初中数学乘法公式
《乘法公式》课件3(14页)(苏科版七年级下)

P85 练一练 1,2,3
P87习题9.4 4(5)-(8),5(2) 本子上
百分百训练:P102 6(1)-(3) 7,8
评价手册:P40-41
平方差公式
完全平方公式:
(a+b)2 = a2+2ab+b2 (a-b)2 = a2-2ab+b2
有关完全平方公式的反思: (a+b)n与an+bn相等吗?
m
n m
m
m n
•你认为图中小正方
n 形的边长是多少? n •请用不同的方法表
示图中小正方形的 面积。
•你得到怎样的结论?
n m
m n
边长为b的小正方形纸片放置在边长为a的大正方
两个二项式中有一项符号完全相同相当于 公式中的a,符号相反的两项相当于公式中 的b。
右边:两项 平方的差
完全平方公式:
(a+b)2 = a2+2ab+b2
(a-b)2 = a2-2ab+b2
乘 法
平方差公式
公
(a+b)(a-b)=ቤተ መጻሕፍቲ ባይዱ2-b2
式
注意每一个公式适用的条件。
以及整体思想在做题中的运用。
请判断下列各多项式乘法算的是 否正确?错误的请改正。
(1)图中的阴影部分面积是__a__2___b_2__
(2)你能否将阴影部分拼成一个完整的长方形图案吗?
你拼出的长方形的面积是___(_a____b_)_(_a___b__)
平方差公式
一般地,对于任意的a、b,可由多项式 乘多项式法则得到如下公式:
(a+b)(a-b)=a2-b2
你能说出这个公式的特点吗? 左边:两项的和与两项的差的积
初中数学定理定义公式顺口溜

以下是初中数学中一些重要的定理、定义和公式的顺口溜,可以帮助记忆:
1、乘法分配律:
乘法分配律,两数和乘一个数,等于分别乘和加。
示例:a ×(b + c) = a ×b + a ×c。
2、乘法交换律和结合律:
交换律:交换两个因数位置,积不变;
结合律:三个因数相乘,谁前谁先乘。
3、加法交换律和结合律:
交换律:加法交换律,两数相加换位置;
结合律:三个数相加,先把前两数相加。
4、幂的性质:
a 的m 次方,等于m 个a 相乘;
a 的m 次方,除以a 的n 次方,等于a 的m-n 次方。
5、正负数:
正数是大于零的数,负数是小于零的数;
正数大于一切负数,两个负数绝对值大的反而小。
6、分数加减法:
同分母分数相加减,分母不变分子相加减;
异分母分数相加减,先通分再按同分母加减。
7、平面几何初步知识:
线段垂直平分线性质定理:线段垂直平分线上的点与线段两个端点的距离相等;
圆的性质定理:半径相等是等圆,直径相等是等圆,同圆或等圆中半径是直径的一半。
8、三角形:
三角形内角和定理:三角形内角和是180度;
三边关系定理:三角形任意两边之和大于第三边,任意两边之差小于第三边。
苏科版七年级数学下册乘法公式课件(1)

初中数学 七年级(下册)
9.4 乘法公式(3)
活动一:分别用字母去表示两个公式: 请你写在你的笔记本上
活动二:你能写出(a+b)2、(a-b)2、ab、a2+b2几个量的关系吗?
公式再现 1.完全平方公式:
(a + b)2 = a2 + 2ab + b2
2.平方差公式:
(a + b)(a - b) = a2 - b2
试一试:
计算:(2-1)(2+1)(4+1)(16+1 )(256+1).
例题讲授:
例4 如图, 4块完全相同的长方形围成一个正方形, 用不同的 代数式表示图中阴影部分的面积,由此,你能得到怎样的等式? 试用乘法公式说明这个等式成立.
例题讲授:
例5 化简求值:(y+2x)(2x-y)-(-2y+x)(-2y-x),其中x =1, y =2.
例题讲授:
例2 计算: (x + y + 4)(x + y - 4) ? 将(x + y)看成一个整体a,运用平方差公式计算.
试一试:
计算:(1) (a - b + c)(a - b - c) (2) (x + y -3)(x - y -1)(x+1)(x2+1)(x4+1)(x8+1).
(a - b)2 = a2 - 2ab + b2
练一练: 1.填空:
(1) (2x + y)(2x - y) = (2) (2x - 3y)2 = (3) (4a2 - xy)2 = (4) ( - 3x - 2)(
初中资料数学乘法分配律公式

数学乘法分配律公式
乘法分配律是数学的一种简算乘积定律,接下来给大家分享乘法分配律的公式和字母的表示方法,供参考。
乘法分配律是指两个数的除以和与一个数相乘,可以先把它们分别与这个数正负,再将积相加。
字母表示:(a+b)×c=a×c+b×c,其中a,b,c是任意实数。
相反的,a x b+a x c=a x (b+c)叫做乘法分配律的逆运用(也叫提取公约数),尤其是a与b互为补数时,这种方法更有用。
也有时用到了加法结合律,比如a+b+c,b和c互为补数,就可以把b和c结合起来,再与a相乘。
整数的乘法运算满足:交换律,结合律,分配律,消去律。
随着数学的发展,运算的对象从整数发展为更一般群。
群中的乘法运算不再要求满足交换律。
最有名的非交换例子,就是哈密尔顿发现的四元数群。
但是同调仍然满足。
1.乘法交换律:ab=ba,注:字母与字母相乘,乘号不用写,或者可以写成·。
2.乘法结合律:(ab)c=a(bc),
3.乘法分配律:(a+b)c=ac+bc。
初一到初三数学公式总结归纳

初一到初三数学公式总结归纳怎样掌握好数学这个问题被很多学生频繁的问起,其实要学好数学并不难,只要掌握一定的学习方法,就能提高学习能力。
下面是为大家整理的关于初一到初三数学公式总结,希望对您有所帮助!初中数学公式整理加法交换律:a+b=b+a加法结合律:(a+b)+c=a+(b+c)减法法则:a-b=a+(-b)乘法交换律:ab=ba乘法结合律:(ab)c=a(bc)除法法则:a÷b=a(1÷b)【b≠0】角与线——对顶角相等同一平面内,有且只有一条直线与已知直线垂直。
同一平面内,经过直线外一点,有且只有一条直线与已知直线平行。
如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
垂直于同一直线的两条直线互相平行。
同位角相等/内错角相等/同旁内角互补:两直线平行两直线平行:同位角相等/内错角相等/同旁内角互补。
直角=90°,180°优角360°,平角=180°,周角=360°90°钝角180°,0°锐角90°初中几何形体计算定理公式1、长方形的周长=(长+宽)×2C=(a+b)×22、正方形的周长=边长×4C=4a3、长方形的面积=长×宽S=ab4、正方形的面积=边长×边长S=a.a=a5、三角形的面积=底×高÷2S=ah÷26、平行四边形的面积=底×高S=ah7、梯形的面积=(上底+下底)×高÷2S=(a+b)h÷28、直径=半径×2d=2r半径=直径÷2r=d÷29、圆的周长=圆周率×直径=圆周率×半径×2c=πd=2πr10、圆的面积=圆周率×半径×半径【体(容)积重量】体(容)积重量体(容)积单位换算1立方米=1000立方分米1立方分米=1000立方厘米1立方分米=1升1立方厘米=1毫升1立方米=1000升重量单位换算1吨=1000千克1千克=1000克1千克=1公斤【直角三角形定理】直角三角形的性质:①直角三角形的两个锐角互为余角;②直角三角形斜边上的中线等于斜边的一半;③直角三角形的两直角边的平方和等于斜边的平方(勾股定理);④直角三角形中30度角所对的直角边等于斜边的一半;直角三角形的判定:①有两个角互余的三角形是直角三角形;②如果三角形的三边长a、b、c有下面关系a^2+b^2=c^2,那么这个三角形是直角三角形(勾股定理的逆定理)。
乘法公式高一衔接

乘法公式高一衔接好的,以下是为您生成的关于“乘法公式高一衔接”的文章:在咱们从初中升入高中的学习旅程中,乘法公式就像一座重要的桥梁,连接着数学知识的不同领域。
说起乘法公式,那可是数学世界里的得力小助手,能帮咱们快速解决好多难题呢!先回忆一下初中时候学过的那些乘法公式吧,像完全平方公式:(a+b)² = a² + 2ab + b²,(a - b)² = a² - 2ab + b²,还有平方差公式:(a +b)(a - b) = a² - b²。
这些公式在初中的数学题里可没少出现,帮咱们简化了不少计算。
我记得我之前教过一个学生小明,他在刚接触这些乘法公式的时候,总是记不住,做题的时候总是出错。
有一次做作业,一道很简单的利用完全平方公式展开式子的题目,他愣是做错了。
我就问他:“小明啊,(a + b)²等于啥呀?”他挠挠头,一脸迷茫地说:“老师,我好像又给忘了。
”我耐心地给他重新讲解了一遍,还让他自己多写几遍,加深记忆。
到了高中,乘法公式可就更重要啦,也变得更复杂了一些。
比如说立方和公式:(a + b)(a² - ab + b²) = a³ + b³,立方差公式:(a - b)(a² + ab+ b²) = a³ - b³。
这些公式在解决一些函数、不等式还有立体几何的问题时,经常能派上用场。
咱们来仔细瞅瞅这些公式,就拿立方和公式来说吧。
假设 a = 2,b= 3,那 (2 + 3)(2² - 2×3 + 3²) = 5×(4 - 6 + 9) = 5×7 = 35 ,而 2³ + 3³ = 8 +27 = 35 ,是不是正好相等呀!通过这样的实际计算,能让咱们对公式的理解更加深刻。
初中数学-:整式的乘除法综合-教师版

整式的乘除法综合在整式及其加减运算后,进一步学习整式的乘除,是对整式运算的延展和补充.整式的乘除法的基础是同底数籍的乘法和除法,籍的乘方和积的乘方,单项式与单项式相乘、单项式与多项式相乘、多项式与多项式相乘,单项式除以单项式、多项式除以单项式等运算.通过这节课的学习,一方面加强对整式乘除运算的进一步理解,另一方面也为后期学习分式的运算奠定基础.P[整式的乘法整式的乘除法1、单项式与单项式相乘的法则:单项式与单项式相乘,把它们的系数、同底数籍分别相乘的积作为积的因式,其余字母连同它的指数不变,也作为积的因式.注:单项式乘法中若有乘方、乘法等混合运算,应按”先乘方、再乘法的顺序进行例如•2xv2 23X2v 4X2v43X2v 12X4v51XA H J //」乂 L |」•\/ .4/'H •c x y u x y *t x y u x y ic x y.2、单项式与多项式相乘法则:单项式与多项式相乘,用单项式乘以多项式的每一项.再把所得的积相加.例如:m a b c=ma mb mc.3、多项式乘以多项式法则:多项式与多项式相乘,先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加.用公式表示为: (m n)(a b) (m n)a (m n)b ma na mb nb .4、同底数籍的除法法则:同底数籍相除,底数不变,指数相减.用式子表不■为:a m a n a m n (m、n都是正整数且m n , a 0).5、规定a0 1 a 0 ; a p $ (a 0 , p是正整数).6、单项式除以单项式的法则:两个单项式相除,把系数、同底数籍分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.7、多项式除以单项式的法则:多项式除以单项式,先把多项式的每一项除以单项式,再把所得的商相加.(1)多项式除以单项式,商式与被除式的项数相同,不可丢项.(2)要求学生说出式子每步变形的依据.(3)让学生养成检验的习惯,利用乘除逆运算,检验除的对不对.一、选择题1.下列运算中结果正确的是( ).- - - 一一一 3 _A 336D 224八 2 5 cx x x ; B、3x 2x 5x ; C、x x ; D 、2 2 2x y x y .【难度】★【答案】A【解析】B正确答案为:3x2 2x2 5x2;C正确答案为x23 x6;D正确答案为x y 2x22xy y2 .【总结】本题主要考查对整式的运算法则的理解和运用.2.在下列的计算中正确的是().A 2x 5y 5xy B、a a 2 a2 4G a2 ab a3b 2x 6x 9【答案】C【解析】A的两个单项式不能合并; 正确答案为D正确答案为x 32 x2 6x 9【总结】本题主要考查对整式的运算法则的理解和运用.3.下列运算中正确的是().A 6 c 3 c 2 A、6x 3x 2x B、8x8,2 c 64x 2x2xy xyC、3xy 23x yA 、 abB. abC. D.b【解析】A 正确答案为6x 6 3x 3 2x 3 ;C 正确答案为223xy 3x 3xy ;D 正确答案为x 2y 2 xy 2 1.【总结】本题主要考查对整式的除法则的理解和运用.【总结】本题属于混合运算,计算时注意对相关运算法则的准确运用.5.如果4a 2 3ab M 4a 3b ,那么单项式M 等于().4.计算 4ab 的结果是().A 、4B 、A 2ab【答案】C【解析】原式=a 2 b 22ab a 2 b 2 2ab 4ab4ab 4ab 1【难度】【答案】C【解析】4a 2 3ab a 4a 3b a 4a 3b , /. M a .【总结】本题主要考查对整式的除法则的理解和运用.6.设M 是一个多项式,且M 5 x 2y2x 2y 4 —x ,那么M 等于().32【难度】★★【答案】Cf 皿 士匚 1…2 43 5 2 2 45 23 5 2 104 55 3M 2x y — x -x y 2xy — xy-x-xy— x y -x y2332332【总结】本题主要考查对整式的除法则的理解和运用.645943x y —x y B 、6 3 -y 55 2xy10 4 5 3xy2xy10 4 5i xy2xy7.已知x2 kxy 64y2是一个完全平方式,贝U k的值是().【难度】★★【答案】D【总结】本题主要考查对完全平方公式的理解和运用.8.如下图(1),边长为a 的大正方形中一个边长为b 的小正方形, 小明将图(1)的阴影部分拼成了一个矩形,如图(2).这一过程 可以验证().【解析】图1中,阴影部分的面积为a 2 b 2,图2中,阴影部分为长方形,长为a b ,宽为a b ,A 、8B 、±8C 、16【解析】X 2 kxy 64 y 2 x 2 kxy228y =x 28 xy28yA a 2 b 2 2abB 、a 2 b 2 2ab a b 2 ;G 2a 2 3ab b 22a b a- bDk a 2 b 2 a b a b【难度】★★【答案】D面积为【总结】本题通过图形面积的转化加强对平方差公式的理解.9.如图,甲、乙、丙、丁四位同学给出了四种表示该长方形面积的多项式:b n 2a b ;④ 2am 2an bm bn ,你认为其中正确的有()A、①②B、③④C、①②③ D>①②③④【难度】★★【答案】D【解析】图中①②③④中各个代数中表示图中长方形的面积.【总结】本题主要是通过图形的面积加强对整式乘法的理解.10.已知P — m 1 , Q m2—m (m为任意实数),则P、Q的大小关系15 15Dk不能确B、P Q【难度】★★★【答案】C【解析】Q P m28 —m 7 —m 1 m2m 1 m 1 2 3 015 15 2 4【总结】本题主要考查通过作差法来比较两个数的大小.二、填空题11.若5x 3y 2 0 , I05x 103y .【难度】★【答案】100【解析】;5x 3y 2 0 , 5x 3y 2 , /. 105x 103y=105x3y 102【总结】本题主要考查对同底数籍相除的法则的逆用.12.已知m n 2, mn 2,贝!j 1 m 1 n .【难度】★【答案】-3【解析】1 m 1 n 1 m n mn 1 mn 1 2 2【总结】本题一方面考查整式的乘法,另一方面考查整体代入思想的运用.13.若m2 n2 6 ,且m n 3 ,贝!J m n .【难度】★【答案】2.【解析]•/ m2 n2 m n m n 6 , m n 3 , m n 2 .【总结】本题主要考查对平方差公式的运用.14.方程x 3 2x 5 2x 1 x 8 41 的解是.【难度】★【答案】x 3.【解析】x 3 2x 5 2x 1 x 8 41 ,二2x2 5x 6x 15 2x2 16x x 8 41 ,即16x 48【总结】本题通过利用整式的乘法来进行方程的求解.15.已知x2 5x 1,那么x2 W x【难度】★★【答案】272【解析】x2 5x 1 , x 1 5 . x 125,x xx2二 2 25 . x2 4 27 .x x【总结】当两个数互为倒数时,已知它们的和或者差,都可以利用完全平方公式求出它们的平方和.16.设4x2 2 m 3 x 121是一个完全平方式,贝m=.【难度】【答案】19或-25【解析】•/ 4x2 2 m 3 x 121 2x 2 2 m 3 x 11 2 ,. 2m 3 44 , m为19 或-25 .【总结】本题主要考查对完全平方公式的理解和运用.17.计算2x 3xy 2 x2y ‘的结果是.【难度】★★【答案】18x9y5f础居,c c 223CC22 6 3 . o 9 5I用牛忻1 2x 3xy x y 2x 9x y x y 18x y .【总结】本题主要考查对单项式乘以单项式法则的理解和运用.18.已知5x与一个整式的积是25x2 15x3y 20x4 ,则这个整式= ______________________【难度】★★【答案】5x 3x2y 4x3 .x 3和 x 1 满足 4x 3 9x 2 mx n 0 .【解析】 - 2 3 4 - 2 325x 15x y 20x 5x 5x 3x y 4x .【总结】本题主要考查对整式的除法的法则的理解和运用.19.若一三角形的底为4a 2 [,高为16a 4 2a 2【,则此三角形的面积为2 4【难度】★★★ 【答案】 6 132a16 【解析】 1 4a 2 - 16a 4 2a 2 1 1 64a 6 8a 4 a 2 8a 4 a 2 -32a 6 — 2 2 4 2 816【总结】本题主要是利用整式的乘法来求解几何图形的面积.20.已知x 2 2x 3能整除4x 3 9x 2 mx n,求n\ n 的值.【难度】★★★【答案】m 10, n 3.1【解析】..• 4x39x2mx n x22x 3 A x 3 x 1 A, x 3和x 1 满足4x3 9x2 mx n 0 .4 3 3 93 2 3m n 0 则 』c 』2 c '4191 m n 0 【总结】本题是一道综合性比较强的题目,计算时要注意方法的选择.三、简答题21.计算:x2y 2【总结】本题主要考查对整式运算中的相关法则的运用.22.计算:32 2x y 2xy 1m 10 n 3 【解析】原式 =x 2y 2 2xy x 2 y 2 2y 2 2xy . 2x 3y 3(2) 6m 2n 6m 2n 23m 2 3m 2【难度】【答案】(1) 6x7y3 ; (2) 2n 2n2 1 .2 3T角贫*斥】<1、百7^ —2X3V2XV2X3V2X24X6V22xvRx'v32x2L用牛仙1 V 1 / 赛工J —2x y 2xy 2x y 2x4x y 2x y 8x y2x73 73 732x y 4x y 6x y -(2)原式—6m2n 3m26m2n23m23m23m22n 2n2 1 .【总结】本题主要考查对整式运算中的相关法则的运用.23.计算: x25x 6 x 6【难度】★【答案】x 1【解析】x 6 x 1 x 6 x 1 .【总结】本题主要是利用因式分解进行多项式除以多项的计算.24.计算:(1)x 4y 2x 3y (xy) ;(2) 6a b c 3a b c 2a b c .【难度】★【答案】(1) 6x7y3 ; (2) 2n 2n2 1 .【答案】(1) 2x25xy 12y2x y; (2) -1 .【解析】(1)原式—2x23xy 8xy 12y2x y 2x2 5xy 12y2x y;(2)原式=2a3b3c3 2a3b3c31.【总结】本题是整式的混合运算,计算时注意法则的准确运用.25.计算:2 2 2(1) a 2b 1 ; (2) 2x 3x 4x 1 3x 2x 3 ;2 2(3)2a 3b 2a b 2a b ; (4) x y y 2x y 8x 2x【难度】★【答案】(1) a2 4ab 4b2 2a 4b 1 ; (2) x2 2x ;1(3)10b212ab ; (4) §x 4 .【解析】(1)原式=a 2b2 2 a 2b 1 a2 4ab 4b2 2a 4b 1 ;(2)原式=6x38x2 2x 6x39x2 6x3 8x2 2x 6x3 9x2x22x;(3)原式=4a2 9b2 12ab 4a2 b210b2 12ab ;(4)原式=x2y22xy 2xy y28x 2x x2 8x 2x —x 4 .2【总结】本题是整式的混合运算,计算时注意法则的准确运用.26.计算下列各题:(1) m na3m 2namn 5a(2)2 3 2 5xy37xy2 3 3y2 2 3y【难度】 ★★【答案】(1)2mn .a ,(2)3x 3 521 —xy 2y •【解析](1)原式=a mn a 6mn a 5mn a 2mn ;【总结】本题是整式的混合运算,计算时注意法则的准确运用.27.若 3m 6,9n 2 求 32m4n1 的值.【难度】★★【答案】27【解析】32m 4n 132m 34n 3 3m 2 9n 2 3 62 22 3 27 .【总结】本题是对籍的运算的综合运用.(2)原式斗y27xy 32 3 2 23 3 21-y -y -x 3 —xy y .3 3 5 228.解不等式: x 1 x 3 8x x 5 x 5 2【难度】★★【答案】x 52【解析】x2 x 3x 3 8x x2 25 2 ,512x 30 , x 5 .2【总结】本题主要是利用整式的乘法来求解不等式的解集.29.已知:2x 3 0 ,求代数式x x2 x +x25 x 9的值.【难度】★★【答案】0【解析】... 2x 3 0 . •,.原式=x3 x2 5x2 x3 9 4x2 9 (2x 3)(2x 3) 0 .【总结】本题主要是对整体代入思想的运用.30.先化简,再求值:xy 2 xy 2 2x 2y 2 4 xy (其中 X =10, y —).25【难度】★★【答案】z5【解析】原式=x 2y 2 4 2x 2 y 2 4 xy x 2y 2 xy xy .1 2当X =10, y 云时,原式=1025 5 .【总结】本题是求代数式值的问题,在计算时注意相关运算法则的准 确运用.【答案】1331.先化简,再求值:2a b 2 a 1 ba 1b a 1 2 其中 a - , b 2 .2【解析】原式=4a2 b2 4ab a 1 2 b2 a 1 2 4a2 2b2 4ab)2当 a ! , b 2 时,原式=4 1 2 2 2 4 1 2 13.【总结】本题是求代数式值的问题,在计算时注意相关运算法则的准确运用.32.先化简,再求值:a -b 2 b a -b ,其中a 2 , b -.2【难度】★★【答案】5【解析】原式=a2 2ab b2 ab b2 a2 ab ,当 a 2 , b ;时,原式=22 2 2 5 .【总结】本题是求代数式值的问题,在计算时注意相关运算法则的准确运用.33.先化简,再求值: 3x 2 3x 2 5x x 1 2x 1 2,其中x【难度】★★【答案】-8【解析】原式=9x2 4 5x2 5x 4x2 4x 1 9x 5 ,1当x:时,原式=9o 5 8 .3 3【总结】本题是求代数式值的问题,在计算时注意相关运算法则的准确运用.2 c3 »34.先化简,再求值:2x y 2x y y 2x ,其中x 2, y 1【难度】★★【答案】5【解析】原式=2x y13 2x y6 2x y 6 2x y ,当x 2,y 1时,原式=2 2 1 5 .【总结】本题是求代数式值的问题,在计算时注意相关运算法则的准确运用.35. 一个多项式除以x2 2x 3,得商为x 1,余式为2x 5,求这个多项式.【难度】★★【答案】x3 x2 3x 2 .,左刀2 3 2 2 3 2【解初J x22x 3 x 1 2x 5 x3x22x2 2x 3x 3 2x 5 x3x23x 2 . 【总结】本题主要是考查对题目的理解能力.36.已知一个三角形的面积是4a3b 6a2b212ab3, 一边长为2ab ,求该边上的高. 【难度】★★【答案】4a2 6ab 12b2 .224a 6ab 12b .即该边上的高为4a2 6ab 12b2 .,左刀3223 3 2 23【角牛析】2 4a3b 6a2b212ab32ab 8a3b 2ab 12a2b2 2ab 24ab32ab【总结】本题主要是考查对题目的理解能力.37.若3x 2y 10 0无意义,且2x y 5 ,求x,y的值.【难度】★★【答案】x 0, y 5.【解析】由题意可知:3x 2y 10 0.又2x y 5 , x 0 , y 5 .【总结】本题主要考查a0有意义的条件.38.若x2mx 8 x23x n的展开式中不含x2和x3项,求m和n的值.【难度】★★【答案】m 3, n 17.【解析】原式=x4 3x3 nx2 mx3 3mx2 mnx 8x2 24x 8n 4 3 2x m 3 x n 3m 8 x mn 24 x 8n .,展开式中不含x2和x3项,m 3 0 , n 3m 8 0 , m3, n 17.【总结】本题主要考查多项式的乘法运算结果中不含有某一项的意义.39.若a=2005, b=2006, c=2007,求a2 b2 c2 ab bc ac 的值.【难度】★★【答案】3【解析】原式=1 a b2 a c2 c b2 1 6 3.2 2【总结】本题主要是对完全平方公式的综合运用.40.说明代效式(x y)2 x y x y 2y y的值,与y的值无关.【难度】★★【答案】见解析.【解析】原式x2 y2 2xy x2 y22y y 2y2 2xy 2y y y x y x ,. ••此代数式的值与y的值无关.【总结】本题主要考查多项式的乘法运算结果中不含有某一项的意义.41.一个正方形的边长增加3cm,它的面积增加了45cm2.求这个正方形原来的边长.若边长减少3cmi它的面积减少了45cm,这时原来边长是多少呢【难度】★★【答案】6cm 6cm【解析】设原来正方形的边长为x cm则x 3 2 x2 45 ,解得:x 6 .正方形原来的边长为6 cm.设原来正方形的边长为ycm则y 32 y2 45 ,解得:y 6 .正方形原来的边长为6 cm.【总结】本题主要考查整式的乘法在实际问题中的运用.42.如图所示,长方形ABCDT阳光小区”内一块空地,已知AB=2a,BG3b,且E为AB边的中点,CF 1BC ,现打算在阴影部分种植一3片草坪,求这片草坪的面积.【难度】★★【答案】2ab .【解析】1 2a 3b 1 a 2b 2ab .2 2【总结】本题主要考查整式的乘法在实际问题中的运用.43.如图,某市有一块长为3a b米,宽为2a b米的长方形地块,规划部门计划将阴影部分进行绿化, 的面积是多少平方米并求出当a 的绿化面积. 【难度】★★【答案】5a2 3ab; 63.【解析】3a b 2a b a b 2_2_ 2 2 26a23ab 2ab b2a22ab b2_ 2 —5a 3ab .当a 3 , b 2时,原式=5 32 3 3【总结】本题主要考查整式的运算在实际问题中的运用.2 63.44.“光明”中学为了改善校园建设,计划在长方形的校园中间修一个正方形的花坛,预计正方形花坛的边长比场地的长少8米,比它的宽少6米,并且场地的总面积比花坛的面积大104平方米,求长方形的长和宽.【难度】★★★【答案】场地的长为12米,宽为10米.【解析】设正方形的边长为X,则场地的长为X 8米,宽为x 6米.则x 8 x 6 x2 104 ?解得:x 4场地的长为12米,宽为10米.【总结】本题主要考查整式的运算在实际问题中的运用.45.某城市为了鼓励居民节约用水,对白来水用户按如下标准收费:若每月每户用水不超过a吨,每吨m元;若超过a吨,则超过的部分以每吨2 m元计算.现有一居民本月用水x吨,则应交水费多少元【难度】★★★【答案】见解析.【解析】当x a ,应交水费为am ;当x a ,应交水费为am x a 2m 2mx am .【总结】本题主要考查整式的运算在实际问题中的运用.46.求证:无论x、y为何值,4x2 12x 9y2 3 30y 35的值恒为正.21 1 2n2 n34 2n 1 n 1 〔222 1 3 2 3侦牛忻 1 - 一xyz m -x y z 5x y z , - - -xyz m 一x y z .3 3 9 15【难度】★★★【答案】见解析.v A-i-t r w 2 2 2 2【命军析]•/ 4x 12x 9y 30 y 35= 2x 3 3y+5 1 0,无论x、y为何值,4x2 12x 9y2 30y 35的值恒为正.【总结】本题主要利用配方来说明代数式的正负性.四、解答题1 12n2 n34 2n1n1 口、,甲._.x z 147.U 大口 : - xyz m - x y z 5x yz , F. I「.修钗x、z 7两人E: 2 372 ,3 3求m的值.【难度】★★【答案】玄.5m -1x3y2z3 1x2y2z2 2xz15 9 5..•正整数x、z 满足:2x 3z 1 72 , x 3 , z 1 2 .x 3, z 3, m § 3 3 27 .5 5【总结】本题是整式的混合运算,计算时注意法则的准确运用.48. 已知f x 5 39x 8x 12x2 , g x 5 6 -x64—x9求: f x 3x g x5 2一x的值.57 4一x12【答案】8 3 143 -x x5 30 2 4x【解析】f x 3x g x 5 2 —x189x58x3 12x23x 5x66 4 5—x93x48 2x2 4x33x48x35L108x3 5 143 2 』——x4x .305 2 —x 187 —x12【总结】本题是整式的混合运算,计算时注意法则的准确运用.49.已知关于x的三次多项式除以x2 1时,余式是2x 5 ;除以x2 4时,余式是3x 4,求这个三次多项式.【难度】★★【答案】5x3 3x2 ^x 8.3 3【解析】设关于x的三次多项式为:f (x) ax3 bx2 cx d(a 0),且f (x)除以x2 1与除以x2 4后,所得的商式分别为:ax m与ax n .贝(J ax3bx2cx d x21 (ax m) 2x 5 ①ax3bx2cx d x24 (ax n) 3x 4 ②. ••把x 1代入①可得:a b c d 3 , a b c d 7 .JE x 2 代入②可得:8a 4b 2c d 2 , 8a 4b 2c d 10 .解得:a - , b 3 , c 11 , d 8 .3 3关于x的三次多项式为5x3 3x2 11x 8.3 3【总结】本题是一道综合性比较强的题目,计算时要注意方法的选择.50.阅读下列题目的解题过程:已知a、b、c为ABC的三边,且满足2 2 2 2 4 4 二-fx业业匕 "一八c a c b a b ,试判断ABC日勺形状.22 22 4 4用牛. c a c b a bc2(a2b2) (a2b2)(a2b2) (B)c2a2b2(C)ABC是直角三角形问:(1)上述解题过程,从哪一步开始出现错误请写出该步的代号:(2)错误的原因为:________________________________________________(3)本题正确的结论为:【答案】见解析.【解析】(1) (C);(2)因为a4 b2不能确定能不能为零.(3) AABC为直角三角形或等腰三角形.・ 2 2.2 2.2 2.2• •ca b a b a b 0 .a2 b2或a b或a b . .'a、b、c为ABC的三边,c2a2 b20 或a2 b22 2 .2caba2 b20 .. 3BC为直角三角形或等腰三角形.【总结】本题主要是对等式的基本性质的考查,等式两边同除的数一定不为零.。
乘法分配律的定义

乘法分配律的定义乘法分配律是一种数学公式,用于解决乘法运算中的计算问题。
它是数学中最基本的运算定理之一,也是小学数学中最基础的知识点之一。
在初中数学中,乘法分配律会更加深入的讲授,涉及到各种类型的多项式和分式等概念。
乘法分配律的定义非常简单,它可以描述为以下两个公式:1. a × (b + c) = a × b + a × c2. (a + b) × c = a × c + b × c在上述公式中,a、b、c均为实数或变量,在计算中a、b、c的值可以是任意的。
乘法分配律可被称为“乘法分配律定理”,具体地说,它表示乘法可以在加法运算中进行分配。
换句话说,当在一个加法表达式中乘以某个数时,可以将这个数分别乘以每一个加数,然后将它们的积相加得到答案。
同样,如果在一个乘法表达式中有加法,可以将每个加数与乘法中的每个乘数相乘,然后将它们的积相加得到答案。
乘法分配律是基于加法和乘法之间的关系而被定义的。
在加法和乘法中,以a和b为加数,c为乘数时,根据乘法分配律,对于第一个公式a × (b + c) = a × b + a × c而言,它的含义是将c与b相加后再乘以a,就等于将b先乘以a,再将c乘以a,最后将它们的结果相加。
另外,对于第二个公式(a + b)× c = a × c + b × c而言,它的含义是将a与b分别乘以c,然后将它们的结果相加。
乘法分配律在数学中有着广泛的应用。
在解决代数式计算、多项式计算、分式计算等问题时,乘法分配律是不可或缺的工具。
例如,如果求解(x + 3) ×(x + 2),就可以使用乘法分配律将其展开为x² + 5x + 6的形式。
同样,如果求解3(a - 4) - 2(2a + 1),则可以使用乘法分配律将其表示为3a - 12 - 4a - 2,再进行简化计算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学乘法公式
乘法是数学中最基本的四则运算之一、在初中数学中,学生需要掌握一些常用的乘法公式,以便能够灵活运用它们解决各种数学问题。
下面是一些常用的初中数学乘法公式:
1.乘法交换律:a×b=b×a。
这条公式表示乘法运算中,两个数的顺序可以交换。
2.乘法结合律:(a×b)×c=a×(b×c)。
这条公式表示乘法运算中,多个数相乘的结果与它们的顺序无关。
3.乘法分配律:a×(b+c)=a×b+a×c。
这条公式表示乘法运算可以分配到括号中的加法或减法上。
4.同底数乘法:a^m×a^n=a^(m+n)。
这条公式表示相同底数的幂相乘时,底数不变,指数相加。
5.幂的乘法:(a^m)×(b^n)=(a×b)^(m+n)。
这条公式表示幂的乘方是指数相加,底数相乘。
6.乘法的幂:(a×b)^n=a^n×b^n。
这条公式表示多个数相乘的结果的乘方等于每个数分别乘方再相乘。
以上是初中数学常用的乘法公式,下面将逐个公式进行讲解和例题演示。
1.乘法交换律:a×b=b×a
乘法交换律是指乘法运算中两个数的顺序可以交换,运算结果不变。
例如:3×5=5×3=15
2.乘法结合律:(a×b)×c=a×(b×c)
乘法结合律是指多个数相乘时,它们的顺序可以变化,运算结果不变。
例如:(2×3)×4=2×(3×4)=24
3.乘法分配律:a×(b+c)=a×b+a×c
乘法分配律是指乘法运算可以分配到括号中的加法或减法上。
例如:2×(3+4)=2×3+2×4=14
4.同底数乘法:a^m×a^n=a^(m+n)
同底数乘法是指相同底数的幂相乘时,底数不变,指数相加。
例如:2^3×2^4=2^(3+4)=2^7=128
5.幂的乘法:(a^m)×(b^n)=(a×b)^(m+n)
幂的乘法是指幂相乘时,底数相乘,指数相加。
例如:(2^3)×(3^2)=(2×3)^(3+2)=6^5=7776
6.乘法的幂:(a×b)^n=a^n×b^n
乘法的幂是指多个数相乘的结果的乘方等于每个数分别乘方再相乘。
例如:(2×3)^4=2^4×3^4=16×81=1296。