发电厂主蒸汽系统

主蒸汽系统

锅炉与汽轮机之间的蒸汽管道与通往各用汽点的支管及其附件称为发电厂主蒸汽系统,关于再热式机组还包括再热蒸汽管道。再热蒸汽系统可分为冷再热蒸汽系统和热再热蒸汽系统。

发电厂主蒸汽管道输送的工质流量大,参数高,因此对金属材料要求也高,它对发电厂运行的平安性、靠得住性和经济性的阻碍专门大。因此主蒸汽系统应力求简单、平安、靠得住,要便于安装、扩建,而且使投资及运行费用较小。

600MW超临界机组属于再热机组,因此采纳单元制系统,即一机配一炉,组成一个独立的单元,与其它机组之间无母管联系。

单元制系统的优势是系统简单,管道短,管道附件少,投资省,压力损失和散热损失小,系统本身事故率低,便于集中操纵,有利于实现操纵和调剂操作自动化。与母管制相较,其缺点是:相邻单元不能相互支援,锅炉之间也不能切换运行,单元内与蒸汽管道相连的要紧设备或附件发生故障,整个单元都要被迫停止运行,显然单元内设备必需同时检修。

一、主蒸汽系统

主蒸汽管道是指从锅炉过热器出口输送新蒸汽到汽轮机高压主汽门的管道,同时还包括管道上的疏水管道和锅炉过热器出口的平安阀及排汽管道。主蒸汽系统采纳“2-1—2”布置。主蒸汽由锅炉过热器出口集箱经两根支管接出,汇流成一根单管通往汽轮机房,在进汽轮机前用一个45°斜三通分为两根管道,别离接至汽轮机高压缸入口的左右边主汽门。

汽轮机高压缸双侧别离设一个主汽门,要紧作用是在汽轮机故障或甩负荷时迅速切断进入汽轮机的主蒸汽。主汽门直接与汽轮机调速汽门蒸汽室相连接,汽轮机正常停机时,主汽门也用于切断主蒸汽,避免水或主蒸汽管道中其它杂物进入主汽门区域。一个主汽门对应两个调速汽门。调速汽门用于调剂进入汽轮机的蒸汽流量,以适应机组负荷转变的需要。

采纳单管系统,使锅炉过热器出口联箱左右双侧汽流能够充分混合,有利于排除可能的温度误差,减少汽缸的温差应力、避免轴封摩擦;而且有利于减少主蒸汽的压降,和由于管道布置阻力不同产生的压力误差。同时还能够节省管道投资费用。

主蒸汽管道上不安装流量测量装置,主蒸汽流量依照主蒸汽压力与汽轮机调剂级后的蒸汽压力之差确信,幸免了压力损失,提高了热经济性。

汽轮机入口处的自动主汽门具有靠得住的周密性,因此主蒸汽管道上不装设电动隔离门。如此,既减少了主蒸汽管道上的压损,又提高了靠得住性,减少了运行保护费用。

锅炉过热器出口管道上设置水压实验用堵阀,在锅炉水压实验时隔离锅炉和汽轮机。

主管上还设置蒸汽取样支管。

二、热再热蒸汽系统

热再热蒸汽管道是指从锅炉再热器出口输送高温再热蒸汽到汽轮机中压缸联合汽门入口的管道,同时还包括管道上的疏水管道和锅炉再热器出口的平安阀及排汽管道。

本机组的热再热蒸汽系统一样采纳“2-1—2”布置。高温再热蒸汽由锅炉再热器出口集箱经两根支管接出,汇流成一根单管通向汽轮机中压缸,在汽轮机中压联合汽门前用一个45°斜三通分为两根管道,别离接至汽轮机中压联合汽门。由于再热蒸汽压损对机组的热经济性阻碍比新蒸汽更大,采纳单管系统更能够有效地降低压损,保障蒸汽的做功能力。另外,还能排除进入汽轮机中压缸的高温再热蒸汽的温度误差。

中压联合汽门是由一个滤网、一个中压主汽门和一个中压调剂汽门组成的组合式阀门。其作用是当汽轮机跳闸时快速切断从锅炉再热器到汽轮机中压缸的高温再热蒸汽,以避免汽轮机超速。

发电厂主蒸汽系统

主蒸汽系统 锅炉与汽轮机之间的蒸汽管道与通往各用汽点的支管及其附件称为发电厂主蒸汽系统,关于再热式机组还包括再热蒸汽管道。再热蒸汽系统可分为冷再热蒸汽系统和热再热蒸汽系统。 发电厂主蒸汽管道输送的工质流量大,参数高,因此对金属材料要求也高,它对发电厂运行的平安性、靠得住性和经济性的阻碍专门大。因此主蒸汽系统应力求简单、平安、靠得住,要便于安装、扩建,而且使投资及运行费用较小。 600MW超临界机组属于再热机组,因此采纳单元制系统,即一机配一炉,组成一个独立的单元,与其它机组之间无母管联系。 单元制系统的优势是系统简单,管道短,管道附件少,投资省,压力损失和散热损失小,系统本身事故率低,便于集中操纵,有利于实现操纵和调剂操作自动化。与母管制相较,其缺点是:相邻单元不能相互支援,锅炉之间也不能切换运行,单元内与蒸汽管道相连的要紧设备或附件发生故障,整个单元都要被迫停止运行,显然单元内设备必需同时检修。 一、主蒸汽系统 主蒸汽管道是指从锅炉过热器出口输送新蒸汽到汽轮机高压主汽门的管道,同时还包括管道上的疏水管道和锅炉过热器出口的平安阀及排汽管道。主蒸汽系统采纳“2-1—2”布置。主蒸汽由锅炉过热器出口集箱经两根支管接出,汇流成一根单管通往汽轮机房,在进汽轮机前用一个45°斜三通分为两根管道,别离接至汽轮机高压缸入口的左右边主汽门。 汽轮机高压缸双侧别离设一个主汽门,要紧作用是在汽轮机故障或甩负荷时迅速切断进入汽轮机的主蒸汽。主汽门直接与汽轮机调速汽门蒸汽室相连接,汽轮机正常停机时,主汽门也用于切断主蒸汽,避免水或主蒸汽管道中其它杂物进入主汽门区域。一个主汽门对应两个调速汽门。调速汽门用于调剂进入汽轮机的蒸汽流量,以适应机组负荷转变的需要。

热力发电厂

热力发电厂生产的实质是能量转换,即将燃料中的化学能通过在锅炉中燃烧转变为蒸汽的热能,并通过汽轮机的旋转变为机械能,最后通过发电机转为所需电能。 热力发电厂的类型: 化石燃料发电厂,供电的凝汽式发电厂; 核能发电厂,供电,供热的热电厂; 再生能源发电,供电,热,冷的发电厂; 垃圾发电厂,供电,热,煤气的发电厂; 磁流体发电厂,多功能热电厂; 新能源发电厂。 评价热力发电厂热经济性两种基本分析方法: 从热力学观点来分析,只要两种基本分析方法,即基于热力学第一定律的热量法(效率法,热平衡法);基于热力学第二定律的火用方法(可用能法,做功能力法)或火商方法(火用损,做功能力损失)。 两种热经济性评价方法的比较及其应用: 1,两种方法算得的总损失量和装置效率是相同的。 2,对于损失的分布,两种方法得出了不同的结果。热量法中的能量损失以散失于环境为准,不区分能量品味的高低,故凝汽器的损失最大;火用方法中,锅炉由于燃烧、传热的严重不可逆性,可用能损失最大。 3,热量法只表明能量数量转变的结果,不能揭示能量损失的本质原因。火用方法不仅表明能量转换的结果,并能确切揭示能量损失的部位、数量及其损失原因,考虑了不同事物有其质的区别,两者对同一事物不同侧面的认识,两者是相辅相成、互为补充,却不能相互取代。4,定量计算采用热量法,定性分析采用火商方法。 蒸汽动力循环的循环参数:新蒸汽压力P0、温度t0,及再热后进入中压缸的再热蒸汽温度trh和进入凝汽器的排气压力pc。 现在火电厂的常用蒸汽循环为:再热循环、回热循环、热电联产循环和热电冷三联产循环。提高蒸汽初温:排气干度x提高到x’,减少了低压缸排汽湿汽损失。提高蒸汽温度使其比体积增大,当其他条件不变时,汽轮机高压端的叶片高度加大,相对减少了高压端漏气损失,因而可提高汽轮机的相对内效率nri,从而提高了汽轮机的绝对内效率ni=ntnri. 影响提高蒸汽初参数的主要因素 1,提高蒸汽初参数可提高热经济性,节约燃料 2,提高t0受金属材料的制约 3,提高p0受蒸汽膨胀终了时湿度的限制 4,提高p0,t0影响电厂的钢材消耗和总投资 5,更高蒸汽初参数,更大容量机组的可用率 电厂用水量 凝汽器的冷却水量Gc一般可根据冷却水倍率m来确定,即Gc=mDc,Dc为汽轮机的最大凝汽流量。冷却倍率m与地区、季节、供水系统、凝汽器结构有关。 冷却系统的选择 热力发电厂的供水有直流供水(开式供水)、循环供水(闭式供水)和将两种方法结合起来的混合供水 常用的循环供水的冷却设施有:冷却池、喷水池、喷射冷却装置及冷却塔四种。 给水回热循环;利用已在汽轮机做过功的部分蒸汽,通过在给水回热加热器将回热蒸汽冷却放热来加热给水,以减少液态区低温工质的吸热,因而提高循环的吸热平均温度,使循环热效率提高。

火电厂主蒸汽和再热蒸汽系统压降分析研究

火电厂主蒸汽和再热蒸汽系统压降分析研究 李延雷;刘静茹 【摘要】This paper uses the analysis caculation software of American AFT fluid to optimize the pressure drop of the main steam, re-heat steam of a 1000MW unit, and by optimizing the pipe size, using simmer curved tube, reducing the length of the pipeline and other measures, and the technical and economic comparison, puts forward the best choice of piping specifications.%本文采用美国AFT流体分析计算软件,对某1000MW机组的主蒸汽、再热蒸汽系统管道的压降进行优化,通过优选管道规格、选用煨弯弯管、减少管道长度等措施,并经技术经济比较,提出了最佳的管道选择规格. 【期刊名称】《价值工程》 【年(卷),期】2017(036)028 【总页数】2页(P133-134) 【关键词】火电厂;主蒸汽和再热蒸汽系统;压降 【作者】李延雷;刘静茹 【作者单位】山东电力工程咨询院有限公司,济南 250013;山东电力工程咨询院有限公司,济南 250013 【正文语种】中文 【中图分类】TM621.7

在火电厂设计中,主蒸汽及再热蒸汽系统的压降是一项重要的性能考核指标。合理优化主蒸汽及再热蒸汽系统的压降,对于机组的设计和运行都有极为重要的意义[1-3]。 众所周知,在其它边界条件相同的条件下,提高汽机主汽门的进汽压力可以降低机组的热耗率、提高机组的热效率。因此,在主机招标选型阶段确定汽机的进汽参数就显得格外重要,特别是对超临界机组及超超临界机组;另一方面,在主机已确定的前提下,通过优化四大管道、特别是主蒸汽管道和再热蒸汽管道的规格及其附件形式,也可以再提高机组的热效率。 根据山东电力工程咨询院1000MW机组与主机厂配合的经验,主蒸汽压力每提高1MPa可以降低热耗0.2%左右。若锅炉出力压力不变,减少主蒸汽管道压降,则汽机入口压力将提高,汽机热耗可降低。再热系统压降的大小对汽轮机热耗的影响较为明显,若再热系统压降由9%降低为7%,热耗可降低约0.25%。 2.1 降低压降采取的措施 管道压降是指管道流动阻力、动能变化、重力势能变化之和,其中流动阻力包括沿程摩擦阻力和局部阻力。降低管道压降可提高机组的热经济性,多发电,进而提高电厂的运行经济性。本文为了降低主蒸汽系统、再热系统的压降,采取了以下措施:①合理地选择主蒸汽及再热蒸汽系统的管道规格。 在相同流量下,管道的内径越大,压降越小。因此,适当增大管道内径是降低压降的最有效方法。但主蒸汽和再热蒸汽管道均为合金钢材料,价格高,增大管道内径必然增加初投资。因此,应进行多方面综合技术经济比较,合理选择主蒸汽和再热蒸汽管道规格。 ②优化主蒸汽、再热热段、再热冷段管道长度。 管道的沿程阻力和管道的长度有直接的关系,因此,本工程经过合理优化主厂房设备管道布置,减小汽机房,除氧间,煤仓间和炉前通道尺寸,减少四大管道长度,

汽轮机原则性热力系统

汽轮机原则性热力系统 根据热力循环的特征,以安全和经济为原则,将汽轮机与锅炉本体由管道、阀门及其辅助设备连接起来,组成发电厂的热力系统。汽轮机热力系统是指主蒸汽、再热蒸汽系统,旁路系统,轴封系统,辅助蒸汽系统和回热抽汽系统等。下面着重介绍主蒸汽系统及旁路系统。 第一节主蒸汽及再热蒸汽系统 锅炉与汽轮机之间的蒸汽管道与通往各用汽点的支管及其附件称为主、再热蒸汽系统。本机组的主蒸汽及再热蒸汽采用单元制连接方式,即一机一炉相配合的连接系统,如图3-1所示。该连接方式结构简单、阀门少、管道短而阻力小,便于自动化的集中控制。 一、主蒸汽系统 主、再热蒸汽管道均为单元双—单—双管制系统,主蒸汽管道上不装设隔断阀,主蒸汽可作为汽动给水泵及轴封在机组启动或低负荷时备用汽源。 主蒸汽从锅炉过热器的两个出口由两根蒸汽管道引出后汇合成一根主蒸汽管道送至汽轮机,再分成两根蒸汽管道进入2只高压自动主汽阀、4只调节阀,然后借助4根导汽管进入高压缸,在高压缸内做功后的蒸汽经过2只高压排汽逆止阀,再经过蒸汽管道(冷段管)回到锅炉的再热器重新加热。经过再热后的蒸汽温度由335℃升高到538℃,压力由3.483MPa 降至3.135MPa,由于主、再热蒸汽流量变化不多蒸汽比容增加将近一倍。再热后蒸汽由两根蒸汽管道引出后汇合成一根再蒸汽管道送至汽轮机,再分成两根蒸汽管道经过2只再热联合汽阀(中压自动主汽阀及中压调节阀的组合)进入中压缸。 它设有两级旁路,I级旁路从高压自动主汽阀前引出,蒸汽经减压减温后排至再热器冷段管,采用给水作为减温水。II级旁路从中压缸自动主汽阀前引出,蒸汽经减压减温后送至凝汽器,用凝结水泵出口的凝结水作为减温水。 带动给水泵的小汽轮机是利用中压缸排汽作为工作汽源(第4段抽汽,下称低压蒸汽)。由于低压蒸汽的参数随主机的负荷降低而降低,当负荷下降至额定负荷的40%时,该汽源已不能满足要求,所以需采用新蒸汽(下称高压蒸汽)作为低负荷的补充汽源或独立汽源。当低压蒸汽的调节阀开足后,高压蒸汽的调节阀才逐步开启,使功率达到新的平衡。 主蒸汽管道上还接出轴封备用及启动供汽管道。 主蒸汽管道设计有通畅的疏水系统,在主蒸汽管道主管末端最低点,去驱动给水泵的小汽轮机的新蒸汽管道的低位点,以及靠近给水泵汽轮机高压主汽阀前,均设有疏水点,每一根疏水管道分别引至凝汽器的热水井。 主蒸汽管道主管及支管的疏水管道上各安装一只疏水阀,不再装设其它隔离阀。疏水阀在机组启动时开启,排除主蒸汽管道内暖管时产生的凝结水,避免汽轮机进水,并可加速暖管时的温升。待机组负荷达到10%时,疏水阀自动关闭;当汽轮机负荷降至10%时或跳闸时,疏水阀自动开启,也可以在单元控制室手动操作。 冷再热蒸汽管道从汽轮机高压缸排汽接出,先由单管引至靠近锅炉再热器处,再分为两根支管接到再热器入口联箱的两个接口上。在再热蒸汽冷段管道上接出2号高压加热器抽汽管道。汽轮机主汽阀及调节汽阀的阀杆漏汽、高压旁路的排汽均送入本系统。

火力发电厂汽轮机系统讲义

一. 主机设备介绍: 1.辛店电厂#5、6机组型号:N300-16.7/538/538; 机组型式:亚临界、中间再热、反动式、单轴、两缸两排汽、凝汽式汽轮机; 旋转方向:从机头向发电机看为顺时针; 汽轮机的启动方式:高压缸启动; 制造厂商:哈尔滨汽轮机厂有限责任公司; 2.主机设计参数:

二. 汽机主要系统介绍: (一)主汽系统:锅炉与汽轮机之间的蒸汽通道与通往各用汽点的支管及其附件称为发电厂主汽系统,对于再热机组还包括再热蒸汽管道。(解释流程) (二)旁路系统:指高参数蒸汽不进入汽缸通流部分做功而是经过与汽缸并联的减温减压器,将减温减压后的蒸汽送至低一级参数的管道或凝结器。 1.作用:加快启动时间,改善启动条件;保护不允许干烧的再热器;回收工质降低噪音。 2.一、二级旁路及减温水(分别解释流程): (三)回热抽汽系统: 1.回热系统作用是:抽取汽轮机做功后蒸汽作为各加热器的加热汽源,用于提高凝结水和给水温度以提高机组的循环热效率。 300MW机组共计8段非调整抽汽。(三高、四低、一除氧) 三段高压抽汽分别在:高压9级后、高压13级后、中压5级后;作为#1、2、3高压加热器

的汽源。 四段低压抽汽分别在低压2级后(调阀端)、低压4级后(电机端)、低压5级后(调阀、电机端)、低压6级后(调阀、电机端);作为#5、6、7、8低压加热器的汽源。 一级除氧抽汽(四抽)。作为除氧器的汽源。 2.回热抽汽额定工况:(抽汽压力为绝对压力) (四)主凝结水系统:指凝结器至除氧器之间与主凝结水相关的管路与设备。 包括:2台100%容量的凝结水泵、凝结水精处理装置、一台轴封加热器、四台低压加热器、一台凝结水补水箱和补水泵。 主要作用:加热凝结水,并将凝结水从凝结器热水井送至除氧器。(介绍流程:轴加-#8、7、6、5低加) 轴封加热器为表面式热交换器,用于凝结轴封漏汽、门杆漏汽,轴封加热器以及与之相连的汽轮机轴封汽室靠轴抽风机维持微负压状态,防止蒸汽漏入环境中或进入汽轮机润滑油系统。 其他作用:杂用母管,二三减温水、汽缸冷却水、给水泵密封水、轴封减温水等多种用途。补水系统:化学补至300立方贮水箱----凝结水输送泵------调节门----凝结器(考虑节能

发电厂常用的主蒸汽管道系统

发电厂常用的主蒸汽管道系统 1、集中母管制系统 发电厂所有锅炉蒸汽都引往一根蒸汽母管集中后,再由该母管引往各汽轮机和各用汽处。这种系统的供汽可相互支援,但当与母管相连的任一阀门发 生故障时,全部锅炉和 汽轮机必须停止运行, 严重威胁全厂工作的可 靠性。因此一般使用阀 门将母管分成两个以上 区段,分段阀门是两个 串联的关断阀,以确保 隔离,并便于分段阀门 本身的检修。正常运行 时,分段阀门处于开启 状态。集中母管分段后,发生事故后仍有一个区段不能运行。如母管分段检修,与该段相连的锅炉和汽轮机的仍要全部停止运行。所以只有在锅炉和汽轮机的台数不配合情况下,或者单台锅炉与汽轮机单机容量相差很大及蒸汽参数低,机组容量小的发电厂才采用集中母管制系统。我公司原热动车间采用的就是集中母管制系统。

2、切换母管制系统 每台锅炉与其对应的汽轮 机组成一个单元,而各单元之间 仍装有母管,每一单元与母管出 还装有三个切换阀门,这样机炉 既可单元运行,也可切换到蒸汽 母管上由邻炉取得蒸汽。该系统 中的备用锅炉和减温减压器均 与母管相连。这种系统的主要优 点是既有足够的可靠性,又有一 定的灵活性,能充分利用锅炉的 富裕容量进行各炉间的最佳负 荷分配。其主要缺点是系统较为复杂,阀门多,事故可能性较大,我国中压机组的电厂因主蒸汽管道投资比重不大(相对于单元制 机组)而供热式机组的电厂机炉容量又不完全匹配,这时应采用切换母管制主蒸汽系统。热力公司现在采用的就是集中母管制系统。 3、单元制机组 每台汽轮机和供应它蒸汽的一台或两台锅炉组成一个独立的单元,各单元之间无横向联系,需用新蒸汽的各辅助设备靠用汽支管与各单元的主蒸汽管道相连,称为单元制系统。该系统的优点是系统简单、管道短、管道附件少、投资省、压力损失和散热

主蒸汽、再热蒸汽及旁路系统

主蒸汽、再热蒸汽及旁路系统 一、概述 主蒸汽系统是指从锅炉过热器联箱出口至汽轮机主汽阀进口的主蒸汽管道、阀门、疏水管等设备、部件组成的工作系统。主蒸汽管道是指从锅炉过热器出口输送新蒸汽到汽轮机高压主汽门的管道,同时还包括管道上的疏水管道以及锅炉过热器出口的安全阀及排汽管道。 再热蒸汽系统分为冷再热蒸汽及热再热蒸汽系统。冷再热蒸汽管道是指从汽轮机高压缸排汽口输送低温再热蒸汽到锅炉再热器进口的管道,同时还包括管道上的疏水管道以及锅炉再热器进口的安全阀及排汽管道。另外还包括与冷再热蒸汽管道相连的几根支管。 旁路装置的选择与汽轮机特性、锅炉型式及结构特性、燃料种类、运行方式、电网对机组的要求等因素有关。 二、旁路系统的作用 1、缩短启动时间,改善启动条件,延长汽轮机寿命。 2、溢流作用:即协调机炉间不平衡汽量,溢流负荷瞬变过程中的过剩蒸汽。由于锅炉的实际降负荷速率比汽机小,剩余蒸汽可通过旁路系统排至凝汽器,使机组能适应频繁启停和快速升降负荷,并将机组压力部件的热应力控制在合适的范围内。 3、保护再热器:在汽轮机启动或甩负荷工况下,经旁路系统把新蒸汽减温减压后送入再热器,防止再热器干烧,起到保护再热器的作用。 4、回收工质、热量和消除噪声污染:在机组突然甩负荷(全部或部分负荷)时,旁路快开,回收工质至凝汽器,改变此时锅炉运行的稳定性,减少甚至避免安全阀动作。 5、旁路系统投入后,待冷再压力达到高辅压力时,用冷再供高辅用汽。 三、旁路装置的选型 对于百万千瓦级机组,当前世界上欧、美、日、俄(苏)等不同的技术流派基本都采用超(超)临界技术,为满足机组启动、机炉协调等功能要求,均设置了汽轮机旁路系统。但由于地域及技术体系的不同,对于旁路系统的配置及运行方式也有很大差别。在美国,一般都采用小于20%BMCR 的小旁路,仅用于机组启动阶段,锅炉过热器出口配置安全阀。日本基本上传承了美国的技术体系。欧洲在旁路系统的应用上,其理念与美(日)体系不同,百万级机组大部分釆用了 100%的高、低压旁路配置,拓展了旁路系统的作用。 旁路的选型与机组的启动方式有关,一般1000MW —次再热机组均考虑高压缸启动及高中压缸联合启动两种方式。高压缸启动方式下,高压调门控制蒸汽量控制汽轮机的冲动转速和负荷,中压调节门全开;高中压缸联合启动方式下,高压调门控制机组转速及负荷,中压调节门跟踪高压调节门开度或者跟踪机组负荷参与机组的转速及负荷控制,多余蒸汽通过汽机中压旁路阀,进入凝汽器,一般在30%负荷左右中压调节门全开。 二次再热机组启动方式有超高压缸+高压缸启动、超高压缸+高中压缸联合启动、单中压缸启动等不同启动方式。 四、高、低旁阀结构 1、高压旁路 高压旁路装置由高压旁路阀、喷水调节阀、喷水隔离阀及相应管道等组成。高、低压旁路阀及其喷水调节阀、喷水隔离阀为电动操作,当失电时阀门维持失电前状态。

主蒸汽温度控制系统

主蒸汽温度控制系统 本机组的锅炉为单汽包、单炉膛、再热式自然循环锅炉。由汽包分离分离出的蒸汽依次流过顶棚、热回收包覆面、初级过热器、屏式过热器和未级过热器,最后达到一定的温度离开锅炉. 两级喷水减温器分别布置于初过出口、屏过入口处和屏过出口、未级过热器入口处,如图1所示。主蒸汽温度控制系统,通过这两级喷水减温,将未级过热器出口主蒸汽温度控制在某个定值上,并且保护整个过热器管路乃至主蒸汽管道及汽机金属不被高温损坏. 该系统分两级喷水控制,每级喷水又分左右两侧控制,如图1所示,同一级的两侧减温控制设计思想是相同的。一、二级减温水控制系统是相互独立的,现分别予以剖析。 1.1一级减温水控制 一级减温水的作用,简单地说是将一级减温器出口温度即屏过入口温度控制在某个定值上.图2为原理性框图。 这个温度定值通常是锅炉负荷(用汽机第一级压力P1代表),主汽压力P,主汽压偏差△P的函数(P1、P、△P).其中,定值与负荷的关系,如图2中的曲线所示,而与压力的关系待定。但在特殊工况下,这个定值还要受最小减温水量和最大减温水量的限制。 ①最小一级减温水量限制 限制最小减温水量的目的是为了防止屏式过热器被高温烧坏,因屏过接受炉内高温火焰辐射,防止屏过内蒸汽温度过高尤为重要,因此最小一级减温水量限制又可理解成屏过出口最高蒸汽温度限制。图2中,A1为屏过出口所允许的最高汽温值.当屏过出口汽温高于这个最高值后,PID1将逐渐减小输出,最后在小值选择器之后,将取代通常的定值(P1、P,△P),

即去降低一级减温器出口温度定值,PID0将去增加一级减温水量,从而降低整个屏过段的蒸汽温度。 ②最大一级减温水量限制 限制最大一级减温水量目的是为了防止屏过入口汽温过低以致低于此处当前压力下水蒸汽的饱和点,所以又可将最大一级减温水量限制理解成屏过入口最低温度限制。图2中,f(x)输出为相应压力下屏过入口蒸汽的饱和温度,在此基础上再加上A2(约11℃)的过热度,这个和值在大值选择器中与前级的小选输出进行比较,取大值输出。这样就可限制屏过入口蒸汽温度定值,使其不致低于饱和点,从而防止了屏过入口蒸汽带水。 如果不出现两种极端情况,即屏过出口汽温过高或屏过入口汽温过低,定值将是f(P1、P、△P). 实际屏过入口温度与其定值求偏差后,经PID0调节器运算,其输出去调节一级减温水量最终使屏过入口实际汽温与其定值相等。 由此可见,一级减温水控制回路只是一个单回路调节系统,虽然虽然在框图中有两个PID调节器“串联"在一起,但并不是串级控制系统。

燃煤火力发电介绍资料

燃煤火力发电厂 第一节、锅炉机组的基本工作原理 一、火力发电厂的三大设备:锅炉、汽轮机、发电机。 二、火力发电厂的能量转换过程 燃料的化学能转变为热能和机械能,然后通过交流发动机转变为电能 第二节、锅炉机组的系统及组成部件 一、燃煤锅炉的组成部件 ⏹锅炉机组由锅炉本体设备和辅机设备组成。 ⏹本体设备包括: ⏹炉(燃烧系统):炉膛、烟道、燃烧器、空气预热器; ⏹锅(汽水系统)省煤器、汽包、下降管、水冷壁、汽水分离器、过热器、再热器等。 ⏹辅机设备包括:给煤机、磨煤机、送风机、吸风机、给水泵、吹灰器、碎渣机、除 尘器、灰浆泵等。 锅炉辅助系统: 输煤、制粉、送引风、给水、除灰除尘、排污、控制测量、烟气脱硫脱硝8大系统。 二、锅炉的工作过程及设备组成 1、输煤系统

⏹铁路或公路 ⏹卸煤设备是将煤从车厢中卸出的设备。对其要求是卸煤的速度要快,要彻底干净且 不损伤车厢。目前我国常用的有螺旋卸车机、翻车机、自卸式底开车厢等几种方式。 1、螺旋卸车机:(1)桥式螺旋卸车机(2)门式螺旋卸车机 2、翻车机:(1)转子式翻车机(2)侧倾式翻车机 3、自卸式底开车厢

2、制粉系统 发电厂使用的磨煤机大致分为以下三种。 1、低速磨煤机:转动速度为15~25r/min,目前常用的是双进双出的钢球筒式磨煤机、单进单出的钢球筒式磨煤机。 2、中速磨煤机:转动速度为50~300r/min,目前常用的是MPS中速磨煤机、RP(或HP)中速磨煤机、MBF中速磨煤机。 3、高速磨煤机:工作转速高达750~1500r/min,目前常用的是风扇式磨煤机。

中速磨煤机正压直吹式制粉系统

火力发电厂主要设备系统

一次风机:干燥燃料,将燃料送入炉膛,一般采用离心式风机。 送风机:克服空气预热器、风道、燃烧器阻力,输送燃烧风,维持燃料充分燃烧。引风机:将烟气排除,维持炉膛压力,形成流动烟气,完成烟气及空气的热交换。磨煤机:将原煤磨成需要细度的煤粉,完成粗细粉分离及干燥。 空预器:空气预热器是利用锅炉尾部烟气热量来加热燃烧所需空气的一种热交换装置。提高锅炉效率,提高燃烧空气温度,减少燃料不完全燃烧热损失。空预器分为导热式和回转式。回转式是将烟气热量传导给蓄热元件,蓄热元件将热量传导给一、二次风,回转式空气预热器的漏风系数在8~10%。 炉水循环泵:建立和维持锅炉内部介质的循环,完成介质循环加热的过程。 燃烧器:将携带煤粉的一次风和助燃的二次风送入炉膛,并组织一定的气流结构,使煤粉能迅速稳定的着火,同时使煤粉和空气合理混合,达到煤粉在炉内迅速完全燃烧。煤粉燃烧器可分为直流燃烧器和旋流燃烧器两大类。 汽轮机本体 汽轮机本体是完成蒸汽热能转换为机械能的汽轮机组的基本部分,即汽轮机本身。它与回热加热系统、调节保安系统、油系统、凝汽系统以及其他辅助设备共同组成汽轮机组。汽轮机本体由固定部分(静子)和转动部分(转子)组成。固定部分包括汽缸、隔板、喷嘴、汽封、紧固件和轴承等。转动部分包括主轴、叶轮或轮鼓、叶片和联轴器等。固定部分的喷嘴、隔板与转动部分的叶轮、叶片组成蒸汽热能转换为机械能的通流部分。汽缸是约束高压蒸汽不得外泄的外壳。汽轮机本体还设有汽封系统。 汽轮机:汽轮机是一种将蒸汽的热势能转换成机械能的旋转原动机。分冲动式和反动式汽轮机。 给水泵:将除氧水箱的凝结水通过给水泵提高压力,经过高压加热器加热后,输送到锅炉省煤器入口,作为锅炉主给水。 高低压加热器:利用汽轮机抽汽,对给水、凝结水进行加热,其目的是提高整个热力系统经济性。 除氧器:除去锅炉给水中的各种气体,主要是水中的游离氧。 凝汽器:使汽轮机排汽口形成最佳真空,使工质膨胀到最低压力,尽可能多地将蒸汽热能转换为机械能,将乏汽凝结成水。 凝结泵:将凝汽器的凝结水通过各级低压加热器补充到除氧器。 油系统设备:一是为汽轮机的调节和保护系统提供工作用油,二是向汽轮机和发电机的各轴承供应大量的润滑油和冷却油。主要设备包括主油箱、主油泵、交直流油泵、冷油器、油净化装置等。 在发电厂中,同步发电机是将机械能转变成电能的唯一电气设备。因而将一次能源(水力、煤、油、风力、原子能等)转换为二次能源的发电机,现在几乎都是采用三相交流同步发电机。在发电厂中的交流同步发电机,电枢是静止的,磁极由原动机拖动旋转。其励磁方式为发电机的励磁线圈FLQ(即转子绕组)由

(完整word版)核电厂系统与设备知识点,推荐文档

核电厂系统与设备知识点 2020年前要新建核电站31座,今后每年平均需要建设两个百万千瓦级核电机组 我国发展核电的基本政策是:坚持集中领导,统一规划,并与全国能源和电力发展相衔接;核电政策:自主,国产化,与压水堆配套;引进的基础上,消化,改进,国产化。 在核电布局上优先考虑一次能源缺乏、经济实力较强的东南沿海地区。 坚持“质量第一,安全第一”,坚持“以我为主,中外合作” 我国确定发展压水堆 核岛:一回路系统及其辅助系统、安全设施及厂房。 常规岛:汽轮发电机组为核心的二回路及其辅助系统和厂房。 配套设施:除核岛、常规岛的其余部分。 压水堆核电厂将核能转变为电能是分四个环节,在四个主要设备中实现的: 1)核反应堆:将核能经转变为热能,并将热能传给反应堆冷却剂,是一回路压力边界的重要部件。 2)蒸汽发生器:将反应堆冷却剂的热量传递给二回路的水,使其变为蒸汽。在此只进行热量交换,不进行能量形态的转变;3)汽轮机:将蒸汽的热能转变为高速旋转的机械能; 4)发电机:将汽轮机传来的机械能转变为电能。 大亚湾核电厂共有348个系统 核电厂平面布置原则:a.区分脏净,脏区尽可能在下风口;b.满足工艺要求,便于设备运输,减少管线迂回纵横交叉;c.反应堆厂房为中心,辅助厂房,燃料厂房设在同一基岩的基垫层上,防止因厂房承载或地震所产生的沉降差导致管线断裂.d.以反应堆厂房为中心,辅助厂房,燃料厂房,主控制室应急柴油发电机厂房四周.双机组厂可采用对称布置,公用部分辅助厂房. 布置分区:核心区、三废区、供排水区、动力供应区、检修及仓库区、厂前区 核心区布置按反应堆厂房与汽轮机厂房的相对位置,有T型与L型布置: T型:汽轮机叶片旋转平面与安全壳不相交.占地大,单独汽机厂房。 L型:汽轮机叶片旋转平面与安全壳相交,须设置防止汽轮机飞车时汽轮机叶片对安全壳和冲击的屏障.占地少,两台以上机组可公用汽轮机厂房,仅用一台吊车。 我国采用T型布置。 安全分级的目的是正确选择用于设备设计、制造、检验的规范标准 安全功能: 1 安全停堆和维持安全停堆状态; 2 停堆后余热导出; 3 事故后防止放射性物质释放,以保证放射性物质释放不超过容许值。 确定某物项对于安全的重要性有:确定论方法;概率论方法。 安全分为四级 1 安全一级:一回路承压边界所有部件;选用设备等级一级,质量A组。按照实际可能的最高标准设计、制造、安装和实验。 2 安全二级:余热去除、安注和安喷系统。 3 安全三级:辅助给水;设备冷却水;乏燃料池冷却系统;为安全系统提供支持的系统和设施。 4 安全四级:核岛中不属于安全三级以上的,但要求按照非和规范和标准中较高要求设计制造。 抗震分为一、二类和非抗震类(NA): 抗震一类指其损害会直接或间接造成事故的工况以及用来实施停堆或维持停堆状态的构筑物、系统和设备。 安全一、二、三级和LS和1E级电器设备属抗震一类。抗震一类要求满足安全停堆地震载荷要求 安全停堆地震是分析电厂所在区域地址和地震条件,分析当地地表下物质的特性的基础上所确定的可能发生的最大地震。安全停堆地震通常取当地历史上发生过的最大地震再加上一个适当的安全裕量后确定的。 抗震二类的表明设备的设计要满足能承受运行基准地震(OBE)引起载荷要求。 在美国,抗震I类设备必定是安全级设备,而对非安全级设备也可以提单独的抗安全停堆地震要求。 核电厂的安全设计中辐射防护应遵循:正常运行工况下反射性排放低于预定限值,对环境与公众的影响可以忽略不计;导致高辐射计量或放射性物质大量释放的事故概率要低,而发生概率较高的辐射后果要小。 纵深防御要贯彻到核电厂的全部活动中。核电厂提供多层次的设备和规程,用以防止事故、或在未能防止事故发生时实施适当的防护,保证核电厂的安全。 五道相继深入而又相互增援的设计防御措施: 第一道防御:考虑对事故的预防,核电厂的设计必须是稳妥的和偏于安全的 第二道防御:防止运行中出现的偏差发展成为事故。设置可靠的保护装置和系统。探测妨碍安全的瞬变,完成适当的保护动作 第三道防御:限制事故的放射性后果,保障公众的安全。 第四道防御是应付可能已超出设计基准事故的严重事故,并使放射性后果合理尽量低。 第五道防御:应急计划;万一发生严重事故造成放射性大量外逸时,对附近居民实行隐蔽、疏散、供给药物、封锁食品,使放射性物质释放带来的损害减小到最小 制定事故应急响应预案的目的是:在核电厂发生事故时,采取及时有效措施,保护公众、保护环境,将事故损失减到最小国核事故应急管理体系:核事故应急工作实行国家、地方、核电厂三级管理制。

主蒸汽、再热蒸汽系统

主蒸汽、再热蒸汽系统 一、作用 1、从蒸汽发生器向汽轮机供给蒸汽; 2、正常运行时向汽水分离再热器供汽; 3、在机组事故冷却时向大气排汽; 4、在汽机抽汽未投入时向厂用蒸汽系统供汽; 5、在事故时将发生事故的蒸汽发生器隔离; 6、防止蒸汽发生器超压。 二、工作原理 2.1 主蒸汽系统工作原理 主蒸汽系统包括从锅炉过热器出口联箱至汽轮机进口主汽阀的主蒸汽管道、阀门、疏水装置及通往进汽设备的蒸汽支管所组成的系统。对于装有中间再热式机组的发电厂,还包括从汽轮机高压缸排汽至锅炉再热器出口联箱的再热冷段管道、阀门及从再热器出口联箱到汽轮机中压缸进口阀门的再热热段管道、阀门。主蒸汽系统采用“2-1—2”布置。主蒸汽由锅炉过热器出口集箱经两根支管接出,汇流成一根单管通往汽轮机房,在进汽轮机前用一个45°斜三通分为两根管道,分别接至汽轮机高压缸进口的左右侧主汽门。 发电厂常用的主蒸汽系统有四种形式: (1)集中母管制系统。其特点是发电厂所有锅炉的蒸汽先引至一根蒸汽母管集中后,再由该母管引至汽轮机和各用汽处。这种系统通常用于锅炉和汽轮机台数不匹配,而热负荷又必须确保可靠供应的热电厂以及单机容量在6MW以下的电厂。 (2)切换母管制系统。其特点为每台锅炉与其对应的汽轮机组成一个单元,正常时机炉成单元运行,各单元之间装有母管,每一单元与母管相连处装有三个切换阀门。它们的作用是当某单元锅炉发生事故或检修时可通过这三个切换阀门由母管引来邻炉蒸汽,使该单元的汽轮机继续运行,也不影响从母管引出的其他用汽设备。该系统适用于装有高压供汽式机组的发电厂和中、小型发电厂采用。 (3)单元制系统。其特点是每台锅炉与对应的汽轮机组成一个独立单元,

热力发电厂复习知识点

1.热力发电厂的分类(主要看按能源利用情况、原动机类型、承担负荷) a.按能源利用情况:化石燃料发电厂、原子能发电厂(核能)、新能源发电厂(地热、太阳能) b.按原动机类型:汽轮机发电厂、燃气轮机发电厂、内燃机发电厂、燃气—蒸汽联合循环发电厂 c.按承担负荷:基本负荷、中间负荷、调峰发电厂 2. 热电厂热经济性的评价方法及主要内容 a.热量法:以热力学第一定律为基础,以热效率或热损失率的大小来衡量电厂或热力设备的热经济性 b.熵方法(做功能力法):以热力学第二定律为基础,着重研究各种动力过程中做工能力的变化,实际的动力过程都是不可逆的,必然引起系统的熵增,引起做功能力损失,熵方法就是通过熵产的计算来确定做功能力损失,并以此作为评价电厂热力设备的热经济性指标 3.锅炉设备的热损失、做功能力损失 锅炉设备的热损失:排烟损失(最大占40%-50%)、散热损失、未完全燃烧热损失、排热污损失 做功能力热损失:散热引起的做功能力损失、化学能转变为热能引起的、工质温差传热引起的 3. 设备的热效率定义及目前实际效率(公式自己写) 锅炉效率:锅炉设备输出热负荷与燃料输入热量之比 管道效率:汽轮机热耗量与锅炉输出热负荷之比 机械效率:发电机轴端功率与汽轮机内功率之比 汽轮机绝对内效率:汽轮机实际内功率与汽轮机热好之比 发电机效率:发电机输出功率与轴端功率之比 实际效率:各项设备效率之积 4.典型不可逆损失 温差换热、工质节流、工质膨胀 5.凝汽式发电厂的主要热经济性指标 能耗量(汽耗量、热耗量、煤耗量),能耗率(汽耗率、热耗率、煤耗率)各项解释 6. 给水回热加热的意义、回热分配方法及其含义 意义:a。回热使汽轮机进入凝汽器的凝汽量减少了,汽轮机冷源损失降低了、b。回热提高了锅炉给水温度,使工质在锅炉的平均吸热温度提高,使锅炉传热温差降低。 分配方法:焓降分配法:将每一级加热器的焓升取做等于前一级至本级的蒸汽在及群里中的焓降 平均分配法:没一级加热器内水的焓升相等 等焓降分配法:将每一级加热器的焓升取做等于汽轮机各级组的焓降 几何级数分配法:加热器的绝对温度按几何级数进行分配

火力发电厂知识

火力发电厂是利用化石燃料燃烧释放的热能发电的动力设施,包括燃料燃烧释热和热能电能转换以及电能输出的所有设备、装置、仪表器件,以及为此目的设置在特定场所的建筑物、构筑物和所有有关生产和生活的附属设施。主要有蒸汽动力发电厂、燃气轮机发电厂、内燃机发电厂几种类型. 基本原理 电磁感应理论:任何变化的电场都要在其周围空间产生磁场,任何变化的磁场都要在其周围空间产生电场。 热力学第一定律:热可以变为功,功也可以变为热,消耗一定热量时,必产生相当数量的功,消耗一定量的功时,必出现相应数量的热。 热力学第二定律:高温物体的热能可以自动传递给低温物体,而低温物体的热能却不能自动地传递给高温物体。机械能可以自动转化为热能,而热能却不能自动转化为机械能。 主要生产过程简述 储存在储煤场(或储煤罐)中的原煤由输煤设备从储煤场送到锅炉的原煤斗中,再由给煤机送到磨煤机中磨成煤粉。煤粉送至分离器进行分离,合格的煤粉送到煤粉仓储存(仓储式锅炉)。煤粉仓的煤粉由给粉机送到锅炉本体的喷燃器,由喷燃器喷到炉膛内燃烧(直吹式锅炉将煤粉分离后直接送入炉膛)。燃烧的煤粉放出大量的热能将炉膛四周水冷壁管内的水加热成汽水混合物。混合物被锅炉汽包内的汽水分离器进行分离,分离出的水经下降管送到水冷壁管继续加热,分离出的蒸汽送到过热器,加热成符合规定温度和压力的过热蒸汽,经管道送到汽轮机作功。过热蒸汽在汽轮机内作功推动汽轮机旋转,汽轮机带动发电机发电,发电机发出的三相交流电通过发电机端部的引线经变压器什压后引出送到电网。在汽轮机内作完功的过热蒸汽被凝汽器冷却成凝结水,凝结水经凝结泵送到低压加热器加热,然后送到除氧器除氧, 再经给水泵送到高压加热器加热后,送到锅炉继续进行热力循环。再热式机组采用中间再热过程,即把在汽轮机高压缸做功之后的蒸汽,送到锅炉的再热器重新加热,使汽温提高

热力发电厂考点

出口端差(上端差):加热器抽汽压力对应的饱和水的温度与出口水温之差。 入口端差(下端差):离开加热器的疏水温度度与加热器进口温度之差。 热电厂的燃料利用系数:电、热两种产品的总能量与输入能量之比。 热化发电率:质量不等价的热电联产的热化发电量与热化供热量的比值。 平均负荷系数:指电厂在某一段时间δ内的实际发电量W 与在此时间内以最大负荷产生的电量Wmax之比。 主蒸汽管道系统的切换母管制系统:每台锅炉与其相对应的汽轮机组成一个单元,且各单元间仍装有母管,每一单元与母管相连处有三个切换阀门,机炉即可单元运行,也可以切换到蒸汽母管上由邻炉取得蒸汽,称为切换母管制系统。 热效率:有效利用的热量与供给热量之比。 热化发电比:X=Wh/W,供热机组供热汽流的发电量/总的发电量 热化系数:Xtp 对于供热式机组的每小时最大热化供热量与每小时最大热负荷之比为小时计的热化系数。 给水回热——利用已在汽机中作过功的蒸汽,通过给水回热加热器将回热蒸汽冷却放热加热给水,以减少液态区低温工质的吸热,提高循环的吸热平均温度。由于采用回热,增加了抽汽量,所以汽耗率提高;但同时采用回热提高了给水出口温度,降低了锅炉中的吸热量,所以锅炉效率提高,热经济性提高 中间再热——将汽轮机高压缸排气经过再次加热后再送进中压缸做功,从而提高进入低压缸的蒸汽温度,使排气湿度在允许范围内,保证汽轮机安全运行。方法:(1)烟气再热——汽轮机高压缸排气直接引至锅炉再热器,然后返回中压缸。优点是再热后的气温等于或接近于新汽温度,缺点是压损较高,增加了系统投资,启停时要保护再热器,设置旁路系统。蒸汽再热——利用汽轮机的新汽或抽汽为热源来加热蒸汽。优点是压损小,投资少,缺点是再热后的气温较低。 给水系统从除氧器给水箱下降管入口到锅炉省煤器进口之间的管道、阀门、附件之总称。疏水系统疏泄和收集全厂各类汽水管道疏水的管路及设备 放水系统回收锅炉汽包和各类容器(如除氧水箱)的溢水,以及检修设备时排放的合格水质的管路及设备 何为主蒸汽系统:从锅炉过热器出口联箱至汽轮机进口主汽阀的主蒸汽管道、阀门、疏水装置及通往用新汽设备的蒸汽支管所组成的系统 发电煤耗率:发电厂单位发电功率所需要的耗煤量。 自由疏水:在大气压力下,把管道内在停用时的凝结水放出,叫自由疏水。 除氧器的自生沸腾:指进入除氧器的辅助热源量已能满足或超过除氧器用热需要使除氧器内的给水及其它需要被加热的水流不需要回热抽汽加热就自己产生沸腾的现象。 热电联合生产:当动力设备同时对外部供应电能和热能,而且所供热能是利用热转变为功过程中工质的余热(或不可避免的冷源损失的热量)来进行的,这种能量生产方式称为热电联合生产。 有效汽蚀余量指在泵的吸入口处,单位重量液体所具有的超过气化压力的富余能量,即液体所具有的避免泵发生汽蚀的能量。 发电厂的总效率有哪两种计算方法?各在什么情况下应用? 1)热量法和熵方法(或火用方法或做功能力法) 2)热量法以热力学第一定律为基础,从燃料化学能在数量上被利用的程度来评价电厂的热经济性,一般用于电厂热经济性的定量分析。熵方法以热力学第二定律为基础,从燃料化学能的做工能力被利用的程度来评价电厂的热经济性,一般用于电厂热经济性的定性分析。 热力发电厂中,主要有哪些不可逆损失?怎样才能减少这些过程中的不可逆损失性以提高发电厂热经济性? 存在温差的换热过程,工质节流过程,工质膨胀或压缩过程三种典型的不可逆过程。主要不可逆损失有

华润登封电厂300MW机组蒸汽温度控制系统分析

《过程控制》课程设计(分析类) 任务书 一、目的与要求 1.目的:通过本课程设计,使学生巩固《过程控制》所学内容,培养学生的分析、设计能力。 2.要求:能够对指定现场应用控制系统进行正确分析。 二、主要内容 1.题目:华润登封电厂300MW机组过热蒸汽温度控制系统分析 2.内容: 1)查阅2-3篇相关资料; 2)对指定现场应用控制系统SAMA图进行分析:分析控制系统构成,掌握工作原理,判断调节器正反作用,分析自动跟踪与无扰切换,分析主要逻辑; 3)撰写分析说明。 三、进度计划 四、设计成果要求 1.对指定控制系统SAMA图进行分析,力求分析正确。 2.撰写分析报告。 五、考核方式 设计报告+答辩 学生姓名: 指导教师:金秀章 2009年7月2日

一、课程设计的目的与要求 1. 目的:通过本课程设计,使学生巩固《过程控制》所学内容,培养学生的分析、设计能力。 2. 要求:能够对指定现场应用控制系统进行正确分析。 二、设计正文 控制系统的构成: 华润登封电厂300MW 机组过热蒸汽温度控制系统:汽包所产生的饱和蒸汽先流经低温对流过热器进行低温过热,然后依次流经前屏过热器、后屏过热器和高温对流过热器后送入汽轮机。 (一)、一级减温调节系统 1 . SAMA 图纸:SAMA-B-40 2 .一过入口、出口蒸汽温度,均采用二选均标准逻辑。 3 .一级减温水流量,需进行温度补偿。补偿公式如下: ()t f k k q m ****1∆P =∆P =ρ 其中: ()) () (t f normal t t ρρ= ,tnormal 为减温水正常运行温度(或标定温度)。 缺省温度:tnormal =165℃(暂定)

300MW机组火电厂机务部份初步设计系统图集116046478

附图 附图5-1 锅炉烟风制粉系统

附图5-2 过热蒸汽系统

附图5-3 再热蒸汽系统 侧墙壁式辐射再热器 壁式辐射再热器入口集箱 壁式辐射再热器出口集箱 排空末级再热器出口集箱762×36 至汽机再热蒸汽入口壁式辐射再热器入口集箱 壁式辐射再热器入口集箱 侧墙壁式辐射再热器 排空 762×36 863.6×17.5 108×9HAJ21 ID679.5×34 LBB11末级再热器出口集箱HAJ22 再热器后屏入口集箱 HAJ20 ID679.5×34 LBB12 870×43LBB10 K0401-01 由给水泵间抽头给水来 LAF40LBC10 1066.8×20.6 由汽机冷再热蒸汽来 LAF40AA301 AA551LBC14LBC14 AA552LBC14AA553LBC14AA554 LBC14LBC13 AA551LBC13AA552LBC13AA553 LBC13AA754HAJ20AA753 HAJ20AA751 HAJ20AA752HAJ20HBK40HBK50 HBK40 HBK50 AA552 AA752 AA751AA552 LBB11 LBB12锅炉再热蒸汽系统图 P M 76×10 AA001 LAF41LAF41CF001 LAF41 LAF42 M 76×10AA001 LAF42CF001 LAF42AA101 LAF41AA101LAF42放水 AA752 AA751M M LAF42 LAF42 LAF42LAF41 LAF40AA701 AA701 AA701 AA702 LAF40AA601 LAF40

热力发电厂 教案 第4--7章 发电厂的热力系统---火电厂的除尘和除灰系统

《热力发电厂》 教案

第七次课(实验课) 教学目的: 把握发电厂的热力进程。了解热电联产循环。 内容提要: 发电厂的热力进程灯光演示实验。 实验时刻:90分钟 重点内容:发电厂的热力进程。 板书:以实际操作和实验教师现场讲解为主,并辐以必要的板书。

第八次课 教学目的: 把握热力系统的概念及要紧设备的选择原那么,发电厂工质损失及补水系统、工质回收及废热利用系统。了解发电厂的类型。 内容提要: 第四章发电厂的热力系统 第一节热力系统及主设备选择原那么 一、热力系统 二、发电厂类型和容量的确信 三、要紧设备选择原那么 (一)汽轮机组 1、汽轮机容量 2、汽轮机参数 3、汽轮机台数 (二)锅炉机组 1、锅炉参数 2、锅炉类型 3、锅炉容量与台数 第二节发电厂的辅助热力系统 一、工质损失及补充水系统 (一)工质损失 (二)补充水引入系统 二、工质回收及废热利用系统 (一)汽包锅炉持续排污利用系统 (二)轴封蒸汽回收及利用系统 (三)辅助蒸汽系统 讲课时刻:90分钟

重点内容:热力系统中要紧设备的选择原那么,发电厂的辅助热力系统。板书:以黑板粉笔书写为主,并辐以幻灯片。 难点:工质回收及废热利用系统。 试探题:一、汽轮机组合锅炉机组选择原那么是什么? 二、电厂补充水通常采纳什么方式除盐?对亚临界压力汽包锅炉和 超临界压力直流锅炉为何还要对凝结水进行经处置? 作业:教材192页第二、5题

教学目的: 把握凝汽式发电机组蒸汽终参数对电厂热经济性的阻碍和中间再热循环的热经济性。了解热电联产循环和蒸汽—燃气联合循环。 内容提要: 第三节发电厂原那么性热力系统举例 一、亚临界参数机组发电厂原那么性热力系统 二、超临界参数机组发电厂原那么性热力系统 三、供热机组热电厂原那么性热力系统 四、火电厂单机容量最大机组的发电厂原那么性热力系统 第四节发电厂原那么性热力系统计算 一、计算目的 二、计算的原始资料 三、大体计算公式及步骤 讲课时刻:90分钟 重点内容:发电厂原那么性热力系统计算。 板书:以黑板粉笔书写为主,并辐以幻灯片。 难点:发电厂原那么性热力系统计算。 试探题:什么是发电厂原那么性热力系统?它的特点和作用是什么?它由那些局部系统组成?

相关文档
最新文档