椭圆的简单几何性质(附练习题答案及知识点回顾)

椭圆的简单几何性质(附练习题答案及知识点回顾)
椭圆的简单几何性质(附练习题答案及知识点回顾)

椭圆的简单几何性质

基础卷

1.设a , b , c 分别表示同一椭圆的长半轴长、短半轴长、半焦距,则a , b , c 的大小关系是 (A )a >b >c >0 (B )a >c >b >0 (C )a >c >0, a >b >0 (D )c >a >0, c >b >0

2.椭圆的对称轴为坐标轴,若长、短轴之和为18,焦距为6,那么椭圆的方程为

(A )

221916x y += (B )2212516x y += (C )2212516x y +=或2211625x y += (D )22

11625

x y += 3.已知P 为椭圆

22

1916

x y +=上一点,P 到一条准线的距离为P 到相应焦点的距离之比为 (A )

54 (B )45 (C )4

17 (D )

7

4

7

4.椭圆的两个焦点三等分它的准线间的距离,则椭圆的离心率为 (A )

23 (B )33 (C )3

16 (D )

6

1

6

5.在椭圆122

22=+b

y a x 上取三点,其横坐标满足x 1+x 3=2x 2,三点顺次与某一焦点连接的线段长是r 1, r 2, r 3,则有

(A )r 1, r 2, r 3成等差数列 (B )r 1, r 2, r 3成等比数列 (C )

123111,,r r r 成等差数列 (D )123

111

,,r r r 成等比数列 6.椭圆

22

1925

x y +=的准线方程是 (A )x =±

254 (B )y =±165 (C )x =±165 (D )y =±25

4

7.经过点P (-3, 0), Q (0, -2)的椭圆的标准方程是 .

8.对于椭圆C 1: 9x 2

+y 2

=36与椭圆C 2:

22

11612

x y +=,更接近于圆的一个是 . 9.椭圆122

22=+b

y a x 上的点P (x 0, y 0)到左焦点的距离是r = .

10.已知定点A (-2, 3),F 是椭圆22

11612

x y +=的右焦点,在椭圆上求一点M ,使|AM |+2|MF |取得最小值。

提高卷

1.若方程

22

1x y a b

-=表示焦点在y 轴上的椭圆,则下列关系成立的是

(A >

(B < (C > (D <2.曲线

221259x y +=与22

1259x y k k

+=-- (k <9)有相同的 (A )短轴 (B )焦点 (C )准线 (D )离心率

3.椭圆的长半轴长、短半轴长、半焦距分别为a , b , c ,则其焦点到相应准线的距离P 是

(A )2a c (B )2b c (C )2b a (D )2

a b

4.椭圆2

244

x y +=上一点P 到两焦点距离之和与该点到两准线的距离之和的比是 (A )3 (B )

23 (C )2

1

(D )随P 点位置不同而有变化 5.椭圆1

2222=+b y a x (a >b >0)的左焦点F 到过顶点A (-a , 0), B (0, b ),则椭圆的离心率为

(A )

21

(B )5

4 (C (D 6.设F 1(-c , 0), F 2(c , 0)是椭圆122

22=+b

y a x (a >b >0)的两个焦点,P 是以|F 1F 2|为直径的圆与椭圆的一个交点,且

∠PF 1F 2=5∠PF 2F 1,则该椭圆的离心率为 (A )

3

1

6 (B )

2

3 (C )22 (D )32

7.中心在原点,准线方程为y =±4,离心率为

2

1

的椭圆方程是 . 8.若椭圆

22189x y k +=+的离心率为e =2

1

,则k 的值等于 . 9.若椭圆的一短轴端点与两焦点连线成120°角,则该椭圆的离心率为 .

10.椭圆22

2

112x y m m

+=+的准线方程为 .

综合练习卷

1.离心率为

3

2

,长轴长为6的椭圆的标准方程是 (A )22195x y += (B )22195x y +=或22

159x y += (C )

2213620x y += (D )2213620x y +=或22

12036

x y += 2.椭圆22143x y +=上有n 个不同的点P 1, P 2, P 3,……, P n ,椭圆的右焦点为F ,数列{|P n F |}是公差大于1100

的等差数列,则n 的最大值为 (A )199 (B )200 (C )198 (D )201

3.点P 是长轴在x 轴上的椭圆122

22=+b

y a x 上的点,F 1, F 2分别为椭圆的两个焦点,椭圆的半焦距为c ,则|PF 1|·|PF 2|

的最大值与最小值之差一定是

(A )1 (B )a 2 (C )b 2 (D )c 2

4.一个圆心在椭圆右焦点F 2,且过椭圆的中心O (0, 0),该圆与椭圆交于点P ,设F 1是椭圆的左焦点,直线PF 1

恰和圆相切于点P ,则椭圆的离心率是 (A )3-1 (B )2-3 (C )

22

(D )2

3 5.椭圆短轴的两端点为B 1, B 2,过其左焦点F 1作x 轴的垂线交椭圆于点P ,若|F 1B 2|是|OF 1|和|B 1B 2|的比例中项(O 为中心),则

12||

||

PF OB 等于 (A )2 (B )22 (C )2

3 (D )32

6.如图,已知椭圆中心在原点,F 是焦点,A 为顶点,准线l 交x 轴于点B ,点P , Q

在椭圆上,且PD ⊥l 于D ,QF ⊥AO , 则椭圆的离心率是① ||||PF PD ;② ||||QF BF ;③ ||||AO BO ;④ ||||AF AB ;⑤ ||

||

FO AO ,其中正确的个数是

(A )1个 (B )3个 (C )4个 (D )5个 7.点P 与定点(1, 0)的距离和它到直线x =5的距离的比是

3

3

,则P 的轨迹方程为 . 8.椭圆122

22=+b

y a x (b >a >0)的准线方程是 ;离心率是 。

9.椭圆

22

14924

x y +=上一点P 与椭圆两焦点F 1, F 2的连线的夹角为直角,则Rt △PF 1F 2的面积为 . 3

11.若椭圆的一个焦点分长轴为3 : 2的两段,则其离心率为 .

12.椭圆122

22=+b

y a x (a >b >0)长轴的右端点为A ,若椭圆上存在一点P ,使∠APO =90°,求此椭圆的离心率的取

值范围。

圆的方程练习二

1.方程Ax 2+Ay 2+Dx +Ey +F =0(A ≠0)表示圆的充要条件是

(A )D 2+E 2–4F >0 (B )D 2+E 2–4F <0 (C )D 2+E 2–4AF >0 (D )D 2+E 2–4AF <0 2.已知圆的方程是x 2+y 2–2x +6y +8=0,则通过圆心的一条直线方程是 (A )2x –y –1=0 (B )2x +y +1=0 (C )2x –y +1=0 (D )2x +y –1=0 3.圆x 2+y 2=16上的点到直线x –y =3的距离的最大值是 (A )

2

32 (B )4–

2

32 (C )4+

2

32 (D )0

4.已知圆C 和圆C ’关于点(3, 2)成中心对称,若圆C 的方程是x 2+y 2=4,则圆C ’的方程是

(A )(x –4)2+(y –6)2=4 (B )(x +4)2+(y +6)2=4 (C )(x –6)2+(y –4)2=4 (D )(x –6)2+(y +4)2=4 5.已知圆x 2+y 2=4关于直线l 对称的圆的方程为(x +3)2+(y –3)2=4,则直线l 的方程为 (A )y =x +2 (B )y =x +3 (C )y =–x +3 (D )y =–x –3

6.设M ={(x , y )| y

y ≠0}, N ={(x , y )| y =x +b },若M ∩N ≠?,则b 的取值范围是 (A )–32≤b ≤32 (B )–3≤b ≤32 (C )0≤b ≤32 (D )–30)关于直线y =2x 对称,则D 与E 的关系式为 . 8.两定点O (0, 0)和A (3, 0),动点P 到点O 的距离与它到点A 的距离的比是2

1

,则点P 的轨迹方程是 __________________________ .

9

.圆的参数方程为21x y θ

θ

?=-+??=??,化成圆的一般方程是 ;圆心是 。

10.以A (2, 2), B (5, 3), C (3, –1)为顶点的三角形的外接圆的方程为 .

圆锥曲线知识点回顾1.椭圆的性质

2.双曲线的性质

3.抛物线中的常用结论

①过抛物线y2=2px的焦点F的弦AB长的最小值为2p

②设A(x1,y),1B(x2,y2)是抛物线y2=2px上的两点,则AB过F的充要条件是y1y2=-p2

③设A,B是抛物线y2=2px上的两点,O为原点,则OA⊥OB的充要条件是直线AB恒过定点(2p,

(4).圆锥曲线(椭圆、双曲线、抛物线统称圆锥曲线)的统一定义

与一定点的距离和一条定直线的距离的比等于常数的点的轨迹叫做圆锥曲线,定点叫做焦点,定直线叫做准线、常数叫做离心率,用e表示,当0<e<1时,是椭圆,当e>1时,是双曲线,当e=1时,是抛物线.

4.直线与圆锥曲线的位置关系:(在这里我们把圆包括进来)

(1).首先会判断直线与圆锥曲线是相交、相切、还是相离的

a.直线与圆:一般用点到直线的距离跟圆的半径相比(几何法),也可以利用方程实根的个数来判断(解析法).

b.直线与椭圆、双曲线、抛物线一般联立方程,判断相交、相切、相离

c.直线与双曲线、抛物线有自己的特殊性

(2).a.求弦所在的直线方程

b.根据其它条件求圆锥曲线方程

(3).已知一点A坐标,一直线与圆锥曲线交于两点P、Q,且中点为A,求P、Q所在的直线方程

(4).已知一直线方程,某圆锥曲线上存在两点关于直线对称,求某个值的取值范围(或者是圆锥曲线上否

存在两点关于直线对称)

5.二次曲线在高考中的应用

二次曲线在高考数学中占有十分重要的地位,是高考的重点、热点和难点。通过以二次曲线为载体,与平面向量、导数、数列、不等式、平面几何等知识进行综合,结合数学思想方法,并与高等数学基础知识融为一体,考查学生的数学思维能力及创新能力,其设问形式新颖、有趣、综合性很强。本文关注近年部分省的高考二次曲线问题,给予较深入的剖析,这对形成高三复习的新的教学理念将有着积极的促进作用。

(1).重视二次曲线的标准方程和几何性质与平面向量的巧妙结合。

(2).重视二次曲线的标准方程和几何性质与导数的有机联系。

(3).重视二次曲线性质与数列的有机结合。

(4).重视解析几何与立体几何的有机结合。

6.知识网络

圆锥曲线——椭圆、曲线、直线—定义—标准方程

性质:对称性、焦点、顶点、离率、准线、焦半径等

直线与圆锥曲线的位置关系

椭圆的简单几何性质

圆的方程练习二

椭圆的标准方程和几何性质练习题

椭圆的标准方程和几何性质练习题一 1. 若曲线ax 2+by 2=1为焦点在x 轴上的椭圆,则实数a ,b 满足( ) A .a 2>b 2 B.1a <1 b C .01 b >0,所以0b>0)。由点P(2,3)在椭圆上知2243a b +=1。又|PF 1|, |F 1F 2|,PF 2|成等差数列,则|PF 1|+|PF 2|=2|F 1F 2|,即2a=2×2c , c 1 ,a 2= 又c 2=a 2-b 2,联立得a 2=8,b 2=6 3. 已知△ABC 的顶点B 、C 在椭圆x 23+y 2 =1上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点 在BC 边上,则△ABC 的周长是( ) A .23 B .6 C .43 D .12 答案:C 如图,设椭圆的另外一个焦点为F ,则△ABC 的周长为|AB |+|AC |+|BC |=(|AB |+|BF |)+(|AC |+|CF |)=4a =43。 4. 已知椭圆x 2+my 2=1的离心率e ∈????12,1,则实数m 的取值范围是( ) A. ????0,34 B. ????43,+∞ C. ????0,34∪??? ?4 3,+∞ D. ????34,1∪???? 1,43 答案:C 在椭圆x 2+my 2=1中,当0<m <1时,a 2=1m ,b 2=1,c 2=a 2-b 2=1 m -1,

椭圆的几何性质知识点归纳及典型例题及练习(付答案)

(一)椭圆的定义: 1、椭圆的定义:平面内与两个定点1F 、2F 的距离之和等于定长(大于12||F F )的点的轨迹叫做椭圆。这两个定点 1F 、2F 叫做椭圆的焦点,两焦点的距离12||F F 叫做椭圆的焦距。 对椭圆定义的几点说明: (1)“在平面内”是前提,否则得不到平面图形(去掉这个条件,我们将得到一个椭球面); (2)“两个定点”的设定不同于圆的定义中的“一个定点”,学习时注意区分; (3)作为到这两个定点的距离的和的“常数”,必须满足大于| F 1F 2|这个条件。若不然,当这个“常数”等于| F 1F 2|时,我们得到的是线段F 1F 2;当这个“常数”小于| F 1F 2|时,无轨迹。这两种特殊情况,同学们必须注意。 (4)下面我们对椭圆进行进一步观察,发现它本身具备对称性,有两条对称轴和一个对称中心,我们把它的两条对称轴与椭圆的交点记为A 1, A 2, B 1, B 2,于是我们易得| A 1A 2|的值就是那个“常数”,且|B 2F 2|+|B 2F 1|、|B 1F 2|+|B 1F 1|也等于那个“常数”。同学们想一想其中的道理。 (5)中心在原点、焦点分别在x 轴上,y 轴上的椭圆标准方程分别为: 22 22 2222 x y y x 1(a b 0),1(a b 0),a b a b +=>>+=>> 相同点是:形状相同、大小相同;都有 a > b > 0 ,2 2 2 a c b =+。 不同点是:两种椭圆相对于坐标系的位置不同,它们的焦点坐标也不同(第一个椭圆的焦点坐标为(-c ,0)和(c ,0),第二个椭圆的焦点坐标为(0,-c )和(0,c )。椭圆的 焦点在 x 轴上?标准方程中x 2项的分母较大;椭圆的焦点在 y 轴上?标准方程中y 2 项的分母较大。 (二)椭圆的几何性质: 椭圆的几何性质可分为两类:一类是与坐标系有关的性质,如顶点、焦点、中心坐标;一类是与坐标系无关的本身固有性质,如长、短轴长、焦距、离心率.对于第一类性质,只 要22 22x y 1(a b 0)a b +=>>的有关性质中横坐标x 和纵坐标y 互换,就可以得出2222 y x 1(a b 0)a b +=>>的有关性质。总结如下:

椭圆标准方程及几何性质(附答案)

高考能力测试数学基础训练26 基础训练26 椭圆标准方程及几何性质 ●训练指要 熟练掌握椭圆的定义、标准方程、几何性质;会用待定系数法求椭圆方程. 一、选择题 1.椭圆中心在坐标原点,对称轴为坐标轴,离心率为0.6,长、短轴之和为36,则椭圆方程为 A.164 1002 2=+y x B.1100 642 2=+y x C.1100 641641002 222=+=+y x y x 或 D.110 818102 222=+=+y x y x 或 2.若方程x 2+ky 2=2,表示焦点在y 轴上的椭圆,那么实数k 的取值范围是 A.(0,+∞) B.(0,2) C.(1,+∞) D.(0,1) 3.已知圆x 2+y 2=4,又Q (3,0),P 为圆上任一点,则PQ 的中垂线与OP 之交点M 轨迹为(O 为原点) A.直线 B.圆 C.椭圆 D.双曲线

二、填空题 4.设椭圆120 452 2=+y x 的两个焦点为F 1、F 2,P 为椭圆上一点,且PF 1⊥PF 2,则||PF 1|-|PF 2||=_________. 5.(2002年全国高考题)椭圆5x 2+ky 2=5的一个焦点是(0,2),那么k =_________. 三、解答题 6.椭圆22 22b y a x +=1(a >b >0),B (0,b )、B ′(0,-b ),A (a ,0),F 为椭圆的右焦点,若直线AB ⊥ B ′F ,求椭圆的离心率. 7.在面积为1的△PMN 中,tan M =2 1,tan N =-2,建立适当的坐标系,求以M 、N 为焦点 且过点P 的椭圆方程. 8.如图,从椭圆22 22b y a x +=1(a >b >0)上一点M 向x 轴作垂线,恰好通过椭圆的左焦点F 1,且它的长轴端点A 及短轴的端点B 的连线AB ∥OM . (1)求椭圆的离心率e ; (2)设Q 是椭圆上任意一点,F 2是右焦点,求∠F 1QF 2的取值范围; (3)设Q 是椭圆上一点,当QF 2⊥AB 时,延长QF 2与椭圆交于另一点P ,若△F 1PQ 的面积为203,求此时椭圆的方程.

2.1.2 椭圆的简单几何性质同步练习

2.1.2 椭圆的简单几何性质同步练习 1.椭圆的简单几何性质 直线y =kx +b 与椭圆x 2a 2+y 2 b 2=1 (a >b >0)的位置关系: 直线与椭圆相切?????? y =kx +b x 2a 2+y 2 b 2=1有______组实数解,即Δ______0.直线与椭圆相交? ????? y =kx +b x 2a 2+y 2b 2=1有______组实数解,即Δ______0,直线与椭圆相离?????? y =kx +b x 2a 2+y 2 b 2=1________实数解,即Δ______0. 一、选择题 1.椭圆25x 2+9y 2=225的长轴长、短轴长、离心率依次是( ) A .5,3,45 B .10,6,4 5 C .5,3,35 D .10,6,3 5 2.焦点在x 轴上,长、短半轴长之和为10,焦距为45,则椭圆的方程为( ) A .x 236+y 216=1 B .x 216+y 2 36=1 C .x 26+y 24=1 D .y 26+x 2 4 =1 3.若焦点在x 轴上的椭圆x 22+y 2m =1的离心率为1 2 ,则m 等于( )

A . 3 B .32 C .83 D .2 3 4.如图所示,A 、B 、C 分别为椭圆x 2a 2+y 2b 2=1 (a >b >0)的顶点与焦点,若∠ABC =90°, 则该椭圆的离心率为( ) A.-1+52 B .1-22 C.2-1 D.2 2 5.若直线mx +ny =4与圆O :x 2 +y 2 =4没有交点,则过点P (m ,n )的直线与椭圆x 29+ y 2 4 =1的交点个数为( ) A .至多一个 B .2 C .1 D .0 6.已知F 1、F 2是椭圆的两个焦点。满足1MF ·MF 2→ =0的点M 总在椭圆内部,则椭圆离心率的取值范围是( ) A .(0,1) B .??? ?0,12 C .???0,2 D .???2 ,1 7.已知椭圆的中心在原点,焦点在x 轴上,离心率为5 5 ,且过点P (-5,4),则椭圆的 方程为______________. 8.直线x +2y -2=0经过椭圆x 2a 2+y 2 b 2=1 (a >b >0)的一个焦点和一个顶点,则该椭圆的 离心率等于______. 9.椭圆E :x 216+y 2 4 =1内有一点P (2,1),则经过P 并且以P 为中点的弦所在直线方程为 ____________. 三、解答题 10.如图,已知P 是椭圆x 2a 2+y 2 b 2=1 (a >b >0)上且位于第一象限的一点,F 是椭圆的右焦 点,O 是椭圆中心,B 是椭圆的上顶点,H 是直线x =-a 2 c (c 是椭圆的半焦距)与x 轴的交 点,若PF ⊥OF ,HB ∥OP ,试求椭圆的离心率e .

椭圆的简单几何性质教案(绝对经典)

第2课时 椭圆的简单几何性质 错误!题型分类 深度解析 考点一 椭圆的性质 【例1】 (1)已知椭圆C :x 2a 2+y 2 b 2=1(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线bx -ay +2ab =0相切,则C 的离心率为( ) A.63 B.33 C.23 D.13 (2)已知椭圆E :x 2a 2+y 2 b 2=1(a >b >0)的右焦点为F ,短轴的一个端点为M ,直线l :3x -4y =0交椭圆E 于A ,B 两点.若|AF |+|BF |=4,点M 到直线l 的距离不小于4 5,则椭圆E 的离心率的取值范围是( ) A.? ?? ??0,32 B.??? ?0,34 C.?? ?? ??32,1 D.??? ?3 4,1 解析 (1)以线段A 1A 2为直径的圆是x 2+y 2=a 2,又与直线bx -ay +2ab =0相切, 所以圆心(0,0)到直线的距离d =2ab a 2+b 2 =a ,整理为a 2=3b 2 ,即b a =13. ∴e =c a =a 2- b 2a = 1-??? ?b a 2 = 1-? ?? ??132=63. (2)设左焦点为F 0,连接F 0A ,F 0B ,则四边形AFBF 0为平行四边形. ∵|AF |+|BF |=4, ∴|AF |+|AF 0|=4,∴a =2. 设M (0,b ),则4b 5≥4 5,∴1≤b <2. 离心率e =c a = c 2a 2= a 2- b 2a 2= 4-b 24∈? ???? 0,32. 答案 (1)A (2)A 规律方法 求椭圆离心率的方法 (1)直接求出a ,c 的值,利用离心率公式直接求解. (2)列出含有a ,b ,c 的齐次方程(或不等式),借助于b 2=a 2-c 2消去b ,转化为含有e 的

椭圆的简单几何性质练习题精练

椭圆专题 一、选择题 1.(2015·人大附中月考)焦点在x 轴上,短轴长为8,离心率为35的椭 圆的标准方程是( ) A.x 2100+y 236=1 B.x 2100+y 264=1 C.x 225+y 216=1 D.x 225+y 29=1 2.椭圆的短轴的一个顶点与两焦点组成等边三角形,则它的离心率 为( )A.12 B.13 C.14 D.22 3曲线x 225+y 29=1与x 29-k +y 225-k =1(0

8.(1)求与椭圆x 29+y 24=1有相同的焦点,且离心率为55的椭圆的标准 方程;(2)已知椭圆的两个焦点间的距离为8,两个顶点坐标分别是(-6,0),(6,0),求焦点在x 轴上的椭圆的标准方程. 9.(2014·菏泽高二检测)设椭圆x 2a 2+y 2 b 2=1(a >b >0)与x 轴交于点A ,以OA 为边作等腰三角形OAP ,其顶点P 在椭圆上,且∠OP A =120°,求椭圆的离心率. 10.(2015·福州高二期末)设椭圆的两个焦点分别为F 1,F 2,过F 2作椭圆长轴的垂线交椭圆于点P ,若△F 1PF 2为等腰直角三角形,则椭 圆的离心率是( )A.22 B.2-1C .2- 2 D.2-12 2.(2014·清远高二期末)“m =3”是“椭圆x 24+y 2m =1的离心率为12” 的( )A .充分不必要条件B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 3.(2015·济南历城高二期末)已知椭圆x 2a 2+y 2 b 2=1(a >b >0)的左焦点为F ,右顶点为A ,点B 在椭圆上,且BF ⊥x 轴,直线AB 交y 轴于点 P .若AP →=2PB →,则椭圆的离心率是________. 4.(2014·青海省西宁)已知点A ,B 分别是椭圆x 236+y 2 20=1的左、右顶点,点F 是椭圆的右焦点,点P 在椭圆上,且位于x 轴上方,P A ⊥PF . (1)求点P 的坐标; (2)设M 是椭圆长轴AB 上的一点,且M 到直线AP 的距离等于|MB |,求椭圆上的点到点M 的距离d 的最小值.

椭圆的简单几何性质(附练习题答案及知识点回顾)

椭圆的简单几何性质 基础卷 1.设a , b , c 分别表示同一椭圆的长半轴长、短半轴长、半焦距,则a , b , c 的大小关系是 (A )a >b >c >0 (B )a >c >b >0 (C )a >c >0, a >b >0 (D )c >a >0, c >b >0 2.椭圆的对称轴为坐标轴,若长、短轴之和为18,焦距为6,那么椭圆的方程为 (A ) 221916x y += (B )2212516x y += (C )2212516x y +=或2211625x y += (D )22 11625 x y += 3.已知P 为椭圆 22 1916 x y +=上一点,P 到一条准线的距离为P 到相应焦点的距离之比为 (A ) 54 (B )45 (C )4 17 (D ) 7 4 7 4.椭圆的两个焦点三等分它的准线间的距离,则椭圆的离心率为 (A ) 23 (B )33 (C )3 16 (D ) 6 1 6 5.在椭圆122 22=+b y a x 上取三点,其横坐标满足x 1+x 3=2x 2,三点顺次与某一焦点连接的线段长是r 1, r 2, r 3,则有 (A )r 1, r 2, r 3成等差数列 (B )r 1, r 2, r 3成等比数列 (C ) 123111,,r r r 成等差数列 (D )123 111 ,,r r r 成等比数列 6.椭圆 22 1925 x y +=的准线方程是 (A )x =± 254 (B )y =±165 (C )x =±165 (D )y =±25 4 7.经过点P (-3, 0), Q (0, -2)的椭圆的标准方程是 . 8.对于椭圆C 1: 9x 2 +y 2 =36与椭圆C 2: 22 11612 x y +=,更接近于圆的一个是 . 9.椭圆122 22=+b y a x 上的点P (x 0, y 0)到左焦点的距离是r = . 10.已知定点A (-2, 3),F 是椭圆22 11612 x y +=的右焦点,在椭圆上求一点M ,使|AM |+2|MF |取得最小值。

椭圆的几何性质习题

$ 椭圆的几何性质习题 一、选择题(共60题) 1.圆6x + y =6的长轴的端点坐标是 A.(-1,0)?(1,0) B.(-6,0)?(6,0) C.(-6,0)?(6,0) D.(0,-6)?(0,6) 2.椭圆x + 8y =1的短轴的端点坐标是 A.(0,-42)、(0,42 ) B.(-1,0)、(1,0) C.(22,0)、(-2,0) D.(0,22)、(0,- 22) 3.椭圆3x +2y =1的焦点坐标是 A.(0,-66)、(0,66) B.(0,-1)、(0,1) C.(-1,0)、(1,0) D.(-66,0)、(66 ,0) ; 4.椭圆122 2 2=+a y b x (a >b >0)的准线方程是 A. 2 2 2 b a a y +± = B. 2 2 2 b a a y -± = C. 2 2 2 b a b y -± = D. 222b a a y +± = 5.椭圆14922=+y x 的焦点到准线的距离是 A.559554和 B.5514559和 C.5514554和 D.5 514 6.已知F 1、F 2为椭圆122 2 2=+b y a x (a >b >0)的两个焦点,过F 2作椭圆的弦AB ,若 △AF 1B 的周长为16,椭圆离心率 23 = e ,则椭圆的方程是 A.13422=+y x B.131622=+y x C.1121622=+y x D.14162 2=+y x 7.离心率为23 ,且过点(2,0)的椭圆的标准方程是 |

A.1422=+y x B.1422=+y x 或1422=+y x C.1 412 2 =+y x D.142 2=+y x 或1 16422=+y x 8.椭圆122 2 2=+b y a x 和k b y a x =+2222(k >0)具有 A.相同的离心率 B.相同的焦点 C.相同的顶点 D.相同的长?短轴 9.点A (a ,1)在椭圆1242 2=+y x 的内部,则a 的取值范围是 22 b >0)的离心率等于53,若将这个椭圆绕着它的右焦点按逆时针方向旋 转2π 后,所得的新椭圆的一条准线的方程y =316,则原来的椭圆方程是 / A.14812922=+y x B.16410022=+y x C.1162522=+y x D.1 9162 2=+y x 12.椭圆 14522 2++a y a x =1的焦点在x 轴上,则它的离心率的取值范围是 A.(0,51) B.(51,55)] C.??? ??55,0 D.???????1,55 13.椭圆1)6(4)3(2 2=++-m y x 的一条准线为7=x ,则随圆的离心率e 等于 A.21 B.22 C.23 D.41 14.已知椭圆的两个焦点为F 1?F 2,过F 2引一条斜率不为零的直线与椭圆交于点A ?B ,则 三角形ABF 1的周长是 .24 C 15.已知椭圆的长轴为8,短轴长为43,则它的两条准线间的距离为 .16 C

椭圆的简单几何性质练习题

. 课时作业(八) [学业水平层次] 一、选择题 1.(2015·人大附中月考)焦点在x 轴上,短轴长为8,离心率为3 5 的椭圆的标准方程是( ) +y 236=1 + y 2 64 =1 +y 2 16 =1 +y 2 9 =1 【解析】 本题考查椭圆的标准方程.由题意知2b =8,得 b =4,所以b 2 =a 2 -c 2 =16,又e =c a =3 5 ,解得c =3,a =5,又 焦点在x 轴上,故椭圆的标准方程为x 225+y 2 16 =1,故选C. $ 【答案】 C 2.椭圆的短轴的一个顶点与两焦点组成等边三角形,则它的离心率为( ) 【解析】 由题意知a =2c ,∴e =c a =c 2c =1 2 . 【答案】 A 3曲线x 225+y 29=1与x 29-k +y 2 25-k =1(0

A .有相等的焦距,相同的焦点 ) B .有相等的焦距,不同的焦点 C .有不等的焦距,不同的焦点 D .以上都不对 【解析】 曲线x 225+y 29=1的焦距为2c =8,而曲线x 29-k + y 2 25-k =1(0<k <9)表示的椭圆的焦距也是8,但由于焦点所在的坐标轴不同,故选B. 【答案】 B 4.已知O 是坐标原点,F 是椭圆x 24+y 2 3=1的一个焦点,过F 且 与x 轴垂直的直线与椭圆交于M ,N 两点,则cos ∠MON 的值为( ) B .-513 D .-21313 # 【解析】 由题意,a 2=4,b 2=3, 故c =a 2-b 2=4-3=1. 不妨设M (1,y 0),N (1,-y 0),所以124+y 2 3 =1, 解得y 0=±3 2 , 所以|MN |=3,|OM |=|ON |=12 +? ?? ??322=132. 由余弦定理知 cos ∠MON =|OM |2+|ON |2-|MN |2 2|OM ||ON | =

椭圆的简单几何性质(二)

第2课时:椭圆的简单几何性质(二) 【学习目标】 1.进一步熟悉和掌握椭圆的几何性质(对称性、范围、顶点、离心率等); 2.掌握求曲线方程的一些基本方法; 3.会利用椭圆的标准方程和几何性质解决一些简单的实际问题。 【知识线索】 椭圆两种标准方程的性质比较 定义 平面内到两个定点F1,F2的距离的和等于常数(大于 2 1 F F)的点的轨迹 标准方程 )0 (1 2 2 2 2 > > = +b a b y a x )0 (1 2 2 2 2 > > = +b a b x a y 图形 焦点坐标 范围 对称性 顶点坐标 离心率 c b a, ,的含义及关系 【知识建构】 1.椭圆中方程思想的应用; 2.注意椭圆的焦点的位置的确定; 3.利用椭圆的定义接相关椭圆问题是很重要的方法。 【典例透析】 高二选修2-1:第二章圆锥曲线与方程 四环节导思教学导学案 课时目标呈现 目标导航 课前自主预习 新知导学 疑难导思课中师生互动 x A2 B2 F2 y O A1 B1 F1 y O A1 B1 x A2 B2 F1 F2

例1.与椭圆)0(2 32 2>=+λλy x 有相同的离心率,且过点)2,32(的椭圆的标准方程是 例2.如图,点B A ,分别是椭圆 120 362 2=+y x 长轴的左、右端点, 点F 是椭圆的右焦点,点P 在椭圆上,且位于x 轴的上方, PF PA ⊥。 (1)求点P 的坐标; (2)设M 是椭圆长轴AB 上的一点,M 到直线AP 的距离等于||MB ,求椭圆上的点到点M 的距离d 的最小值。 【课堂检测】 1.若椭圆的两个焦点与短轴的一个端点构成一个正三角形,则该椭圆的离心率为_______. 2.已知点P 是椭圆14 52 2=+y x 上的一点,且以点P 及焦点1F ,2F 为定点的三角形的面积等于1,求点P 的坐标。 【课堂小结】 y F O A B x 课后训练提升 达标导练 M P

第52讲 椭圆的几何性质(解析版)2021届新课改地区高三数学一轮专题复习

第52讲椭圆的几何性质 一、课程标准 1、掌握椭圆的性质,能够正确求出椭圆的性质 2、掌握求椭圆的离心率的值以及离心率的范围 3、掌握直线与椭圆的位置关系 二、基础知识回顾 1、椭圆的标准方程和几何性质 2、焦半径:椭圆上的点P(x0,y0)与左(下)焦点F1与右(上)焦点F2之间的线段的长度叫做椭圆的焦半径,分别记作r1=|PF1|,r2=|PF2|. (1)x2 a2+y2 b2=1(a>b>0),r1=a+ex0,r2=a-ex0; (2)y2 a2+x2 b2=1(a>b>0),r1=a+ey0,r2=a-ey0; (3)焦半径中以长轴为端点的焦半径最大和最小(近日点与远日点). 3、焦点三角形:椭圆上的点P(x0,y0)与两焦点构成的△PF1F2叫做焦点三角形,∠F1PF2=θ,△PF1F2的面积

为S ,则在椭圆x 2a 2+y 2 b 2=1(a >b >0)中 (1)当P 为短轴端点时,θ最大. (2)S =12|PF 1||PF 2|·sin θ=b 2tan θ 2=c |y 0|,当|y 0|=b 时,即点P 为短轴端点时,S 取最大值,最大值为bc . (3)焦点三角形的周长为2(a +c ). 4、.AB 为椭圆x 2a 2+y 2 b 2=1(a >b >0)的弦,A (x 1,y 1),B (x 2,y 2),弦中点M (x 0,y 0),则 (1)弦长l =1+k 2|x 1-x 2|= 1+1 k 2|y 1-y 2|; (2)直线AB 的斜率k AB =-b 2x 0 a 2y 0. 5、直线与椭圆的关系 将直线方程与椭圆方程联立,消去一个变量得到关于x(或y)的一元二次方程ax 2+bx +c =0(或ay 2+by +c =0). 再求一元二次方程的判别式Δ,当: ①Δ>0?直线与椭圆相交; ②Δ=0?直线与椭圆相切; ③Δ<0?直线与椭圆相离. 6、设直线l 与椭圆的交点坐标为A(x 1,y 1),B(x 2,y 2),k 为直线l 斜率,则AB =(1+k 2)|x 1-x 2|. 三、自主热身、归纳总结 1、直线y =kx -k +1(k 为实数)与椭圆x 29+y 2 4 =1的位置关系为( ) A . 相交 B . 相切 C . 相离 D . 相交、相切、相离都有可能 【答案】A 【解析】 直线y =kx -k +1=k(x -1)+1恒过定点(1,1).∵点(1,1)在椭圆内部,∴直线与椭圆相交.故选A . 第2题图

《椭圆的简单几何性质》教学反思.doc

《椭圆的简单几何性质》教学反思 数学组冶有得 为了提高年轻教师的业务能力和专业素养,学校邀请乌市专家到我校听年轻教师上课, 为了上好木节课,我做了充分准备,下面我从的前期准备、课堂自我感觉及专家评课等方面进行反思,反思如下: 一、课前准备:在前期认真翻看了课木和课标,并多次请教粟登科老师、高志华老师;根据木班学生的实际情况制定了木节的教学目标、教学重难点,列出了框架,再依据框架撰写了教学设计、导学案并制作ppt。 二、课堂自我感觉:从课堂上来看,学生反应积极,教学进程流畅,学生对于知识点达到了掌握和理解,同时能紧跟着老师的思路;基木实现了木节课的预期目标,可惜的是最麻一道练习没处理完。 三、专家评课:一是优点:本节课采用了数形结合的数学思想,更加直观、形象的说明的椭圆的几何性质,使得将难度降低,学生更容易理解、掌握;讲练结合,讲完一个性质练习一道题,使得学生巩同了所学内容,更进一步加深了记忆;课堂较顺利,推进的速度也比较快, 板书较为桀齐;课堂采用了几何曲板,使得复杂的问题简单化。问题的设置较好,层层递进, 使得与学生的互动也比较多,充分体现了新课标要求,以学生为本,将课堂还给学生。 二是缺点:在推到离心率公式的时候速度过快,没有足够的时间去分析和挖掘;例1的讲解只采用了代数法讲解,若结合图形就更能说明问题,学生也更容易理解;本节课的容最较大。四、课后反思: 1.细节决定成败。细节是往往我们忽略的地方,如在复习椭圆的定义时没有强调(| PF】I + I PF2 |= 2a(2a >\ F}F2 |),如果不满足条件(2a>2c),那么这个点的轨迹就不是椭圆了,所以要注重教学内容的严谨性。 2.对个别学生的关注度不够,通过检杏笔记和练习本发现上课时没有动笔,一两个学生有打嗑睡的现象。 3.教学语言还需要锤炼。在叙述椭圆的离心率时,语言的表达不是那么精准,也不到位。尔对于一个教师来说最基木就是能够把白己的知识准确的、简单的传授给学生,把复杂的问题简单化,使学生更容易接受,让学生更加认可你。 4?对于教材的挖掘有所欠缺,如叙述离心率是课本上有详细的解答,描述的也比较到位。 五、听专家课的一些想法:乌市专家在高三(14)班上了一节公开课《解三角形》,作为高三的复习课,我们上课的方式一般会是知识梳理、讲解例题、课堂练习;对于公式的推到、背景很少讲解,但是赵老师先复习了最基础的、最简单的公式(三角形的面积公式、锐角三角函数);Z后利用这两个公式一步步得出了面积公式、正弦定理、余弦定理及推论,使学生更加熟悉了并会应用公式,记忆也比较牢固;然后出了一些较为简单的高考题型进行练习, 最示讲解两道相对复杂的例题。从上课的模式、心态、语言表达等方面给我留下了深刻的印象,也是我学习的内容。 总Z,作为一名年轻教师,要不断的学习,不断地改进,争取早U成熟起来。通过这次的上课和听课,让我也认识到了白己的不足,明确了改进的方向,同时给白己也提出了很多问题,怎样让自己的教学方法多样化,吸引学生?怎样让学生喜欢数学?在今示的教学屮会更加努力。

椭圆的简单几何性质试题

椭圆的简单几何性质试题

————————————————————————————————作者:————————————————————————————————日期:

课时作业(八) [学业水平层次] 一、选择题 1.(2015·人大附中月考)焦点在x 轴上,短轴长为8,离心率为3 5的椭圆的标准方程是( ) A.x 2100+y 2 36=1 B.x 2100+y 2 64=1 C.x 225+y 2 16=1 D.x 225+y 2 9=1 【解析】 本题考查椭圆的标准方程.由题意知2b =8,得 b =4,所以b 2=a 2-c 2=16,又e =c a =3 5,解得c =3,a =5,又焦点在x 轴上,故椭圆的标准方程为x 225+y 2 16=1,故选C. 【答案】 C 2.椭圆的短轴的一个顶点与两焦点组成等边三角形,则它的离心率为( ) A.12 B.13 C.14 D.22 【解析】 由题意知a =2c ,∴e =c a =c 2c =1 2. 【答案】 A 3曲线x 225+y 29=1与x 29-k +y 2 25-k =1(0

A .有相等的焦距,相同的焦点 B .有相等的焦距,不同的焦点 C .有不等的焦距,不同的焦点 D .以上都不对 【解析】 曲线x 225+y 29=1的焦距为2c =8,而曲线x 29-k +y 2 25-k = 1(0<k <9)表示的椭圆的焦距也是8,但由于焦点所在的坐标轴不同,故选B. 【答案】 B 4.已知O 是坐标原点,F 是椭圆x 24+y 2 3=1的一个焦点,过F 且与x 轴垂直的直线与椭圆交于M ,N 两点,则cos ∠MON 的值为( ) A.5 13 B .-513 C.21313 D .-21313 【解析】 由题意,a 2=4,b 2=3, 故c = a 2- b 2= 4-3=1. 不妨设M (1,y 0),N (1,-y 0),所以124+y 2 3=1, 解得y 0=±3 2, 所以|MN |=3,|OM |=|ON |=12 +? ?? ??322=13 2. 由余弦定理知 cos ∠MON =|OM |2+|ON |2-|MN |2 2|OM ||ON | =

椭圆常考题型汇总及练习进步

椭圆常考题型汇总及练习 第一部分:复习运用的知识 (一)椭圆几何性质 椭圆第一定义:平面内与两定点21F F 、距离和等于常数 ()a 2(大于21F F )的点的轨迹叫做椭圆. 两个定点叫做椭圆的焦点;两焦点间的距离叫做椭圆的焦距 ()c 2. 椭圆的几何性质:以 ()0122 22>>=+b a b y a x 为例 1. 范围: 由标准方程可知,椭圆上点的坐标()y x ,都适合不等式1,122 22≤≤b y a x ,即 b y a x ≤≤,说明椭圆位于直线a x ±=和b y ±=所围成的矩形里(封闭曲线).该性质主要用 于求最值、轨迹检验等问题. 2. 对称性:关于原点、x 轴、y 轴对称,坐标轴是椭圆的对称轴,原点是椭圆的对称中心。 3. 顶点(椭圆和它的对称轴的交点) 有四个:()()()().,0B ,0B 0,0,2121b b a A a A 、、、-- 4. 长轴、短轴: 21A A 叫椭圆的长轴,a a A A ,221=是长半轴长; 21B B 叫椭圆的短轴,b b B B ,221=是短半轴长. 5. 离心率 (1)椭圆焦距与长轴的比a c e =,()10,0<<∴>>e c a Θ (2)22F OB Rt ?, 2 22 22 22OF OB F B +=,即222c b a +=.这是椭圆的特征三角形,并且 22cos B OF ∠的值是椭圆的离心率. (3)椭圆的圆扁程度由离心率的大小确定,与焦点所在的坐标轴无关.当e 接近于1时,c 越接近于a ,从而22c a b -= 越小, 椭圆越扁;当e 接近于0时,c 越接近于0,从而2 2c a b -=越大,椭圆越接近圆。

椭圆的几何性质测试题

………………………………………………最新资料推荐………………………………………
1.椭圆 x2+4y2=1 的离心率为(
椭圆的几何性质 )
2017/9/22
则椭圆的离心率为 ( )
33 22 A. 2 B.4C. 2 D.3
2.已知中心在原点的椭圆 C 的右焦点为 F(1,0),离心率等于12,则 C 的方程是( )
A.x32+y42=1B.x42+ y23=1C.x42+y22=1D.x42+y32=1
3.若椭圆经过原点,且焦点分别为 F1(1,0) , F2 (3,0) ,则其离心率为
()
A. 3 4
B. 2 3
C. 1 2
D. 1 4
4.已知椭圆的对称轴是坐标轴,离心率为13,长轴长为 12,则椭圆方程为( )
A.1x424+1y228=1 或1x228+1y424=1B.x62+y42=1
C.3x62 +3y22 =1 或3x22 +3y62 =1D.x42+y62=1 或x62+y42=1
A.
B.
C.
D.
9.设 F1, F2 是椭圆 E: + =1(a>b>0)的左、右焦点,P 为直线 x= △F2PF1 是底角为 30°的等腰三角形,则 E 的离心率为 ( )
A.
B.
C.
D.
上一点,
5.椭圆 + =1 与
+
=1(0A.有相等的长、短轴 B.有相等的焦距 C.有相同的焦点 D.有相等 的离心率
6.已知 F1,F2 为椭圆 + =1(a>b>0)的两个焦点,过 F2 作椭圆的弦 AB,若△AF1B 的周长为 16, 椭圆离心率 e= ,则椭圆的方程是( )
10.设 e 是椭圆 + =1 的离心率,且 e∈
,则实数 k 的取值范围是 ( )
A.(0,3)
B.
C.(0,3)∪
D.(0,2)
二、填 空题:
11.求适合下列条件的椭圆的标准方程: (1)长轴长是 10,离心率是45的椭圆的标准方程:. (2)在 x 轴上的一个焦点与短轴两个端点的连线互相垂直,且焦距为 6 的椭圆的
标准方程:. (3)短轴一个端点与两焦点组成一个正三角形,且焦点到同侧顶点的距离为 3的椭圆的
标准方程:.
A. + =1B. + =1C. + =1D. + =1
7.已知椭圆 C:ax22+by22=1(a>b>0)的左、右焦点为 F1、F2,离心率为 33,过 F2 的直线 l 交 C 于 A、B 两点,若△AF1B 的周长为 4 3,则 C 的方程为( ) A.x32+y22=1B.x32+y2=1C.1x22 +y82=1D.1x22 +y42=1
12.已知椭圆 + =1 的两个焦点是 F1,F2,点 P 在该椭圆上,若|PF1|-|PF2|=2,则△PF1F2 的
面积是.
13.若直线 x 2y 2 0 过椭圆 x 2 y 2 1(a b 0) 的左焦点 F 和一个顶点 B,则该椭圆 a2 b2
的离心率为_______。
8.过椭圆 + =1(a>b>0)的左焦点 F1 作 x 轴的垂线交椭圆于点 P,F2 为右焦点,若∠F1PF2=60°, 1 / 13

椭圆的简单几何性质练习题

2.2.2椭圆的简单几何性质 1.椭圆63222=+y x 的焦距是( ) A .2 B .)23(2- C .52 D .)23(2+ 2.的长轴端点坐标为椭圆6622=+y x ( ) A.),),(,(0101- B ),),(,(0606- C.),),(,(0606- D. ) ,),(,(6060- 3.到右焦点的距离上一点椭圆P y x 19 252 2=+( ) A .最大值为5,最小值为4 B .最大值为10,最小值为8 C .最大值为10,最小值为6 D .最大值为9,最小值为1 4.下列说法错误.. 的是( ) A .命题“若2320x x -+=,则1x =”的逆否命题为:“若1x ≠,则2320x x -+≠” B .2 2320x x x >-+>“”是“”的充分不必要条件 C .若q p ∧为假命题,则p 、q 均为假命题. D .若命题p :“x R ?∈,使得210x x ++<”,则p ?:“x R ?∈,均有210x x ++≥” 5.过椭圆12422=+y x 的一个焦点1F 的直线与椭圆交于A 、B 两点,则A 、B 与椭圆的另 一焦点2F 构成2ABF ?,那么2ABF ?的周长是( ) A. 22 B. 2 C. 2 D. 1 6.椭圆焦点在x 轴,若长轴长为18,且两个焦点恰好将长轴三等分,则此椭圆的方程是( ) A 、2218172x y += B 、221819x y += C 、2218145x y += D 、22 18136 x y += 7.写出命题"01,0"3≤++>?x x x 的否定_____________________________________ 8.在数列{}n a 满足11a =,n n a a 21=+,则=n a ___________,7S =_________________ 9.在等差数列{}n a 中,3737a a +=,则2468a a a a +++=__________ 10.已知实数x ,y 满足约束条件?????≤-≤≥021y x y x ’ 则y x z -=2的取值范围是______________ 11.已知在等差数列{n a }中,,4,1201-==d a 若)2(≥≤n a S n n , 则n 的最小值为__________ 12.椭圆的短轴长是4,长轴长是短轴长的 32 倍,则椭圆的焦距是_______,离心率是_________ 则椭圆方程为______________

椭圆几何性质及应用(基础题)

椭圆的简单几何性质 1.若焦点在x轴上的椭圆x2 2+ y2 m=1的离心率为 1 2,则m等于() A.3 B.3 2C. 8 3D. 2 3 2.若椭圆经过原点,且焦点为F1(1,0),F2(3,0),则其离心率e是() A.3 4B. 2 3C. 1 2D. 1 4 3.椭圆(m+1)x2+my2=1的长轴长是() A.2m-1 m-1 B. -2-m m C.2m m D.- 21-m m-1 4.椭圆的两个焦点和它在短轴上的两个顶点连成一个正方形,则此椭圆的离心率为() A.1 2B. 2 2 C. 3 2D. 3 3 5.(2009·江西高考)过椭圆x2 a2+ y2 b2=1(a>b>0)的左焦点F1作x轴的垂线交椭圆于 点P,F2为右焦点,若∠F1PF2=60°,则椭圆的离心率为() A. 2 2B. 3 3 C.1 2D. 1 3 6.若AB为过椭圆x2 25+ y2 16=1中心的线段,F1为椭圆的焦点,则△F1AB面积的 最大值为() A.6 B.12 C.24 D.48 1

7.椭圆的一个焦点将长轴分为3∶2的两段,则椭圆的离心率是________. 8.过椭圆x2 5+ y2 4=1的右焦点作一条斜率为2的直线与椭圆交于A,B两点,O 为坐标原点,则△OAB的面积为________. 9.若椭圆x2 k+2+ y2 4=1的离心率e= 1 3,则k的值等于________. 10.求适合下列条件的椭圆的标准方程: (1)长轴长是短轴长的3倍,且过点(3,-1); (2)椭圆过点(3,0),离心率e= 6 3. 11.已知椭圆4x2+y2=1及直线y=x+m, (1)当直线和椭圆有公共点,求实数m的取值范围. (2)求被椭圆截得的最长线段所在的直线方程. 2

椭圆的简单几何性质一教案

椭圆的简单几何性质(一) 池州第六中学 王超 教学目标 (一)教学知识点 椭圆的范围、对称性、对称轴、对称中心、离心率及顶点. (二)能力训练要求 1.使学生了解并掌握椭圆的范围. 2使学生掌握椭圆的对称性,明确标准方程所表示的椭圆的对称轴、对称中心. 3.使学生掌握椭圆的顶点坐标、长轴长、短轴长以及a 、b 、c 的几何意义,明确标准方程所表示的椭圆的截距. 4.使学生掌握离心率的定义及其几何意义. 教学重点 椭圆的简单几何性质. 教学难点 椭圆的简单几何性质. (这是第一次用代数的方法研究几何图形的性质的) 教学方法 师生共同讨论法. 通过师生的共同讨论研究,学生的亲身实践体验,使学生明确椭圆的几何性质的研究方法,加强对性质的理解,掌握椭圆的几何性质. 教学过程 Ⅰ.课题导入 [师]前面,我们研究讨论椭圆的标准方程)0(122 22>>=+b a b y a x ,(焦点在x 轴上)或 )0(122 22>>=+b a b x a y (焦点在y 轴上)(板书) 那么我们研究椭圆的标准方程有什么实际作用呢? 同学们知道,2008年的8月,中国为世界奉献了一个空前盛况的奥运会,一个多月后的9月25日,世界的目光再次投向中国,同学们知道是什么事吗? (出示神七发射画片并解说):2008年9月25日21时,“神舟七号”载人飞船顺利升空,实现多人多天飞行和宇航员太空行走等多项先进技术,标志着我国航天事业又上了一个新台阶,请

问: “神舟七号”载人飞船的运行轨道是什么?――对,是椭圆。 据有关资料报道,飞船发射升空后,进入的是以地球的地心为一个焦点,距地球表面近地点高度约200公里、远地点约346公里的椭圆轨道。 我们在前几节课刚刚学习了椭圆的标准方程,请同学们回忆椭圆是标准方程是怎样的?它们有几种形式? 问题1:我们前面刚刚学习了椭圆的标准方程,同学们还记得椭圆的标准方程吗?它有几种形式 (板书))0(12222>>=+b a b y a x )0(122 22>>=+b a b x a y (焦点在x 轴上) (焦点在y 轴上) 问题2:你想求出神七在宇宙中运行的椭圆轨道的标准方程吗? Ⅱ.讲授新课 (板书标题)椭圆的几何性质 首先我们进入本节课的第一个环节 一、几何性质 [师]我们不妨对焦点在x 轴的椭圆的标准方程. (板书)122 22=+b y a x (a >b >0)进行讨论. 在解析几何里,我们常常是从两个方面来研究曲线的几何性质:一是由曲线的图像去“看”曲线的几何特征(以形辅数),同时又由曲线的方程来“证”明它(以数助形)。我们今天也用这种方法来研究椭圆的几何性质, 1.范围: [师]所谓范围,就是指椭圆图象上的所有的点在什么约束范围内,也就是说椭圆上所有的点的纵、横坐标应该在哪个范围内取值。 那么,你能从椭圆的图形上看出椭圆上所有的点所在的范围吗? [师]请看,如果我们过椭圆与x 轴的两个交点作两条平行于y 轴的直线,再过椭圆与y 轴的两个交点作两条平行于x 的直线(出示幻灯片)。此时,你能说出椭圆的范围吗? [生]在一个矩形中 [师]这两组平行线所在的直线方程是多少?能从椭圆的标准方程中找出它来吗?

相关文档
最新文档