象交于点P和点Q.若△POQ的面积为10,则k的值为()A.10B.12C.﹣10D.﹣12解:∵S△POQ=S△OMQ+S△OMP,∴|k|+×|8|=10,∴|k|=12,而k<0,∴k=﹣12,故选:D.二、填空题(本大题共6小题,每小题3分,共18分)7.已知反比例函数y=(m为常数)的图象在每个象限内,y都随x的增大而减小,则m的取值范围是m>2.解:由于反比例函数的图象在每个象限内,y随x的增大而减小,则m﹣2>0,∴m>2.故答案为:m>2.8.如图,BE与CD交于点A,∠C=∠E,AC=2,BC=4,AE=1.5,则DE=3.解:∵∠C=∠E,∠CAB=∠DAE,∴△CAB∽△EAD,∴,∴,∴DE=3,故答案为:3.9.在一个不透明的口袋中,放入标有数字1,2,2,3,4的五个小球(除数字外完全相同),从中随机摸出一个小球后放回,再随机摸出一个小球,则两次摸出的小球标号之和为5的概率为.解:列表如下:12234 123345234456234456345567456678由表知,共有25种等可能结果,其中两次摸出的小球标号之和为5的有6种结果,所以两次摸出的小球标号之和为5的概率为,故答案为:.10.如图,在△ABC中,AD是BC边上的高,cos C=,AB=6,AC=6,则BC的长为12.解:在△ABC中,∵AD是BC边上的高,∴∠ADC=∠ADB=90°.在Rt△ADC中,∵cos C==,AC=6,∴CD=3,AD==3.在Rt△ADB中,BD====9.BC=BD+CD=9+3=12.故答案为:12.11.如图,已知⊙O的半径为2,△ABC内接于⊙O,∠ACB=135°,则弓形ACB(阴影部分)的面积为π﹣2.解:如图,在优弧上取点D,连接AD、BD、OA、OB,∵四边形ADBC为圆内接四边形,∴∠D=180°﹣∠ACB=45°,由圆周角定理得,∠AOB=2∠D=90°,∴弓形ACB(阴影部分)的面积为=﹣×2×2=π﹣2,故答案为π﹣2.12.定义:有一组邻边相等,并且它们的夹角是直角的凸四边形叫做等腰直角四边形.如图,在矩形ABCD中,AB=6,BC=9,P是对角线AC上一点,且AP:PC=2:3,过点P 作直线分别交边AD,BC于点E,F,使四边形ABFP是等腰直角四边形,则AE的长是2或3.6.【解答】①②③解:∵四边形ABCD是矩形,∴AD∥BC,∠ABC=∠BAC=90°,∴AE:CF=AP:PC=2:3,①当BF=AE=6时,如图①,四边形ABFP是等腰直角四边形,∴CF=BC﹣BF=9﹣6=3,由AE:CF=2:3得:AE=2;②当AE=AB=6,②,由AE:CF=2:3得,CF=9=BC,此时点F与B重合,故不符合题意;③若EF⊥BC,如图③,则四边形ABFE是矩形,∴EF∥AB,∠BFP=90°,AE=BF,∴PF:AB=CF:BC=CP:CA=3:5,解得:PF=3.6,CF=5.4,∴AE=BF=BC﹣CF=9﹣5.4=3.6,即BF=PF,故四边形ABFP是等腰直角四边形,综上所述,当AE为2或3.6时,四边形ABFP是等腰直角四边形.故答案为:2或3.6.三、(本大题共5小题,每小题6分,共30分)13.(1)计算:﹣||﹣2cos45°;(2)解方程:2x2﹣5x+1=0.解:(1)原式=2﹣(﹣)﹣2×=2﹣+﹣=;(2)∵a=2,b=﹣5,c=1,∴△=(﹣5)2﹣4×2×1=17>0,∴x==,即x1=,x2=.14.如图,D是△ABC的BC边上一点,E为AD上一点,若∠DAC=∠B,CD=CE,试说明△ACE∽△BAD.【解答】证明:∵CE=CD,∴∠CED=∠CDE,∴∠AEC=∠ADB,∵∠DAC=∠B,∴△ACE∽△BAD.15.小贤同学总是不爱整理自己的物品,他的床头抽屉里放着3只白袜子和1双黑袜子,这些袜子除了颜色不同外没有任何区别,并且袜子在抽屉里是散开混在一起的.(1)若小贤从抽屉里随机摸出一只袜子,则摸到白袜子的概率是.(2)若小贤从抽屉中随机一次性摸出两只袜子,请用列表法或画树状图法求小贤摸出的袜子恰好颜色相同的概率.解:(1)∵抽屉里放着3只白袜子和1双黑袜子,∴摸到白袜子的概率是.故答案为:.(2)列表如下:白1白2白3黑1黑2白1(白2,白1)(白3,白1)(黑1,白1)(黑2,白1)白2(白1,白2)(白3,白2)(黑1,白2)(黑2,白2)白3(白1,白3)(白2,白3)(黑1,白3)(黑2,白3)黑1(白1,黑1)(白2,黑1)(白3,黑1)(黑2,黑1)黑2(白1,黑2)(白2,黑2)(白3,黑2)(黑1,黑2)由表可知,共有20种等可能的结果,其中恰好颜色相同的结果有8种,∴恰好颜色相同的概率=.16.如图,在△ABC中,AB为半圆的直径,请仅用无刻度的直尺分别按下列要求作图(保留作图痕迹).(1)如图1,点C在半圆外,作△ABC的高CD.(2)如图2,点C在半圆内,作△ABC的高CE.解:(1)如图,线段CD即为所求作.(2)如图,线段CE即为所求作.17.如图,一次函数y=kx+b与反比例函数y=(其中mk≠0)的图象交于A(﹣4,2),B(2,n)两点.(1)求一次函数和反比例函数的表达式.(2)请直接写出当一次函数值大于反比例函数值时x的取值范围.解:(1)∵A(﹣4,2)在y=上,∴m=﹣8,∴反比例函数的解析式是y=﹣,∵B(2,n)在y=﹣上,∴n=﹣4.∴B(2,﹣4),一次函数y=kx+b与反比例函数y=(其中mk≠0)的图象交于A(﹣4,2),B(2,﹣4)两点,∴,解得,故一次函数的解析式为y=﹣x﹣2;(2)根据两函数的图象可知:当x<﹣4或0<x<2时,一次函数值大于反比例函数值.四、(本大题共3小题,每小题8分,共24分)18.某药研所研发了一种治疗某种疾病的新药,经测试发现:新药在人体的释放过程中,10分钟内(含10分钟),血液中含药量y(微克)与时间x(分钟)的关系满足y=k1x;10分钟后,y与x的关系满足反比例函数y=(k2>0).部分实验数据如表:时间x(分钟)…1015…含药量y(微克)…3020…(1)分别求当0≤x≤10和x>10时,y与x之间满足的函数关系式.(2)据测定,当人体中每毫升血液中的含药量不低于3微克时,治疗才有效,那么该药的有效时间是多少?解:(1)当0≤x≤10时,将(10,30)代入y=k1x,解得k1=3,即y=3x;当x>10时,将(15,20)代入中,解得k2=300,即.(2)当y=3时,3=3x,解得x=1;当y=3时,,解得x=100,∴有效时间为100﹣1=99(分钟).19.某次台风来袭时,一棵笔直且垂直于地面的大树AB被刮倾斜7°(∠BAB′=7°)后在C处折断倒在地上,树的顶部恰好接触到地面D处(如图),测得∠ADC=37°,AD =5米.(1)填空:∠ACD的度数为60°.(2)求这棵大树AB的高.(结果精确到0.1米,参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.73)解:(1)∵AB⊥AD,∠BAB'=7°,∠ADC=37°,∴∠ACD=180°﹣37°﹣(90°﹣7°)=60°,故答案为:60°;(2)过点A作AE⊥CD于点E,则∠AEC=∠AED=90°.在Rt△AED中,∠ADC=37°,∴cos37°=≈0.8,∴DE≈4,∵sin37°=≈0.6,∴AE≈3,在Rt△AEC中,∵∠CAE=90°﹣∠ACE=90°﹣60°=30°,∴CE=AE=,∴AC=2CE=2,∴AB=AC+CE+ED=2++4=3+4≈9.2(米).答:这棵大树AB原来的高度约是9.2米.20.如图,在平行四边形ABCD中,AD=4,CD=6,过点D作DE⊥AB,垂足为E,连接CE,F为线段CE上一点,且∠DFE=∠A.(1)求证:△DFC∽△CBE.(2)若DF=,求DE的长.【解答】证明:(1)∵四边形ABCD为平行四边形,∴AD∥BC,CD∥AB,∴∠A+∠B=180°,∠DCE=∠BEC,∵∠DFE=∠A,∴∠DFE+∠B=180°,又∵∠DFE+∠DFC=180°,∴∠DFC=∠B,∵∠DCF=∠CEB,∴△DFC∽△CBE;(2)∵△DFC∽△CBE,∴,即,∴,∵CD∥AB,DE⊥AB,∴DE⊥DC,∴∠EDC=90°,在Rt△DEC中,.五、(本大题共2小题,每小题9分,共18分)21.如图,以△ABC的AC边为直径作⊙O,交AB于点D,E是AC上一点,连接DE并延长交⊙O于点F,连接AF,且∠AFD=∠B.(1)求证:BC是⊙O的切线.(2)当AE=AD时,①若∠FAC=25°时,求∠B的大小;②若OA=5,AD=6,求DE的长.【解答】(1)证明:连接CD,如图1所示:∵AC是⊙O的直径,∴∠ADC=90°,∴∠CAD+∠ACD=90°,∵∠AFD=∠ACD,∠AFD=∠B,∴∠ACD=∠B,∴∠CAD+∠B=90°,∴∠ACB=90°,∴BC⊥AC,∴BC是⊙O的切线.(2)解:①∵∠FDC=∠FAC=25°,∴∠ADE=∠ADC﹣∠FDC=90°﹣25°=65°,∵AE=AD,∴∠ADE=∠AED=65°,∴∠CAD=180°﹣2×65°=50°,又∵∠CAD+∠B=90°,∴∠B=90°﹣50°=40°;②过点E作EH⊥CD于H,如图2所示:则EH∥AD,∵OA=5,AD=6,∴AC=10,AE=6,∴EC=AC﹣AE=4,CD===8,∵EH∥AD,∴△CEH∽△CAD,∴==,即==,解得:EH=,CH=,∴DH=CD﹣CH=8﹣=,又∵EH⊥CD,∴DE===.22.在Rt△ABC中,∠ABC=90°,AB=BC,点E在射线CB上运动.连接AE,将线段AE绕点E顺时针旋转90°得到EF,连接CF.(1)如图1,点E在点B的左侧运动.①当BE=1,BC=时,则∠EAB=30°;②猜想线段CA,CF与CE之间的数量关系为CA+CF=CE.(2)如图2,点E在线段CB上运动时,第(1)问中线段CA,CF与CE之间的数量关系是否仍然成立?如果成立,请说明理由;如果不成立,请求出它们之间新的数量关系.(3)点E在射线CB上运动,BC=,设BE=x,以A,E,C,F为顶点的四边形面积为y,请直接写出y与x之间的函数关系式(不用写出x的取值范围).解:(1)①∵AB=BC=,BE=1,∠ABC=90°,∴AE=2,∴∠EAB=30°,故答案为:30;②CA+CF=CE.如图1,过点E作ME⊥EC交CA的延长线于M,∵∠ABC=90°,AB=BC,∴∠ACB=45°,∴∠M=45°,∴∠M=∠ECM,∴ME=EC,∵将线段AE绕点E顺时针旋转90°得到EF,∴AE=AF,∠AEF=90°,∴∠AEM=∠CEF,∴△FEC≌△AEM(SAS),∴CF=AM,∴CA+AM=CA+CF=CM,∵△CME为等腰直角三角形,∴CM=CE,∴CA+CF=CE;故答案为:CA+CF=CE;(2)不成立.如图2,过点F作FH⊥BC交BC的延长线于点H.∴∠AEF=90°,AE=EF,∵∠BAE+∠AEB=∠AEB+∠FEH=90°,∴∠FEH=∠BAE,∴△ABE≌△EHF(AAS),∴FH=BE,EH=AB=BC,∴CH=BE=FH,∴△FHC为等腰直角三角形,∴CH=BE=FC.又∵EC=BC﹣BE=FC,即CA﹣CF=CE.(3)①如图1,当点E在点B左侧运动时,y=;∵△FEC≌△AEM,∴S△FEC=S△AEM,∴S四边形AEFC=S△AEC+S△FEC=S△AEC+S△AEM=S△CME=,∵BE=x,BC=,∴y==;②如图2,当点E在线段CB上运动时,y=.由(2)可知△AEF为等腰直角三角形,FH=BE=x,∴S四边形AECF=S△AEF+S△ECF=EC×FH==x.∴y=.综合以上可得y与x之间的函数关系式为y=或y=.六、(本大题共12分)23.如图,直线y=﹣x+n与x轴交于点A(3,0),与y轴交于点B,抛物线y=﹣x2+bx+c 经过点A,B.(1)求抛物线的解析式.(2)M是抛物线对称轴上的一点连接BM,CM,求BM+CM的最小值.(3)若E(m,0)为x轴正半轴上一动点,过点E作直线ED⊥x轴,交直线AB于点D,交抛物线于点P,连接BP,BC,当∠PBD+∠CBO=45°时,请求出m的值.解:(1)∵直线y=﹣x+n与x轴交于点A(3,0),∴0=﹣3+n,∴n=3,∴直线解析式为:y=﹣x+3,当x=0时,y=3,∴点B(0,3),∵抛物线y=﹣x2+bx+c经过点A,B,∴,∴,∴抛物线的解析式为:y=﹣x2+2x+3;(2)∵点M是抛物线对称轴上的一点,∴CM=AM,∴BM+CM=BM+AM,∴当A,点M,点B三点共线时,BM+CM有最小值为AB,∴AB==3,∴BM+CM的最小值为3;(3)当点P在x轴上方时,如图1,连接BC,延长BP交x轴于N,∵点A(3,0),点B(0,3),∴OA=OB=3,∴∠BAO=∠ABO=45°,∵抛物线y=﹣x2+2x+3与x轴交于点A,点B,∴0=﹣x2+2x+3,∴x1=3,x2=﹣1,∴点C(﹣1,0),∴OC=1,∵∠PBD+∠CBO=45°,∠BAO=∠PBD+∠BNO=45°,∴∠CBO=∠BNO,又∵∠BOC=∠BON=90°,∴△BCO∽△NBO,∴,∴,∴ON=9,∴点N(9,0),∴直线BN解析式为:y=﹣x+3,∴﹣x+3=﹣x2+2x+3,∴x1=0(舍去),x2=,∴点P的横坐标为,∴m=;当点P在x轴下方时,如图2,连接BC,设BP与x轴交于点H,∵∠PBD+∠CBO=45°,∠OBH+∠PBD=45°,∴∠CBO=∠OBH,又∵OB=OB,∠COB=∠BOH,∴△BOH≌△BOC(ASA),∴OC=OH=1,∴点H(1,0),∴直线BH解析式为:y=﹣3x+3,∴﹣3x+3=﹣x2+2x+3,∴x1=0(舍去),x2=5,∴点P的横坐标为5,∴m=5,综上所述:m=5或.。

天津市武清区名校2021-2022学年中考数学五模试卷含解析

天津市武清区名校2021-2022学年中考数学五模试卷含解析

2021-2022中考数学模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。

选择题必须用2B 铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。

2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。

3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.如图,在平行四边形ABCD 中,AB=4,BC=6,分别以A ,C 为圆心,以大于12AC 的长为半径作弧,两弧相交于M ,N 两点,作直线MN 交AD 于点E ,则△CDE 的周长是( )A .7B .10C .11D .12 2.如图,点F 是ABCD 的边AD 上的三等分点,BF 交AC 于点E ,如果△AEF 的面积为2,那么四边形CDFE 的面积等于( )A .18B .22C .24D .463.如图,二次函数y =ax 2+bx +c(a≠0)的图象与x 轴交于A ,B 两点,与y 轴交于点C ,且OA =OC .则下列结论:①abc <0;②2404b ac a->;③ac -b +1=0;④OA·OB =c a -.其中正确结论的个数是( )A .4B .3C .2D .1 4.已知关于x 的方程2222x x a x x x x x +-+=--恰有一个实根,则满足条件的实数a 的值的个数为( ) A .1 B .2 C .3 D .45.如图,直角坐标平面内有一点(2,4)P ,那么OP 与x 轴正半轴的夹角α的余切值为( )A .2B .12C .55D .56.下列事件中是必然事件的是( )A .早晨的太阳一定从东方升起B .中秋节的晚上一定能看到月亮C .打开电视机,正在播少儿节目D .小红今年14岁,她一定是初中学生7.下列各式中计算正确的是A .()222x y x y +=+B .()236x x =C .()2236x x = D .224a a a += 8.图为小明和小红两人的解题过程.下列叙述正确的是( )计算:31x -+231x x --A .只有小明的正确B .只有小红的正确C .小明、小红都正确D .小明、小红都不正确9.如图,已知AOB ∠,用尺规作图作2AOC AOB ∠=∠.第一步的作法以点O 为圆心,任意长为半径画弧,分别交OA ,OB 于点E ,F 第二步的作法是( )A .以点E 为圆心,OE 长为半径画弧,与第1步所画的弧相交于点DB .以点E 为圆心,EF 长为半径画弧,与第1步所画的弧相交于点DC .以点F 为圆心,OE 长为半径画弧,与第1步所画的弧相交于点DD .以点F 为圆心,EF 长为半径画弧,与第1步所画的弧相交于点D10.哥哥与弟弟的年龄和是18岁,弟弟对哥哥说:“当我的年龄是你现在年龄的时候,你就是18岁”.如果现在弟弟的年龄是x 岁,哥哥的年龄是y 岁,下列方程组正确的是( )A .B .C .D .二、填空题(共7小题,每小题3分,满分21分)11.如图,在Rt ABC 中,CM 平分ACB ∠交AB 于点M ,过点M 作MN //BC 交AC 于点N ,且MN 平分AMC ∠,若AN 1=,则BC 的长为______.12.分解因式x 2﹣x=_______________________13.已知点P (1,2)关于x 轴的对称点为P′,且P′在直线y=kx+3上,把直线y=kx+3的图象向上平移2个单位,所得的直线解析式为 .14.飞机着陆后滑行的距离y (单位:m )关于滑行时间t (单位:s )的函数解析式是y=60t ﹣232t .在飞机着陆滑行中,最后4s 滑行的距离是_____m .15.Rt △ABC 的边AB=5,AC=4,BC=3,矩形DEFG 的四个顶点都在Rt △ABC 的边上,当矩形DEFG 的面积最大时,其对角线的长为_______.16.如图,在菱形ABCD 中,点E 、F 在对角线BD 上,BE=DF=13BD ,若四边形AECF 为正方形,则tan ∠ABE=_____.17.已知y 与x 的函数满足下列条件:①它的图象经过(1,1)点;②当1x >时,y 随x 的增大而减小.写出一个符合条件的函数:__________.三、解答题(共7小题,满分69分)18.(10分)如图,一只蚂蚁从点A 沿数轴向右直爬2个单位到达点B ,点A 表示﹣,设点B 所表示的数为m .求m 的值;求|m ﹣1|+(m+6)0的值.19.(5分)如图,一次函数y 1=kx +b (k ≠0)和反比例函数y 2=m x (m ≠0)的图象交于点A(-1,6),B(a ,-2).求一次函数与反比例函数的解析式;根据图象直接写出y 1>y 2 时,x 的取值范围.20.(8分)计算:18×(2﹣16)﹣6÷3+13. 21.(10分)如图,以AB 边为直径的⊙O 经过点P ,C 是⊙O 上一点,连结PC 交AB 于点E ,且∠ACP =60°,PA =PD .试判断PD 与⊙O 的位置关系,并说明理由;若点C 是弧AB 的中点,已知AB =4,求CE •CP 的值.22.(10分)已知:正方形ABCD 绕点A 顺时针旋转至正方形AEFG ,连接CE DF 、.如图,求证:CE DF =;如图,延长CB 交EF 于M ,延长FG 交CD 于N ,在不添加任何辅助线的情况下,请直接写出如图中的四个角,使写出的每一个角的大小都等于旋转角.23.(12分)已知AB 是O 上一点,4,60OC OAC =∠=︒.如图①,过点C 作O 的切线,与BA 的延长线交于点P ,求P ∠的大小及PA 的长;如图②,P为AB上一点,CP延长线与O交于点Q,若AQ CQ=,求APC∠的大小及PA的长.24.(14分)如图,抛物线y=x2﹣2mx(m>0)与x轴的另一个交点为A,过P(1,﹣m)作PM⊥x轴于点M,交抛物线于点B,点B关于抛物线对称轴的对称点为C(1)若m=2,求点A和点C的坐标;(2)令m>1,连接CA,若△ACP为直角三角形,求m的值;(3)在坐标轴上是否存在点E,使得△PEC是以P为直角顶点的等腰直角三角形?若存在,求出点E的坐标;若不存在,请说明理由.参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】∵四边形ABCD是平行四边形,∴AD=BC=4,CD=AB=6,∵由作法可知,直线MN是线段AC的垂直平分线,∴AE=CE,∴AE+DE=CE+DE=AD,∴△CDE的周长=CE+DE+CD=AD+CD=4+6=1.故选B.2、B【解析】连接FC,先证明△AEF∽△BEC,得出AE∶EC=1∶3,所以S△EFC=3S△AEF,在根据点F是□ABCD的边AD上的三等分点得出S△FCD=2S△AFC,四边形CDFE的面积=S△FCD+ S△EFC,再代入△AEF的面积为2即可求出四边形CDFE 的面积.【详解】解:∵AD∥BC,∴∠EAF=∠ACB,∠AFE=∠FBC;∵∠AEF=∠BEC,∴△AEF∽△BEC,∴AFBC=AEEC=13,∵△AEF与△EFC高相等,∴S△EFC=3S△AEF,∵点F是□ABCD的边AD上的三等分点,∴S△FCD=2S△AFC,∵△AEF的面积为2,∴四边形CDFE的面积=S△FCD+ S△EFC=16+6=22.故选B.【点睛】本题考查了相似三角形的应用与三角形的面积,解题的关键是熟练的掌握相似三角形的应用与三角形的面积的相关知识点.3、B【解析】试题分析:由抛物线开口方向得a<0,由抛物线的对称轴位置可得b>0,由抛物线与y轴的交点位置可得c>0,则可对①进行判断;根据抛物线与x轴的交点个数得到b2﹣4ac>0,加上a<0,则可对②进行判断;利用OA=OC可得到A(﹣c,0),再把A(﹣c,0)代入y=ax2+bx+c得ac2﹣bc+c=0,两边除以c则可对③进行判断;设A(x1,0),B(x2,0),则OA=﹣x1,OB=x2,根据抛物线与x轴的交点问题得到x1和x2是方程ax2+bx+c=0(a≠0)的两根,利用根与系数的关系得到x1•x2=,于是OA•OB=﹣,则可对④进行判断.解:∵抛物线开口向下,∴a<0,∵抛物线的对称轴在y轴的右侧,∴b>0,∵抛物线与y轴的交点在x轴上方,∴c>0,∴abc<0,所以①正确;∵抛物线与x轴有2个交点,∴△=b2﹣4ac>0,而a<0,∴<0,所以②错误;∵C(0,c),OA=OC,∴A(﹣c,0),把A(﹣c,0)代入y=ax2+bx+c得ac2﹣bc+c=0,∴ac﹣b+1=0,所以③正确;设A(x1,0),B(x2,0),∵二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A,B两点,∴x1和x2是方程ax2+bx+c=0(a≠0)的两根,∴x1•x2=,∴OA•OB=﹣,所以④正确.故选B.考点:二次函数图象与系数的关系.4、C【解析】先将原方程变形,转化为整式方程后得2x2-3x+(3-a)=1①.由于原方程只有一个实数根,因此,方程①的根有两种情况:(1)方程①有两个相等的实数根,此二等根使x(x-2)≠1;(2)方程①有两个不等的实数根,而其中一根使x (x-2)=1,另外一根使x(x-2)≠1.针对每一种情况,分别求出a的值及对应的原方程的根.【详解】去分母,将原方程两边同乘x(x﹣2),整理得2x2﹣3x+(3﹣a)=1.①方程①的根的情况有两种:(1)方程①有两个相等的实数根,即△=9﹣3×2(3﹣a)=1.解得a=238.当a=238时,解方程2x2﹣3x+(﹣72+3)=1,得x1=x2=34.(2)方程①有两个不等的实数根,而其中一根使原方程分母为零,即方程①有一个根为1或2.(i)当x=1时,代入①式得3﹣a=1,即a=3.当a=3时,解方程2x2﹣3x=1,x(2x﹣3)=1,x1=1或x2=1.4.而x1=1是增根,即这时方程①的另一个根是x=1.4.它不使分母为零,确是原方程的唯一根.(ii)当x=2时,代入①式,得2×3﹣2×3+(3﹣a)=1,即a=5.当a=5时,解方程2x2﹣3x﹣2=1,x1=2,x2=﹣12.x1是增根,故x=﹣12为方程的唯一实根;因此,若原分式方程只有一个实数根时,所求的a的值分别是238,3,5共3个.故选C.【点睛】考查了分式方程的解法及增根问题.由于原分式方程去分母后,得到一个含有字母的一元二次方程,所以要分情况进行讨论.理解分式方程产生增根的原因及一元二次方程解的情况从而正确进行分类是解题的关键.5、B【解析】作PA⊥x轴于点A,构造直角三角形,根据三角函数的定义求解.【详解】过P作x轴的垂线,交x轴于点A,∵P(2,4),∴OA=2,AP=4,.∴4tan 22AP OA α=== ∴1cot 2α=. 故选B .【点睛】本题考查的知识点是锐角三角函数的定义,解题关键是熟记三角函数的定义.6、A【解析】必然事件就是一定发生的事件,即发生的概率是1的事件,依据定义即可求解.【详解】解:B 、C 、D 选项为不确定事件,即随机事件.故错误;一定发生的事件只有第一个答案,早晨的太阳一定从东方升起.故选A .【点睛】该题考查的是对必然事件的概念的理解;必然事件就是一定发生的事件.7、B【解析】根据完全平方公式对A 进行判断;根据幂的乘方与积的乘方对B 、C 进行判断;根据合并同类项对D 进行判断.【详解】A. ()2222x y x xy y +=++,故错误.B. ()236x x =,正确.C. ()2239x x =,故错误.D. 2222a a a +=, 故错误.故选B.【点睛】考查完全平方公式,合并同类项,幂的乘方与积的乘方,熟练掌握它们的运算法则是解题的关键.8、D【解析】直接利用分式的加减运算法则计算得出答案.【详解】解:31x-231xx-+-=﹣31x-+3(1)(1)xx x--+=﹣3(1)(1)(1)xx x+-++3(1)(1)xx x--+=333 (1)(1)x xx x --+--+=26 (1)(1)xx x---+,故小明、小红都不正确.故选:D.【点睛】此题主要考查了分式的加减运算,正确进行通分运算是解题关键.9、D【解析】根据作一个角等于已知角的作法即可得出结论.【详解】解:用尺规作图作∠AOC=2∠AOB的第一步是以点O为圆心,以任意长为半径画弧①,分别交OA、OB于点E、F,第二步的作图痕迹②的作法是以点F为圆心,EF长为半径画弧.故选:D.【点睛】本题考查的是作图-基本作图,熟知作一个角等于已知角的步骤是解答此题的关键.10、D【解析】试题解析:设现在弟弟的年龄是x岁,哥哥的年龄是y岁,由题意得.故选D.考点:由实际问题抽象出二元一次方程组二、填空题(共7小题,每小题3分,满分21分)11、1【解析】根据题意,可以求得∠B的度数,然后根据解直角三角形的知识可以求得NC的长,从而可以求得BC的长.【详解】∵在Rt△ABC中,CM平分∠ACB交AB于点M,过点M作MN∥BC交AC于点N,且MN平分∠AMC,∴∠AMN=∠NMC=∠B,∠NCM=∠BCM=∠NMC,∴∠ACB=2∠B,NM=NC,∴∠B=30°,∵AN=1,∴MN=2,∴AC=AN+NC=3,∴BC=1,故答案为1.【点睛】本题考查含30°角的直角三角形、平行线的性质、等腰三角形的判定与性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.12、x(x-1)【解析】x2﹣x= x(x-1).故答案是:x(x-1).13、y=﹣1x+1.【解析】由对称得到P′(1,﹣2),再代入解析式得到k的值,再根据平移得到新解析式.【详解】∵点P(1,2)关于x轴的对称点为P′,∴P′(1,﹣2),∵P′在直线y=kx+3上,∴﹣2=k+3,解得:k=﹣1,则y=﹣1x+3,∴把直线y=kx+3的图象向上平移2个单位,所得的直线解析式为:y=﹣1x+1.故答案为y=﹣1x+1.考点:一次函数图象与几何变换.14、24【解析】先利用二次函数的性质求出飞机滑行20s 停止,此时滑行距离为600m ,然后再将t=20-4=16代入求得16s 时滑行的距离,即可求出最后4s 滑行的距离.【详解】y=60t ﹣23t 2=32-(t-20)2+600,即飞机着陆后滑行20s 时停止,滑行距离为600m , 当t=20-4=16时,y=576,600-576=24,即最后4s 滑行的距离是24m , 故答案为24.【点睛】本题考查二次函数的应用,解题的关键是理解题意,熟练应用二次函数的性质解决问题.15、52或76910【解析】分两种情形画出图形分别求解即可解决问题【详解】情况1:如图1中,四边形DEFG 是△ABC 的内接矩形,设DE=CF=x ,则BF=3-x ∵EF ∥AC ,∴EF AC =BF BC∴4EF =3x 3- ∴EF=43(3-x) ∴S 矩形DEFG =x•43(3-x)=﹣43(x-32)2+3∴x=32时,矩形的面积最大,最大值为3,此时对角线=52.情况2:如图2中,四边形DEFG是△ABC的内接矩形,设DE=GF=x,作CH⊥AB于H,交DG于T.则CH=125,CT=125﹣x,∵DG∥AB,∴△CDG∽△CAB,∴CT DG CH AB=∴12x DG 5125 5-=∴DG=5﹣2512x,∴S矩形DEFG=x(5﹣2512x)=﹣2512(x﹣65)2+3,∴x=65时,矩形的面积最大为3,此时对角线226552()()+769∴矩形面积的最大值为3,此时对角线的长为52769故答案为52769【点睛】本题考查相似三角形的应用、矩形的性质、二次函数的最值等知识,解题的关键是学会用分类讨论的思想思考问题16、1 3【解析】利用正方形对角线相等且互相平分,得出EO=AO=12BE,进而得出答案.【详解】解:∵四边形AECF为正方形,∴EF与AC相等且互相平分,∴∠AOB=90°,AO=EO=FO,∵BE=DF=13 BD,∴BE=EF=FD,∴EO=AO=12 BE,∴tan∠ABE=AOBO=13.故答案为:1 3【点睛】此题主要考查了正方形的性质以及锐角三角函数关系,正确得出EO=AO=12BE是解题关键.17、y=-x+2(答案不唯一)【解析】①图象经过(1,1)点;②当x>1时.y随x的增大而减小,这个函数解析式为y=-x+2,故答案为y=-x+2(答案不唯一).三、解答题(共7小题,满分69分)18、(1)2;(22【解析】试题分析:()1点A表示2,向右直爬2个单位到达点B,点B表示的数为22m=-,()2把m的值代入,对式子进行化简即可.试题解析:()1由题意A点和B点的距离为2,其A点的坐标为2,因此B点坐标2 2.m=-()2把m的值代入得:()()016221226m m-++=+-,(01282=+-,211=+,=19、(1)y 1=-2x +4,y 2=-6x ;(2)x <-1或0<x <1. 【解析】(1)把点A 坐标代入反比例函数求出k 的值,也就求出了反比例函数解析式,再把点B 的坐标代入反比例函数解析式求出a 的值,得到点B 的坐标,然后利用待定系数法即可求出一次函数解析式;(2)找出直线在一次函数图形的上方的自变量x 的取值即可.【详解】解:(1)把点A (﹣1,6)代入反比例函数2m y x =(m≠0)得:m=﹣1×6=﹣6, ∴26y x=-. 将B (a ,﹣2)代入26y x =-得:62a -=-,a=1,∴B (1,﹣2),将A (﹣1,6),B (1,﹣2)代入一次函数y 1=kx+b 得:632k b k b -+=⎧⎨+=-⎩, ∴24k b =-⎧⎨=⎩, ∴124y x =-+;(2)由函数图象可得:x <﹣1或0<x <1.【点睛】本题考查反比例函数与一次函数的交点问题,利用数形结合思想解题是本题的关键.20、 【解析】分析:先化简各二次根式,再根据混合运算顺序依次计算可得.详解:原式×(2-6)+3点睛:本题考查了二次根式的混合运算,熟练掌握混合运算的法则是解题的关键.21、(1)PD 是⊙O 的切线.证明见解析.(2)1.【解析】试题分析:(1)连结OP ,根据圆周角定理可得∠AOP=2∠ACP=120°,然后计算出∠PAD 和∠D 的度数,进而可得∠OPD=90°,从而证明PD 是⊙O 的切线;(2)连结BC ,首先求出∠CAB=∠ABC=∠APC=45°,然后可得AC 长,再证明△CAE ∽△CPA ,进而可得,然后可得CE•CP 的值.试题解析:(1)如图,PD 是⊙O 的切线.证明如下:连结OP ,∵∠ACP=60°,∴∠AOP=120°,∵OA=OP ,∴∠OAP=∠OPA=30°,∵PA=PD ,∴∠PAO=∠D=30°,∴∠OPD=90°,∴PD 是⊙O 的切线.(2)连结BC ,∵AB 是⊙O 的直径,∴∠ACB=90°,又∵C 为弧AB 的中点,∴∠CAB=∠ABC=∠APC=45°,∵AB=4,AC=Absin45°=.∵∠C=∠C ,∠CAB=∠APC ,∴△CAE ∽△CPA ,∴,∴CP•CE=CA 2=()2=1.考点:相似三角形的判定与性质;圆心角、弧、弦的关系;直线与圆的位置关系;探究型.22、(1)证明见解析;(2),,,DAG BAE CNF FMC ∠∠∠∠.【解析】(1)连接AF 、AC ,易证∠EAC=∠DAF ,再证明ΔEAC ≅ΔDAF ,根据全等三角形的性质即可得CE=DF ;(2)由旋转的性质可得∠DAG 、∠BAE 都是旋转角,在四边形AEMB 中,∠BAE+∠EMB=180°,∠FMC+∠EMB=180°,可得∠FMC=∠BAE ,同理可得∠DAG=∠CNF ,由此即可解答.【详解】(1)证明:连接,AF AC ,∵正方形ABCD 旋转至正方形AEFG∴DAG BAE ∠∠=,45BAC GAF ∠=∠=︒∴BAE BAC DAG GAF ∠+∠=∠+∠∴EAC DAF ∠=∠在EAC ∆和DAF ∆中,AE AD EAC FAD AC AF =⎧⎪∠=∠⎨⎪=⎩,∴EAC DAF ∆≅∆∴CE DF =(2).∠DAG 、∠BAE 、∠FMC 、∠CNF ;由旋转的性质可得∠DAG 、∠BAE 都是旋转角,在四边形AEMB 中,∠BAE+∠EMB=180°,∠FMC+∠EMB=180°,可得∠FMC=∠BAE ,同理可得∠DAG=∠CNF ,【点睛】本题考查了正方形的性质、旋转的性质及全等三角形的判定与性质,证明ΔEAC ≅ΔDAF 是解决问题的关键.23、(Ⅰ)30P ∠=︒,PA =4;(Ⅱ)45APC ∠=︒,223PA +=【解析】(Ⅰ)易得△OAC 是等边三角形即∠AOC=60°,又由PC 是○O 的切线故PC ⊥OC ,即∠OCP=90°可得∠P 的度数,由OC=4可得PA 的长度(Ⅱ)由(Ⅰ)知△OAC 是等边三角形,易得∠APC=45°;过点C 作CD ⊥AB 于点D ,易得AD=12AO=12CO ,在Rt △DOC 中易得CD 的长,即可求解【详解】解:(Ⅰ)∵AB 是○O 的直径,∴OA 是○O 的半径.∵∠OAC=60°,OA=OC ,∴△OAC 是等边三角形.∴∠AOC=60°.∵PC 是○O 的切线,OC 为○O 的半径,∴PC ⊥OC ,即∠OCP=90°∴∠P=30°.∴PO=2CO=8.∴PA=PO-AO=PO-CO=4.(Ⅱ)由(Ⅰ)知△OAC 是等边三角形,∴∠AOC=∠ACO=∠OAC=60°∴∠AQC=30°.∵AQ=CQ ,∴∠ACQ=∠QAC=75°∴∠ACQ-∠ACO=∠QAC-∠OAC=15°即∠QCO=∠QAO=15°. ∴∠APC=∠AQC+∠QAO=45°.如图②,过点C 作CD ⊥AB 于点D.∵△OAC 是等边三角形,CD ⊥AB 于点D ,∴∠DCO=30°,AD=12AO=12CO=2. ∵∠APC=45°,∴∠DCQ=∠APC=45°∴PD=CD在Rt △DOC 中,OC=4,∠DCO=30°,∴OD=2,∴CD=23∴PD=CD=23∴AP=AD+DP=2+23【点睛】此题主要考查圆的综合应用24、(1)A (4,0),C (3,﹣3);(2) m=32;(3) E 点的坐标为(2,0)或(43,0)或(0,﹣4); 【解析】方法一:(1)m=2时,函数解析式为y=24x x ,分别令y=0,x=1,即可求得点A 和点B 的坐标, 进而可得到点C 的坐标;(2) 先用m 表示出P, A C 三点的坐标,分别讨论∠APC=90o ,∠ACP=90o ,∠PAC=90o 三种情况, 利用勾股定理即可求得m 的值;(3) 设点F (x ,y )是直线PE 上任意一点,过点F 作FN ⊥PM 于N ,可得Rt △FNP ∽Rt △PBC ,NP:NF=BC:BP求得直线PE的解析式,后利用△PEC是以P为直角顶点的等腰直角三角形求得E点坐标. 方法二:(1)同方法一.(2) 由△ACP为直角三角形, 由相互垂直的两直线斜率相乘为-1,可得m的值;(3)利用△PEC是以P为直角顶点的等腰直角三角形,分别讨论E点再x轴上,y轴上的情况求得E点坐标.【详解】方法一:解:(1)若m=2,抛物线y=x2﹣2mx=x2﹣4x,∴对称轴x=2,令y=0,则x2﹣4x=0,解得x=0,x=4,∴A(4,0),∵P(1,﹣2),令x=1,则y=﹣3,∴B(1,﹣3),∴C(3,﹣3).(2)∵抛物线y=x2﹣2mx(m>1),∴A(2m,0)对称轴x=m,∵P(1,﹣m)把x=1代入抛物线y=x2﹣2mx,则y=1﹣2m,∴B(1,1﹣2m),∴C(2m﹣1,1﹣2m),∵PA2=(﹣m)2+(2m﹣1)2=5m2﹣4m+1,PC2=(2m﹣2)2+(1﹣m)2=5m2﹣10m+5,AC2=1+(1﹣2m)2=2﹣4m+4m2,∵△ACP为直角三角形,∴当∠ACP=90°时,PA2=PC2+AC2,即5m2﹣4m+1=5m2﹣10m+5+2﹣4m+4m2,整理得:4m2﹣10m+6=0,解得:m=,m=1(舍去),当∠APC=90°时,PA2+PC2=AC2,即5m2﹣4m+1+5m2﹣10m+5=2﹣4m+4m2,整理得:6m2﹣10m+4=0,解得:m=,m=1,和1都不符合m>1,故m=32.(3)设点F(x,y)是直线PE上任意一点,过点F作FN⊥PM于N,∵∠FPN=∠PCB,∠PNF=∠CBP=90°,∴Rt△FNP∽Rt△PBC,∴NP:NF=BC:BP,即=,∴y=2x﹣2﹣m,∴直线PE的解析式为y=2x﹣2﹣m.令y=0,则x=1+,∴E(1+m,0),∴PE2=(﹣m)2+(m)2=,∴=5m2﹣10m+5,解得:m=2,m=,∴E(2,0)或E(,0),∴在x轴上存在E点,使得△PEC是以P为直角顶点的等腰直角三角形,此时E(2,0)或E(,0);令x=0,则y=﹣2﹣m,∴E(0,﹣2﹣m)∴PE2=(﹣2)2+12=5∴5m2﹣10m+5=5,解得m=2,m=0(舍去),∴E(0,﹣4)∴y轴上存在点E,使得△PEC是以P为直角顶点的等腰直角三角形,此时E(0,﹣4),∴在坐标轴上是存在点E,使得△PEC是以P为直角顶点的等腰直角三角形,E点的坐标为(2,0)或(43,0)或(0,﹣4);方法二:(1)略.(2)∵P(1,﹣m),∴B(1,1﹣2m),∵对称轴x=m,∴C(2m﹣1,1﹣2m),A(2m,0),∵△ACP为直角三角形,∴AC⊥AP,AC⊥CP,AP⊥CP,①AC⊥AP,∴K AC×K AP=﹣1,且m>1,∴,m=﹣1(舍)②AC⊥CP,∴K AC×K CP=﹣1,且m>1,∴=﹣1,∴m=,③AP⊥CP,∴K AP×K CP=﹣1,且m>1,∴=﹣1,∴m=(舍)(3)∵P(1,﹣m),C(2m﹣1,1﹣2m),∴K CP=,△PEC是以P为直角顶点的等腰直角三角形,∴PE⊥PC,∴K PE×K CP=﹣1,∴K PE=2,∵P(1,﹣m),∴l PE:y=2x﹣2﹣m,∵点E在坐标轴上,∴①当点E在x轴上时,E(,0)且PE=PC,∴(1﹣)2+(﹣m)2=(2m﹣1﹣1)2+(1﹣2m+m)2,∴m2=5(m ﹣1)2,∴m 1=2,m 2=,∴E 1(2,0),E 2(,0),②当点E 在y 轴上时,E (0,﹣2﹣m )且PE=PC , ∴(1﹣0)2+(﹣m+2+m )2=(2m ﹣1﹣1)2+(1﹣2m+m )2, ∴1=(m ﹣1)2,∴m 1=2,m 2=0(舍),∴E (0,4),综上所述,(2,0)或(,0)或(0,﹣4).【点睛】本题主要考查二次函数的图象与性质.扩展:设坐标系中两点坐标分别为点A(11,x y ), 点B(22,x y ), 则线段AB 的长度为: 221212()()x x y y --设平面内直线AB 的解析式为:111y k x b =+,直线CD 的解析式为:222y k x b =+(1)若AB//CD,则有:12k k =;(2)若AB ⊥CD,则有:121k k .。

重庆市巴蜀中学2021-2022学年中考数学五模试卷含解析

重庆市巴蜀中学2021-2022学年中考数学五模试卷含解析

2021-2022中考数学模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。

2.答题时请按要求用笔。

3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。

4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题(共10小题,每小题3分,共30分)1.如图,⊙O与直线l1相离,圆心O到直线l1的距离OB=23,OA=4,将直线l1绕点A逆时针旋转30°后得到的直线l2刚好与⊙O相切于点C,则OC=( )A.1 B.2 C.3 D.42.某市今年1月份某一天的最高气温是3℃,最低气温是—4℃,那么这一天的最高气温比最低气温高A.—7℃B.7℃C.—1℃D.1℃3.下列调查中,调查方式选择合理的是()A.为了解襄阳市初中每天锻炼所用时间,选择全面调查B.为了解襄阳市电视台《襄阳新闻》栏目的收视率,选择全面调查C.为了解神舟飞船设备零件的质量情况,选择抽样调查D.为了解一批节能灯的使用寿命,选择抽样调查4.如图,将边长为2cm的正方形OABC放在平面直角坐标系中,O是原点,点A的横坐标为1,则点C的坐标为()A.3-1)B.(2,﹣1)C.(1,3)D.(﹣13)5.如图是某几何体的三视图,则该几何体的全面积等于()A .112B .136C .124D .846.如图,在平面直角坐标系xOy 中,菱形AOBC 的一个顶点O 在坐标原点,一边OB 在x 轴的正半轴上,sin ∠AOB=45,反比例函数y=48x 在第一象限内的图象经过点A ,与BC 交于点F ,则△AOF 的面积等于( )A .30B .40C .60D .807.下列图形中是轴对称图形但不是中心对称图形的是( )A .B .C .D .8.一元二次方程220x x -=的根是( )A .120,2x x ==-B .121,2x x ==C .121,2x x ==-D .120,2x x ==9.A 、B 两地相距180km ,新修的高速公路开通后,在A 、B 两地间行驶的长途客车平均车速提高了50%,而从A 地到B 地的时间缩短了1h .若设原来的平均车速为x km/h ,则根据题意可列方程为A .1801801(150%)x x-=+ B .1801801(150%)x x -=+ C .1801801(150%)x x -=- D .1801801(150%)x x-=- 10.二次函数y =a(x -4)2-4(a≠0)的图象在2<x <3这一段位于x 轴的下方,在6<x <7这一段位于x 轴的上方,则a 的值为( )A .1B .-1C .2D .-2二、填空题(本大题共6个小题,每小题3分,共18分)11.因式分解:a 2b +2ab +b = .12.如图,等边三角形AOB 的顶点A 的坐标为(﹣4,0),顶点B 在反比例函数k y x=(x <0)的图象上,则k= .13.因式分解:2xy 4x -= .14.将直角边长为5cm 的等腰直角△ABC 绕点A 逆时针旋转15°后,得到△AB′C′,则图中阴影部分的面积是_____cm 1.15.某校组织“优质课大赛”活动,经过评比有两名男教师和两名女教师获得一等奖,学校将从这四名教师中随机挑选两位教师参加市教育局组织的决赛,挑选的两位教师恰好是一男一女的概率为____.16.如图是一本折扇,其中平面图是一个扇形,扇面ABDC 的宽度AC 是管柄长OA 的一半,已知OA=30cm ,∠AOB=120°,则扇面ABDC 的周长为_____cm三、解答题(共8题,共72分)17.(8分)某商场为了吸引顾客,设计了一种促销活动:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”和“30元”的字样.规定:顾客在本商场同一日内,每消费满200元,就可以在箱子里先后摸出两个球(第一次摸出后不放回),商场根据两小球所标金额的和返还相应价格的购物券,可以重新在本商场消费,某顾客刚好消费200元.(1)该顾客至少可得到_____元购物券,至多可得到_______元购物券;(2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于30元的概率.18.(8分)雅安地震牵动着全国人民的心,某单位开展了“一方有难,八方支援”赈灾捐款活动.第一天收到捐款10 000元,第三天收到捐款12 100元.(1)如果第二天、第三天收到捐款的增长率相同,求捐款增长率;(2)按照(1)中收到捐款的增长速度,第四天该单位能收到多少捐款?19.(8分)在某市组织的大型商业演出活动中,对团体购买门票实行优惠,决定在原定票价基础上每张降价80元,这样按原定票价需花费6000元购买的门票张数,现在只花费了4800元.求每张门票原定的票价;根据实际情况,活动组织单位决定对于个人购票也采取优惠措施,原定票价经过连续二次降价后降为324元,求平均每次降价的百分率.20.(8分)一艘货轮往返于上下游两个码头之间,逆流而上需要6小时,顺流而下需要4小时,若船在静水中的速度为20千米/时,则水流的速度是多少千米/时?21.(8分)如图所示,平行四边形形ABCD中,过对角线BD中点O的直线分别交AB,CD边于点E,F.(1)求证:四边形BEDF是平行四边形;(2)请添加一个条件使四边形BEDF为菱形.22.(10分)如图,已知点B、E、C、F在一条直线上,AB=DF,AC=DE,∠A=∠D求证:AC∥DE;若BF=13,EC=5,求BC的长.23.(12分)如图,在平面直角坐标系中,直线y1=2x﹣2与双曲线y2=kx交于A、C两点,AB⊥OA交x轴于点B,且OA=AB.(1)求双曲线的解析式;(2)求点C的坐标,并直接写出y1<y2时x的取值范围.24.全面两孩政策实施后,甲,乙两个家庭有了各自的规划.假定生男生女的概率相同,回答下列问题:甲家庭已有一个男孩,准备再生一个孩子,则第二个孩子是女孩的概率是;乙家庭没有孩子,准备生两个孩子,求至少有一个孩子是女孩的概率.参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解析】先利用三角函数计算出∠OAB=60°,再根据旋转的性质得∠CAB=30°,根据切线的性质得OC⊥AC,从而得到∠OAC =30°,然后根据含30度的直角三角形三边的关系可得到OC的长.【详解】解:在Rt△ABO中,sin∠OAB=OBOA233∴∠OAB=60°,∵直线l1绕点A逆时针旋转30°后得到的直线l1刚好与⊙O相切于点C,∴∠CAB=30°,OC⊥AC,∴∠OAC=60°﹣30°=30°,在Rt△OAC中,OC=12OA=1.故选B.【点睛】本题考查了直线与圆的位置关系:设⊙O的半径为r,圆心O到直线l的距离为d,则直线l和⊙O相交⇔d<r;直线l和⊙O相切⇔d=r;直线l和⊙O相离⇔d>r.也考查了旋转的性质.2、B【解析】求最高气温比最低气温高多少度,即是求最高气温与最低气温的差,这个实际问题可转化为减法运算,列算式计算即可.【详解】3-(-4)=3+4=7℃.故选B.3、D【解析】A.为了解襄阳市初中每天锻炼所用时间,选择抽样调查,故A不符合题意;B.为了解襄阳市电视台《襄阳新闻》栏目的收视率,选择抽样调查,故B不符合题意;C.为了解神舟飞船设备零件的质量情况,选普查,故C不符合题意;D.为了解一批节能灯的使用寿命,选择抽样调查,故D符合题意;故选D.4、A【解析】作AD⊥y轴于D,作CE⊥y轴于E,则∠ADO=∠OEC=90°,得出∠1+∠1=90°,由正方形的性质得出OC=AO,∠1+∠3=90°,证出∠3=∠1,由AAS证明△OCE≌△AOD,得到OE=AD=1,CE=OD=3,即可得出结果.【详解】解:作AD⊥y轴于D,作CE⊥y轴于E,如图所示:则∠ADO=∠OEC=90°,∴∠1+∠1=90°.∵AO=1,AD=1,∴OD22213-=,∴点A的坐标为(13,∴AD=1,OD3∵四边形OABC是正方形,∴∠AOC=90°,OC=AO,∴∠1+∠3=90°,∴∠3=∠1.在△OCE 和△AOD 中,∵32OEC ADO OC AO ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△OCE ≌△AOD (AAS ),∴OE =AD =1,CE =OD =3,∴点C 的坐标为(3,﹣1).故选A .【点睛】本题考查了正方形的性质、坐标与图形性质、全等三角形的判定与性质;熟练掌握正方形的性质,证明三角形全等得出对应边相等是解决问题的关键.5、B 【解析】试题解析:该几何体是三棱柱.如图:22543-=,326⨯=,全面积为:164257267247042136.2⨯⨯⨯+⨯⨯+⨯=++= 故该几何体的全面积等于1.故选B.6、B【解析】过点A 作AM ⊥x 轴于点M ,设OA=a ,通过解直角三角形找出点A 的坐标,结合反比例函数图象上点的坐标特征即可求出a 的值,再根据四边形OACB 是菱形、点F 在边BC 上,即可得出S △AOF =12S 菱形OBCA ,结合菱形的面积公式即可得出结论.【详解】过点A 作AM ⊥x 轴于点M ,如图所示.设OA=a,在Rt△OAM中,∠AMO=90°,OA=a,sin∠AOB=45,∴AM=OA•sin∠AOB=45a,22OA AM35a,∴点A的坐标为(35a,45a).∵点A在反比例函数y=48x的图象上,∴35a•45a=1225a2=48,解得:a=1,或a=-1(舍去).∴AM=8,OM=6,OB=OA=1.∵四边形OACB是菱形,点F在边BC上,∴S△AOF=12S菱形OBCA=12OB•AM=2.故选B.【点睛】本题考查了菱形的性质、解直角三角形以及反比例函数图象上点的坐标特征,解题的关键是找出S△AOF=12S菱形OBCA.7、C【解析】分析:根据轴对称图形与中心对称图形的概念求解.详解:A、不是轴对称图形,也不是中心对称图形,故此选项错误;B、是轴对称图形,也是中心对称图形,故此选项错误;C、是轴对称图形,不是中心对称图形,故此选项正确;D、不是轴对称图形,也不是中心对称图形,故此选项错误.故选:C.点睛:本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.8、D【解析】试题分析:此题考察一元二次方程的解法,观察发现可以采用提公因式法来解答此题.原方程可化为:,因此或,所以.故选D.考点:一元二次方程的解法——因式分解法——提公因式法.9、A【解析】直接利用在A,B两地间行驶的长途客车平均车速提高了50%,而从A地到B地的时间缩短了1h,利用时间差值得出等式即可.【详解】解:设原来的平均车速为x km/h,则根据题意可列方程为:180 x ﹣180150%x()=1.故选A.【点睛】本题主要考查了由实际问题抽象出分式方程,根据题意得出正确等量关系是解题的关键.10、A【解析】试题分析:根据角抛物线顶点式得到对称轴为直线x=4,利用抛物线对称性得到抛物线在1<x<2这段位于x轴的上方,而抛物线在2<x<3这段位于x轴的下方,于是可得抛物线过点(2,0)然后把(2,0)代入y=a(x-4)2-4(a≠0)可求出a=1.故选A二、填空题(本大题共6个小题,每小题3分,共18分)11、b2【解析】该题考查因式分解的定义首先可以提取一个公共项b,所以a2b+2ab+b=b(a2+2a+1)再由完全平方公式(x1+x2)2=x12+x22+2x1x2所以a 2b +2ab +b =b (a 2+2a +1)=b212、-43. 【解析】 过点B 作BD ⊥x 轴于点D ,因为△AOB 是等边三角形,点A 的坐标为(-4,0)所∠AOB=60°,根据锐角三角函数的定义求出BD 及OD 的长,可得出B 点坐标,进而得出反比例函数的解析式.【详解】过点B 作BD ⊥x 轴于点D ,∵△AOB 是等边三角形,点A 的坐标为(﹣4,0),∴∠AOB=60°,OB=OA=AB=4,∴OD= OB=2,BD=OB•sin60°=4×32=23, ∴B (﹣2,23 ),∴k=﹣2×23 =﹣43.【点睛】本题考查了反比例函数图象上点的坐标特点、等边三角形的性质、解直角三角函数等知识,难度适中.13、. 【解析】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式.因此,先提取公因式x 后继续应用平方差公式分解即可:()()()22xy 4x x y 4x y 2y 2-=-=+-. 14253 【解析】∵等腰直角△ABC 绕点A 逆时针旋转15°后得到△AB′C′,∵∠CAC′=15°,∴∠C′AB=∠CAB ﹣∠CAC′=45°﹣15°=30°,AC′=AC=5,∴阴影部分的面积=12×5×tan30°× 15、23【解析】根据列表法求出所有可能及可得出挑选的两位教师恰好是一男一女的结果数而利用概率公式计算可得. 【详解】解:所有可能的结果如下表:由表可知总共有12种结果,每种结果出现的可能性相同.挑选的两位教师恰好是一男一女的结果有8种, 所以其概率为挑选的两位教师恰好是一男一女的概率为812=23, 故答案为23. 【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比. 16、1π+1. 【解析】分析:根据题意求出OC ,根据弧长公式分别求出AB 、CD 的弧长,根据扇形周长公式计算. 详解:由题意得,OC=AC=12OA=15, AB 的长=1203801π⨯=20π,CD 的长=12015180π⨯=10π,∴扇面ABDC 的周长=20π+10π+15+15=1π+1(cm ), 故答案为1π+1.点睛:本题考查的是弧长的计算,掌握弧长公式: 180n rL π=是解题的关键.三、解答题(共8题,共72分) 17、解:(1)10,50; (2)解法一(树状图):从上图可以看出,共有12种可能结果,其中大于或等于30元共有8种可能结果, 因此P (不低于30元)=82123= ; 解法二(列表法):(以下过程同“解法一”) 【解析】试题分析:(1)由在一个不透明的箱子里放有4个相同的小球,球上分别标有“0”元,“10”元,“20”元和“30”元的字样,规定:顾客在本商场同一日内,每消费满200元,就可以再箱子里先后摸出两个球(第一次摸出后不放回).即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与顾客所获得购物券的金额不低于30元的情况,再利用概率公式求解即可求得答案. 试题解析:(1)10,50; (2)解法一(树状图):,从上图可以看出,共有12种可能结果,其中大于或等于30元共有8种可能结果,因此P(不低于30元)=812=23;解法二(列表法):0 10 20 300 ﹣﹣10 20 3010 10 ﹣﹣30 4020 20 30 ﹣﹣5030 30 40 50 ﹣﹣从上表可以看出,共有12种可能结果,其中大于或等于30元共有8种可能结果,因此P(不低于30元)=812=23;考点:列表法与树状图法.【详解】请在此输入详解!18、(1)捐款增长率为10%.(2)第四天该单位能收到13310元捐款.【解析】(1)根据“第一天收到捐款钱数×(1+每次降价的百分率)2=第三天收到捐款钱数”,设出未知数,列方程解答即可. (2)第三天收到捐款钱数×(1+每次降价的百分率)=第四天收到捐款钱数,依此列式子解答即可.【详解】(1)设捐款增长率为x,根据题意列方程得:()2100001x12100⨯-=,解得x 1=0.1,x 2=-1.9(不合题意,舍去). 答:捐款增长率为10%.(2)12100×(1+10%)=13310元. 答:第四天该单位能收到13310元捐款. 19、(1)1(2)10%. 【解析】试题分析:(1)设每张门票的原定票价为x 元,则现在每张门票的票价为(x-80)元,根据“按原定票价需花费6000元购买的门票张数,现在只花费了4800元”建立方程,解方程即可;(2)设平均每次降价的百分率为y ,根据“原定票价经过连续二次降价后降为324元”建立方程,解方程即可. 试题解析:(1)设每张门票的原定票价为x 元,则现在每张门票的票价为(x-80)元,根据题意得6000480080x x =-, 解得x=1.经检验,x=1是原方程的根. 答:每张门票的原定票价为1元;(2)设平均每次降价的百分率为y ,根据题意得 1(1-y )2=324,解得:y 1=0.1,y 2=1.9(不合题意,舍去). 答:平均每次降价10%.考点:1.一元二次方程的应用;2.分式方程的应用. 20、1千米/时 【解析】设水流的速度是x 千米/时,则顺流的速度为(20+x )千米/时,逆流的速度为(20﹣x )千米/时,根据由货轮往返两个码头之间,可知顺水航行的距离与逆水航行的距离相等列出方程,解方程即可求解. 【详解】设水流的速度是x 千米/时,则顺流的速度为(20+x )千米/时,逆流的速度为(20﹣x )千米/时, 根据题意得:6(20﹣x )=1(20+x ), 解得:x=1.答:水流的速度是1千米/时. 【点睛】本题考查了一元一次方程的应用,读懂题意,找出等量关系,设出未知数后列出方程是解决此类题目的基本思路. 21、见解析【解析】(1)根据平行四边形的性质可得AB ∥DC ,OB=OD ,由平行线的性质可得∠OBE=∠ODF ,利用ASA 判定△BOE ≌△DOF ,由全等三角形的性质可得EO=FO ,根据对角线互相平分的四边形是平行四边形即可判定四边形BEDF 是平行四边形;(2)添加EF ⊥BD (本题添加的条件不唯一),根据对角线互相垂直的平行四边形为菱形即可判定平行四边形BEDF 为菱形. 【详解】(1)∵四边形ABCD 是平行四边形,O 是BD 的中点, ∴AB ∥DC ,OB=OD , ∴∠OBE=∠ODF , 又∵∠BOE=∠DOF , ∴△BOE ≌△DOF (ASA ), ∴EO=FO ,∴四边形BEDF 是平行四边形; (2)EF ⊥BD .∵四边形BEDF 是平行四边形, ∵EF ⊥BD ,∴平行四边形BEDF 是菱形. 【点睛】本题考查了平行四边形的性质与判定、菱形的判定,熟知平行四边形的性质与判定及菱形的判定方法是解决问题的关键.22、(1)证明见解析;(2)4. 【解析】(1)首先证明△ABC ≌△DFE 可得∠ACE=∠DEF ,进而可得AC ∥DE ;(2)根据△ABC ≌△DFE 可得BC=EF ,利用等式的性质可得EB=CF ,再由BF=13,EC=5进而可得EB 的长,然后可得答案. 【详解】解:(1)在△ABC 和△DFE 中AB DF A D AC DE =⎧⎪∠=∠⎨⎪=⎩, ∴△ABC ≌△DFE (SAS ), ∴∠ACE=∠DEF ,∴AC∥DE;(2)∵△ABC≌△DFE,∴BC=EF,∴CB﹣EC=EF﹣EC,∴EB=CF,∵BF=13,EC=5,∴EB=4,∴CB=4+5=1.【点睛】考点:全等三角形的判定与性质.23、(1)24yx=;(1)C(﹣1,﹣4),x的取值范围是x<﹣1或0<x<1.【解析】【分析】(1)作高线AC,根据等腰直角三角形的性质和点A的坐标的特点得:x=1x﹣1,可得A的坐标,从而得双曲线的解析式;(1)联立一次函数和反比例函数解析式得方程组,解方程组可得点C的坐标,根据图象可得结论.【详解】(1)∵点A在直线y1=1x﹣1上,∴设A(x,1x﹣1),过A作AC⊥OB于C,∵AB⊥OA,且OA=AB,∴OC=BC,∴AC=12OB=OC,∴x=1x﹣1,x=1,∴A(1,1),∴k=1×1=4,∴24yx=;(1)∵224y xyx=-⎧⎪⎨=⎪⎩,解得:1122xy=⎧⎨=⎩,2214xy=-⎧⎨=-⎩,∴C(﹣1,﹣4),由图象得:y1<y1时x的取值范围是x<﹣1或0<x<1.【点睛】本题考查了反比例函数和一次函数的综合;熟练掌握通过求点的坐标进一步求函数解析式的方法;通过观察图象,从交点看起,函数图象在上方的函数值大.24、(1)12;(2)34【解析】(1)根据可能性只有男孩或女孩,直接得到其概率;(2)列出所有的可能性,然后确定至少有一个女孩的可能性,然后可求概率. 【详解】解:(1)(1)第二个孩子是女孩的概率=12;故答案为12;(2)画树状图为:共有4种等可能的结果数,其中至少有一个孩子是女孩的结果数为3,所以至少有一个孩子是女孩的概率=3 4 .【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.。

陕西省西安市交大附中2022年中考五模数学试题含解析

陕西省西安市交大附中2022年中考五模数学试题含解析

2021-2022中考数学模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。

写在试题卷、草稿纸上均无效。

2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

一、选择题(共10小题,每小题3分,共30分)1.如图,AB∥CD,点E在CA的延长线上.若∠BAE=40°,则∠ACD的大小为()A.150°B.140°C.130°D.120°2.如图,有一块含有30°角的直角三角板的两个顶点放在直尺的对边上.如果∠2=44°,那么∠1的度数是( )A.14°B.15°C.16°D.17°3.如图是一次数学活动课制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数字6、7、8、1.若转动转盘一次,转盘停止后(当指针恰好指在分界线上时,不记,重转),指针所指区域的数字是奇数的概率为()A.B.C.D.4.如图,平面直角坐标系xOy中,矩形OABC的边OA、OC分别落在x、y轴上,点B坐标为(6,4),反比例函数6y的图象与AB边交于点D,与BC边交于点E,连结DE,将△BDE沿DE翻折至△B'DE处,点B'恰好落在正x比例函数y=kx图象上,则k的值是()A .25-B .121-C .15- D .124- 5.如图,在Rt ABC ∆中,90C =∠,10AB =,8AC =,则sin A 等于( )A .35B .45C .34D .436.要组织一次排球邀请赛,参赛的每个队之间都要比赛一场,根据场地和时间等条件,赛程计划7天,每天安排4场比赛.设比赛组织者应邀请x 个队参赛,则x 满足的关系式为()A .1(1)282x x -=B .1(1)282x x +=C .(1)28x x -=D .(1)28x x +=7.股市有风险,投资需谨慎.截至今年五月底,我国股市开户总数约95000000,正向1亿挺进,95000000用科学计数法表示为( )A .9.5×106B .9.5×107C .9.5×108D .9.5×1098.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D .9.下列计算结果是x 5的为( )A .x 10÷x 2B .x 6﹣xC .x 2•x 3D .(x 3)210.如图,在平面直角坐标系中,正方形ABCD 的顶点A 的坐标为(﹣1,1),点B 在x 轴正半轴上,点D 在第三象限的双曲线6y x=上,过点C 作CE ∥x 轴交双曲线于点E ,连接BE ,则△BCE 的面积为( )A .5B .6C .7D .8二、填空题(本大题共6个小题,每小题3分,共18分)11.分解因式:m 2n ﹣2mn+n= .12.点A (1,2),B (n ,2)都在抛物线y=x 2﹣4x+m 上,则n=_____.13.如图,在菱形ABCD 中,DE ⊥AB 于点E ,cosA=35,BE=4,则tan ∠DBE 的值是_____.14.如图,已知∠A+∠C=180°,∠APM=118°,则∠CQN=_____°.15.如果点()14,A y -、()23,B y -是二次函数22(y x k k =+是常数)图象上的两点,那么1y ______2.(y 填“>”、“<”或“=”)16.廊桥是我国古老的文化遗产如图,是某座抛物线型的廊桥示意图,已知抛物线的函数表达式为,为保护廊桥的安全,在该抛物线上距水面AB 高为8米的点E ,F 处要安装两盏警示灯,则这两盏灯的水平距离EF 是______米精确到1米三、解答题(共8题,共72分)17.(8分)计算:(﹣2)3+(﹣3)×[(﹣4)2+2]﹣(﹣3)2÷(﹣2)18.(8分)为了保障市民安全用水,我市启动自来水管改造工程,该工程若甲队单独施工,恰好在规定时间内完成;若由乙队单独施工,则完成工程所需天数是规定天数的3倍.若甲、乙两队先合作施工45天,则余下的工程甲队还需单独施工23天才能完成.这项工程的规定时间是多少天?19.(8分)解分式方程:28124x x x -=-- 20.(8分)(1)如图①已知四边形ABCD 中,AB a =,BC=b ,90B D ∠=∠=︒,求:①对角线BD 长度的最大值;②四边形ABCD 的最大面积;(用含a ,b 的代数式表示)(2)如图②,四边形ABCD 是某市规划用地的示意图,经测量得到如下数据:20cm AB =,30cm BC =,120B ∠=︒,195A C ∠+∠=︒,请你利用所学知识探索它的最大面积(结果保留根号)21.(8分)解不等式组21324x x x x ≥⎧⎨≥⎩-①-(-)② 请结合题意填空,完成本题的解答(1)解不等式①,得_______.(2)解不等式②,得_______.(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为_______________.22.(10分)如图,二次函数y =﹣212x +mx+4﹣m 的图象与x 轴交于A 、B 两点(A 在B 的左侧),与),轴交于点C .抛物线的对称轴是直线x =﹣2,D 是抛物线的顶点.(1)求二次函数的表达式;(2)当﹣12<x <1时,请求出y 的取值范围; (3)连接AD ,线段OC 上有一点E ,点E 关于直线x =﹣2的对称点E'恰好在线段AD 上,求点E 的坐标.23.(12分)山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答:每千克核桃应降价多少元?在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?24.省教育厅决定在全省中小学开展“关注校车、关爱学生”为主题的交通安全教育宣传周活动,某中学为了了解本校学生的上学方式,在全校范围内随机抽查了部分学生,将收集的数据绘制成如下两幅不完整的统计图(如图所示),请根据图中提供的信息,解答下列问题.m= %,这次共抽取名学生进行调查;并补全条形图;在这次抽样调查中,采用哪种上学方式的人数最多?如果该校共有1500名学生,请你估计该校骑自行车上学的学生有多少名?参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解析】试题分析:如图,延长DC到F,则∵AB∥CD,∠BAE=40°,∴∠ECF=∠BAE=40°.∴∠ACD=180°-∠ECF=140°.故选B.考点:1.平行线的性质;2.平角性质.2、C【解析】依据∠ABC=60°,∠2=44°,即可得到∠EBC=16°,再根据BE∥CD,即可得出∠1=∠EBC=16°.【详解】如图,∵∠ABC=60°,∠2=44°,∴∠EBC=16°,∵BE∥CD,∴∠1=∠EBC=16°,故选:C.【点睛】本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等.3、A【解析】转盘中4个数,每转动一次就要4种可能,而其中是奇数的有2种可能.然后根据概率公式直接计算即可【详解】奇数有两种,共有四种情况,将转盘转动一次,求得到奇数的概率为:P(奇数)= = .故此题选A.【点睛】此题主要考查了几何概率,正确应用概率公式是解题关键.4、B【解析】根据矩形的性质得到,CB∥x轴,AB∥y轴,于是得到D、E坐标,根据勾股定理得到ED,连接BB′,交ED于F,过B′作B′G⊥BC于G,根据轴对称的性质得到BF=B′F,BB′⊥ED求得BB′,设EG=x,根据勾股定理即可得到结论.【详解】解:∵矩形OABC,∴CB∥x轴,AB∥y轴.∵点B坐标为(6,1),∴D的横坐标为6,E的纵坐标为1.∵D,E在反比例函数6yx=的图象上,∴D(6,1),E(32,1),∴BE=6﹣32=92,BD=1﹣1=3,∴ED22BE BD+3132.连接BB′,交ED于F,过B′作B′G⊥BC于G.∵B,B′关于ED对称,∴BF=B′F,BB′⊥ED,∴BF•ED=BE•BD 3132BF=3×92,∴BF13,∴BB13设EG=x,则BG=92﹣x.∵BB ′2﹣BG 2=B ′G 2=EB ′2﹣GE 2, ∴222299()()22x x --=-, ∴x =4526, ∴EG =4526, ∴CG =4213, ∴B ′G =5413, ∴B ′(4213,﹣213), ∴k =121-. 故选B .【点睛】本题考查了翻折变换(折叠问题),矩形的性质,勾股定理,熟练掌握折叠的性质是解题的关键.5、A【解析】分析:先根据勾股定理求得BC=6,再由正弦函数的定义求解可得.详解:在Rt △ABC 中,∵AB=10、AC=8,∴, ∴sinA=63105BC AB ==. 故选:A .点睛:本题主要考查锐角三角函数的定义,解题的关键是掌握勾股定理及正弦函数的定义.6、A【解析】根据应用题的题目条件建立方程即可.【详解】 解:由题可得:1(1)472x x -=⨯ 即:1(1)282x x -= 故答案是:A.【点睛】本题主要考察一元二次方程的应用题,正确理解题意是解题的关键.7、B【解析】试题分析:15000000=1.5×2.故选B.考点:科学记数法—表示较大的数8、B【解析】分析:根据轴对称图形与中心对称图形的概念求解即可.详解:A.是轴对称图形,不是中心对称图形;B.是轴对称图形,也是中心对称图形;C.是轴对称图形,不是中心对称图形;D.是轴对称图形,不是中心对称图形.故选B.点睛:本题考查了中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图重合.9、C【解析】解:A.x10÷x2=x8,不符合题意;B.x6﹣x不能进一步计算,不符合题意;C.x2x3=x5,符合题意;D.(x3)2=x6,不符合题意.故选C.10、C【解析】作辅助线,构建全等三角形:过D作GH⊥x轴,过A作AG⊥GH,过B作BM⊥HC于M,证明△AGD≌△DHC≌△CMB,根据点D的坐标表示:AG=DH=-x-1,由DG=BM,列方程可得x的值,表示D和E的坐标,根据三角形面积公式可得结论.【详解】解:过D作GH⊥x轴,过A作AG⊥GH,过B作BM⊥HC于M,设D(x,6x ),∵四边形ABCD是正方形,∴AD=CD=BC,∠ADC=∠DCB=90°,易得△AGD≌△DHC≌△CMB(AAS),∴AG=DH=﹣x﹣1,∴DG=BM,∵GQ=1,DQ=﹣6x,DH=AG=﹣x﹣1,由QG+DQ=BM=DQ+DH得:1﹣6x=﹣1﹣x﹣6x,解得x=﹣2,∴D(﹣2,﹣3),CH=DG=BM=1﹣62=4,∵AG=DH=﹣1﹣x=1,∴点E的纵坐标为﹣4,当y=﹣4时,x=﹣32,∴E(﹣32,﹣4),∴EH=2﹣32=12,∴CE=CH﹣HE=4﹣12=72,∴S△CEB=12CE•BM=12×72×4=7;故选C.【点睛】考查正方形的性质、全等三角形的判定和性质、反比例函数的性质等知识,解题的关键是灵活运用所学知识解决问题,学会构建方程解决问题.二、填空题(本大题共6个小题,每小题3分,共18分)11、n (m ﹣1)1.【解析】先提取公因式n 后,再利用完全平方公式分解即可【详解】m 1n ﹣1mn+n=n (m 1﹣1m+1)=n (m ﹣1)1.故答案为n (m ﹣1)1.12、1【解析】根据题意可以求得m 的值和n 的值,由A 的坐标,可确定B 的坐标,进而可以得到n 的值.【详解】:∵点A (1,2),B (n ,2)都在抛物线y=x 2-4x+m 上, ∴ , 解得 或 ,∴点B 为(1,2)或(1,2),∵点A (1,2),∴点B 只能为(1,2),故n 的值为1,故答案为:1.【点睛】本题考查了二次函数图象上点的坐标特征,解题的关键是明确题意,利用二次函数的性质求解.13、1.【解析】求出AD=AB ,设AD=AB=5x ,AE=3x ,则5x ﹣3x=4,求出x ,得出AD=10,AE=6,在Rt △ADE 中,由勾股定理求出DE=8,在Rt △BDE 中得出tan ,DE DBE BE∠=代入求出即可, 【详解】解:∵四边形ABCD 是菱形,∴AD=AB ,∵cosA=35,BE=4,DE ⊥AB , ∴设AD=AB=5x ,AE=3x ,则5x ﹣3x=4,x=1,即AD=10,AE=6,在Rt △ADE 中,由勾股定理得: 8DE ==,在Rt △BDE 中,8tan 2,4DE DBE BE ∠=== 故答案为:1.【点睛】本题考查了菱形的性质,勾股定理,解直角三角形的应用,关键是求出DE 的长.14、1【解析】先根据同旁内角互补两直线平行知AB ∥CD ,据此依据平行线性质知∠APM=∠CQM=118°,由邻补角定义可得答案.【详解】解:∵∠A+∠C=180°,∴AB ∥CD ,∴∠APM=∠CQM=118°,∴∠CQN=180°-∠CQM=1°,故答案为:1.【点睛】本题主要考查平行线的判定与性质,解题的关键是掌握平行线的判定是由角的数量关系判断两直线的位置关系.平行线的性质是由平行关系来寻找角的数量关系.15、>【解析】根据二次函数解析式可知函数图象对称轴是x=0,且开口向上,分析可知两点均在对称轴左侧的图象上;接下来,结合二次函数的性质可判断对称轴左侧图象的增减性,【详解】解:二次函数22y x k =+的函数图象对称轴是x=0,且开口向上,∴在对称轴的左侧y 随x 的增大而减小,∵-3>-4,∴1y >2y .故答案为>.【点睛】本题考查了二次函数的图像和数形结合的数学思想.16、【解析】由于两盏E 、F 距离水面都是8m ,因而两盏景观灯之间的水平距离就是直线y=8与抛物线两交点的横坐标差的绝对值. 故有, 即,,. 所以两盏警示灯之间的水平距离为:三、解答题(共8题,共72分)17、-17.1【解析】按照有理数混合运算的顺序,先乘方后乘除最后算加减,有括号的先算括号里面的.【详解】解:原式=﹣8+(﹣3)×18﹣9÷(﹣2),=﹣8﹣14﹣9÷(﹣2),=﹣62+4.1,=﹣17.1.【点睛】此题要注意正确掌握运算顺序以及符号的处理.18、这项工程的规定时间是83天【解析】依据题意列分式方程即可.【详解】设这项工程的规定时间为x 天,根据题意得 .解得x =83.检验:当x =83时,3x≠0.所以x =83是原分式方程的解.答:这项工程的规定时间是83天.【点睛】正确理解题意是解题的关键,注意检验.19、无解【解析】首先进行去分母,将分式方程转化为整式方程,然后按照整式方程的求解方法进行求解,最后对所求的解进行检验,看是否能使分母为零.【详解】解:两边同乘以(x+2)(x -2)得:x (x+2)-(x+2)(x -2)=8去括号,得:2x +2x -2x +4=8移项、合并同类项得:2x=4解得:x=2经检验,x=2是方程的增根∴方程无解【点睛】本题考查解分式方程,注意分式方程结果要检验.20、(122+2ab 4a b ;(2)+475. 【解析】(1)①由条件可知AC 为直径,可知BD 长度的最大值为AC 的长,可求得答案;②连接AC ,求得AD 2+CD 2,利用不等式的性质可求得AD •CD 的最大值,从而可求得四边形ABCD 面积的最大值;(2)连接AC ,延长CB ,过点A 做AE ⊥CB 交CB 的延长线于E ,可先求得△ABC 的面积,结合条件可求得∠D =45°,且A 、C 、D 三点共圆,作AC 、CD 中垂线,交点即为圆心O ,当点D 与AC 的距离最大时,△ACD 的面积最大,AC 的中垂线交圆O 于点D ',交AC 于F ,FD '即为所求最大值,再求得△ACD ′的面积即可.【详解】(1)①因为∠B =∠D =90°,所以四边形ABCD 是圆内接四边形,AC 为圆的直径,则BD 长度的最大值为AC ,此时BD =22a +b , ②连接AC ,则AC 2=AB 2+BC 2=a 2+b 2=AD 2+CD 2,S △ACD =12AD ⋅CD ≤14(AD 2+CD 2)=14(a 2+b 2),所以四边形ABCD 的最大面积=14(a 2+b 2)+12ab =22+2ab 4a b +; (2)如图,连接AC ,延长CB ,过点A 作AE ⊥CB 交CB 的延长线于E ,因为AB =20,∠ABE =180°-∠ABC =60°,所以AE =AB ⋅sin60°=103,EB =AB ⋅cos60°=10,S △ABC =12AE ⋅BC =1503,因为BC =30,所以EC =EB +BC =40,AC =22+AE EC =1019,因为∠ABC =120°,∠BAD +∠BCD =195°,所以∠D =45°,则△ACD 中,∠D 为定角,对边AC 为定边,所以,A 、C 、D 点在同一个圆上,做AC 、CD 中垂线,交点即为圆O ,如图,当点D 与AC 的距离最大时,△ACD 的面积最大,AC 的中垂线交圆O 于点D ’,交AC 于F ,FD ’即为所求最大值,连接OA 、OC ,∠AOC =2∠AD ’C =90°,OA =OC ,所以△AOC ,△AOF 等腰直角三角形,AO =OD ’=538,OF =AF =2AC =519,D ’F =538+519,S △ACD ’=12AC ⋅D ’F =519×(538+519)=4752+475,所以S max =S △ABC +S △ACD =1503+4752+475.【点睛】本题为圆的综合应用,涉及知识点有圆周角定理、不等式的性质、解直角三角形及转化思想等.在(1)中注意直径是最长的弦,在(2)中确定出四边形ABCD 面积最大时,D 点的位置是解题的关键.本题考查知识点较多,综合性很强,计算量很大,难度适中.21、(1)x≥-1;(2)x≤1;(3)见解析;(4)-1≤x≤1.【解析】分别解两个不等式,然后根据公共部分确定不等式组的解集,再利用数轴表示解集.【详解】解:(1)x≥-1;(2)x≤1;(3);(4)原不等式组的解集为-1≤x≤1.【点睛】本题考查了解一元一次不等式组:一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.22、(1)y=﹣12x 1﹣1x+6;(1)72<y <558;(3)(0,4). 【解析】(1)利用对称轴公式求出m 的值,即可确定出解析式;(1)根据x 的范围,利用二次函数的增减性确定出y 的范围即可;(3)根据题意确定出D 与A 坐标,进而求出直线AD 解析式,设出E 坐标,利用对称性确定出E 坐标即可.【详解】 (1)∵抛物线对称轴为直线x =﹣1,∴﹣122m ⨯-()=﹣1,即m =﹣1,则二次函数解析式为y =﹣12x 1﹣1x +6; (1)当x =﹣12时,y =558;当x =1时,y =72. ∵﹣12<x <1位于对称轴右侧,y 随x 的增大而减小,∴72<y <558; (3)当x =﹣1时,y =8,∴顶点D 的坐标是(﹣1,8),令y =0,得到:﹣12x 1﹣1x +6=0,解得:x =﹣6或x =1. ∵点A 在点B 的左侧,∴点A 坐标为(﹣6,0).设直线AD 解析式为y =kx +b ,可得:2860k b k b -+=⎧⎨-+=⎩,解得:212k b =⎧⎨=⎩,即直线AD 解析式为y =1x +11. 设E (0,n ),则有E ′(﹣4,n ),代入y =1x +11中得:n =4,则点E 坐标为(0,4).【点睛】本题考查了抛物线与x 轴的交点,以及二次函数的性质,熟练掌握二次函数的性质是解答本题的关键.23、(1)4元或6元;(2)九折.【解析】解:(1)设每千克核桃应降价x 元.根据题意,得(60﹣x ﹣40)(100+x 2×20)=2240, 化简,得 x 2﹣10x+24=0,解得x 1=4,x 2=6.答:每千克核桃应降价4元或6元.(2)由(1)可知每千克核桃可降价4元或6元.∵要尽可能让利于顾客,∴每千克核桃应降价6元.此时,售价为:60﹣6=54(元),54100%=90%60⨯.答:该店应按原售价的九折出售.24、(1)、26%;50;(2)、公交车;(3)、300名.【解析】试题分析:(1)、用1减去其它3个的百分比,从而得出m的值;根据乘公交车的人数和百分比得出总人数,然后求出骑自行车的人数,将图形补全;(2)、根据条形统计图得出哪种人数最多;(3)、根据全校的总人数×骑自行车的百分比得出人数.试题解析:(1)、1﹣14%﹣20%﹣40%=26%;20÷40%=50;骑自行车人数:50-20-13-7=10(名) 则条形图如图所示:(2)、由图可知,采用乘公交车上学的人数最多(3)、该校骑自行车上学的人数约为:1500×20%=300(名).答:该校骑自行车上学的学生有300名.考点:统计图。

四川省广元市重点中学2022年中考五模数学试题含解析

四川省广元市重点中学2022年中考五模数学试题含解析

2021-2022中考数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上,写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题(共10小题,每小题3分,共30分)1.实数a 在数轴上的位置如图所示,则下列说法不正确的是( )A .a 的相反数大于2B .a 的相反数是2C .|a|>2D .2a <02.若关于x 的一元二次方程(m -1)x 2+x +m 2-5m +3=0有一个根为1,则m 的值为A .1B .3C .0D .1或33.下列计算正确的是( )A .2a a =B .(﹣a 2)3=a 6C .981-=D .6a 2×2a=12a 3 4.一次函数满足,且随的增大而减小,则此函数的图象不经过( ) A .第一象限 B .第二象限C .第三象限D .第四象限 5.2016的相反数是( )A .12016-B .12016C .2016-D .20166.已知(AC BC)ABC ∆<,用尺规作图的方法在BC 上确定一点P ,使PA PC BC +=,则符合要求的作图痕迹是( )A .B .C .D .7.若2m ﹣n =6,则代数式m-12n +1的值为( )A.1 B.2 C.3 D.48.下列图形中,既是中心对称图形又是轴对称图形的是()A.正五边形B.平行四边形C.矩形D.等边三角形9.今年,我省启动了“关爱留守儿童工程”.某村小为了了解各年级留守儿童的数量,对一到六年级留守儿童数量进行了统计,得到每个年级的留守儿童人数分别为10,15,10,17,18,1.对于这组数据,下列说法错误的是()A.平均数是15 B.众数是10 C.中位数是17 D.方差是44 310.点P(4,﹣3)关于原点对称的点所在的象限是()A.第四象限B.第三象限C.第二象限D.第一象限二、填空题(本大题共6个小题,每小题3分,共18分)11.如图,10块相同的长方形墙砖拼成一个长方形,设长方形墙砖的长为x厘米,则依题意列方程为_________.12.阅读下面材料:在数学课上,老师提出利用尺规作图完成下面问题:已知:ABC.求作:ABC的内切圆.小明的作法如下:如图2,()1作ABC∠,ACB∠的平分线BE和CF,两线相交于点O;()2过点O作OD BC⊥,垂足为点D;()3点O为圆心,OD长为半径作O.所以,O即为所求作的圆.请回答:该尺规作图的依据是______.13.如图,在长方形ABCD中,AF⊥BD,垂足为E,AF交BC于点F,连接DF.图中有全等三角形_____对,有面积相等但不全等的三角形_____对.14.如图,CD 是⊙O 直径,AB 是弦,若CD ⊥AB ,∠BCD=25°,则∠AOD=_____°.15.方程21x x =-的解是__________. 16.如图,在扇形OAB 中,∠O =60°,OA =43,四边形OECF 是扇形OAB 中最大的菱形,其中点E ,C ,F 分别在OA ,AB ,OB 上,则图中阴影部分的面积为__________.三、解答题(共8题,共72分)17.(8分)(1)计算:20(2)(3)12sin 60π︒-+-+-; (2)化简:2121()a a a a a--÷-. 18.(8分)如图,点D 是AB 上一点,E 是AC 的中点,连接DE 并延长到F ,使得DE=EF ,连接CF .求证:FC ∥AB .19.(8分)为了加强学生的安全意识,某校组织了学生参加安全知识竞赛.从中抽取了部分学生成绩(得分数取正整数,满分为100分)进行统计,绘制统计频数分布直方图(未完成)和扇形图如下,请解答下列问题:(1)A 组的频数a 比B 组的频数b 小24,样本容量 ,a 为 :(2)n 为 °,E 组所占比例为 %:(3)补全频数分布直方图;(4)若成绩在80分以上优秀,全校共有2000名学生,估计成绩优秀学生有 名.20.(8分)4×100米拉力赛是学校运动会最精彩的项目之一.图中的实线和虚线分别是初三•一班和初三•二班代表队在比赛时运动员所跑的路程y(米)与所用时间x(秒)的函数图象(假设每名运动员跑步速度不变,交接棒时间忽略不计).问题:(1)初三•二班跑得最快的是第接力棒的运动员;(2)发令后经过多长时间两班运动员第一次并列?21.(8分)如图所示,PB是⊙O的切线,B为切点,圆心O在PC上,∠P=30°,D为弧BC的中点.(1)求证:PB=BC;(2)试判断四边形BOCD的形状,并说明理由.22.(10分)由于雾霾天气趋于严重,我市某电器商城根据民众健康需求,代理销售某种家用空气净化器,其进价是200元/台.经过市场销售后发现:在一个月内,当售价是400元/台时,可售出200台,且售价每降低10元,就可多售出50台.若供货商规定这种空气净化器售价不能低于300元/台,代理销售商每月要完成不低于450台的销售任务.完成下列表格,并直接写出月销售量y(台)与售价x(元/台)之间的函数关系式及售价x的取值范围;售价(元/台)月销售量(台)400 200250x(2)当售价x(元/台)定为多少时,商场每月销售这种空气净化器所获得的利润w(元)最大?最大利润是多少?23.(12分)在阳光体育活动时间,小亮、小莹、小芳和大刚到学校乒乓球室打乒乓球,当时只有一副空球桌,他们只能选两人打第一场.(1)如果确定小亮打第一场,再从其余三人中随机选取一人打第一场,求恰好选中大刚的概率;(2)如果确定小亮做裁判,用“手心、手背”的方法决定其余三人哪两人打第一场.游戏规则是:三人同时伸“手心、手背”中的一种手势,如果恰好有两人伸出的手势相同,那么这两人上场,否则重新开始,这三人伸出“手心”或“手背”都是随机的,请用画树状图的方法求小莹和小芳打第一场的概率.24.如图是根据对某区初中三个年级学生课外阅读的“漫画丛书”、“科普常识”、“名人传记”、“其它”中,最喜欢阅读的一种读物进行随机抽样调查,并绘制了下面不完整的条形统计图和扇形统计图(每人必选一种读物,并且只能选一种),根据提供的信息,解答下列问题:(1)求该区抽样调查人数;(2)补全条形统计图,并求出最喜欢“其它”读物的人数在扇形统计图中所占的圆心角度数;(3)若该区有初中生14400人,估计该区有初中生最喜欢读“名人传记”的学生是多少人?参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解析】试题分析:由数轴可知,a<-2,A、a的相反数>2,故本选项正确,不符合题意;B、a的相反数≠2,故本选项错误,符合题意;C、a的绝对值>2,故本选项正确,不符合题意;D、2a<0,故本选项正确,不符合题意.考点:实数与数轴.2、B【解析】直接把x=1代入已知方程即可得到关于m的方程,解方程即可求出m的值.【详解】∵x=1是方程(m﹣1)x2+x+m2﹣5m+3=0的一个根,∴(m﹣1)+1+m2﹣5m+3=0,∴m2﹣4m+3=0,∴m=1或m=3,但当m=1时方程的二次项系数为0,∴m=3.故答案选B.【点睛】本题考查了一元二次方程的解,解题的关键是熟练的掌握一元二次方程的运算.3、D【解析】根据平方根的运算法则和幂的运算法则进行计算,选出正确答案.【详解】=,A选项错误;(﹣a2)3=- a6,B3a=-C错误;. 6a2×2a=12a3,D正确;故选:D. 【点睛】本题考查学生对平方根及幂运算的能力的考查,熟练掌握平方根运算和幂运算法则是解答本题的关键.4、A【解析】试题分析:根据y随x的增大而减小得:k<0,又kb>0,则b<0,故此函数的图象经过第二、三、四象限,即不经过第一象限.故选A.考点:一次函数图象与系数的关系.5、C【解析】根据相反数的定义“只有符号不同的两个数互为相反数”可知:2016的相反数是-2016.6、D【解析】试题分析:D选项中作的是AB的中垂线,∴PA=PB,∵PB+PC=BC,∴PA+PC=BC.故选D.考点:作图—复杂作图.7、D【解析】先对m-12n+1变形得到12(2m﹣n)+1,再将2m﹣n=6整体代入进行计算,即可得到答案.【详解】m12n+1=12(2m﹣n)+1当2m﹣n=6时,原式=12×6+1=3+1=4,故选:D.【点睛】本题考查代数式,解题的关键是掌握整体代入法.8、C【解析】分析:根据中心对称图形和轴对称图形对各选项分析判断即可得解.详解:A. 正五边形,不是中心对称图形,是轴对称图形,故本选项错误.B. 平行四边形,是中心对称图形,不是轴对称图形,故本选项错误.C. 矩形,既是中心对称图形又是轴对称图形,故本选项正确.D. 等边三角形,不是中心对称图形,是轴对称图形,故本选项错误.故选C.点睛:本题考查了对中心对称图形和轴对称图形的判断,我们要熟练掌握一些常见图形属于哪一类图形,这样在实际解题时,可以加快解题速度,也可以提高正确率.9、C【解析】解:中位数应该是15和17的平均数16,故C选项错误,其他选择正确.【点睛】本题考查求中位数,众数,方差,理解相关概念是本题的解题关键.10、C【解析】由题意得点P的坐标为(﹣4,3),根据象限内点的符号特点可得点P1的所在象限.【详解】∵设P(4,﹣3)关于原点的对称点是点P1,∴点P1的坐标为(﹣4,3),∴点P1在第二象限.故选 C【点睛】本题主要考查了两点关于原点对称,这两点的横纵坐标均互为相反数;符号为(﹣,+)的点在第二象限.二、填空题(本大题共6个小题,每小题3分,共18分)11、x+23x=75.【解析】试题解析:设长方形墙砖的长为x厘米,可得:x+23x=75.12、到角两边距离相等的点在角平分线上;两点确定一条直线;角平分上的点到角两边的距离相等;圆的定义;经过半径的外端,并且垂直于这条半径的直线是圆的切线.【解析】根据三角形的内切圆,三角形的内心的定义,角平分线的性质即可解答.【详解】解:该尺规作图的依据是到角两边距离相等的点在角平分线上;两点确定一条直线;角平分上的点到角两边的距离相等;圆的定义;经过半径的外端,并且垂直于这条半径的直线是圆的切线;故答案为到角两边距离相等的点在角平分线上;两点确定一条直线;角平分上的点到角两边的距离相等;圆的定义;经过半径的外端,并且垂直于这条半径的直线是圆的切线.【点睛】此题主要考查了复杂作图,三角形的内切圆与内心,关键是掌握角平分线的性质.13、1 1根据长方形的对边相等,每一个角都是直角可得AB=CD ,AD=BC ,∠BAD=∠C=90°,然后利用“边角边”证明Rt △ABD和Rt △CDB 全等;根据等底等高的三角形面积相等解答.【详解】有,Rt △ABD ≌Rt △CDB ,理由:在长方形ABCD 中,AB=CD ,AD=BC ,∠BAD=∠C=90°,在Rt △ABD 和Rt △CDB 中,90AB CD BAD C AD BC ⎧⎪∠∠︒⎨⎪⎩====,∴Rt △ABD ≌Rt △CDB (SAS );有,△BFD 与△BFA ,△ABD 与△AFD ,△ABE 与△DFE ,△AFD 与△BCD 面积相等,但不全等.故答案为:1;1.【点睛】本题考查了全等三角形的判定,长方形的性质,以及等底等高的三角形的面积相等.14、50【解析】由CD 是⊙O 的直径,弦AB ⊥CD ,根据垂径定理的即可求得AD =BD ,又由圆周角定理,可得∠AOD=50°. 【详解】∵CD 是⊙O 的直径,弦AB ⊥CD ,∴AD =BD ,∵∠BCD=25°=,∴∠AOD=2∠BCD=50°,故答案为50【点睛】本题考查角度的求解,解题的关键是利用垂径定理.15、2x =.【解析】根据解分式方程的步骤依次计算可得.解:去分母,得:21x x =(﹣), 解得:2x =,当2x =时,110x ≠﹣=,所以2x =是原分式方程的解,故答案为:2x =.【点睛】本题主要考查解分式方程,解题的关键是熟练掌握解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论.16、8π﹣83 【解析】 连接EF 、OC 交于点H ,根据正切的概念求出FH ,根据菱形的面积公式求出菱形FOEC 的面积,根据扇形面积公式求出扇形OAB 的面积,计算即可.【详解】连接EF 、OC 交于点H ,则OH=23,∴FH=OH×tan30°=2,∴菱形FOEC 的面积=12×43×4=83, 扇形OAB 的面积=()26043360π⨯=8π,则阴影部分的面积为8π﹣83,故答案为8π﹣83.【点睛】本题考查了扇形面积的计算、菱形的性质,熟练掌握扇形的面积公式、菱形的性质、灵活运用锐角三角函数的定义是解题的关键.三、解答题(共8题,共72分)17、(1)(2)11a a +-. 【解析】(1)根据幂的乘方、零指数幂、特殊角的三角函数值和绝对值可以解答本题;(3)根据分式的减法和除法可以解答本题.【详解】(1)())022π12sin60︒-++-=4+1+|1﹣2×2|=4+1+|1﹣1(2)2a 12a 1a a a --⎛⎫÷- ⎪⎝⎭=()()2a 1a 1a 2a 1a a+--+÷ =()()()2a 1a 1a ·a a 1+-- =a 1a 1+-. 【点睛】本题考查分式的混合运算、实数的运算、零指数幂、特殊角的三角函数值和绝对值,解答本题的关键是明确它们各自的计算方法.18、答案见解析【解析】利用已知条件容易证明△ADE ≌△CFE ,得出角相等,然后利用平行线的判定可以证明FC ∥AB .【详解】解:∵E 是AC 的中点,∴AE =CE .在△ADE 与△CFE 中,∵AE =EC ,∠AED =∠CEF ,DE =EF ,∴△ADE ≌△CFE (SAS ),∴∠EAD =∠ECF ,∴FC ∥AB . 【点睛】本题主要考查了全等三角形的性质与判定,平行线的判定定理.通过全等得角相等,然后得到两线平行时一种常用的方法,应注意掌握运用.19、(1)200;16(2)126;12%(3)见解析(4)940【解析】分析:(1)由于A 组的频数比B 组小24,而A 组的频率比B 组小12%,则可计算出调查的总人数,然后计算a 和b 的值;(2)用360度乘以D 组的频率可得到n 的值,根据百分比之和为1可得E 组百分比;(3)计算出C 和E 组的频数后补全频数分布直方图;(4)利用样本估计总体,用2000乘以D 组和E 组的频率和即可.本题解析:(1)调查的总人数为()24208%200÷-=,∴2008%16a =⨯=,20020%40b =⨯=,(2)D 部分所对的圆心角70360126200=︒⨯=︒,即126n =, E 组所占比例为:7018%20%25%100%12%200⎛⎫-+++⨯= ⎪⎝⎭, (3)C 组的频数为20025%50⨯=,E 组的频数为2001640507024----=,补全频数分布直方图为:(4)70242000940200+⨯=, ∴估计成绩优秀的学生有940人.点睛:本题考查了频数(率)分布直方图:提高读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,要认真观察、分析、研究统计图,才能作出正确的判断和解决问题,也考查了用样本估计总体.20、 (1)1;(2)发令后第37秒两班运动员在275米处第一次并列.【解析】(1)直接根据图象上点横坐标可知道最快的是第1接力棒的运动员用了12秒跑完100米;(2)分别利用待定系数法把图象相交的部分,一班,二班的直线解析式求出来后,联立成方程组求交点坐标即可.【详解】(1)从函数图象上可看出初三•二班跑得最快的是第1接力棒的运动员用了12秒跑完100米;(2)设在图象相交的部分,设一班的直线为y 1=kx +b ,把点(28,200),(40,300)代入得:28200{40300k b k b +=+= 解得:k =253,b =﹣1003, 即y 1=253x ﹣1003, 二班的为y 2=k ′x +b ′,把点(25,200),(41,300),代入得:25200{41300k b k b +=+= 解得:k ′=254,b ′=1754, 即y 2=254x +1754 联立方程组2510033{2517544y x y x =-=+, 解得:37{275x y ==,所以发令后第37秒两班运动员在275米处第一次并列.【点睛】本题考查了利用一次函数的模型解决实际问题的能力和读图能力.要先根据题意列出函数关系式,再代数求值.解题的关键是要分析题意根据实际意义准确的列出解析式,再把对应值代入求解,并会根据图示得出所需要的信息.要掌握利用函数解析式联立成方程组求交点坐标的方法.21、(1)见解析;(2)菱形【解析】试题分析:(1)由切线的性质得到∠OBP =90°,进而得到∠BOP =60°,由OC =BO ,得到∠OBC =∠OCB =30°,由等角对等边即可得到结论;(2)由对角线互相垂直平分的四边形是菱形证明即可.试题解析:证明:(1)∵PB 是⊙O 的切线,∴∠OBP =90°,∠POB =90°-30°=60°.∵OB =OC ,∴∠OBC=∠OCB.∵∠POB=∠OBC+∠OCB,∴∠OCB=30°=∠P,∴PB=BC;(2)连接OD交BC于点M.∵D是弧BC的中点,∴OD垂直平分BC.在直角△OMC中,∵∠OCM=30°,∴OC=2OM=OD,∴OM=DM,∴四边形BOCD是菱形.22、(1)390,1-5x,y=-5x+1(300≤x≤2);(2)售价定位320元时,利润最大,为3元.【解析】(1)根据题中条件可得390,1-5x,若销售价每降低10元,月销售量就可多售出50千克,即可列出函数关系式;根据供货商规定这种空气净化器售价不能低于300元/台,代理销售商每月要完成不低于450台的销售即可求出x的取值.(2)用x表示y,然后再用x来表示出w,根据函数关系式,即可求出最大w.【详解】(1)依题意得:y=200+50×40010x-.化简得:y=-5x+1.(2)依题意有:∵300 52200450 xx≥⎧⎨-+≥⎩,解得300≤x≤2.(3)由(1)得:w=(-5x+1)(x-200)=-5x2+3200x-440000=-5(x-320)2+3.∵x=320在300≤x≤2内,∴当x=320时,w最大=3.即售价定为320元/台时,可获得最大利润为3元.【点睛】本题考查了利润率问题的数量关系的运用,一次函数的解析式的运用,二次函数的解析式的运用,一元二次方程的解法的运用,解答时求出二次函数的解析式时关键.23、(1)13(2)14【解析】(1)由小亮打第一场,再从其余三人中随机选取一人打第一场,求出恰好选中大刚的概率即可;(2)画树状图得出所有等可能的情况数,找出小莹和小芳伸“手心”或“手背”恰好相同的情况数,即可求出所求的概率.【详解】解:(1)∵确定小亮打第一场,∴再从小莹,小芳和大刚中随机选取一人打第一场,恰好选中大刚的概率为13;(2)列表如下:所有等可能的情况有8种,其中小莹和小芳伸“手心”或“手背”恰好相同且与大刚不同的结果有2个,则小莹与小芳打第一场的概率为21 84 .【点睛】本题主要考查了列表法与树状图法;概率公式.24、(1)该区抽样调查的人数是2400人;(2)见解析,最喜欢“其它”读物的人数在扇形统计图中所占的圆心角是度数21.6°;(3)估计最喜欢读“名人传记”的学生是4896人【解析】(1)由“科普知识”人数及其百分比可得总人数;(2)总人数乘以“漫画丛书”的人数求得其人数即可补全图形,用360°乘以“其他”人数所占比例可得;(3)总人数乘以“名人传记”的百分比可得.【详解】(1)840÷35%=2400(人),∴该区抽样调查的人数是2400人;(2)2400×25%=600(人),∴该区抽样调查最喜欢“漫画丛书”的人数是600人,补全图形如下:144×360°=21.6°,2400∴最喜欢“其它”读物的人数在扇形统计图中所占的圆心角是度数21.6°;(3)从样本估计总体:14400×34%=4896(人),答:估计最喜欢读“名人传记”的学生是4896人.【点睛】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图能够清楚地表示各部分所占的百分比.。

2020-2021学年辽宁省抚顺市中考数学模拟试卷(五)及答案解析

2020-2021学年辽宁省抚顺市中考数学模拟试卷(五)及答案解析
∵白球有5个,
∴红球有9×5=45(个),
故选:A.
【点评】本题考查的是通过样本去估计总体,只需将样本“成比例地放大”为总体即可.
8.如图,在△ABC中,点D在边AB上,BD=2AD,DE∥BC交AC于点E,若线段DE=5,则线段BC的长为( )
A.7.5B.10C.15D.20
【考点】相似三角形的判定与性质.
9.如图,已知正方形ABCD的边长为4,E是BC边上的一个动点,AE⊥EF,EF交DC于F,设BE=x,FC=y,则当点E从点B运动到点C时,y关于x的函数图象是( )
A. B. C. D.
【考点】动点问题的函数图象.
【专题】压轴题.
【分析】通过设出BE=x,FC=y,且△AEF为直角三角形,运用勾股定理得出y与x的关系,再判断出函数图象.
A. B. C. D.
10.如图,已知△ABC为等腰直角三角形,AC=BC=4,∠BCD=15°,P为CD上的动点,则|PA﹣PB|的最大值是( )
A.4B.5C.6D.8
二、填空题:每小题3分,共24分.
11.不等式组 的整数解是.
12.计算:2×( ﹣1)0﹣12015+ 的值为.
13.函数 的自变量x的取值范围是.
【分析】根据主视图的定义,找到从正面看所得到的图形即可.
【解答】解:从物体正面看,左边1列、右边1列上下各一个正方形,且左右正方形中间是虚线,
故选:C.
【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图,解答时学生易将三种视图混淆而错误的选其它选项.
6.学校准备设计一款女生校服,对全校女生喜欢的颜色进行了问卷调查,统计如下表所示:
辽宁省抚顺市中考数学模拟试卷(五)
一、选择题:每小题3分,共30分,在四个选项中只有一项是正确的.

初中数学中考复习 2021年中考数学压轴模拟试卷05 (吉林省专用)(解析版)

初中数学中考复习 2021年中考数学压轴模拟试卷05 (吉林省专用)(解析版)

2021年中考物理统一命题的省自治区压轴模拟试卷2021年中考数学压轴模拟试卷05(吉林省专用)(满分120分,答题时间120分钟)一、单项选择题(每小题2分,共12分)1.实数3的相反数是()A.﹣3 B.C.3 D.±3【答案】A【解析】直接利用相反数的定义分析得出答案.实数3的相反数是:﹣3.2. 截至2020年3月9日24时,湖北全省累计治愈出院47585例,其中:武汉市31829例.将31829用科学记数法表示应为()A.3.1829×104B.31.829×104C.0.31829×105D.3.1829×105【答案】A【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.将31829用科学记数法表示为:3.1829×104。

3. 如图所示,该几何体的俯视图是()A. B. C. D.【答案】B【解析】根据俯视图的定义判断即可.俯视图即从上往下看的视图,因此题中的几何体从上往下看是左右对称的两个矩形.4.下列运算正确的是()A. 236a a a ⋅=B. ()325a a = C. 22(2)2a a =D. 32a a a ÷=【答案】D【解析】根据同底数幂的乘除法、幂的乘方、积的乘方逐项判断即可. A .23235a a a a +⋅==,此项错误 B .()23236a a a ⨯==,此项错误C .22(2)4a a =,此项错误D .3232a a a a -÷==,此项正确5.将一副三角尺按如图所示的方式摆放,则α∠的大小为( )A. 85︒B. 75︒C. 65︒D. 60︒【答案】B【解析】先根据直角三角板的性质得出∠ACD 的度数,再由三角形内角和定理即可得出结论. 如图所示,由一副三角板的性质可知:∠ECD =60°,∠BCA =45°,∠D =90°, ∴∠ACD =∠ECD -∠BCA =60°-45°=15°, ∴∠α=180°-∠D -∠ACD =180°-90°-15°=75°。

福建省晋江市潘径中学2021-2022学年中考数学五模试卷含解析

福建省晋江市潘径中学2021-2022学年中考数学五模试卷含解析

2021-2022中考数学模拟试卷请考生注意:1.请用2B 铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。

写在试题卷、草稿纸上均无效。

2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.不等式组310x x <⎧⎨-≤⎩中两个不等式的解集,在数轴上表示正确的是A .B .C .D .2.如图,AB 是O 的直径,弦CD AB ⊥,垂足为点E ,点G 是AC 上的任意一点,延长AG 交DC 的延长线于点F ,连接,,GC GD AD .若25BAD ∠=︒,则AGD ∠等于( )A .55︒B .65︒C .75︒D .85︒3.如图,PA 、PB 是O 的切线,点D 在AB 上运动,且不与A ,B 重合,AC 是O 直径.62P ∠=︒,当//BD AC时,C ∠的度数是( )A .30B .31︒C .32︒D .33︒4.如图,小明从A 处出发沿北偏西30°方向行走至B 处,又沿南偏西50°方向行走至C 处,此时再沿与出发时一致的方向行走至D 处,则∠BCD 的度数为( )A.100°B.80°C.50°D.20°5.已知x=2﹣,则代数式(7+4)x2+(2+)x+ 的值是()A.0 B.C.2+D.2﹣6.施工队要铺设1000米的管道,因在中考期间需停工2天,每天要比原计划多施工30米才能按时完成任务.设原计划每天施工x米,所列方程正确的是()A.1000100030x x-+=2 B.1000100030x x-+=2C.1000100030x x--=2 D.1000100030x x--=27.七年级1班甲、乙两个小组的14名同学身高(单位:厘米)如下:甲组158 159 160 160 160 161 169乙组158 159 160 161 161 163 165以下叙述错误的是()A.甲组同学身高的众数是160B.乙组同学身高的中位数是161C.甲组同学身高的平均数是161D.两组相比,乙组同学身高的方差大8.下列命题是真命题的是()A.如果a+b=0,那么a=b=0 B16±4C.有公共顶点的两个角是对顶角D.等腰三角形两底角相等9.为了配合“我读书,我快乐”读书节活动,某书店推出一种优惠卡,每张卡售价20元,凭卡购书可享受8折优惠,小慧同学到该书店购书,她先买优惠卡再凭卡付款,结果节省了10元,若此次小慧同学不买卡直接购书,则她需付款:A.140元B.150元C.160元D.200元10.某共享单车前a公里1元,超过a公里的,每公里2元,若要使使用该共享单车50%的人只花1元钱,a应该要取什么数()A.平均数B.中位数C.众数D.方差11.下列各数中,为无理数的是()A .38B.4C.13D.212.两个相同的瓶子装满酒精溶液,在一个瓶子中酒精与水的容积之比是1:p,而在另一个瓶子中是1:q,若把两瓶溶液混合在一起,混合液中的酒精与水的容积之比是()A.2P q+B.2P qPq+C.2+2p qP q Pq+++D.2+2p q pqP q+++二、填空题:(本大题共6个小题,每小题4分,共24分.)13.6-的相反数是_____,倒数是_____,绝对值是_____ 14.已知,则=_____.15.(2017四川省攀枝花市)若关于x的分式方程7311mxx x+=--无解,则实数m=_______.16.对于实数a,b,我们定义符号max{a,b}的意义为:当a≥b时,max{a,b}=a;当a<b时,max{a,b]=b;如:max{4,﹣2}=4,max{3,3}=3,若关于x的函数为y=max{x+3,﹣x+1},则该函数的最小值是_____.17.若直角三角形两边分别为6和8,则它内切圆的半径为_____.18.如图,边长为6cm的正三角形内接于⊙O,则阴影部分的面积为(结果保留π)_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)为了提高学生书写汉字的能力,增强保护汉子的意识,某校举办了首届“汉字听写大赛”,学生经选拔后进入决赛,测试同时听写100个汉字,每正确听写出一个汉字得1分,本次决赛,学生成绩为(分),且,将其按分数段分为五组,绘制出以下不完整表格:组别成绩(分)频数(人数)频率一 2 0.04二10 0.2三14b 四 a0.32 五80.16请根据表格提供的信息,解答以下问题: (1)本次决赛共有 名学生参加; (2)直接写出表中a= ,b= ; (3)请补全下面相应的频数分布直方图;(4)若决赛成绩不低于80分为优秀,则本次大赛的优秀率为 .20.(6分)如图所示,已知CFE BDC 180,DEF B ︒∠+∠=∠=∠,试判断AED ∠与ACB ∠的大小关系,并说明理由.21.(6分)如图,直线y =﹣x+2与反比例函数ky x= (k≠0)的图象交于A (a ,3),B (3,b )两点,过点A 作AC ⊥x 轴于点C ,过点B 作BD ⊥x 轴于点D .(1)求a,b的值及反比例函数的解析式;(2)若点P在直线y=﹣x+2上,且S△ACP=S△BDP,请求出此时点P的坐标;(3)在x轴正半轴上是否存在点M,使得△MAB为等腰三角形?若存在,请直接写出M点的坐标;若不存在,说明理由.22.(8分)某市教育局为了了解初一学生第一学期参加社会实践活动的情况,随机抽查了本市部分初一学生第一学期参加社会实践活动的天数,并将得到的数据绘制成了下面两幅不完整的统计图.请根据图中提供的信息,回答下列问题:扇形统计图中a的值为%,该扇形圆心角的度数为;补全条形统计图;如果该市共有初一学生20000人,请你估计“活动时间不少于5天”的大约有多少人?23.(8分)为提高市民的环保意识,倡导“节能减排,绿色出行”,某市计划在城区投放一批“共享单车”这批单车分为A,B两种不同款型,其中A型车单价400元,B型车单价320元.今年年初,“共享单车”试点投放在某市中心城区正式启动.投放A,B两种款型的单车共100辆,总价值36800元.试问本次试点投放的A型车与B型车各多少辆?试点投放活动得到了广大市民的认可,该市决定将此项公益活动在整个城区全面铺开.按照试点投放中A,B两车型的数量比进行投放,且投资总价值不低于184万元.请问城区10万人口平均每100人至少享有A型车与B型车各多少辆?24.(108(﹣13)﹣1+|12|﹣4sin45°.25.(10分)如图,在四边形ABCD中,点E是对角线BD上的一点,EA⊥AB,EC⊥BC,且EA=EC.求证:AD=CD.26.(12分)某超市开展早市促销活动,为早到的顾客准备一份简易早餐,餐品为四样A:菜包、B:面包、C:鸡蛋、D:油条.超市约定:随机发放,早餐一人一份,一份两样,一样一个.(1)按约定,“某顾客在该天早餐得到两个鸡蛋”是事件(填“随机”、“必然”或“不可能”);(2)请用列表或画树状图的方法,求出某顾客该天早餐刚好得到菜包和油条的概率.27.(12分)某校七年级(1)班班主任对本班学生进行了“我最喜欢的课外活动”的调查,并将调查结果分为书法和绘画类记为A;音乐类记为B;球类记为C;其他类记为D.根据调查结果发现该班每个学生都进行了等级且只登记了一种自己最喜欢的课外活动.班主任根据调查情况把学生都进行了归类,并制作了如下两幅统计图,请你结合图中所给信息解答下列问题:七年级(1)班学生总人数为_______人,扇形统计图中D类所对应扇形的圆心角为_____度,请补全条形统计图;学校将举行书法和绘画比赛,每班需派两名学生参加,A类4名学生中有两名学生擅长书法,另两名擅长绘画.班主任现从A类4名学生中随机抽取两名学生参加比赛,请你用列表或画树状图的方法求出抽到的两名学生恰好是一名擅长书法,另一名擅长绘画的概率.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1、B 【解析】由①得,x <3,由②得,x ≥1,所以不等式组的解集为:1≤x <3,在数轴上表示为:,故选B .2、B 【解析】连接BD ,利用直径得出∠ABD=65°,进而利用圆周角定理解答即可. 【详解】 连接BD ,∵AB 是直径,∠BAD=25°, ∴∠ABD=90°-25°=65°, ∴∠AGD=∠ABD=65°, 故选B . 【点睛】此题考查圆周角定理,关键是利用直径得出∠ABD=65°. 3、B 【解析】连接OB ,由切线的性质可得90∠=∠=︒PAO PBO ,由邻补角相等和四边形的内角和可得62∠=∠=︒BOC P ,再由圆周角定理求得D ∠,然后由平行线的性质即可求得C ∠. 【详解】 解,连结OB ,∵PA 、PB 是O 的切线,∴PA OA ⊥,PB OB ⊥,则90∠=∠=︒PAO PBO ,∵四边形APBO 的内角和为360°,即++360∠∠∠+∠=︒PAO PBO P AOB , ∴180∠+∠=︒P AOB ,又∵62P ∠=︒,180∠+∠=︒BOC AOB , ∴62∠=∠=︒BOC P , ∵BC BC =, ∴1312∠=∠=︒D BOC , ∵//BD AC , ∴31∠=∠=︒C D , 故选:B . 【点睛】本题主要考查了切线的性质、圆周角定理、平行线的性质和四边形的内角和,解题的关键是灵活运用有关定理和性质来分析解答. 4、B 【解析】解:如图所示:由题意可得:∠1=30°,∠3=50°,则∠2=30°,故由DC ∥AB ,则∠4=30°+50°=80°.故选B .点睛:此题主要考查了方向角的定义,正确把握定义得出∠3的度数是解题关键. 5、C把x的值代入代数式,运用完全平方公式和平方差公式计算即可【详解】解:当x=2﹣时,(7+4)x2+(2+)x+=(7+4)(2﹣)2+(2+)(2﹣)+=(7+4)(7-4)+1+=49-48+1+=2+故选:C.【点睛】此题考查二次根式的化简求值,关键是代入后利用完全平方公式和平方差公式进行计算.6、A【解析】分析:设原计划每天施工x米,则实际每天施工(x+30)米,根据:原计划所用时间﹣实际所用时间=2,列出方程即可.详解:设原计划每天施工x米,则实际每天施工(x+30)米,根据题意,可列方程:1000100030x x-+=2,故选A.点睛:本题考查了由实际问题抽象出分式方程,关键是读懂题意,找出合适的等量关系,列出方程.7、D【解析】根据众数、中位数和平均数及方差的定义逐一判断可得.【详解】A.甲组同学身高的众数是160,此选项正确;B.乙组同学身高的中位数是161,此选项正确;C.甲组同学身高的平均数是15815916031611697++⨯++=161,此选项正确;D.甲组的方差为807,乙组的方差为347,甲组的方差大,此选项错误.【点睛】本题考查了众数、中位数和平均数及方差,掌握众数、中位数和平均数及方差的定义和计算公式是解题的关键. 8、D 【解析】解:A 、如果a +b =0,那么a =b =0,或a =﹣b ,错误,为假命题;B 的平方根是±2,错误,为假命题;C 、有公共顶点且相等的两个角是对顶角,错误,为假命题;D 、等腰三角形两底角相等,正确,为真命题; 故选D . 9、B 【解析】试题分析:此题的关键描述:“先买优惠卡再凭卡付款,结果节省了人民币10元”,设李明同学此次购书的总价值是人民币是x 元,则有:20+0.8x=x ﹣10解得:x=150,即:小慧同学不凭卡购书的书价为150元. 故选B .考点:一元一次方程的应用 10、B【解析】解:根据中位数的意义,故只要知道中位数就可以了.故选B . 11、D 【解析】A ,是有理数;B =2,是有理数;C .13,是有理数;D ,是无理数, 故选D. 12、C 【解析】混合液中的酒精与水的容积之比为两瓶中的纯酒精与两瓶中的水之比,分别算出纯酒精和水的体积即可得答案. 【详解】设瓶子的容积即酒精与水的和是1,则纯酒精之和为:1×11p ++1×11q +=11p ++11q +,水之和为:1p p ++1q q +, ∴混合液中的酒精与水的容积之比为:(11p ++11q +)÷(1p p ++1q q +)=2+2p q P q Pq +++,故选C . 【点睛】本题主要考查分式的混合运算,找到相应的等量关系是解决本题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.) 13、6 ,66- 6【解析】∵只有符号不同的两个数是互为相反数, ∴6-的相反数是6; ∵乘积为1的两个数互为倒数, ∴6-的倒数是66-; ∵负数得绝对值是它的相反数, ∴6-绝对值是 6.故答案为(1). 6 (2). 66-(3). 614、【解析】 由可知值,再将化为的形式进行求解即可.【详解】 解:∵,∴,∴原式=.【点睛】本题考查了分式的化简求值.15、3或1.【解析】解:方程去分母得:1+3(x﹣1)=mx,整理得:(m﹣3)x=2.①当整式方程无解时,m﹣3=0,m=3;②当整式方程的解为分式方程的增根时,x=1,∴m﹣3=2,m=1.综上所述:∴m的值为3或1.故答案为3或1.16、2【解析】试题分析:当x+3≥﹣x+1,即:x≥﹣1时,y=x+3,∴当x=﹣1时,y min=2,当x+3<﹣x+1,即:x<﹣1时,y=﹣x+1,∵x<﹣1,∴﹣x>1,∴﹣x+1>2,∴y>2,∴y min=2,17、27【解析】根据已知题意,求第三边的长必须分类讨论,即8是斜边或直角边的两种情况,然后利用勾股定理求出另一边的长,再根据内切圆半径公式求解即可.【详解】若8226+8=10,∴内切圆的半径为:6+810=22-;若8228627=-∴内切圆的半径为:6+278=712--. 故答案为2或7-1. 【点睛】本题考查了勾股定理,三角形的内切圆,以及分类讨论的数学思想,分类讨论是解答本题的关键. 18、(4π﹣33)cm 1 【解析】连接OB 、OC ,作OH ⊥BC 于H ,根据圆周角定理可知∠BOC 的度数,根据等边三角形的性质可求出OB 、OH 的长度,利用阴影面积=S 扇形OBC -S △OBC 即可得答案 【详解】:连接OB 、OC ,作OH ⊥BC 于H , 则BH=HC= BC= 3, ∵△ABC 为等边三角形, ∴∠A=60°,由圆周角定理得,∠BOC=1∠A=110°, ∵OB=OC , ∴∠OBC=30°, ∴OB=cos OBCBH∠=13 ,OH=3,∴阴影部分的面积= 2120(23)360π⨯﹣12×6×3=4π﹣33 ,故答案为:(4π﹣3cm 1. 【点睛】本题主要考查圆周角定理及等边三角形的性质,在同圆或等圆中,同弧或等弧所对的圆周角等于圆心角的一半;熟练掌握圆周角定理是解题关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19、(1)50;(2)a=16,b=0.28;(3)答案见解析;(4)48%.【解析】试题分析:(1)根据第一组别的人数和百分比得出样本容量;(2)根据样本容量以及频数、频率之间的关系得出a和b的值,(3)根据a的值将图形补全;(4)根据图示可得:优秀的人为第四和第五组的人,将两组的频数相加乘以100%得出答案.试题解析:(1)2÷0.04=50(2)50×0.32=16 14÷50=0.28(3)(4)(0.32+0.16)×100%=48%考点:频数分布直方图∠=∠.20、AED ACB【解析】首先判断∠AED与∠ACB是一对同位角,然后根据已知条件推出DE∥BC,得出两角相等.【详解】解:∠AED=∠ACB.理由:如图,分别标记∠1,∠2,∠3,∠1.∵∠1+∠1=180°(平角定义),∠1+∠2=180°(已知).∴∠2=∠1.∴EF∥AB(内错角相等,两直线平行).∴∠3=∠ADE(两直线平行,内错角相等).∵∠3=∠B(已知),∴∠B=∠ADE(等量代换).∴DE∥BC(同位角相等,两直线平行).∴∠AED=∠ACB(两直线平行,同位角相等).【点睛】本题重点考查平行线的性质和判定,难度适中.21、(1)y=3x-;(2)P(0,2)或(-3,5);(3)M(123-+,0)或(331+,0).【解析】(1)利用点在直线上,将点的坐标代入直线解析式中求解即可求出a,b,最后用待定系数法求出反比例函数解析式;(2)设出点P坐标,用三角形的面积公式求出S△ACP=12×3×|n+1|,S△BDP=12×1×|3−n|,进而建立方程求解即可得出结论;(3)设出点M坐标,表示出MA2=(m+1)2+9,MB2=(m−3)2+1,AB2=32,再三种情况建立方程求解即可得出结论.【详解】(1)∵直线y=-x+2与反比例函数y=kx(k≠0)的图象交于A(a,3),B(3,b)两点,∴-a+2=3,-3+2=b,∴a=-1,b=-1,∴A(-1,3),B(3,-1),∵点A(-1,3)在反比例函数y=kx上,∴k=-1×3=-3,∴反比例函数解析式为y=3x -;(2)设点P(n,-n+2),∵A(-1,3),∴C(-1,0),∵B(3,-1),∴D(3,0),∴S△ACP=12AC×|x P−x A|=12×3×|n+1|,S△BDP=12BD×|x B−x P|=12×1×|3−n|,∵S△ACP=S△BDP,∴12×3×|n+1|=12×1×|3−n|,∴n=0或n=−3,∴P(0,2)或(−3,5);(3)设M(m,0)(m>0),∵A(−1,3),B(3,−1),∴MA2=(m+1)2+9,MB2=(m−3)2+1,AB2=(3+1)2+(−1−3)2=32,∵△MAB是等腰三角形,∴①当MA=MB时,∴(m+1)2+9=(m−3)2+1,∴m=0,(舍)②当MA=AB时,∴(m+1)2+9=32,∴m=−1+23或m=−1−23(舍),∴M(−1+23,0)③当MB=AB时,(m−3)2+1=32,∴m=3+31或m=3−31(舍),∴M(3+31,0)即:满足条件的M(−1+23,0)或(3+31,0).【点睛】此题是反比例函数综合题,主要考查了待定系数法,三角形的面积的求法,等腰三角形的性质,用方程的思想解决问题是解本题的关键.22、(1)25,90°;(2)见解析;(3)该市“活动时间不少于5天”的大约有1.【解析】试题分析:(1)根据扇形统计图的特征即可求得a的值,再乘以360°即得扇形的圆心角;(2)先算出总人数,再乘以“活动时间为6天”对应的百分比即得对应的人数;(3)先求得“活动时间不少于5天”的学生人数的百分比,再乘以20000即可.(1)由图可得该扇形圆心角的度数为90°;(2)“活动时间为6天” 的人数,如图所示:(3)∵“活动时间不少于5天”的学生人数占75%,20000×75%=1∴该市“活动时间不少于5天”的大约有1人.考点:统计的应用点评:统计的应用初中数学的重点,在中考中极为常见,一般难度不大.23、(1)本次试点投放的A型车60辆、B型车40辆;(2)3辆;2辆【解析】分析:(1)设本次试点投放的A型车x辆、B型车y辆,根据“两种款型的单车共100辆,总价值36800元”列方程组求解可得;(2)由(1)知A、B型车辆的数量比为3:2,据此设整个城区全面铺开时投放的A型车3a辆、B型车2a辆,根据“投资总价值不低于184万元”列出关于a的不等式,解之求得a的范围,进一步求解可得.详解:(1)设本次试点投放的A型车x辆、B型车y辆,根据题意,得:100 40032036800x yx y+=⎧⎨+=⎩,解得:6040 xy=⎧⎨=⎩,答:本次试点投放的A型车60辆、B型车40辆;(2)由(1)知A、B型车辆的数量比为3:2,设整个城区全面铺开时投放的A型车3a辆、B型车2a辆,根据题意,得:3a×400+2a×320≥1840000,解得:a≥1000,即整个城区全面铺开时投放的A型车至少3000辆、B型车至少2000辆,则城区10万人口平均每100人至少享有A型车3000×100100000=3辆、至少享有B型车2000×100100000=2辆.点睛:本题主要考查二元一次方程组和一元一次不等式的应用,解题的关键是理解题意找到题目蕴含的相等(或不等)关系,并据此列出方程组.244 -【解析】根据绝对值的概念、特殊三角函数值、负整数指数幂、二次根式的化简计算即可得出结论.【详解】+(﹣13)﹣1+|1|﹣1sin15°﹣﹣1﹣﹣﹣1﹣﹣1.【点睛】此题主要考查了实数的运算,负指数,绝对值,特殊角的三角函数,熟练掌握运算法则是解本题的关键.25、证明见解析【解析】根据垂直的定义和直角三角形的全等判定,再利用全等三角形的性质解答即可.【详解】∵EA⊥AB,EC⊥BC,∴∠EAB=∠ECB=90°,在Rt△EAB与Rt△ECB中{EA EC EB EB==,∴Rt△EAB≌Rt△ECB,∴AB=CB,∠ABE=∠CBE,∵BD=BD,在△ABD与△CBD中{AB CBABE CBE BD BD=∠=∠=,∴△ABD≌△CBD,∴AD=CD.【点睛】本题考查了全等三角形的判定及性质,根据垂直的定义和直角三角形的全等判定是解题的关键.26、(1)不可能;(2)1 6 .【解析】(1)利用确定事件和随机事件的定义进行判断;(2)画树状图展示所有12种等可能的结果数,再找出其中某顾客该天早餐刚好得到菜包和油条的结果数,然后根据概率公式计算.【详解】(1)某顾客在该天早餐得到两个鸡蛋”是不可能事件;故答案为不可能;(2)画树状图:共有12种等可能的结果数,其中某顾客该天早餐刚好得到菜包和油条的结果数为2,所以某顾客该天早餐刚好得到菜包和油条的概率=21 126.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式mn计算事件A或事件B的概率.27、48;105°;【解析】试题分析:根据B的人数和百分比求出总人数,根据D的人数和总人数的得出D所占的百分比,然后得出圆心角的度数,根据总人数求出C的人数,然后补全统计图;记A类学生擅长书法的为A1,擅长绘画的为A2,根据题意画出表格,根据概率的计算法则得出答案.试题解析:(1)12÷25%=48(人)14÷48×360°=105°48-(4+12+14)=18(人),补全图形如下:(2)记A类学生擅长书法的为A1,擅长绘画的为A2,则可列下表:A1 A1 A2 A2 A1 √√A1 √√A2 √√A2 √√∴由上表可得:考点:统计图、概率的计算.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

学校 班级 姓名 考号
密 封 线 内 不 要 答 题
2021年第五次冲刺模拟试卷(数学)
满分:120分 考试时间:100分钟
一、选择题:本大题共10小题,每小题3分,共30分,每小题只有一个正确选项.
1.下列图形中,不是中心对称图形的是 ( )
A .
B .
C .
D .
2.在2020年举行的第127届“广交会”上,有近26000家厂家进行“云端销售”.其中数据26000用科学记数法表示为 ( ) A .26×103
B .2.6×103
C .2.6×104
D .0.26×105
3.已知2x n +1y 3与x 4y 3是同类项,则n 的值是 ( )
A .2
B .3
C .4
D .5
4.如图,AB 是⊙O 的切线,A 为切点,连接OA ,OB ,若∠B =20°,
则∠AOB 的度数为 ( ) A .40°
B .50°
C .60
D .70°
5.如图,是由四个相同的小正方体组成的立体图形,它的左视图是 ( )
A .
B .
C .
D .
6.已知样本数据2,3,5,3,7,下列说法不正确的是 ( ) A .平均数是4
B .众数是3
C .中位数是5
D .方差是3.2
7.下列计算正确的是 ( ) A .2a 2﹣a 2=1
B .(ab )2=ab 2
C .a 2+a 3=a 5
D .(a 2)3=a 6
8.为庆祝建党100周年,某校八年级(3)班团支部为了让同学们进一步了解中国科技的发展,给班上同学布置了一项课外作业,从选出的以下五个内容中任选部分内容进行手抄报的制作:A 、“北斗卫星”:B 、“5G 时代”;C 、“智轨快运系统”;D 、“东风快递”;E 、“高铁”.统计同学们所选内容的频数,绘制如图所示的折线统计图,则选择“5G 时代”的频率是 ( ) A .0.25
B .0.3
C .25
D .30
9.如图,在平面直角坐标系中,△ABC 的顶点坐标分别是A (1,2),B (1,1),C (3,1),以原点为位似中心,在原点的同侧画△DEF ,使△DEF 与△ABC 成位似图形,且相似比为2:1,
则线段DF 的长度为 ( ) A .
B .2
C .4
D .2
第8题 第9题 第10题 10.如图,正方形ABCD 的边长为3cm ,动点P 从B 点出发以3cm /s 的速度沿着边BC ﹣CD ﹣DA 运动,到达A 点停止运动;另一动点Q 同时从B 点出发,以1cm /s 的速度沿着边BA 向A 点运动,到达A 点停止运动.设P 点运动时间为x (s ),△BPQ 的面积为y (cm 2),
则y 关于x 的函数图象是 ( )
A .
B .
C .
D .
二、填空题:本大题共8小题,每小题3分,共24分.
11.分解因式:x 2﹣9= .
12.一个多边形的内角和等于它的外角和的2倍,则这个多边形的边数是 .
13.一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在岔路口随机选择一条路径,它获得食物 的概率是 .
14.如图,在边长为2的正方形ABCD 中,对角线AC 的中点为O ,分别以点A ,C 为圆心,以 AO 的长为半径画弧,分别与正方形的边相交,则图中的阴影部分的面积为 . (结果保留π)
第13题 第14题 第17题
15.若二次函数y =﹣x 2+2x+k 的图象与x 轴有两个交点,则k 的取值范围是 .
密 封 线 内 不 要 答 题
16.如果将抛物线y =x 2向右平移2个单位,向上平移3个单位长度,那么所得新的抛物线 的表达式是 .
17.如图,点P 是∠AOC 的角平分线上一点,PD ⊥OA ,垂足为点D ,且PD =3,点M 是 射线OC 上一动点,则PM 的最小值为 .
18.算筹是在珠算发明以前我国独创并且有效的计算工具,为我国古代数学的发展做出了 很大的贡献.在算筹计数法中,以“纵式”和“横式”两种方式来表示数字如图:
数字形式 1 2 3 4 5 6
7
8
9
纵式 | || |||
||||
|||||
横式
表示多位数时,个位用纵式,十位用横式,百位用纵式,千位用横式,以此类推,遇零则置空.
示例如图:,则表示的数是 .
三、解答题(一):本大题共5小题,共26分.解答应写出必要的文字说明、证明过程
或演算步骤.
19.(4分)计算:()﹣
2﹣|﹣1+|+2sin60°+(﹣1﹣).
20.(4分)化简求值:(1﹣)÷
,其中a =﹣2.
21.(6分)如图,在Rt △ABC 中,∠C =90°,AB =8.
(1)根据要求用尺规作图:作∠CAB 的平分线交BC 于点D ;(不写作法,只保留作图痕迹.) (2)在(1)的条件下,CD =2,求△ADB 的面积.
22.(6分)为了测量一条两岸平行的河流宽度,三个数学研究小组设计了不同的方案,他们 在河南岸的点A 处测得河北岸的树H 恰好在A 的正北方向.测量方案与数据如下表:
课题 测量河流宽度 测量工具 测量角度的仪器,皮尺等
测量小组
第一小组
第二小组
第三小组
测量方案 示意图
说明
点B ,C 在点A 的正东方向
点B ,D 在点A 的正东方向 点B 在点A 的正东方向,点C 在点A 的正西方向.
测量数据
BC =60m ,
∠ABH =70°, ∠ACH =35°.
BD =20m , ∠ABH =70°, ∠BCD =35°.
BC =101m , ∠ABH =70°, ∠ACH =35°.
(1)哪个小组的数据无法计算出河宽?
(2)请选择其中一个方案及其数据求出河宽(精确到0.1m ).(参考数据:sin70°≈0.94,sin35°≈0.57,tan70°≈2.75,tan35°≈0.70)
学校 班级 姓名 考号
密 封 线 内 不 要 答 题
23.(6分)小明想了解本校九年级学生对“书画、器乐、艺术、棋类”四项“校本课程”的喜欢情况,随机抽查了部分学生进行问卷调查(每名学生只选择一项),将调查结果整理并绘制成如图表示不完整的统计图.请结合统计图解答下列问题:
(1)本次抽样调查的学生有 人; (2)请根据以上信息直接补全条形统计图;
(3)在扇形统计图中,a = ,喜欢艺术活动的学生人数所对应圆心角的度 数为 度;
(4)全校有学生1800人,估计全校喜欢器乐的学生人数是多少人?
四、解答题(二):本大题共5小题,共40分.解答应写出必要的文字说明、证明过程或演算步骤.
24.(7分)经过实验获得两个变量x (x >0),y (y >0)的一组对应值如下表.
x … 1 2 3 4 5 6 … y

6
3
2
1.5
1.2
1

(1)请画出相应函数的图象,并求出函数表达式.
(2)点A (x 1,y 1),B (x 2,y 2)在此函数图象上.若x 1<x 2,则y 1,y 2有怎样的大小关系?请说明理由.
25.(7分)在“抗击疫情”期间,某学校工会号召广大教师积极开展了“献爱心捐款”活动, 学校拟用这笔捐款购买A 、B 两种防疫物品.如果购买A 种物品60件,B 种物品45件, 共需1140元;如果购买A 种物品45件,B 种物品30件,共需840元. (1)求A 、B 两种防疫物品每件各多少元;
(2)现要购买A 、B 两种防疫物品共600件,总费用不超过7000元,那么A 种防疫 物品最多购买多少件?
26.(8分)如图,在△ABC 中,∠C =90°,AD 平分∠BAC 交BC 于点D ,点O 在AB 上, 以点O 为圆心,OA 为半径的圆恰好经过点D ,分别交AC 、AB 于点E 、F . (1)试判断直线BC 与⊙O 的位置关系,并说明理由; (2)若BD =2
,AB =6,求阴影部分的面积(结果保留π).
密 封 线 内 不 要 答 题
27.(8分)如图,在▱ABCD 中,对角线AC 与BD 相交于点O ,点E ,F 分别在BD 和 DB 的延长线上,且DE =BF ,连接AE ,CF . (1)求证:△ADE ≌△CBF ;
(2)连接AF ,CE .当BD 平分∠ABC 时,四边形AFCE 是什么特殊四边形? 请说明理由.
28.(10分)如图,在直角坐标系中,抛物线经过点A (0,4),B (1,0),C (5,0),其对称轴与x 轴相交于点M .
(1)求抛物线的解析式和对称轴;
(2)在抛物线的对称轴上是否存在一点P ,使△P AB 的周长最小?若存在,请求出点P 的坐标;若不存在,请说明理由;
(3)连接AC ,在直线AC 的下方的抛物线上,是否存在一点N ,使△NAC 的面积最大? 若存在,请求出点N 的坐标;若不存在,请说明理由.。

相关文档
最新文档