九年级数学旋转练习题
中考数学元复习《图形的旋转》练习题含答案

中考数学复习图形的旋转一、选择题1.下列图形中是中心对称图形的有( B )A.1个B.2个C.3个D.4个2.如图,将△ABC绕点B顺时针旋转60°得△DBE,点C的对应点E恰好落在AB 的延长线上,连结AD.下列结论一定正确的是( C )A.∠ABD=∠E B.∠CBE=∠CC.AD∥BC D.AD=BC,第2题图),第3题图) 3.如图,在平面直角坐标系中,点B,C,E在y轴上,Rt△ABC经过变换得到Rt△ODE.若点C的坐标为(0,1),AC=2,则这种变换可以是( A )A.△ABC绕点C顺时针旋转90°,再向下平移3个单位B.△ABC绕点C顺时针旋转90°,再向下平移1个单位C.△ABC绕点C逆时针旋转90°,再向下平移1个单位D.△ABC绕点C逆时针旋转90°,再向下平移3个单位4.如图,在△ABC中,∠C=90°,AC=4,BC=3,将△ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处,则B,D两点间的距离为( A )A.10 B.2 2 C.3 D.25【解析】∵在△ABC中,∠C=90°,AC=4,BC=3,∴AB=5,∵将△ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处,∴AE=4,DE=3,∴BE=1,在Rt△BED中,BD=BE2+DE2=10.故选A.,第4题图),第5题图) 5.如图,将线段AB绕点O顺时针旋转90°得到线段A′B′,那么A(-2,5)的对应点A′的坐标是( B )A.(2,5) B.(5,2) C.(2,-5) D.(5,-2)【解析】∵线段AB绕点O顺时针旋转90°得到线段A′B′,∴△ABO≌△A′B′O,∠AOA′=90°,∴AO=A′O.作AC⊥y轴于C,A′C′⊥x轴于C′,∴∠ACO=∠A′C′O=90°.∵∠COC′=90°,∴∠AOA′-∠COA′=∠COC′-∠COA′,∴∠AOC=∠A′OC′.∴△ACO≌△A′C′O,∴AC=A′C′,CO=C′O.∵A(-2,5),∴AC=2,CO=5,∴A′C′=2,OC′=5,∴A′(5,2).故选B.6.如图,将等边△ABC绕点C顺时针旋转120°得到△EDC,连结AD,BD.则下列结论:①AC=AD;②BD⊥AC;③四边形ACED是菱形.其中正确的个数是( D ) A.0个B.1个C.2个D.3个【解析】∵将等边△ABC绕点C顺时针旋转120°得到△EDC,∴∠ACE=120°,∠DCE =∠BCA=60°,A C=CD=DE=CE,∴∠ACD=120°-60°=60°,∴△ACD是等边三角形,∴AC=AD,AC=AD=DE=CE,∴四边形ACED是菱形,∵将等边△ABC绕点C顺时针旋转120°得到△EDC,AC=AD,∴AB=BC=CD=AD,∴四边形ABCD是菱形,∴BD⊥AC,∴①②③都正确,故选D.二、填空题7.如图,将△AOB绕点O按逆时针方向旋转45°后得到△COD,若∠AOB=15°,则∠AOD的度数是__60°__.,第7题图),第8题图) 8.如图,在平面直角坐标系xOy中,△AOB可以看作是△OCD经过若干次图形的变化(平移、轴对称、旋转)得到的,写出一种由△OCD得到△AOB的过程:__将△COD绕点C顺时针旋转90°,再向左平移2个单位长度得到△AOB(答案不唯一).__.9.如图,在△ABC中,∠A=70°,AC=BC,以点B为旋转中心把△ABC按顺时针旋转α度,得到△A′BC′,点A恰好落在AC上的点A′处,连结CC′,则∠ACC′=__110°__.【解析】∵∠A=70°,AC=BC,∴∠BCA=40°,根据旋转的性质,AB=BA′,BC=BC′,∴∠α=180°-2×70°=40°,∵∠CBC′=∠α=40°,∴∠BCC′=70°,∴∠ACC′=∠ACB+∠BCC′=110°.10.如图,在正方形ABCD中,AD=23,把边BC绕点B逆时针旋转30°得到线段BP,连结AP并延长交CD于点E,连结PC,则△PCE的面积为__9-53__.【解析】∵四边形ABCD是正方形,∴∠ABC=90°,∵把边BC绕点B逆时针旋转30°得到线段BP,∴PB=BC=AB,∠PBC=30°,∴∠ABP=60°,∴△ABP是等边三角形,∴∠BAP =60°,AP=AB=23,∵AD=23,∴AE=4,DE=2,∴CE=23-2,PE=4-23,过P作PF ⊥CD 于F ,∴PF =32PE =23-3,∴△PCE 的面积为12CE ·PF =12×(23-2)×(23-3)=9-5 3.故答案为9-5 3.,第10题图) ,第11题图)11.如图,正方形ABCD 和正方形CEFG 边长分别为a 和b ,正方形CEFG 绕点C 旋转,则DE 2+BG 2=__2a 2+2b 2__.【解析】连结BD ,EG ,如图所示,∴DO 2+BO 2=BD 2=BC 2+CD 2=2a 2,EO 2+OG 2=EG 2=CG 2+CE 2=2b 2,则BG 2+DE 2=DO 2+BO 2+EO 2+OG 2=2a 2+2b 2.三、解答题12. 如图,在边长为1的正方形组成的网格中,△ABC 的顶点均在格点上,点A ,B ,C 的坐标分别是A (-2,3),B (-1,2),C (-3,1),△ABC 绕点O 顺时针旋转90°后得到△A 1B 1C 1.(1)在正方形网格中作出△A 1B 1C 1;(2)在旋转过程中,点A 经过的路径AA 1︵的长度为__132π__;(3)在y 轴上找一点D ,使DB +DB 1的值最小,并求出D 点的坐标.,题图),答图)解:(1)如图所示: (2)在旋转过程中,点A 经过的路径AA 1︵的长度为90×π×13180=132π (3)∵点B ,B 1在y 轴两旁,连结BB 1交y 轴于点D ,设D′为y 轴上异于D 的点,显然D′B +D′B 1>DB +DB 1,∴当点D 是BB 1与y 轴交点时,DB +DB 1最小.设直线BB 1的解析式为y =kx +b ,依据题意得⎩⎨⎧-k +b =2,2k +b =1,解得⎩⎨⎧k =-13,b =53,∴y =-13x +53,∴D (0,53) 13.如图,已知正方形ABCD 的边长为3,E ,F 分别是AB ,BC 边上的点,且∠EDF =45°,将△DAE 绕点D 逆时针旋转90°,得到△DCM .(1)求证:△DEF ≌△DMF ;(2)若AE =1,求FM 的长.解:(1)∵△DAE 逆时针旋转90°得到△DCM ,∴∠FCM =∠FCD +∠DCM =180°,∴F ,C ,M 三点共线,∴DE =DM ,∠EDM =90°,∴∠EDF +∠MDF =90°,∵∠EDF=45°,∴∠MDF =∠EDF =45°,在△DEF 和△DMF 中,∵⎩⎨⎧DE =DM ,∠EDF =∠MDF ,DF =DF ,∴△DEF ≌△DMF (SAS ) (2)由(1)得EF =MF ,设EF =MF =x ,∵AE =CM =1,且BC =3,∴BM =BC +CM =3+1=4,∴BF =BM -MF =BM -EF =4-x ,∵EB =AB -AE =3-1=2,在Rt △EBF 中,由勾股定理得EB 2+BF 2=EF 2,即22+(4-x )2=x 2,解得x =52,∴FM =5214.如图①,将一个边长为2的正方形ABCD 和一个长为2,宽为1的长方形CEFD 拼在一起,构成一个大的长方形ABEF .现将小长方形CEFD 绕点C 顺时针旋转至CE ′F ′D ′,旋转角为α.(1)当点D ′恰好落在EF 边上时,求旋转角α的值;(2)如图②,G 为BC 中点,且0°<α<90°,求证:GD ′=E ′D ;(3)小长方形CEFD 绕点C 顺时针旋转一周的过程中,△DCD ′与△CBD ′能否全等?若能,直接写出旋转角α的值;若不能,请说明理由.解:(1)∵DC ∥EF ,∴∠DCD ′=∠CD′E =α,∵sin α=CE CD′=CE CD =12,∴α=30° (2)∵G 为BC 中点,∴GC =CE′=CE =1.∵∠D′CG =∠DCG +∠DCD′=90°+α,∠DCE ′=∠D′CE′+∠DCD′=90°+α,∴∠D ′CG =∠DCE′.又∵CD′=CD ,∴△GCD ′≌△E ′CD (SAS ),∴GD ′=E′D (3)能.α=135°或α=315°。
2023年九年级数学中考复习:旋转综合压轴题(角度问题)

2023年九年级数学中考复习:旋转综合压轴题(角度问题)1.如图①,在△ABC中,AB=AC=4,∠BAC=90°,AD⊥BC,垂足为D.(1)S△ABD =.(直接写出结果)(2)如图②,将△ABD绕点D按顺时针方向旋转得到△A′B′D,设旋转角为α (α<90°),在旋转过程中:探究一:四边形APDQ的面积是否随旋转而变化?说明理由;探究二:当α=________时,四边形APDQ是正方形.2.如图,在等腰Rt ABC和等腰Rt CDE中,90∠=∠=︒.ACB DCE(1)观察猜想:如图1,点E在BC上,线段AE与BD的关系是_________;(2)探究证明:把CDE△绕直角顶点C旋转到图2的位置,(1)中的结论还成立吗?说明理由;(3)拓展延伸:把CDE==,5AC BC△绕点C在平面内转动一周,若10==,AE、BD交于点P时,CE CD连接CP,直接写出BCP最大面积_________.3.如图1,在Rt△ABC中,∠A=90°,AB=AC,点D,E分别在边AB,AC上,AD=AE,连接DC,点M,P,N分别为DE,DC,BC的中点.(1)观察猜想:图1中,请判断线段PM与PN的数量关系和位置关系,并说明理由;(2)探究证明:把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,CE,判断△PMN的形状,并说明理由;(3)拓展延伸:把△ADE绕点A在平面内自由旋转,若AD=3,AB=7,请直接写出△PMN面积的最大值.4.如图1,△ABC为等腰直角三角形,∠BAC=90°,AB=AC,点D在AB边上,点E在AC边上,AD=AE,连接DE,取BC边的中点O,连接DO并延长到点F,使OF=OD,连接CF.(1)请判断△CEF的形状,并说明理由;(2)将(1)中△ADE绕点A旋转,连接CE,(1)中的结论是否仍然成立,若成立,请仅就图2所示情况给出证明,若不成立,请说明理由;(3)若AB=6,AD=4,将△ADE由图1位置绕点A旋转,当点B,E,D三点共线时,请直接写出△CEF 的面积.5.如图,在Rt ABC 中,90BAC ∠=︒,AB AC =,点D 是AB 外一动点,连接AD ,把AD 绕点A 逆时针旋转90°,得到AE ,连接CE ,DE ,BC 与DE 交于点F ,且AB BD ⊥.(1)如图1,若CB =6CE =,求DE 的长;(2)如图2,若点H 、G 分别为线段CF 、AE 的中点,连接HG ,求证:12HG BF =;(3)如图3,在(2)的条件下,若CE =4CF =,将BDF 绕点F 顺时针旋转角3(060)αα︒<≤︒,得到B D F '',连接B G ',取B G '中点Q ,连接BQ ,当线段BQ 最小时,请直接写出BQB '的面积.6.如图1,矩形ABCD 中,15,20AB BC ==,将矩形ABCD 绕着点A 顺时针旋转,得到矩形BEFG .(1)当点E 落在BD 上时,则线段DE 的长度等于________; (2)如图2,当点E 落在AC 上时,求BCE 的面积;(3)如图3,连接AE CE AG CG 、、、,判断线段AE 与CG 的位置关系且说明理由,并求22CE AG +的值; (4)在旋转过程中,请直接写出BCE ABG S S +△△的最大值.7.在平面直角坐标系中,O 为原点,点(4,0)A -,点(0,3),B ABO 绕点B 顺时针旋转,得A BO ''△,点A O 、旋转后的对应点为A O ''、,记旋转角为α.(1)如图①,90α=︒,边OA 上的一点M 旋转后的对应点为N ,当1OM =时,点N 的坐标为_____; (2)90α=︒,边OA 上的一点M 旋转后的对应点为N ,当O M BN '+取得最小值时,在图②中画出点M 的位置,并求出点N 的坐标.(3)如图③,P 为AB 上一点,且:2:1PA PB =,连接PO PA ''、,在ABO 绕点B 顺时针旋转一周的过程中,PO A ''的面积是否存在最大值和最小值,若存在,请求出;若不存在,请说明理由.8.如图1,△ABC 和△DEC 均为等腰三角形,且∠ACB =∠DCE =90°,连接BE ,AD ,两条线段所在的直线交于点P .(1)线段BE 与AD 有何数量关系和位置关系,请说明理由. (2)若已知BC =12,DC =5,△DEC 绕点C 顺时针旋转, ①如图2,当点D 恰好落在BC 的延长线上时,求AP 的长; ②在旋转一周的过程中,设△P AB 的面积为S ,求S 的最值.9.如图,在菱形ABCD 中,2AB =,60BAD ∠=,过点D 作DE AB ⊥于点E ,DF BC ⊥于点F .()1如图1,连接AC 分别交DE 、DF 于点M 、N ,求证:13MN AC =; ()2如图2,将EDF 以点D 为旋转中心旋转,其两边'DE 、'DF 分别与直线AB 、BC 相交于点G 、P ,连接GP ,当DGP 的面积等于10.如图1,一副直角三角板满足AB=BC ,AC=DE ,∠ABC=∠DEF=90°,∠EDF=30°操作:将三角板DEF 的直角顶点E 放置于三角板ABC 的斜边AC 上,再将三角板DEF 绕点E 旋转,并使边DE 与边AB 交于点P ,边EF 与边BC 于点Q . 探究一:在旋转过程中,(1)如图2,当1CEEA =时,EP 与EQ 满足怎样的数量关系?并给出证明; (2)如图3,当2CEEA=时,EP 与EQ 满足怎样的数量关系?并说明理由; (3)根据你对(1)、(2)的探究结果,试写出当CEm EA=时,EP 与EQ 满足的数量关系式为 ,其中m 的取值范围是 .(直接写出结论,不必证明) 探究二:若2CEEA=且AC=30cm ,连接PQ ,设△EPQ 的面积为S (cm 2),在旋转过程中: (1)S 是否存在最大值或最小值?若存在,求出最大值或最小值;若不存在,说明理由. (2)随着S 取不同的值,对应△EPQ 的个数有哪些变化,求出相应S 的值或取值范围.11.如图1,在△ABC中,∠BAC=90°,AB=AC,点D在边AC上,CD⊥DE,且CD=DE,连接BE,取BE的中点F,连接DF.(1)请直接写出∠ADF的度数及线段AD与DF的数量关系;(2)将图1中的△CDE绕点C按逆时针旋转,①如图2,(1)中∠ADF的度数及线段AD与DF的数量关系是否仍然成立?请说明理由;②如图3,连接AF,若AC=3,CD=1,求S△ADF的取值范围.12.已知点E是正方形ABCD的边AB上一点,AB=BE=2.以BE为边向右侧作正方形BEFG,将正方形BEFG绕点B顺时针旋转α度(0≤α≤90°),连结AE,CG(如图).(1)求证:△ABE ≌△CBG . (2)当点E 在BD 上时,求CG 的长.(3)当90AEB =︒∠时,正方形BEFG 停止旋转,求在旋转过程中线段AE 扫过的面积.(参考数据:sin 28︒≈sin 62︒tan 28︒,tan 62︒ 13.如图,矩形ABCD 中,5,6,==AB BC BCG 为等边三角形.点E ,F 分别为,AD BC 边上的动点,且EF AB ∥,P 为EF 上一动点,连接BP ,将线段BP 绕点B 顺时针旋转60︒至BM ,连接,,,PA PC PM GM .(1)求证:=GM PC ;(2)当,,PB PC PE 三条线段的和最小时,求PF 的长;(3)若点E 以每秒2个单位的速度由A 点向D 点运动,点P 以每秒1个单位的速度由E 点向F 点运动.E ,P 两点同时出发,点E 到达点D 时停止,点P 到达点F 时停止,设点P 的运动时间为t 秒. ①求t 为何值时,AEP △与CFP 相似; ②求BMP 的面积S 的最小值.14.如图1,在Rt ABC 中,90,5∠=︒==C AC BC ,点D 是边BC 上的一点,且BD =,过点D 做BC 边的垂线,交AB 边于点E ,将BDE 绕点B 顺时针方向旋转,记旋转角为()0360αα︒≤<︒.(1)【问题发现】当0α=︒时,AECD的值为________,直线,AE CD 相交形成的较小角的度数为________; (2)【拓展探究】试判断:在旋转过程中,(1)中的两个结论有无变化?请仅就图2的情况给出证明; (3)【问题解决】当BDE 旋转至A ,D ,E 三点在同一条直线上时,请直接写出ACD △的面积.15.在中Rt ABC △中.90ABC ∠=︒,AB BC =,点E 在射线CB 上运动.连接AE ,将线段AE 绕点E 顺时针旋转90°得到EF ,连接CF .(1)如图1,点E 在点B 的左侧运动;①当2BE =,BC =EAB ∠=_________°; ②猜想线段CA ,CF 与CE 之间的数量关系为_________.(2)如图2,点E 在线段CB 上运动时,第(1)间中线段CA ,CF 与CE 之间的数量关系是否仍然成立如果成立,请说明理由;如果不成立,请求出它们之间新的数量关系.(3)点E 在射线CB 上运动,BC =,设BE x =,以A ,E ,C ,F 为顶点的四边形面积为y ,请直接写出y 与x 之间的函数关系式(不用写出x 的取值范围).16.如图,在△ABC中,AB=∠A=45°,AC=C作直线平行AB,将△ABC绕点A顺时针旋转得到△AB C''(点B,C的对应点分别为B',C'),射线AB',AC'分别交直线l于点P、Q.(1)如图1,求BC的长;(2)如图2,当点C为PQ中点时,求tan∠APQ;(3)如图3,当点P,Q分别在线段AB',AC'上时,试探究四边形PQC B''的面积是否存在最大值.若存在,求出其最大值;若不存在,请说明理由.17.已知Rt△ABC中,AC=BC,∠C=90°,D为AB边的中点,∠EDF=90°,∠EDF绕D点旋转,它的两边分别交AC、CB(或它们的延长线)于E、F.(1)如图1,当∠EDF绕D点旋转到DE⊥AC于E时,易证S△DEF+S△CEF与S△ABC的数量关系为__________;(2)如图2,当∠EDF 绕D 点旋转到DE 和AC 不垂直时,上述结论是否成立?若成立,请给予证明; (3)如图3,这种情况下,请猜想S △DEF 、S △CEF 、S △ABC 的数量关系,不需证明.18.面直角坐标系中,O 为原点,点(12,0)A ,点(0,5)B ,线段AB 的中点为点C .将ABO 绕着点B 逆时针旋转,点O 对应点为1O ,点A 的对应点为1A .(1)如图①,当点1O 恰好落在AB 上时, ①此时1CO 的长为__________;②点P 是线段OA 上的动点,旋转后的对应点为1P ,连接11,BP PO ,试求11BP PO +最小时点P 的坐标; (2)如图②,连接11,CA CO ,则在旋转过程中,11CAO △的面积是否存在最大值?若存在,直接写出最大值,若不存在,说明理由.19.如图,在Rt ABC 中,90C ∠=︒,5AB =,3sin 5A =.点P 从点A 出发,以每秒4个单位长度的速度向终点B 匀速运动,过点P 作PD AB ⊥交折线AC ,CB 于点D ,连结BD ,将DBP 绕点D 逆时针旋转90︒得到DEF .设点P 的运动时间为t (秒).(1)用含t 的代数式表示线段PD 的长.(2)当点E 落在AB 边上时,求AD 的长.(3)当点F 在ABC 内部时,求t 的取值范围.(4)当线段DP 将ABC 的面积分成1:2的两部分时,直接写出t 的值.20.如图1,在Rt ABC △中,90B ∠=︒,AB BC =,AO 是BC 边上的中线,点D 是AO 上一点,DE EO ⊥,E 是垂足,DEO 可绕着点O 旋转,点F 是点E 关于点O 的对称点,连接AD 和CF .(1)问题发现:如图2,当1AD DO=时,则下列结论正确的是_______.(填序号)①BE CF =;②点F 是OC 的中点:③AO 是BAC ∠的角平分线;④AD =.(2)数学思考:将图2中DEO 绕点O 旋转,如图3,则AD 和CF 具有怎样的数量关系?请给出证明过程;(3)拓展应用:在图1中,若AD x DO=,将DEO 绕着点O 旋转. ①则AD =_______CF ;②若4AB =,1x =,在DEO 旋转过程中,如图4,当点D 落在AB 上时,连结BE ,EC ,求四边形ABEC 的面积.答案21.(1)4(2)四边形APDQ的面积不会随旋转而变化,理由见详解;当45α=︒时,四边形APDQ是正方形.22.(1)AE BD=,AE BD⊥;(2)结论仍成立23.(1)PM=PN,PM⊥PN.(2)△PMN是等腰直角三角形.(3)S△PMN最大=25 224.(1)△CEF是等腰直角三角形;(2)成立,(3)18-18+25.(1)(3)826.(1)10;(2)42;(3) AE⊥CG221250CE AG=+;(4)30027.(1)(-3,4);(2)N(-3,92);(3)最大值为283,最小值为8328.(1)BE=AD,BE与AD互相垂直,(2)①AP=8413;②最小47,最大7229.(2)顺时针或逆时针旋转60.30.探究一:(1)EP=EQ;证明见解析;(2)1:2,(3)EP:EQ=1:m,∴0<;探究二:(1)当50cm2;当75cm2.(2)50<S≤62.5时,这样的三角形有2个;当S=50或62.5<S≤75时,这样的三角形有一个.31.(1)∠ADF=45°,AD DF;(2)①成立,;②1≤S△ADF≤4.32.(3)3145 Sπ=33.(3)①73;②34.,45︒;(2)无变化(3)121235.(1)①30;②AC +CF CE ;(2)CA -CF ;(3)当点E 在点B 左侧运动时,y =21322x +;当点E 在点B 右侧运动时,y 32+.36.(3)存在;21-37.(1)S △DEF +S △CEF =12S △ABC(2)上述结论S △DEF +S △CEF =12S △ABC 成立(3)S △DEF -S △CEF =12S △ABC38.(1)①1.5 ②20,07⎛⎫ ⎪⎝⎭ (2)存在最大值,最大值为6939.(1)3t (2)258(3)355 374t≤≤40.(1)①②④(2)AD=,(3)46 5。
九年级数学旋转经典题含答案

1、在厶ABC 中,/ CAB=70°,在同一平面内,△将ABC 试点A 旋试到△ AB C 的位置,使得CC // AB,试/ BAB =()A. 300 B. 35 0 C. 40 0 D. 50 °2、A ABC 是等腰直角三角形,BC 是斜边,将△ ABP 绕点A 逆时针旋转后,能与厶ACP'重合,如果AP=3,那么线段 PP'的长等于 _______________________________________ .3、在 Rt △ ABC 中,/ ACB=9 0°,/ ABC=3 0 °, AC=1,将△ ABC 绕点 C 逆时针旋转至△ A ' B ' C ,使得点 A '恰 好落在AB 上,连接BB ',贝U BB '的长度为 —14、已知/ AOB=90,点A 绕点0顺时针旋转后的对应点A i 落在射线OB 上,点A 绕点A i 顺时针旋转后的对应点 A 落在射线OB 上,点A 绕点A 顺时针旋转后的对应点 A 落在射线OB 上,…,连接AA ,AA 2,AA 3…,依此作法,则/ AAA n+i等于 _____ 度.(用含n 的代数式表示,n 为正整数)9、将边长为"3的正方形ABCD 绕点A 逆时针方向旋转30°后得到正方形 A'B'C'D ',则图中阴影部分面积为 _______________ 5、已知△ ABC 是正三角形,OCLOB OC=OB 将厶ABC 绕点O 按逆时针方向旋转,使得 OA 与 OC 重合,得到△ OCD 则 旋转的角度是 _________________________ .,旋转了7、如图,在平面内将长为 ______________ . 8 在 Rt △ ABC 中,/ 边上,斜边DE 交AC 边于点F . ACB=9C °, 绕着直角顶点 C 逆时针旋转90°得到Rt △ EFC ,若AB =V 5,BC=1,则线段BE 的/ A=30°,BC=2将厶ABC 绕点C 顺时针旋转一定角度后得到△ EDC 此时点D 在AB则DC 的长 ____________ ;旋转的角度 _______________ ;图中阴影部分的面积 Rt △ ABC则图中阴影部分的面积之和为cm 2.如图,已知P是正方形ABCD内一点,PA=1,PB=2,PC=3,以点B为旋转中心,将△ ABP沿顺时针方向旋转,使点A与点C重合,这时P点旋转到G点.(1 )请画出旋转后的图形,并说明此时△ ABP以点B为旋转中心旋转了多少度?(2)求出PG的长度;(3)请你猜想厶PGC的形状,并说明理由.答案(找作业答案--->> 上魔方格)解:(1 )旋转后的厶BCG如图所示,旋转角为/ ABC=90 ° ;(2)连接PG,由旋转的性质可知BP=BG,Z PBG= Z ABC=90•;ZBPG为等腰直角三角形,又BP=BG=2 ,.•.PG八/阴5坯I ;(3)由旋转的性质可知CG=AP=1 ,已知PC=3,由(2)可知PG=2 亘IT PG2+CG 2(2進)2+1 2=9,PC2=9,Z.PG2+CG 2=PC2,.ZPGC为直角三角形.马上分享给同学1C 2、3倍根号2 3、根号3 4 180 度减去2的n次幕分之90 5、150度6、B,90 45 7、3 8、2分之根号 3 9、根号3 10、5。
数学九年级上册《旋转》单元测试题附答案

人教版数学九年级上学期《旋转》单元测试考试时间:100分钟;总分:120分一、单选题(每小题3分,共30分)1.(2019·南通市启秀中学初三月考)国旗上的五角星需要旋转多少度后才能与自身重合?( )A.36︒B.60︒C.45︒D.72︒2.(2019·北京初三)如图,沿图中的右边缘所在的直线为轴将该图形向右翻折180°后,再将翻折后的正方形绕它的右下顶点按顺时针方向旋转90°,所得到的图形是( )A. B. C. D.3.(2019·河北初三)下列图形与所描述的一致的是( )A.等边三角形是中心对称图形B.所有直角三角形都是轴对称图形C.所有平行四边形都是中心对称图形D.正五边形是中心对称图形4.(2019·抚顺市第十五中学初三)如图,直线3y x =经过点A ,作AB ⊥x 轴于点B ,将△ABO 绕点B 顺时针旋转60°得到△CBD ,若点B 的坐标为(1,0),则点C 的坐标为( )A.(3,12)B.(52,12)C.(33D.(523 5.(2019·厦门市松柏中学初二期中)已知点A 与点()4,5B --关于原点对称,则A 点坐标是( )A.()45-,B.()45-,C.()4,5--D.()4,56.(2019·黑龙江初三)如图,将△ABC 绕点A 逆时针旋转得到△AB′C′,若B′落到BC 边上,∠B =50°,则∠CB′C′的度数为( )A.50°B.60°C.70°D.80°7.(2019·辽宁初三)如图,在矩形ABCD 中,5AD =,将矩形ABCD 绕点A 逆时针旋转得到矩形AEFG ,点B 的对应点E 落在CD 上,且DE EF =,则AB 的长为( )A.52B.53C.8D.108.(2019·山西初三)自然界中存在很多自相似现象,如树木的生长,雪花的形成,土地干旱形成的地面裂纹.分形几何就是专门研究像雪花形状这样的自相似图形(即图形的局部与它的整体具有一定程度的相似关系)的一个数学分支.下列自相似图形中是轴对称图形但不是中心对称图形的是( )A. B. C. D.9.(2019·山东初三)如图,在平面直角坐标系中,ABC ∆的顶点都在方格线的格点上,将ABC ∆绕点P 顺时针方向旋转90,得到'''A B C ∆,则点P 的坐标为( )A.()0,4B.()1,1C.()1,2D.()2,110.(2019·长沙麓山国际实验学校初三月考)如图,△AOB 绕点O 逆时针旋转65°得到△COD ,若∠AOB =30°,∠BOC 的度数是( )A.30°B.35°C.45°D.60°二、填空题(每小题4分,共24分)11.(2019·广东初三)如图,已知△ABC 的三个顶点的坐标分别为A (﹣2,3)、B (﹣1,0)、C (0,1),将△ABC 绕点B 顺时针旋转90°,得到△A 1B 1C 1,点A 、B 、C 的对应点分别为A 1、B 1、C 1,则点A 1的坐标为_____.12.(2017·上海初三)如图,在Rt △ABC 中,AB =AC ,D 、E 是斜边BC 上两点,且∠DAE =45°,将△ADC绕点A 顺时针旋转90°后,得到△AFB .设BE =a ,DC =b ,那么AB =_____.(用含a 、b 的式子表示AB )13.(2019·浙江初三月考)如图,将△ABC 绕点A 顺时针旋转一定的角度至△AB'C'处,使得点C 恰好在线B'C'上,若∠ACB=75°,则∠BCB'的度数为_______.14.(2019·浙江初三月考)如图,在平面直角坐标系中,A (2,0),B (0,1),AC 由AB 绕点A 顺时针旋转90°而得,则AC 所在直线的解析式是____.15.(2019·福建省建瓯市芝华中学初三月考)如图,方格中的四叶风车,其中一个叶轮至少旋转________度才能与相邻的叶轮重合?16.(2019·湖北初三期中)如图①,在△AOB 中,∠AOB =90º,OA =3,OB =4.将△AOB 沿 x 轴依次以点 A 、B 、O 为旋转中心顺时针旋转,分别得到图②图③、…,则旋转得到的图⑧的直角顶点的坐标为____.三、解答题一(每小题6分,共18分)17.(2019·厦门市第五中学初三期中)已知,如图ABC △与111A B C △关于点O 对称,画出点O 和111A B C △18.(2019·江西省宜春实验中学初三期中)如图,在△ABC中,已知∠ABC=30°,将△ABC绕点B逆时针旋转50后得到△A′BC′.已知A′C′∥BC,求∠A的度数.∆绕B点顺时针旋转90,A与C重合,F与19.如图,已知正方形ABCD中,F为BC上一点,把ABF⊥.AB延长线上的E点重合,延长AF交CE于G点,求证AG CE四、解答题二(每小题7分,共21分)20.(2019·辽宁初三)如图,△ABC的三个顶点和点O都在正方形网格的格点上,每个小正方形的边长都为1.(1)将△ABC先向右平移4个单位,再向上平移2个单位得到△A1B1C1,请画出△A1B1C1;(2)请画出△A2B2C2,使△A2B2C2和△ABC关于点O成中心对称.21.(2019·浙江初三月考)如图,在边长为1的正方形网格中,△ABC的顶点均在格点上.(1)画出△ABC 绕点O 顺时针旋转90°后的△A′B′C′.(2)求点B 绕点O 旋转到点B′的路径长(结果保留π).22.在平面直角坐标系中,ABC ∆的位置如图所示,(每个小方格都是边长为1个单位长度的正方形).(1)画出ABC ∆关于y 轴对称的111A B C ∆;(2)将ABC ∆绕着点A 顺时针旋转90︒,画出旋转后得到的222A B C ∆,并直接写出点2B ,2C 的坐标.五、解答题三(每小题9分,共27分)23.(2019·张家界市民族中学初二期中)在△ABC 中,∠ACB =90°,AC =BC ,直线MN 经过点C ,且AD ⊥MN 于D ,BE ⊥MN 于E .(1)当直线MN 绕点C 旋转到图1的位置时,求证:①△ADC ≌△CEB ;②DE =AD +BE ;(2)当直线MN 绕点C 旋转到图2的位置时,求证:DE =AD ﹣BE ;(3)当直线MN 绕点C 旋转到图3的位置时,试问DE 、AD 、BE 具有怎样的等量关系?请写出这个等量关系,并加以证明.24.(2019·山东初三期中)如图,四边形ABCD是正方形,E,F分别是DC和CB的延长线上的点,且BF =DE,连接AE,AF,EF.(1)判断△ABF与△ADE有怎样的关系,并说明理由;(2)求∠EAF的度数,写出△ABF可以由△ADE经过怎样的图形变换得到;(3)若BC=6,DE=2,求△AEF的面积.25.(2019·南通市崇川学校初二月考)如图点P 是等边△ABC 内一点,将△APC 绕点C 顺时针旋转60°得到△BDC,连接PD.(1)求证:△DPC 是等边三角形;(2)当∠APC=150°时,试判断△DPB 的形状,并说明理由;(3)当∠APB=100°且△DPB 是等腰三角形,求∠APC 的度数。
中考数学专题练习 旋转(含解析)-人教版初中九年级全册数学试题

旋转一、选择题(共6小题,每小题4分,满分24分)1.下列图形中,你认为既是中心对称图形又是轴对称图形的是()A.B.C.D.2.如图,所给的图案由△ABC绕点O顺时针旋转()前后的图形组成的.A.45°、90°、135°B.90°、135°、180°C.45°、90°、135°、180°、225°D.45°、180°、225°3.如图,边长为1的正方形ABCD绕点A逆时针旋转30°到正方形AB′C′D′,图中阴影部分的面积为()A.B.C.1﹣D.1﹣4.如图,P是等边三角形ABC内一点,∠APB,∠BPC,∠CPA的大小之比为5:6:7,则以PA,PB,PC为边的三角形三内角大小之比(从小到大)是()A.2:3:4 B.3:4:5C.4:5:6 D.以上结果都不对5.下列图形中,是中心对称图形的是()A.菱形 B.等腰梯形C.等边三角形D.等腰直角三角形6.在平面直角坐标系中,点P(2,﹣3)关于原点对称的点的坐标是()A.(2,3) B.(﹣2,3)C.(﹣2,﹣3) D.(﹣3,2)二、填空题(共6小题,每小题5分,满分30分)7.在平面直角坐标系中,已知点P0的坐标为(1,0),将点P0绕着原点O按逆时针方向旋转60°得点P1,延长OP1到点P2,使OP2=2OP1再将点P2绕着原点O按逆时针方向旋转60°得点P3,则点P3的坐标是.8.如图所示,△ABC中,∠BAC=90°,AB=AC=5,△ABC按逆时针方向旋转一个角度后,成为△ACD,则旋转中心是点、旋转角是.9.如图,设P是等边三角形ABC内任意一点,△ACP′是由△ABP旋转得到的,则PAPB+PC(选填“>”、“=”、“<”)10.如图,E、F分别是正方形ABCD的边BC、CD上一点,且BE+DF=EF,则∠EAF=度.11.如图,O是等边△ABC内一点,将△AOB绕A点逆时针旋转,使得B,O两点的对应分别为C,D,则旋转角为度,图中除△ABC外,还有等边三形是△.12.如图,Rt△ABC中,P是斜边BC上一点,以P为中心,把这个三角形按逆时针方向旋转90°得到△DEF,图中通过旋转得到的三角形还有.三、解答题13.已知:正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB、DC(或它们的延长线)于点M、N.当∠MAN绕点A旋转到BM=DN时(如图1),易证BM+DN=MN.(1)当∠MAN绕点A旋转到BM≠DN时(如图2),线段BM、DN和MN之间有怎样的数量关系?写出猜想,并加以证明;(2)当∠MAN绕点A旋转到如图3的位置时,线段BM、DN和MN之间又有怎样的数量关系?请直接写出你的猜想.14.如图,正方形ABCD的边长为1,AB,AD上各有一点P,Q,如果△APQ的周长为2,求∠PCQ的度数.15.有两X完全重合的矩形纸片,小亮同学将其中一X绕点A顺时针旋转90°后得到矩形AMEF(如图1),连接BD、MF,若此时他测得BD=8cm,∠ADB=30°.(1)请直接写出AF的长;(2)小红同学用剪刀将△BCD与△MEF剪去,与小亮同学继续探究.他们将△ABD绕点A顺时针旋转得△AB1D1,AD1交FM于点K(如图2),设旋转角为β(0°<β<90°),当△AFK为等腰三角形时,求△AFK的面积(保留根号).旋转参考答案与试题解析一、选择题(共6小题,每小题4分,满分24分)1.下列图形中,你认为既是中心对称图形又是轴对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:既是中心对称图形又是轴对称图形的只有A.故选A.【点评】掌握好中心对称与轴对称的概念.轴对称的关键是寻找对称轴,两边图象沿对称轴折叠后可重合,中心对称是要寻找对称中心,图形旋转180度后与原图重合.2.如图,所给的图案由△ABC绕点O顺时针旋转()前后的图形组成的.A.45°、90°、135°B.90°、135°、180°C.45°、90°、135°、180°、225°D.45°、180°、225°【考点】旋转的性质.【专题】计算题.【分析】根据旋转的性质,把旋转后的图形看作为正八边形,依次得到旋转的角度.【解答】解:把△ABC绕点O顺时针旋转45°,得到△HEF;顺时针旋转180°,得到△ADC;顺时针旋转225°,得到△HGF;故选D.【点评】本题考查了旋转的性质:旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角,对应点到旋转中心的距离相等.3.如图,边长为1的正方形ABCD绕点A逆时针旋转30°到正方形AB′C′D′,图中阴影部分的面积为()A.B.C.1﹣D.1﹣【考点】旋转的性质;正方形的性质.【分析】设B′C′与CD的交点为E,连接AE,利用“HL”证明Rt△AB′E和Rt△ADE全等,根据全等三角形对应角相等∠DAE=∠B′AE,再根据旋转角求出∠DAB′=60°,然后求出∠DAE=30°,再解直角三角形求出DE,然后根据阴影部分的面积=正方形ABCD的面积﹣四边形ADEB′的面积,列式计算即可得解.【解答】解:如图,设B′C′与CD的交点为E,连接AE,在Rt△AB′E和Rt△ADE中,,∴Rt△AB′E≌Rt△ADE(HL),∴∠DAE=∠B′AE,∵旋转角为30°,∴∠DAB′=60°,∴∠DAE=×60°=30°,∴DE=1×=,∴阴影部分的面积=1×1﹣2×(×1×)=1﹣.故选:C.【点评】本题考查了旋转的性质,正方形的性质,全等三角形判定与性质,解直角三角形,利用全等三角形求出∠DAE=∠B′AE,从而求出∠DAE=30°是解题的关键,也是本题的难点.4.如图,P是等边三角形ABC内一点,∠APB,∠BPC,∠CPA的大小之比为5:6:7,则以PA,PB,PC为边的三角形三内角大小之比(从小到大)是()A.2:3:4 B.3:4:5C.4:5:6 D.以上结果都不对【考点】旋转的性质;三角形内角和定理;等边三角形的性质.【专题】计算题.【分析】将△APB绕A点逆时针旋转60°得△AP′C,显然有△AP′C≌△APB,连PP′,则AP′=AP,∠P′AP=60°,得到△AP′P是等边三角形,PP′=AP,所以△P′CP的三边长分别为PA,PB,PC;再由∠APB+∠BPC+∠CPA=360°,∠APB:∠BPC:∠CPA=5:6:7,得到∠APB=100°,∠BPC=120°,∠CPA=140°,这样可分别求出∠PP′C=∠AP′C﹣∠AP′P=∠APB﹣∠AP′P=100°﹣60°=40°,∠P′PC=∠APC﹣∠APP′=140°﹣60°=80°,∠PCP′=180°﹣(40°+80°)=60°,即可得到答案.【解答】解:如图,将△APB绕A点逆时针旋转60°得△AP′C,显然有△AP′C≌△APB,连PP′,∵AP′=AP,∠P′AP=60°,∴△AP′P是等边三角形,∴PP′=AP,∵P′C=PB,∴△P′CP的三边长分别为PA,PB,PC,∵∠APB+∠BPC+∠CPA=360°,∠APB:∠BPC:∠CPA=5:6:7,∴∠APB=100°,∠BPC=120°,∠CPA=140°,∴∠PP′C=∠AP′C﹣∠AP′P=∠APB﹣∠AP′P=100°﹣60°=40°,∠P′PC=∠APC﹣∠APP′=140°﹣60°=80°,∠PCP′=180°﹣(40°+80°)=60°,∴∠PP′C:∠PCP′:∠P′PC=2:3:4.故选A.【点评】本题考查了旋转的性质:旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角,对应点到旋转中心的距离相等.也考查了等边三角形的性质.5.下列图形中,是中心对称图形的是()A.菱形 B.等腰梯形C.等边三角形D.等腰直角三角形【考点】中心对称图形.【分析】旋转180°后与原图重合的图形是中心对称图形.【解答】解:菱形,等腰梯形,等边三角形,等腰直角三角形都是轴对称图形;菱形既是轴对称图形,又是中心对称图形.故选A.【点评】运用轴对称和中心对称图形概念,找出符合条件的图形.【】如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.6.在平面直角坐标系中,点P(2,﹣3)关于原点对称的点的坐标是()A.(2,3) B.(﹣2,3)C.(﹣2,﹣3) D.(﹣3,2)【考点】关于原点对称的点的坐标.【分析】根据“平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y)”解答.【解答】解:根据中心对称的性质,得点P(2,﹣3)关于原点对称的点的坐标是(﹣2,3).故选B.【点评】关于原点对称的点坐标的关系,是需要识记的基本问题.记忆方法是结合平面直角坐标系的图形记忆.二、填空题(共6小题,每小题5分,满分30分)7.在平面直角坐标系中,已知点P0的坐标为(1,0),将点P0绕着原点O按逆时针方向旋转60°得点P1,延长OP1到点P2,使OP2=2OP1再将点P2绕着原点O按逆时针方向旋转60°得点P3,则点P3的坐标是(﹣1,).【考点】坐标与图形变化﹣旋转.【专题】压轴题.【分析】已知将点P0绕着原点O按逆时针方向旋转60°得点P1,则OP1=1,P1点的坐标是(.则P2的坐标是;再将点P2绕着原点O按逆时针方向旋转60°得点P3,则点P3与P2关于y轴对称,因而点P3的坐标就很容易求出.【解答】解:∵点P0绕着原点O按逆时针方向旋转60°得点P1,∴P1点的坐标是(,∴P2的坐标是,又∵点P3与P2关于y轴对称,∴点P3的坐标是(﹣1,).【点评】解决本题的关键是正确理解题目,按题目的叙述一定要把各点的大致位置确定,正确地作出图形.8.如图所示,△ABC中,∠BAC=90°,AB=AC=5,△ABC按逆时针方向旋转一个角度后,成为△ACD,则旋转中心是点 A 、旋转角是∠CAD,是90°.【考点】旋转的性质.【分析】确定图形的旋转时首先要确定旋转前后的对应点,即可确定旋转中心.【解答】解:旋转中心是点A、旋转角是∠CAD,是90°.【点评】本题主要考查了旋转的定义,正确确定旋转中的对应点,是确定旋转中心,旋转角的前提.9.如图,设P是等边三角形ABC内任意一点,△ACP′是由△ABP旋转得到的,则PA<PB+PC(选填“>”、“=”、“<”)【考点】旋转的性质;三角形三边关系;等边三角形的判定.【分析】此题只需根据三角形的任意两边之和大于第三边和等边三角形的性质,进行分析即可.【解答】解:根据三角形的三边关系,得:BC<PB+PC.又AB=BC>PA,∴PA<PB+PC.【点评】本题结合旋转主要考查了三角形的三边关系:两边之和大于第三边,两边之差小于第三边.10.如图,E、F分别是正方形ABCD的边BC、CD上一点,且BE+DF=EF,则∠EAF= 45 度.【考点】旋转的性质;正方形的性质.【分析】根据BE+DF=EF,则延长FD到G,使DG=BE,则FG=EF,可以认为是把△ABE绕点A逆时针旋转90度,得到△ADG,根据旋转的定义即可求解.【解答】解:如图:延长FD到G,使DG=BE,则FG=EF,在△ABE和△ADG中,,∴△ABE≌△ADG(SAS),∴AE=AG又∴AF=AF,GF=EF∴△AGF≌△AEF∴∠EAF=∠GAF=×90°=45°.【点评】本题考查旋转的性质.旋转变化前后,对应点到旋转中心的距离相等以及每一对对应点与旋转中心连线所构成的旋转角相等.要注意旋转的三要素:①定点﹣旋转中心;②旋转方向;③旋转角度.11.如图,O是等边△ABC内一点,将△AOB绕A点逆时针旋转,使得B,O两点的对应分别为C,D,则旋转角为60 度,图中除△ABC外,还有等边三形是△AOD .【考点】旋转的性质;等边三角形的性质;等边三角形的判定.【分析】根据旋转的性质及全等三角形的性质作答.【解答】解:∵将△AOB绕A点逆时针旋转,使得B,O两点的对应分别为C,D,∴△AOB≌△ADC,∴OA=AD,∠BAO=∠DAC,∴∠BAO+∠OAC=∠DAC+∠OAC=∠BAC=60°,即∠OAD=60°,所以旋转角为60°.∵OA=AD,∠OAD=60°,∴△AOD为等边三角形.【点评】此题主要考查了图形旋转的性质:旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变.12.如图,Rt△ABC中,P是斜边BC上一点,以P为中心,把这个三角形按逆时针方向旋转90°得到△DEF,图中通过旋转得到的三角形还有△EPQ .【考点】旋转的性质.【分析】旋转中心是P,旋转方向为逆时针,旋转角是90度,已确定,再通过观察发现全等三角形,判断是否符合本题的旋转规律.【解答】解:根据旋转的性质可知,旋转中心是P,旋转角是90度,图中通过旋转得到的三角形还有△EPQ.【点评】本题考查旋转两相等的性质,即对应点到旋转中心的距离相等以及每一对对应点与旋转中心连线所构成的旋转角相等.三、解答题13.已知:正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB、DC(或它们的延长线)于点M、N.当∠MAN绕点A旋转到BM=DN时(如图1),易证BM+DN=MN.(1)当∠MAN绕点A旋转到BM≠DN时(如图2),线段BM、DN和MN之间有怎样的数量关系?写出猜想,并加以证明;(2)当∠MAN绕点A旋转到如图3的位置时,线段BM、DN和MN之间又有怎样的数量关系?请直接写出你的猜想.【考点】旋转的性质;全等三角形的判定与性质;正方形的性质.【专题】计算题;压轴题.【分析】(1)BM+DN=MN成立,证得B、E、M三点共线即可得到△AEM≌△ANM,从而证得ME=MN.(2)DN﹣BM=MN.证明方法与(1)类似.【解答】解:(1)BM+DN=MN成立.证明:如图,把△ADN绕点A顺时针旋转90°,得到△ABE,则可证得E、B、M三点共线(图形画正确).∴∠EAM=90°﹣∠NAM=90°﹣45°=45°,又∵∠NAM=45°,∴在△AEM与△ANM中,∴△AEM≌△ANM(SAS),∴ME=MN,∵ME=BE+BM=DN+BM,∴DN+BM=MN;(2)DN﹣BM=MN.在线段DN上截取DQ=BM,在△ADQ与△ABM中,∵,∴△ADQ≌△ABM(SAS),∴∠DAQ=∠BAM,∴∠QAN=∠MAN.在△AMN和△AQN中,∴△AMN≌△AQN(SAS),∴MN=QN,∴DN﹣BM=MN.【点评】本题考查了旋转的性质,解决此类问题的关键是正确的利用旋转不变量.14.如图,正方形ABCD的边长为1,AB,AD上各有一点P,Q,如果△APQ的周长为2,求∠PCQ的度数.【考点】正方形的性质;全等三角形的判定与性质.【专题】计算题.【分析】简单的求正方形内一个角的大小,首先从△APQ的周长入手求出PQ=DQ+BP,然后将△CDQ 逆时针旋转90°,使得CD、CB重合,然后利用全等来解.【解答】解:如图所示,△APQ的周长为2,即AP+AQ+PQ=2①,正方形ABCD的边长是1,即AQ+QD=1,AP+PB=1,∴AP+AQ+QD+PB=2②,①﹣②得,PQ﹣QD﹣PB=0,∴PQ=PB+QD.延长AB至M,使BM=DQ.连接CM,△CBM≌△CDQ(SAS),∴∠BCM=∠DCQ,CM=CQ,∵∠DCQ+∠QCB=90°,∴∠BCM+∠QCB=90°,即∠QCM=90°,PM=PB+BM=PB+DQ=PQ.在△CPQ与△CPM中,CP=CP,PQ=PM,CQ=CM,∴△CPQ≌△CPM(SSS),∴∠PCQ=∠PCM=∠QCM=45°.【点评】熟练掌握正方形的性质,会运用正方形的性质进行一些简单的运算.15.有两X完全重合的矩形纸片,小亮同学将其中一X绕点A顺时针旋转90°后得到矩形AMEF(如图1),连接BD、MF,若此时他测得BD=8cm,∠ADB=30°.(1)请直接写出AF的长;(2)小红同学用剪刀将△BCD与△MEF剪去,与小亮同学继续探究.他们将△ABD绕点A顺时针旋转得△AB1D1,AD1交FM于点K(如图2),设旋转角为β(0°<β<90°),当△AFK为等腰三角形时,求△AFK的面积(保留根号).【考点】锐角三角函数的定义;旋转的性质.【专题】操作型.【分析】(1)根据旋转的性质可知△AFM≌△ADB,则AF=AD=BD•cos∠ADB=8×=4cm;(2)当△AFK为等腰三角形时,由于AM<AF,那么A不能是等腰△AFK的顶点,则分两种情况:①K为顶点,即AK=FK时;②F为顶点,即AF=FK.针对每一种情况,利用三角形的面积公式,可分别求出△AFK的面积.【解答】解:(1)AF=;(2)△AFK为等腰三角形时,分两种情况:①当AK=FK时,如图.过点K作KN⊥AF于N,则KN⊥AF,AN=NF=AF=2cm.在直角△NFK中,∠KNF=90°,∠F=30°,∴KN=NF•tan∠F=2cm.∴△AFK的面积=×AF×KN=;②当AF=FK时,如图.过点K作KP⊥AF于P.在直角△PFK中,∠KPF=90°,∠F=30°,∴KP=KF=2cm.∴△AFK的面积=×AF×KP=12cm2.【点评】本题考查旋转的性质,旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变.注意(2)中需分情况讨论△AFK为等腰三角形时的不同分类,不要漏解.。
人教版九年级数学上册《23.1图形的旋转》同步练习题(附答案)

人教版九年级数学上册《23.1图形的旋转》同步练习题(附答案)考试时间:60分钟;总分:100分一.选择题(共8小题,满分32分,每小题4分)1.如图,点A,B,C,D,O都在方格纸的格点上,若△AOB绕点O按逆时针方向旋转到△COD的位置,则旋转的角度为()A.135°B.90°C.60°D.45°2.下列运动属于旋转的是()A.篮球的滚动过程B.转动的方向盘C.气球升空的运动D.一个图形沿某直线对折的过程3.如图,把△ABC绕点C顺时针旋转某个角度a得到△A'B'C,∠A=30°,∠1=50°,则旋转角a等于()A.110°B.70°C.40°D.20°4.如图,教室内地面有个倾斜的畚箕,箕面AB与水平地面的夹角∠CAB为61°,小明将它扶起(将畚箕绕点A顺时针旋转)后平放在地面,箕面AB绕点A旋转的度数为()A.119°B.120°C.61°D.121°5.如图,在正方形网格中,线段A′B′是线段AB绕某点逆时针旋转角α得到的,点A′与A对应,则角α的大小为()A.30°B.60°C.90°D.120°6.如图,将△ABC绕点B顺时针旋转60°得△DBE,点C的对应点E恰好落在AB的延长线上,连接AD.下列结论一定正确的是()A.∠ABD=∠E B.∠CBE=∠CC.AD∥BC D.AD=DE7.如图,在平面直角坐标系中,点A,B的坐标分别是A(3,0),B(0,4),把线段AB绕点A旋转后得到线段AB′,使点B的对应点B′落在x轴的正半轴上,则点B′的坐标是()A.(5,0)B.(8,0)C.(0,5)D.(0,8)8.如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△A'B'C,连接AA',若∠1=25°.则∠BAA'的度数是()A.55°B.60°C.65°D.70°二.填空题(共4小题,满分16分,每小题4分)9.如图,四边形EFGH是由四边形ABCD经过旋转得到的,如果用有序数对(2,1)表示方格纸上点A 的位置,用(1,2)表示点B的位置,那四边形ABCD旋转得到四边形EFGH时的旋转中心用有序数对表示是.10.如图,图形是由一个菱形经过次旋转得到,每次旋转了度.11.如图所示,△ABC中,∠BAC=33°,将△ABC绕点A按顺时针方向旋转50°,对应得到△AB′C′,则∠B′AC的度数为.12.如图,将△ABC绕点C顺时针旋转,使得点B落在AB边上的点D处,此时点A的对应点E恰好落在BC边的延长线上,若∠B=50°,则∠A的度数为.三.解答题(共4题,满分52分,每小题13分)13.(13分)如图,作出△ABC绕点O顺时针旋转60°之后的三角形.(保留作图痕迹)14.(13分)如图,已知正方形ABCD,点E在AB边上,点F在BC边的延长线上,且CF=AE.以图中某一点为旋转中心,将△DAE按逆时针方向旋转一定角度后恰好与△DCF重合.(1)旋转中心是点,旋转角的度数为°.(2)判断△DFE的形状并说明理由.15.(13分)如图,在平面直角坐标系xOy中,点A的坐标为(﹣2,0),等边三角形AOC经过平移或轴对称或旋转都可以得到△OBD.(1)△AOC沿x轴向右平移得到△OBD,则平移的距离是个单位长度;△AOC与△BOD关于直线对称,则对称轴是;△AOC绕原点O顺时针旋转得到△DOB,则旋转角度可以是度;(2)连接AD,交OC于点E,求∠AEO的度数.16.(13分)如图,点O是等腰直角三角形ABC内一点,∠ACB=90°,∠AOB=140°,∠AOC=α,将△AOC绕顶点C按顺时针方向旋转90°得△BDC,连接OD(1)当α=95°时,是判断△BOD的形状,并说明理由;(2)若OC=1,OA=2,OB=,求∠BOC的度数;(3)当α等于多少度时,△BOD是等腰三角形?参考答案与试题解析一.选择题(共25小题,满分100分,每小题4分)1.如图,点A,B,C,D,O都在方格纸的格点上,若△AOB绕点O按逆时针方向旋转到△COD的位置,则旋转的角度为()A.B.90°C.60°D.45°解:∵△AOB绕点O按逆时针方向旋转到△COD的位置∴对应边OB、OD的夹角∠BOD即为旋转角而∠DOB=90°.∴旋转的角度为90°.故选:B.2.下列运动属于旋转的是()A.篮球的滚动过程B.转动的方向盘C.气球升空的运动D.一个图形沿某直线对折的过程解:A、篮球的滚动不一定是旋转;B、转动的方向盘,属于旋转;C、气球升空的运动是平移,不属于旋转;D、一个图形沿某直线对折的过程是轴对称,不属于旋转.故选:B.3.如图,把△ABC绕点C顺时针旋转某个角度a得到△A'B'C,∠A=30°,∠1=50°,则旋转角a等于()A.110°B.70°C.40°D.20°解:∵△ABC绕点C顺时针旋转某个角度α得到△A′B′C∴∠A=∠A′=30°又∵∠1=∠A′+∠ACA′=50°∴∠BCB′=∠ACA′=20°故选:D.4.如图,教室内地面有个倾斜的畚箕,箕面AB与水平地面的夹角∠CAB为61°,小明将它扶起(将畚箕绕点A顺时针旋转)后平放在地面,箕面AB绕点A旋转的度数为()A.119°B.120°C.61°D.121°解:∵AB与地面的夹角∠CAB为61°∴∠BAB'=180°﹣∠CAB=180°﹣61°=119°即旋转角为119°∴箕面AB绕点A旋转的度数为119°.故选:A.5.如图,在正方形网格中,线段A′B′是线段AB绕某点逆时针旋转角α得到的,点A′与A对应,则角α的大小为()A.30°B.60°C.90°D.120°解:如图:连接AA′,BB′,作线段AA′,BB′的垂直平分线交点为O,点O即为旋转中心.连接OA,OB′∠AOA′即为旋转角∴旋转角为90°故选:C.6.如图,将△ABC绕点B顺时针旋转60°得△DBE,点C的对应点E恰好落在AB的延长线上,连接AD.下列结论一定正确的是()A.∠ABD=∠E B.∠CBE=∠CC.AD∥BC D.AD=DE解:∵点E在AB的延长线上∴A、B、E三点在同一条直线上∴∠ABD和∠CBE分别是△DBE和△ABC的外角∴∠ABD>∠E,∠CBE>∠C故A错误、B错误;由旋转得BD=BA,∠ABD=∠CBE=60°∴△ABD是等边三角形∵∠ADB=60°,∠CBD=180°﹣∠ABD﹣∠CBE=60°∴∠ADB=∠CBD∴AD∥BC故C正确;∵∠DAE=∠ABD=60°,∠E<∠ABD∴∠E<60°∴∠DAE≠∠E若AD=DE,则∠DAE=∠E,显然与已知条件相矛盾∴AD≠DE故D错误故选:C.7.如图,在平面直角坐标系中,点A,B的坐标分别是A(3,0),B(0,4),把线段AB绕点A旋转后得到线段AB′,使点B的对应点B′落在x轴的正半轴上,则点B′的坐标是()A.(5,0)B.(8,0)C.(0,5)D.(0,8)解:∵A(3,0),B(0,4)∴AO=3,BO=4∴AB==5∴AB=AB′=5,故OB′=8∴点B′的坐标是(8,0).故选:B.8.如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△A'B'C,连接AA',若∠1=25°.则∠BAA'的度数是()A.55°B.60°C.65°D.70°解:∵Rt△ABC绕直角顶点C顺时针旋转90°得到△A′B′C∴AC=A′C∴△ACA′是等腰直角三角形∴∠CA′A=∠A′AC=45°∴∠CA′B′=∠CA′A﹣∠1=45°﹣25°=20°=∠BAC∴∠BAA′=∠BAC+∠A′AC=20°+45°=65°故选:C.二.填空题(共11小题,满分44分,每小题4分)9.如图,四边形EFGH是由四边形ABCD经过旋转得到的,如果用有序数对(2,1)表示方格纸上点A 的位置,用(1,2)表示点B的位置,那四边形ABCD旋转得到四边形EFGH时的旋转中心用有序数对表示是(5,2).解:如图,连接AE、DH作AE、DH的垂线,相交于点P,则点P即为旋转中心∵A(2,1),B(1,2)∴P(5,2).故答案为:(5,2).10.如图,图形是由一个菱形经过六次旋转得到,每次旋转了60度.解:图形是由一个菱形经过六次旋转得到,每次旋转了360°÷6=60度.故答案为:六;60.11.如图所示,△ABC中,∠BAC=33°,将△ABC绕点A按顺时针方向旋转50°,对应得到△AB′C′,则∠B′AC的度数为17°.解:∵∠BAC=33°,将△ABC绕点A按顺时针方向旋转50°,对应得到△AB′C′∴∠B'AC'=33°,∠BAB'=50°∴∠B′AC的度数=50°﹣33°=17°.故答案为:17°.12.如图,将△ABC绕点C顺时针旋转,使得点B落在AB边上的点D处,此时点A的对应点E恰好落在BC边的延长线上,若∠B=50°,则∠A的度数为30°.解:∵将△ABC绕点C顺时针旋转∴BC=CD,∠BCD=∠ACE∴∠B=∠BDC=50°∴∠BCD=80°=∠ACE∵∠ACE=∠B+∠A∴∠A=80°﹣50°=30°故答案为:30°.三.解答题(共11小题,满分143分,每小题13分)13.(13分)如图,作出△ABC绕点O顺时针旋转60°之后的三角形.(保留作图痕迹)解:如图所示,△A′B′C′即为所求作的三角形.14.(13分)如图,已知正方形ABCD,点E在AB边上,点F在BC边的延长线上,且CF=AE.以图中某一点为旋转中心,将△DAE按逆时针方向旋转一定角度后恰好与△DCF重合.(1)旋转中心是点D,旋转角的度数为90°.(2)判断△DFE的形状并说明理由.解:(1)∵将△DAE按逆时针方向旋转一定角度后恰好与△DCF重合∴∠ADC=∠EDF=90°,DE=DF∴旋转中心是点D,旋转角的度数为90°故答案为:D,90;(2)△DEF是等腰直角三角形理由如下:∵将△DAE按逆时针方向旋转一定角度后恰好与△DCF重合∴∠ADC=∠EDF=90°,DE=DF∴△DEF是等腰直角三角形.15.(13分)如图,在平面直角坐标系xOy中,点A的坐标为(﹣2,0),等边三角形AOC经过平移或轴对称或旋转都可以得到△OBD.(1)△AOC沿x轴向右平移得到△OBD,则平移的距离是2个单位长度;△AOC与△BOD关于直线对称,则对称轴是y轴;△AOC绕原点O顺时针旋转得到△DOB,则旋转角度可以是120度;(2)连接AD,交OC于点E,求∠AEO的度数.解:(1)∵点A的坐标为(﹣2,0)∴△AOC沿x轴向右平移2个单位得到△OBD;∴△AOC与△BOD关于y轴对称;∵△AOC为等边三角形∴∠AOC=∠BOD=60°∴∠AOD=120°∴△AOC绕原点O顺时针旋转120°得到△DOB.(2)如图,∵等边△AOC绕原点O顺时针旋转120°得到△DOB∴OA=OD∵∠AOC=∠BOD=60°∴∠DOC=60°即OE为等腰△AOD的顶角的平分线∴OE垂直平分AD∴∠AEO=90°.故答案为2;y轴;120.16.(13分)如图,点O是等腰直角三角形ABC内一点,∠ACB=90°,∠AOB=140°,∠AOC=α,将△AOC绕顶点C按顺时针方向旋转90°得△BDC,连接OD(1)当α=95°时,是判断△BOD的形状,并说明理由;(2)若OC=1,OA=2,OB=,求∠BOC的度数;(3)当α等于多少度时,△BOD是等腰三角形?解:(1)△BOD为等腰三角形.理由如下:∵△AOC绕直角顶点C按顺时针方向旋转90°得△BDC∴∠OCD=90°,CO=CD,∠CDB=∠COA=α∴△COD是等腰直角三角形;∴∠COD=∠CDO=45°∵∠BOD=360°﹣∠AOB﹣∠AOC﹣∠COD=360°﹣140°﹣95°﹣45°=80°而∠BDO=∠CDB﹣∠CDO=95°﹣45°=50°∴∠DBO=180°﹣∠BDO﹣∠BOD=50°∴∠DBO=∠BDO∴△BOD为等腰三角形;(2)∵△COD是等腰直角三角形∴OD=OC=而BD=OA=2,OB=∴OB2+OD2=BD2∴△BOD为等腰直角三角形∠BOD=90°;(3)∠BOD=360°﹣∠AOB﹣∠AOC﹣∠COD=360°﹣140°﹣α﹣45°=175°﹣α∠BDO=∠CDB﹣∠CDO=α﹣45°∠OBD=180°﹣∠BDO﹣∠BOD=180°﹣α+45°﹣175°+α=50°当BD=OD时,∠OBD=∠BOD,即175°﹣α=50°,解得α=125°;当OB=OD时,∠OBD=∠BDO,即α﹣45°=50°,解得α=95°;当DB=DO时,∠BOD=∠DBO,即175°﹣α=α﹣45°,解得α=110°即当α等于125°或95°或110°时,△BOD是等腰三角形.。
九年级数学旋转经典题含答案

1、在△ABC中,∠CAB=700,在同一平面内,?△将ABC试点A旋试到△AB′C′的位置,使得CC′∥AB,试∠BAB′=() A. 300 B. 350 C. 400 D. 5002、△ABC是等腰直角三角形,BC是斜边,将△ABP绕点A逆时针旋转后,能与△ACP'重合,如果AP=3,那么线段PP'的长等于_________________________.3、在Rt△ABC中,∠ACB=90°,∠ABC=30°,AC=1,将△ABC绕点C逆时针旋转至△A′B′C,使得点A′恰好落在AB上,连接BB′,则BB′的长度为___4、已知∠AOB=90°,点A绕点0顺时针旋转后的对应点A1落在射线OB上,点A绕点A1顺时针旋转后的对应点A2落在射线OB上,点A绕点A2顺时针旋转后的对应点A3落在射线OB上,…,连接AA1,AA2,AA3…,依此作法,则∠AA n A n+1等于_____度.(用含n的代数式表示,n为正整数)5、已知△ABC是正三角形,OC⊥OB,OC=OB,将△ABC绕点O按逆时针方向旋转,使得OA 与OC重合,得到△OCD,则旋转的角度是_____________________.6、如图,P点是正方形ABCD内一点,△ABP经旋转后与△CBP'重合,旋转中心是点_____________,旋转了____________度,若PB=3,则△PBP/ 面积是_______________.7、如图,在平面内将Rt△ABC绕着直角顶点C逆时针旋转90°得到Rt△EFC,若AB=√5,BC=1,则线段BE的长为_____________.8、在Rt△ABC中,∠ACB=90°,∠A=30°,BC=2,将△ABC绕点C顺时针旋转一定角度后得到△EDC,此时点D在AB边上,斜边DE交AC边于点F.则DC的长____________;旋转的角度_______________;图中阴影部分的面积________________..9、将边长为√3的正方形ABCD绕点A逆时针方向旋转30°后得到正方形A′B′C′D′,则图中阴影部分面积为______10、如图是由三个叶片组成的,绕点O旋转120°后可以和自身重合,若每个叶片的面积为4cm2,∠AOB为120°,则图中阴影部分的面积之和为????cm2.如图,已知P是正方形ABCD内一点,PA=1,PB=2,PC=3,以点B为旋转中心,将△ABP沿顺时针方向旋转,使点A与点C重合,这时P点旋转到G点.(1)请画出旋转后的图形,并说明此时△ABP以点B为旋转中心旋转了多少度?(2)求出PG的长度;(3)请你猜想△PGC的形状,并说明理由.答案解:(1)旋转后的△BCG如图所示,旋转角为∠ABC=90°;(2)连接PG,由旋转的性质可知BP=BG,∠PBG=∠ABC=90°,∴△BPG为等腰直角三角形,又BP=BG=2,∴PG==2;(3)由旋转的性质可知CG=AP=1,已知PC=3,由(2)可知PG=2,∵PG2+CG2=(2)2+12=9,PC2=9,∴PG2+CG2=PC2,∴△PGC为直角三角形.马上分享给同学C 2、3倍根号2 3、根号3 4 180度减去2的n次幂分之90 5、150度6、B,90 45 7、3 8、2分之根号3 9、根号3 10、5。
2023年九年级数学中考复习:旋转(面积问题)综合压轴题(Word版,含答案)

2023年九年级数学中考复习:旋转(面积问题)综合压轴题1.一节数学课上,老师提出一个这样的问题:如图,点P是正方形ABCD内一点,P A=1,PB=2,PC=3,你能求出∠APB的度数吗?小明通过观察、分析、思考,形成了如下思路:思路一:将∠PBC绕点B逆时针旋转90°,得到∠P'BA,连接P P',求出∠APB的度数.思路二:将∠APB绕点B顺时针旋转90°,得到∠C P'B,连接P P',求出∠APB的度数.请参考小明的思路,任选一种写出完整的解答过程.2.如图,已知在∠ABC中,AB=AC,D、E是BC边上的点,将∠ABD绕点A旋转,得到∠AC D,连接D E.(1)当∠BAC=120°,∠DAE=60°时,求证:DE=D E;(2)当DE=D E时,∠DAE与∠BAC有怎样的数量关系?请写出,并说明理由.(3)在(2)的结论下,当∠BAC=90°,BD与DE满足怎样的数量关系时,∠D EC是等腰直角三角形?(直接写出结论,不必证明)AC BD相交于点O,3.如图,平行四边形ABCD中,,1,5AB AC AB BC⊥==,BC AD于点E,F.将直线AC绕点O顺时针旋转,分别交,(1)证明:当旋转角为90°时,四边形ABEF 是平行四边形;(2)证明:在旋转过程中,线段AF 与EC 总保持相等;(3)在旋转过程中,当AC 绕点O 顺时针旋转多少度时,四边形BEDF 是菱形,请给出证明.4.如图1所示,将一个边长为2的正方形ABCD 和一个长为2、宽为1的长方形CEFD 拼在一起,构成一个大的长方形ABEF .现将小长方形CEFD 绕点C 顺时针旋转至''CE FD ,旋转角为α.(1)当点D 恰好落在边EF 上时,点D 到边DC 的距离为____________,旋转角α=____________︒;(2)如图2,G 为BC 的中点,且090α︒<<︒,求证:GD E D ''=;(3)小长方形CEFD 绕点C 顺时针旋转一周的过程中,DCD '与CBD '△能否全等?若能,直接写出旋转角α的值;若不能,说明理由.5.将两块完全相同的且含60°角的直角三角板ABC 和AFE 按如图1所示位置放置,现将Rt AEF 绕A 点按逆时针方向旋转()090αα︒<<︒.如图2,AE 与BC 交于点M ,AC 与EF 交于点N ,BC 与EF 交于点P .(1)若AMC 是等腰三角形,则旋转角α的度数为______.(2)在旋转过程中,连接AP ,CE ,求证:AP 所在的直线是线段CE 的垂直平分线.(3)在旋转过程中,CPN是否能成为直角三角形?若能,直接写出旋转角α的度数;若不能,说明理由.6.旋转是一种重要的图形变换,当图形中有一组邻边相等时,往往可以通过旋转解决问题.如图∠,在四边形ABCD中,AD CDADC∠=︒,2∠=︒,60=,120ABCAB=,1BC=.【问题提出】(1)如图∠,在图∠的基础上连接BD,由于AD CD=,所以可将DCB绕点D顺时针方向旋转60°,得到DAB',则BDB'的形状是_______;【尝试解决】(2)在(1)的条件下,求四边形ABCD的面积;【类比应用】(3)如图∠,等边ABC的边长为2,BDC是顶角120∠=︒的等腰三角形,以D为顶BDC点作一个60°的角,角的两边分别交AB于点M,交AC于点N,连接MN,求AMN的周长.7.如图1,在等腰三角形ABC中,∠A=120°,AB=AC,点D、E分别在边AB、AC上,AD=AE,连接BE,点M、N、P分别为DE、BE、BC的中点.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级数学旋转练习题
关于九年级的旋转的课程即将学完,教师们要如何在准备练习题来复习呢?下面是店铺为大家带来的关于九年级数学旋转的练习题,希望会给大家带来帮助。
九年级数学旋转练习题目
一、选择题(每小题4分,共40分)
1.如果两个形可通过旋转而相互得到,则下列说法中正确的有( ).
①对应点连线的中垂线必经过旋转中心.②这两个形大小、形状不变.
③对应线段一定相等且平行. ④将一个形绕旋转中心旋转某个定角后必与另一个形重合.
A.1个
B.2个
C.3个
D.4个
2.如1,同学们曾玩过万花筒,它是由三块等宽等长的玻璃片围成的,其中菱形AEFG可以看成是把菱形ABCD以A为中心( ).
A.顺时针旋转60°得到
B.顺时针旋转120°得到
C.逆时针旋转60°得到
D.逆时针旋转120°得到
3.如2,C是线段BD上一点,分别以BC、CD为边在BD同侧作等边△ABC和等边△CDE,AD交CE于F,BE交AC于G,则中可通过旋转而相互得到的三角形对数有( ).
A.1对
B.2对
C.3对
D.4对
4.ABC中,AD是∠BAC内的一条射线,BE⊥AD,且△CHM可由△BEM旋转而得,则下列结论中错误的是( ).
A.M是BC的中点
B.
C.CF⊥AD
D.FM⊥BC
5.如4,O是锐角三角形ABC内一点,∠AOB=∠BOC=∠COA=120°,P是△ABC内不同于O的另一点;△A′BO′、△A′BP′分别由△AOB、△APB旋转而得,旋转角都为60°,则下列结论中正确的有( ).
①△O′BO为等边三角形,且A′、O′、O、C在一条直线上.
②A′O′+O′O=AO+BO.
③A′P′+P′P=PA+PB. ④PA+PB+PC>AO+BO+CO.
A.1个
B.2个
C.3个
D.4个
6.有四个案,它们绕中心旋转一定的角度后,都能和原来的案相互重合,其中有一个案与其余三个案旋转的角度不同,它是( ).
7.把26个英文字母按规律分成5组,现在还有5个字母D、M、Q、X、Z,请你按原规
律补上,其顺序依次为( )
① F R P J L G ( ) ② H I O ( )
③ N S ( ) ④ B C K E ( )
⑤ V A T Y W U ( )
A.Q X Z M D
B.D M Q Z X
C.Z X M D Q
D.Q X Z D M
8.4张扑克牌如6(1)所示放在桌子上,小敏把其中一张旋转180°后得到如6(2)所示,
那么她所旋转的牌从左起是( )
A.第一张、第二张
B.第二张、第三张
C.第三张、第四张
D.第四张、第一张
6(1) 6 (2)
9.下列案都是在一个案的基础上,在“几何画板”软件中拖动一点后形成的,它们的共性是都可以由一个“基本案”通过连续旋转得来,旋转的角度是( ).
(A) (B) (C) (D)
10.下列这些复杂的案都是在一个案的基础上,在“几何画板”软件中拖动一点后形成的,它们中每一个案都可以由一个“基本案”通过连续旋转得来,旋转的角度是( )
二、填空题(每小题4分,共20分)
11. 如9所示,P是等边△ABC内一点,△BMC是由△BPA旋转所得,则∠PBM=________.
12. 如10,设P是等边三角形ABC内任意一点,△ACP′是由△ABP 旋转得到的,则PA_______PB+PC (填“>”、“<”或“=”).
13. 如11,E、F分别是正方形ABCD的边BC、CD上一点,且BE+DF=EF,则∠EAF=________.
14.如12,O是等边△ABC内一点,将△AOB绕B点逆时针旋转,使得B、O两点的对应点分别为C、D,则旋转角为_____________,中除△ABC外,还有等边三形是_____________.
15.如13,Rt△ABC中,P是斜边BC上一点,以P为中心,把这个三角形按逆时针方向旋转90°得到△DEF,中通过旋转得到的三角形还有_____________.
三、作题
16.如14,将形绕O点按顺时针方向
旋转45°,作出旋转后的形.(8分)
四、解答题
17.如15,△ABC、△ADE均是顶角为42°的等腰三角形,BC、DE 分别是底边,中的哪两个三角形可以通过怎样的旋转而相互得到? (8分)
18.(9分) 如16,△ABC是等腰三角形,∠BAC=36°,D是BC上一点,
△ABD经过旋转后到达△ACE的位置,
⑴旋转中心是哪一点?
⑵旋转了多少度?
⑶如果M是AB的中点,那么经过上述旋转后,点M转到了什么位置?
19.(9分) 如17所示,△ABP是由△ACE绕A点旋转得到的,
那么△ABP与△ACE是什么关系?若∠BAP=40°,∠B=30°,
∠PAC=20°,求旋转角及∠CAE、∠E、∠BAE的度数。
20.(10分)如18所示是一种花瓣案,它可以看作是一个什么“基本案”形成的,试用两种方法分析其形成过程.
21.(10分)在△ABC中,∠B=100,∠ACB=200,AB=4cm,
△ABC逆时针旋转一定角度后与△ADE重合,且点C恰好
成为AD中点,如19,
⑴指出旋转中心,并求出旋转的度数。
⑵求出∠BAE的度数和AE的长。
22. (12分) 如20,四边形ABCD的∠BAD=∠C=90º,AB=AD,AE⊥BC于E, 旋转后能与重合。
(1)旋转中心是哪一点?
(2)旋转了多少度?
(3)若AE=5㎝,求四边形AECF的面积。
23.(12分)如21所示:O为正三角形ABC的中心.你能用旋转的方法将△ABC分成面积相等的三部分吗?如果能,设计出分割方案,并画出示意.
24.(12分) 已知正方形ABCD和正方形AEFG有一个公共点A,点
G、E分别在线段AD、AB上.
(1) 如 22-1, 连接DF、BF,若将正方形AEFG绕点A按顺时针方向旋转,判断命题:“在旋转的过程中线段DF与BF的长始终相等.”是否正确,若正确请说明理由,若不正确请举反例说明;
(2) 若将正方形AEFG绕点A按顺时针方向旋转, 连接D G,在旋转的过程中,你能否找到一条线段的长与线段DG的长始终相等.并以22-2为例说明理由.
九年级数学旋转练习题答案
一、选择题
1.C
2.D
3.C
4.D
5.D
6.A
7.D
8.A
9.D 10.C
二、填空题
11.60° 12.< 13.45° 14.60°;△A OD 15.△CPS和△EPQ
三、作题
16.略。
四、解答题
17.△ABD与△ACE。
18.(1)A点;(2)60°;(3)AC的中点。
19.旋转角为60°,∠CAE =40°,∠E=110°,∠BAE=110°。
20 .方法一:可看作整个花瓣的六分之一部分,案为绕中心O依次旋转60°、120°、180°、240°、300°而得到整个案.
方法二:可看作是绕中心O依次旋转60°、120°得到整个案的.
方法三:可看作整个花瓣的一半绕中心O旋转180°得到的,也可看作是花瓣的一半.经过轴对称得到的.
21.(1) A 点, 150° (2) 60°, 2cm
22.(1)A点;(2)旋转了90度;(3)由旋转的性质可知,四边形AECF 是正方形,所以四边形AECF的面积为25cm2。
23.解法一:连接OA、OB、OC即可.如中所示.
解法二:在AB边上任取一点D,将D分别绕点O旋转120°和240°得到D1、D2,连接OD、OD1、OD2即得,如乙所示.
解法三:在解法二中,用相同的曲线连接OD OD1 OD2 即得如丙所示
24.(1)不相等,用2即可说明;
(2)BE=DG。
理由:连接BE,在△ADG和△ABE中,∵AD=AB,∠∠DAG=∠BAE,AG=AE,∴ADG≌A BE(SAS),∴BE=DG。