三维适形、调强放疗的流程与计划设计技巧

三维适形、调强放疗的流程与计划设计技巧
三维适形、调强放疗的流程与计划设计技巧

精确放疗的计划设计及实施流程

1.计划设计的基本流程

1.1体位或面罩固定

病人经放疗医师确定放疗后,首先需严格的体位或面罩固定,体位固定以病人舒适、身体重复性好为主,,固定好后行定位CT扫描。

1.2输入患者基本信息和图像信息

基本信息是患者姓名、性别、住院号等,图像信息是模拟定位获得的人体外轮廓或人体CT断层图像,或其它影像学检查获得的图像(MRI、PET),扫描后图像通过网络输入到TPS中。

1.3标记参考点和图像配准

标记参考点是翻动扫描图像找到CT图像在体表标记三个(十)字对应的激光在体表的位置,以此点做为坐标原点。配准图像是建立两组不用图像之间空间位置关系的过程,配准的图像可能来自同机或异机。异机是指融合的图像是在不同的机器上采集的,患者需要两次摆位,体位变化的可能性比较大,配准需要人工或半自动化完成,配准的准确性可能受影响。同机是指两组图像是在一个机器上采集的,两次采集之间患者的体位无变化,配准率较高。

1.4精确定义解剖结构并给定处方剂量要求

要精确定义解剖结构一般有人体外轮廓、靶区、危及器官等,根据ICRU62号报告需要定义的靶区有肿瘤原发灶(GTV)、临床靶区(CTV)、和计划靶区(PTV)。GTV和CTV及危及器官由主管医生

精确勾画,医生根据输入到计划系统的患者图像及其它诊断材料,结合特定的肿瘤临床表现,精确地完成这项任务,并给与靶区及危及器官的耐受剂量。PTV由计算机根据靶区外扩自动产生,外扩的大小取决于摆位误差、放疗设备误差和器官运动幅度。由物理师通过对平时治疗技师摆位后拍治疗验证片以骨性标记或DRR片图像对比定量分析后得出头部、胸部、腹部等外扩数据。

1.5采用正向或逆向方式确定射野参数

物理师检查医师勾画的靶区及危及器官无误后,根据医师提供的剂量要求设定目标函数。逆向方式是指物理师根据医师提供的剂量要求填写目标函数和约束条件及各自的重要性,用约束条件描述靶区剂量均匀度要求和正常组织耐受量要求,然后用计算机以一定的数学模型进行优化,然后给出一组数据最优的射野参数和剂量分布,若医师满意,射野参数就确定下来;若不满意,则调整优化的射野参数,如:正常组织最大耐受量、靶区的剂量限值、以及相应的重要系数,如此反复,直至计划满意。

1.6评估治疗计划

评估治疗计划由医师和物理师共同参与,首先判断治疗计划是否能顺利实施和实施效率,其次是该计划需要满足临床的处方剂量要求,且满足临床计量学要求,评估主要用剂量体积直方图(DVH)和每层剂量分布,一般先看DVH图是否满足临床要求,再看三维层面上逐层评估剂量分布是否满足临床的处方剂量要求,且要注意热点和冷点的位置,如果冷点位于GTV内或热点位于重要器官内,则计

划必须调整。若多次调整失败,则向主管医师解释失败的原因,由主管医师有针对性的调整剂量要求等,直至评估计划满意。

1.7输出治疗计划和传输射野数据

计划经医师和物理师确定满意后,物理师打印治疗计划,包括射野参数详细列表、靶区剂量和分次方式、若干层面剂量分布、靶区及危及器官的DVH、射野方向观(BEV)和DRR图像。

1.8模拟机复位和质量保证、控制

计划确认打印后,由医师和物理师在CT模拟机上复位,完成从CT原点到治疗点的转移。先摆好病人的体位,让激光对准体表或体模上的三个(十)字激光标记,在通过治疗计划系统打印单上的数据进行移床,将治疗等中心移到机器中心,然后在病人体表或体模上做好的三个(十)字激光标记点作为治疗标记点。此时主要一定不要移错方向。

1.9 剂量验证

物理师用mapcheck、arccheck做实际测量和计划传输的剂量作比较,伽马分析3mm/3%通过率要达到90%以上,才可执行。

1.10CBCT加速器上验证(位置验证)

医师、物理师、技术人员共同在加速器上根据激光标志摆位,准确无误后用CBCT扫描360度,与传输的治疗计划进行验证,主要根据骨标志验证体位误差,若在X、Y、Z任何轴上出现大于3MM的误差,进行再移床激光标记。

1.11治疗

验证结束后,根据输入的治疗计划进行放射治疗。

三维适形调强放射治疗剂量验证研究进展

三维适形、调强放射治疗剂量验证研究进展▲ 梁 远 (广西壮族自治区卫生厅医政处,南宁市 530021) 【关键词】 三维适形放射治疗;调强放射治疗;剂量验证 【中图分类号】 R114 【文献标识码】 A 【文章编号】 025324304(2008)1021520202 随着计算机技术和放射治疗计划系统的飞速发展,放射治疗技术日新月异,相继出现了三维适形放射治疗(three di m ensi onal radi otherapy,3D2CRT)和调强放射治疗(intensity modulated radi otherapy,I M RT)。3D2CRT的目的是使放射治疗的三维高剂量分布与靶区的三维形状一致,以保护靶区周围的正常组织。然而,对于形状特殊的肿瘤,传统的3D2CRT无法实现三维高剂量分布与靶区的三维形状一致,这时就需要根据要求对每一射束的输出强度进行调节,从而实现肿瘤三维空间上的高剂量分布适形,这就是所谓I M RT。 1 原 理 调强放射治疗(I M RT)由于采用计算机逆向设计,即根据设定的靶区及各器官的剂量要求,计算所有影响剂量分布的物理参数,使高剂量区对GT V和CT V达到充分的剂量适形,并使PT V尽可能地缩小,从而达到显著提高治疗增益比的效果,并能很好地遵循放疗四原则:靶区剂量准确;邻近正常器官受照剂量小;保护关键器官;靶区剂量分布均匀。这样就可以有效地拉开肿瘤组织和正常组织所受的照射剂量,从而能够在保护正常组织的前提下,更好地杀死肿瘤细胞,达到改善生存质量、提高肿瘤控制率的目的[1]。20世纪90年代以来,这一技术日臻成熟。其主要实现方式包括:二维物理补偿器、断层治疗技术、多叶光栅(multileaf colli m at or,MLC)静态调强、MLC动态调强、电磁扫描调强、二维调强准直器、独立准直器的静态调强和机器人直线加速器调强等。 2 I M RT的优点 与3D2CRT相比,I M RT有许多优势。首先,它能够优化配置照射野内各线束的权重,使高剂量区的等剂量分布在三维方向上与靶区的实际形状一致,并可使PT V内的剂量分布更均匀,同时还可以在PT V边缘形成非常陡的剂量梯度。其次, I M RT可在一个计划内同时实现多个剂量水平,满足不同靶区对放射治疗剂量的要求,从而更符合肿瘤的放射生物学原则[2]。然而,I M RT技术与常规放射治疗技术及3D2CRT三维适形放射治疗相比,更为复杂,由于其技术上的复杂性,物理师不仅要像传统放射治疗一样验证患者的治疗摆位,还要验证患者所受的剂量分布[3,4]。I M RT尚属于发展中的技术,逆向计算的优化算法在某些方面还不成熟,且放射治疗中还存在众多不确定因素,因此治疗前的剂量验证是确保治疗剂量准确的关键步骤[5,6]。3 放射治疗验证工具 目前报告的关于调强放射治疗验证的典型工具为电离室、胶片、体模、胶片扫描仪配合相应的分析软件。传统的验证方法:电离室配合胶片法,计量学验证一般包括3个测量项目:一是用电离室在人体等效模体中测量靶区参考点的绝对剂量;二是采用胶片测量,一个治疗计划的所有射野在有机玻璃模体内形成的复合剂量分布,最后是采用胶片在干水模体中测量单个射野的强度分布,即患者相对剂量的测试及验证[7~10]。戴建荣等[7]报告针对一个患者的调强计划进行验证过程:首先在CT扫描体模传到计划系统作为标准体模,然后将经过医生确认的患者调强放射治疗计划移植到标准体模并计算剂量,将移植后的计划传到加速器进行验证,用电离室进行参考点的绝对剂量验证,并使用胶片进行所有射野和单个射野的相对剂量验证,最后用分析软件将计划结果和体模测量结果进行比较分析,如果两者差异在可以接受的误差范围,则认为计划可以执行并执行患者治疗,反之要找出原因并修正引起误差的原因重新验证直至误差减小到可以接受的程度再执行患者治疗。上述验证程序和过程为目前被广大医生和物理师所普遍接受的通用方法,具有以下优点[11]:(1)可以同时完成定位和剂量验证;(2)胶片法精度较高高可分辨0.15 mm的绝对位置误差和0.04mm的相对位置误差;(3)与常用模体相结合可以开展模体内任意平面的剂量验证;(4)在条件允许的情况下可以直接与EP I D等先进设备相连开展实时自动验证。但是成本高、工作量大,测量结果受曝光和冲洗条件影响,且胶片不能重复利用,浪费很大。例如不同批次的胶片、不同批次的显影液定影液、同一批次不同使用时间的显影液定影液都有很大差异,胶片冲洗是胶片辐射剂量分析过程的关键环节,也是胶片剂量仪的重要误差来源之一。由于放射物理学中的胶片剂量测量,尤其是当胶片用于测量绝对剂量或进行刻度时的精确性要求甚高,对冲洗过程加以控制或进行必要的质量保证就非常重要[12~15]。并且用于调强验证的电离室的灵敏体积,不能简单地认为越小越好。正确的认识应该是在使用大电离室时要考虑体积平均效应,并且测量点尽量选在剂量均匀区域;在使用小灵敏体积的电离室时要注意漏电和噪声对测量结果的影响。所以根据经验传统的验证方法,同时进行上述绝对剂量验证和相对剂量验证大概需要2人3h在加速器上的测量时间和1人2h的准备及数据处理时间[7],在目前国内大部分医院加速器治疗时间紧张的情况下,很难保证临床顺利实施,急需找到省时省力的更好的调强放射治疗质量保证(QA)和质量控制(QC)的方法。 0251Guangxi M edical Journal,O ct.2008,V ol.30,N o.10 ▲广西医疗卫生科研课题(桂卫科发Z2008499)

三维适形放射治疗过程流程

三维适形放射治疗(过程)流程 闫文明郁志龙张剑 内蒙古医学院附属医院放疗科内蒙古呼和浩特010050 [摘要]随着放射治疗学的发展,三维适形放疗(3DCRT) 在世界范围内已逐渐成为放射治疗的常规技术,它能使治疗区的形状与靶区的形状一致,从三维方向上进行剂量分布的控制,能提高局部控制率,减少正常组织的照射剂量,保证精确的体位固定技术、定位和重复摆位是实现3DCRT 的根本措施。本文通过在肿瘤治疗过程中的定位和摆位中遇到的问题进行了总结分析,目的是探讨在肿瘤的定位和摆位过程中应注意的问题,从而提高3DCRT 的定位和摆位精度。 [关键词] 三维适形;放疗;摆位 [中图分类号] R730.55 [文章标识码]A [论文编号] 1. 体位选择与固定 1.1体位选择:与常规X光模拟定位一样,CT模拟应当选择使患者感觉舒适、易坚持、易重复的体位。临床最常选择的体位是仰卧位,头颈部肿瘤双手自然下垂、头颈过伸至下颌骨下沿与床面垂直,胸腹部肿瘤考虑到可能采用左右侧野照射应将双手上举抱肘或握手柄。 1.2体位固定:头颈部固定常用热塑面罩,体部常用负压成型垫、体架+热塑体膜等。体位固定的关键是固定性好、摆位重复性好。故而必须对摆位的各个环节进行有效的质量控制。 2. 病人影像信息的采集— CT、MRI、PET 病人影像信息的采集的目的:①获取病人信息②确定摆位标记③确定参考标记。 2.1 获取病人信息 2.1.1 扫描范围:考虑到采用非共面照射,CT扫描的范围应足够大,体部扫描的肿瘤前后各沿长4~5cm,脑部扫描时应包括整个头颅。 2.1.2 扫描层厚:根据病变大小,部位而异,一般头颈部肿瘤采用层厚3mm,体部肿瘤采用层厚5mm。 2.1.3 增强扫描:浓积在病灶及其同围的造影剂会对剂量计算产生影响,造成计算结果与实际放疗时的剂量分布之间的误差。 2.1.4 方法:把没有增强的CT和已强化的CT融合在一起。画病灶以增强CT为值,做治疗以未增强CT为准。 2.2 确定摆位标记 找3-5个体位固定不动的点,可以是骨性标记,记录其坐标值。 2.3 确定参考标记

简化调强放疗技术在临床肿瘤治疗中的应用分析

简化调强放疗技术在临床肿瘤治疗中的应用分析 简化调强(simplified intensity modulated radiation therapy,sIMRT)技术是调强放射治疗(intensity modulated radiation therapy,IMRT)的一种简化模式,在临床应用中发挥着非常重要的作用。它具有自己的特点和适用范围。本文综述是基于简化调强技术与三维适形、调强放疗等技术的剂量学对比以及在肿瘤治疗中联合其它治疗手段的应用情况,旨在证实sIMRT是一种具备应用广泛、简易可行、性价比高和时效性好等特点的放療技术,为其在临床应用中提供必要的选择依据。 Abstract:The simplified intensity modulated radiation therapy(sIMRT)is a simplified model of intensity modulated radiation therapy(IMRT),which plays an important role in the course of tumor radiotherapy. sIMRT has its own chacateristics and clinical applicability. In this literature review,we mainly gave the contrast analysis of the dosimetry characteristics among those radiotherapy techniques (3DCRT、sIMRT、IMRT,etc)and the clinical application while sIMRT combined with other therapies,finally,aims to confirm that sIMRT features widely used、simple and feasible、high ratio of performance-to-cost benefit and good timeliness,besides,providing the necessary basis for clinical application. Key words:3DCRT;sIMRT;IMRT dosimetry;Clinical application 放射治疗作为肿瘤治疗的主要手段之一,已经广泛应用于临床,据估计,每年约有70%左右的肿瘤患者在治疗过程中会应用到放射治疗。基于三维适形放疗(3 dimensional conformal radiation therapy,3DCRT)发展起来的调强放射治疗(intensity modulated radiation therapy,IMRT)无疑掀起了放射肿瘤学史上的一次技术变革,从此打开了肿瘤放疗的新篇章,步入精确放疗时代,该技术大大降低了肿瘤局部复发率和正常组织并发症发生率。所谓调强,就是将加速器或钴-60治疗机的平坦度、对称性都满足要求的剂量(率)均匀输出的射野,变成剂量(率)输出不均匀的射野的过程[1]。IMRT技术克服了3DCRT技术缺陷,通过利用多个子野分步照射在三维方向上提高肿瘤内剂量和适形度,同时减少肿瘤周围危及器官的受照量及受照体积。简化调强技术(simplified intensity modulated radiation therapy,sIMRT)是IMRT的一种简化模式,有自己的特点和适用范围,是一种临床可选的技术方案。 1 sIMRT产生背景、定义及应用过程 1.1产生背景随着计算机和图像科学的快速发展及设备的更新换代,3DCRT 技术[2]应运而生,开始越来越广泛应用于临床。3DCRT要求照射野的形状必须与病变(靶区)的形状一致,并在三维方向观上使得肿瘤内及表面的剂量处处相等,旨在确保病变(靶区)接受较高适形度和高剂量的照射,同时减少周围正常组织受照剂量和受照体积,尤其是一些优先级别较高的危及器官;但该技术有一定的缺陷:仅能实现在射野垂直方向上,肿瘤投影形状与剂量分布的二维适形;

三维适形、调强放疗的流程与计划设计技巧

精确放疗的计划设计及实施流程 1.计划设计的基本流程 1.1体位或面罩固定 病人经放疗医师确定放疗后,首先需严格的体位或面罩固定,体位固定以病人舒适、身体重复性好为主,,固定好后行定位CT扫描。 1.2输入患者基本信息和图像信息 基本信息是患者姓名、性别、住院号等,图像信息是模拟定位获得的人体外轮廓或人体CT断层图像,或其它影像学检查获得的图像(MRI、PET),扫描后图像通过网络输入到TPS中。 1.3标记参考点和图像配准 标记参考点是翻动扫描图像找到CT图像在体表标记三个(十)字对应的激光在体表的位置,以此点做为坐标原点。配准图像是建立两组不用图像之间空间位置关系的过程,配准的图像可能来自同机或异机。异机是指融合的图像是在不同的机器上采集的,患者需要两次摆位,体位变化的可能性比较大,配准需要人工或半自动化完成,配准的准确性可能受影响。同机是指两组图像是在一个机器上采集的,两次采集之间患者的体位无变化,配准率较高。 1.4精确定义解剖结构并给定处方剂量要求 要精确定义解剖结构一般有人体外轮廓、靶区、危及器官等,根据ICRU62号报告需要定义的靶区有肿瘤原发灶(GTV)、临床靶区(CTV)、和计划靶区(PTV)。GTV和CTV及危及器官由主管医生

精确勾画,医生根据输入到计划系统的患者图像及其它诊断材料,结合特定的肿瘤临床表现,精确地完成这项任务,并给与靶区及危及器官的耐受剂量。PTV由计算机根据靶区外扩自动产生,外扩的大小取决于摆位误差、放疗设备误差和器官运动幅度。由物理师通过对平时治疗技师摆位后拍治疗验证片以骨性标记或DRR片图像对比定量分析后得出头部、胸部、腹部等外扩数据。 1.5采用正向或逆向方式确定射野参数 物理师检查医师勾画的靶区及危及器官无误后,根据医师提供的剂量要求设定目标函数。逆向方式是指物理师根据医师提供的剂量要求填写目标函数和约束条件及各自的重要性,用约束条件描述靶区剂量均匀度要求和正常组织耐受量要求,然后用计算机以一定的数学模型进行优化,然后给出一组数据最优的射野参数和剂量分布,若医师满意,射野参数就确定下来;若不满意,则调整优化的射野参数,如:正常组织最大耐受量、靶区的剂量限值、以及相应的重要系数,如此反复,直至计划满意。 1.6评估治疗计划 评估治疗计划由医师和物理师共同参与,首先判断治疗计划是否能顺利实施和实施效率,其次是该计划需要满足临床的处方剂量要求,且满足临床计量学要求,评估主要用剂量体积直方图(DVH)和每层剂量分布,一般先看DVH图是否满足临床要求,再看三维层面上逐层评估剂量分布是否满足临床的处方剂量要求,且要注意热点和冷点的位置,如果冷点位于GTV内或热点位于重要器官内,则计

三维适形调强放疗的原理及其疗效

三维适形调强放疗在肺癌的治疗中的原理及其疗效的概括说明 发表者: 适形调强放射治疗(Intensity Modulated Radiation Therapy, IMRT)调强的原理最早由瑞典的放射物理学家Brahme提出。它启发于CT成像的逆原理,即当CT X球管发出强度均匀的X线束穿过人体后,由于其组织厚度与组织密度不同,其强度分布就变成了不均匀的射线束,反向投影后形成了组织的影像。反之,如果放射治疗给于一个不均匀的射线束照射,则出来的射线束就变成均匀而投射到靶区中。 适形调强放射治疗的概念是指,以各种物理手段的放射治疗技术,根据肿瘤靶区的形状,通过调节和控制射线在照射野内的强度分布产生不同剂量梯度来提高对肿瘤靶区给予致死性的高剂量照射,而对肿瘤周围正常组织控制在正常耐受剂量以下的一种放射治疗技术。其首先是对肿瘤靶区达到三维适形的照射,其次是使肿瘤靶区和邻近敏感器官可以获得照射剂量强度的调节。 1、实现束流调强的四种方式:(1)固定野物理方式调强——采用固定式楔形板、动态式楔形板(一维调强)、补偿器(二维调强)和IMRT调制器等方式;(2)断层(CT)式螺旋调强;(3)多叶准直器(Multi-Leave Collimator, MLC)调强——在固定野或旋转照射过程中通过MLC叶片移动式调强。例如,用V ARIAN的MLC作同中心照射,设计6~9个照射野。(4)束流调制式调强——用调节线束扫描的速度和能量而产生笔型束的射线强度,以达到调强。例如,NOMOS的Peacock System, 通常在270度的弧度内,每5度设计一个照射野,照射时作弧形动态旋转放疗。 2、适合适形调强放射治疗用的治疗计划系统必须具备以下条件:(1)不仅要采用精确的(正向)剂量算法,还必须有逆向的算法;(2)必须具有三维数字图象重建(DRR)的功能;(3)不仅有冠状、矢状、横断及任意斜切面图象及剂量分布显示的功能。还必须有截面剂量分布(dose profile)、积分和微分式剂量体积直方图(cDVH和dDVH)等进行定量评估计划优劣的手段。(4)安排和设计射野时,除有射野方向观视(BEV)功能外,还需要有模拟类似模拟定位机的射野选择功能。(5)治疗方案确认后,能够将射野条件送到CT模拟机进行治疗模拟。(6)治疗方案确认后,治疗条件能够传送到治疗机的计算机,包括机架、准直器、治疗床的转角与范围;射野大小、方向、MLC的叶片位置;照射过程中叶片移动范围及速度等。(7)治疗方案确认后,治疗的辅助装置如射野挡块、组织补偿等的参数能传送到相应的装置制作器上。(8)能够接收和比较治疗机射野影像系统送来的射野确认图象。

放射治疗设备——最全重点

放射治疗专业《放射治疗设备》试题集1 一、名词解释 1、放射治疗:放射治疗是由一种或多种电离辐射的治疗方式组成的医学治疗。通俗的 讲,放射治疗就是利用放射源或各种医疗设备产生的高能射线对肿瘤进行治疗的技 术,简称“放疗”。 2、放疗设备:利用原子核或人工装置产生射线治疗肿瘤的设备。 3、射线特性: 4、以钴-60做放射源,用γ射线杀伤癌细胞,对肿瘤实施治疗的装置。 5、医用电子直线加速器:医用电子直线加速器是利用微波电场,沿直线加速电子到较 高的能量应用于医学临床的装置。 6、放射治疗计划系统: 7、剂量监测系统: 指的是加速器本身具备的剂量测量及监控系统。 8、医用电子加速器进行放射治疗的等中心原理:只要将患者的肿瘤中心置于等中心点 上,无论旋转机架、辐射头和治疗床处于什么角度,或作任何旋转,辐射野中心始终与肿瘤中心重合。 9、加速管特性:电子刚注入到加速管中时,动能约为10-40KeV,电子速度约为 v=0.17-0.37c;当加速到1-2MeV时,电子速度就达到v=0.94-0.98c,其后能量再增加,电子速度也不再增加多少了。 10、外照射(teletheraphy): 位于体外一定距离,集中照射人体某一部位 11、近距离照射(brachytherapy): 将放射源密封直接放入被治疗的组织内或放入人体的 天然腔内进行照射。 12、射线中心轴: 13、照射野(A): 14、源皮距(SSD): 15、源瘤距(STD): 16、放射源(radioactive source): 活度与比活度都在规定水平上一定量的放射性核素物 质。 17、辐射源(radiation source): 放射治疗装置中能发射电离辐射的部件或放射源的统 称。 18、辐射束(radiation beam): 当辐射源可以看作点源时,由辐射源发出的、通过一个 立体角内空间范围的电离辐射通量,泄漏辐射和散射辐射不构成辐射束。 19、辐射束轴(radiation beam axis): 对于一个对称的辐射束,通过辐射源中心以及限 束装置两对有效边缘中分线交点的直线。 20、辐射野(radiation field): 与辐射束相交的一个平面内的区域,在此区域内辐射强度 超过某一比例或指定的水平。 21、剂量监测计数的定义是:剂量监测系统显示的,可以计算吸收剂量的计数。 22、计划设计:定义为确定一个治疗方案的全过程。传统上,它通常被理解为计算机 根据输入的患者治疗部位的解剖材料如外轮廓、靶区及重要组织和器官的轮廓及相 关组织的密度等,安排合适的射野(如体外照射)或合理布源(如近距离照射),包括使 用楔形滤过板、射野挡块或组织补偿器等进行剂量计算,得到所需要的剂量分布。 23、等中心: 二、填空

调强适形和立体定向放射治疗题库2-1-8

调强适形和立体定向放射治疗题库2-1-8

问题: [单选,A型题]放射治疗方案的优化的过程不包括() A.确定靶区和重要组织和器官 B.正确诊断、确定分期 C.物理方案的设计 D.物理方案的实施 E.选择治疗的目标 放射治疗方案的优化的过程包括:确定靶区和重要组织和器官、选择治疗的目标、物理方案的设计和实施。

问题: [单选,A型题]人工优化过程不包括() A.正确诊断、确定分期 B.选择射线能量 C.确定射野剂量权重 D.确定外加射野挡块 E.选择射线种类 人工优化过程包括选择射线能量、确定射野剂量权重、确定外加射野挡块、选择射线种类、计算剂量分布、评估计划和确定方案。

问题: [单选,A型题]目前关于射野入射方向的研究认为,对未经调强的均匀射野,如果射野数为多少,射野人射方向对剂量分布影响很大() A.n<3 B.n≤3 C.n≥2 D.n=4 E.n>3 射野入射方向的选择仍然是放疗计划设计至今尚未解决的一个重要问题。目前关于射野入射方向的研究成果认为,对未经调强的均匀射野,如果射野数较少n≤3,射野入射方向对剂量分布影响很大,故调强计划设计时尽可能采取多野方案。 (打羽毛球的好处 https://www.360docs.net/doc/0319234554.html,/)

问题: [单选,A型题]当调强束照射且射野数很多时,射野可以(),这样可以较好地控制靶区的剂量分布 A.直接穿过重要器官 B.避开重要器官 C.减少 D.增加 E.不变 当调强束照射且射野数很多时,射野可以直接穿过重要器官,只要控制重要器官的剂量受量,就可以较好地控制靶区的剂量分布。当非调强束照射时,射野不能直接穿过重要器官。

先进放疗技术简介

先进放疗技术简介 (一)调强放射治疗(IMRT) IMRT是目前世界上最先进的放射治疗技术,它以先进的计算机技术和加速器设备为基础,通过计算机驱动多叶光栅的移动形成无数子野在三维空间上的叠加,既可做到三维适用放疗,还可改变照射内射线强度,产生靶区剂量强度分布的不一致,即照射野与靶区形状一致而剂量强度分布不一致。故调强放疗理论上可做到使靶区内剂量分布该高的高、该低的低;对靶区周边正常组织可做到想低就低。因此,这一技术可有针对性地提高靶区剂量和降低周边正常组织的剂量,有利于提高疗效、减低损伤。 (二)三维适形放疗(3D-CRT) 3D-CRT是采用立体定向技术,在直线加速器上附加特制铅块或多叶光栅等技术实施共面或非共面照射,在三维空间上照射野与靶区形状一致,其技术和结果类似于分次立体定向放疗(SRT)。3D-CRT比SRT适用范围更广,可用于全身各部位不同大小、形状各异的靶区的放射治疗,因适应范围广,费用适中,定位准确,因此是目前放疗技术的主流。 (三)立体定向放射(外科)治疗 立体定向放射(外科)治疗是使用专用的立体定位装置,通过CT或MRI扫描定位,由计算机系统对人体轮廓、正常器官和靶区进行三维重建,并设计不同入射角度的照射野或照射或采购多源聚集照射,利用聚焦的原理,将各个照射野或照射弧的放射线集中到靶区,而靶区周围正常组织受量很少。根据靶区特点采用单次大剂量照射称为立体定向放射外科(SRS),采用分次剂量治疗时称为立体定向放射治疗(SRT)。SRS就是人们常说的头部r-刀治疗,它利用精确立体定向技术,使用高能射线多源聚焦的方法,给病变组织单次大剂量照射致病变组织毁损的一种放疗技术,SRS主要用于颅内病变的治疗。SRT是利用立体定向技术,采用分次照射靶区的放疗技术,就是人们俗称的X-刀。

三维适形放疗流程

三维适形放射治疗(过程)流程 1.体位选择与固定 2.病人影像信息的采集— CT、MRI、PET 目的:1.获取病人信息2.确定摆位标记3.确定参考标记 1)获取病人信息 扫描范围: 考虑到采用非共面照射,CT扫描的范围应足够大,体部扫描的肿瘤前后各沿长4~5cm,脑部扫描时应包括整个头颅。 扫描层厚: 根据病变大小,部位而异,一般头颈部肿瘤采用层厚3mm,体部肿瘤采用层厚5mm。 增强扫描: 浓积在病灶及其同围的造影剂会对剂量计算产生影响,造成计算结果与实际放疗时的剂量分布之间的误差。 方法: 把没有增强的CT和已强化的CT融合在一起。画病灶以增强CT为值,做治疗以未增强CT为准。 2)确定摆位标记 找3-5个体位固定不动的点,可以是骨性标记,记录其坐标值。 3)确定参考标记 固定参考系: 固定头架上或埋在床里的N形线(拓能公司)如图所示:

相对参考系: 至少三个以上的点,用针或铅丝等做皮肤标记,作为参考标记点。位置选择遵从下列原则: 不因呼吸和器官及组织的运动而变化太大,在模拟机上、CT机上能显像; 对皮下脂肪层较薄的部位,体位固定器与身体形成的刚性较好,皮肤标记可设在体位固定面罩上(如头颈部肿瘤); 对皮下脂肪层较厚的部位,设立皮肤标记使其位移最小(如腹部肿瘤); 标记点离靶中心位置越近越好,内标记比体表标记引起的误差小; 注意的问题: 校准激光灯的重合准确性 皮肤上贴的标记物和所画的线要重合 在加速器治疗摆位时,两侧参考标记都要核对 3.射野等中心的确定与靶区及危险器官轮廓的勾画 射野等中心: 自动设置或手动设置 根据肿瘤的多少及相互关系可确定一个等中心或多个等中心 靶区及危险器官的勾画: 临床医生和影像医生在TPSxx勾画 1/4 GTV的确定: CT、MRI、PET

TC化疗方案联合三维适形调强放疗治疗非小细胞肺癌的效果分析

TC化疗方案联合三维适形调强放疗治疗非小细胞肺癌的效果分析 发表时间:2018-08-21T14:23:04.720Z 来源:《航空军医》2018年11期作者:曹运新 [导读] 目的探讨TC化疗方案联合三维适形调强放疗对非小细胞肺癌的治疗效果。 (娄底市中心医院湖南娄底 417000) 摘要:目的探讨TC化疗方案联合三维适形调强放疗对非小细胞肺癌的治疗效果。方法选取60例非小细胞肺癌患者作为此次研究对象,60例患者均于2015年1月至2017年7月期间在我院接受治疗,将其随机分成实验组和对照组两组,各30例,两组患者均采用三维适形调强放疗(3D—IMRT)的常规治疗措施,实验组患者在此治疗基础上接受TC化疗进行联合治疗。分别观察两组患者放射性并发症,包括肺损伤、食管炎、皮炎、神经炎的发生状况;并观察记录治疗后两组患者的无进展生存期情况。结果两组患者治疗后放射性并发症发生率比较无统计学意义P>0.05;实验组患者治疗后PFS与总生存时间显著高于对照组,差异具有统计学意义P<0.05。结论TC化疗方案联合三维适形调强放疗不但能够延长患者的无进展生存期,而且具有安全性高的优点,疗效显著,临床上值得大力推广。 关键词:TC化疗;三维适形调强放疗;非小细胞肺癌 [Abstract] objective to explore the therapeutic effect of TC chemotherapy combined with three-dimensional conformal intensity modulated radiotherapy on NSCLC. Methods to select 60 patients with non-small-cell lung cancer(NSCLC) as the research object,60 cases were in January 2015 to July 2017 in our hospital during the period of treatment,will be randomly divided into experimental group and control group two groups,each 30 cases,two groups of patients were using three-dimensional conformal intensity modulated radiation therapy(3 d - IMRT) of conventional treatment,the experimental group on the basis of the treatment of patients with TC chemotherapy for joint treatment. The incidence of radiation complications including lung injury,esophagitis,dermatitis and neuritis were observed in two groups. The unprogression-free survival of the two groups was observed and recorded. Results the incidence of radiation complications in the two groups after treatment was not statistically significant(P>0.05). PFS and total survival time of patients in the experimental group were significantly higher than those in the control group after treatment,and the difference was statistically significant P < 0.05. Conclusion TC chemotherapy combined with 3d conformal intensity modulated radiotherapy can not only prolong the patient's progression-free survival period,but also has the advantages of high safety and remarkable curative effect,which is worthy of great promotion in clinical practice. [Key words]TC chemotherapy;Three-dimensional conformal intensity modulated radiotherapy;Non-small cell lung cancer 肺癌属于恶性肿瘤类并且是我国发病率最高的癌症,而85%以上的肺癌为NSCLC即非小细胞肺癌。且由于受到环境、遗传等诸多因素的影响,患者的病龄呈现低龄化趋势,但发病率却在逐年上升[1]。由于NSCLC的肿瘤细胞具有扩散晚、增殖慢的特点,致使约70%的NSCLC患者在最终确诊时已错过最佳治疗期[2]。目前,临床上治疗NSCLC患者采取的治疗措施主要有化疗和放疗,3D-IMRT即三维适形调强放疗是目前比较先进的放疗方式,其CT影像能够全方位检测放疗状况,放疗方案更加合理[3]。TC化疗是目前技术较为成熟的一种化疗方式,也是临床上常用的化疗方式。但是化疗、放疗对患者有着严重的毒副作用,如由于食管鳞状上皮的敏感性导致被放疗、化疗的患者极易发生炎症甚至致使食管穿孔,因此,患者选取合理的放疗、化疗方案极为关键。本研究就TC化疗方案联合三维适形调强放疗对非小细胞肺癌的治疗效果开展观察,现报道如下。 1 资料与方法 1.1一般资料 选取60例非小细胞肺癌患者作为此次研究对象,60例患者均于2015年1月至2017年7月期间在我院接受治疗,且均符合 NSCLC诊断标准的相关指标,所有患者均排除凝血功能障碍、肝功能衰竭、哺乳期孕产妇等,且近期均未接受过化疗或放疗。将其随机分成实验组和对照组两组,各30例。实验组男20例,女10例;年龄介于 40~60岁之间,平均年龄(50.73±4.12)岁;Ⅱ期20例,Ⅲ期10例。对照组男16例,女14例;年龄介于38~61岁,平均年龄(49.93±5.22)岁;Ⅱ期18例,Ⅲ期12例。参与本研究所有NSCLC患者均对研究知情,并签署了同意书。两组患者在年龄、性别、临床分期等一般资料的比较差异无统计学意义(P>0.05),具有可比性。 1.2方法 对照组患者采取三维适形调强放疗治疗措施;所用仪器:瑞典医科达公司生产的数字化双光子高档直线加速器、美国GE公司生产的16排大孔径CT模拟定位机、美国CMS公司的3DTPS(放射治疗计划系统)。方法从胸廓到膈肌进行层厚4 mm的CT扫描,进行图像重建,勾勒出淋巴结转移区和肿瘤靶区,并以淋巴结转移区和肿瘤靶区为范围再外放 10 mm作为放疗区,勾勒出周围组织包括心脏、脊髓、食管、肺部等。照射剂量:三维适形放疗,64 ~70 Gy;适形调强放疗,70 ~76 Gy。患者接受化疗第1天就开始放疗,若放疗、化疗在同一天则先进行放疗后进行化疗。治疗连续进行6周,每周5次,每次一小时。实验组患者在上述治疗的基础上接受TC化疗进行联合治疗。将135 mg/m 2的紫杉醇进行静脉3小时,每次在500ml质量浓度为5%的葡萄糖溶液中融入15 mg卡铂进行静脉注射。一天为一个疗程,连续2天。 1.3观察及评价指标 观察两组患者接受治疗后放射性并发症包括肺、食管炎、皮炎、神经炎的发生状况;观察记录治疗后两组患者的PFS(无进展生存期)和总生存时间。 1.4统计学处理 此次研究采用SPSS19.0版统计软件对数据进行统计分析,定性资料以率(%)表示,采用χ2检验;以P<0.05为差异具有统计学意义。 2结果 2.1 两组患者治疗后放射性并发症发生率比较 实验组放射性并发症发病率:肺损伤、神经炎、皮炎、食管炎的发病率分别为10.00%、23.33%、10.00%、16.67%。对照组放射性

放射治疗计划设计相关因素分析

放射治疗计划设计相关因素分析 发表时间:2013-02-18T14:23:33.763Z 来源:《医药前沿》2012年第29期供稿作者:孙光志 [导读] 设备和摆位误差方面要切合本单位的具体情况,给予适度的外放,避免不确定因素造成保护器官的超剂量照射和靶区逃逸。 孙光志 (江苏泰州市人民医院 225300) 【中图分类号】R815 【文献标识码】A 【文章编号】2095-1752(2012)29-0030-02 随着放疗设备和放疗技术的不断发展,CyberKnife、螺旋断层放射治疗(Tomotherapy)、IMRT、IGRT、BIMRT以及容积调强(volumetric modulated are therapy,VMAT)等放疗新设备和新技术得以应用于临床肿瘤治疗,放疗计划设计是现代放疗的重要环节之一,放射治疗计划设计在各版本的肿瘤放射治疗学和肿瘤放射物理学等书籍中均有较为详细介绍,但在实际计划设计过程中仍会面对许多问题,以下是本人对放疗计划设计相关因素的一些认识。 1. 靶区勾画及边界外扩 1.1 靶区勾画 1.1.1 确定靶区(GTV、CTV)范围时,要从计划设计的角度考虑,兼顾保护器官与靶区之间的关系,合理定义治疗靶区范围,分清主次,注重权衡与妥协,在保证重要危及器官剂量限制同时尽可能使高危靶区达到要求剂量的照射,如果靶区过大可能无法得到能满足靶区和保护器官剂量要求的放疗计划时,应适当放弃部分低危临床靶区,使核心靶区能获得理想剂量的照射,防止一味地追求大而全使GTV 受照不足及正常组织受照体积大幅增加,使患者的治疗获益降低。当靶区与剂量限定器官有重叠时,放疗医生和物理师相互沟通达成共识。 1.1.2 相邻层面靶区连贯性及靶区边缘毛刺 与的毛刺会导致正常组织受量的增加,CT图像上下层剂量梯度太大也会增加正常组织的受量,笔者利用医科达Xio Ver4.62 TPS对10例胸部患者进行设野比较,6MV X线,机架130°,射野5×5,等中心设于隆突分叉水平椎体前缘处,当X1方向(左肺方向)每增加5mm,左肺V20则增加0.5~1.5%左右,由此可见,靶区边缘毛刺(特别是在射野方向)导致野宽增加会显著增加正常组织的受照。 1.2 计划靶区的外放 1.2.1 靶区及保护器官外放边界定义:临床靶区(clinical target volume,CTV)到计划靶区(planning target volume,PTV)的边界外放,受摆位误差和器官运动因素决定。胸及上腹器官运动的影响较大,特别是肺、肝脏以及胃等,有研究表明,在平静呼吸时肺的运动幅度左右向平均小于0.7cm,上下方向1.3cm,上肺的运动幅度小于下肺,老年心肺功能差的患者运动幅度显著高于平均值[1]。肿块较大者随呼吸运动的活动度小于肿块小者。所以在放疗过程中要训练患者尽量平静呼吸,综合肺呼吸运动和摆位误差,肺部肿瘤前后左右方向外放1cm,上下1.5cm,同时根据患者心肺功能、肿瘤大小、靶区位于上肺或下肺等因素进行个体化调整外放范围。肝脏肿瘤靶区(GTV)外扩到临床靶区(CTV)的范围,文献报道肿瘤边界外扩4mm即能100%包括外侵范围[2]。对于器官运动较小部位的靶区则更多地考虑系统误差对靶区的影响。 1.2.2 设备和摆位误差方面要切合本单位的具体情况,给予适度的外放,避免不确定因素造成保护器官的超剂量照射和靶区逃逸。如果有图像引导及呼吸门控等手段,则可以大幅降低因器官运动、摆位误差等因素的边界外放范围。 2.计划设计 2.1 就近设野是计划设计的原则,如靶区与保护器官较贴近时,在二者之间保留适度余量,不能过度紧扣靶区与保护器官,否则可能导致实际治疗中的靶区逃逸和保护器官超量受照,造成事与愿违的结果。 2.2 射野方向及设野数选择:设野数以奇数为好,对穿技术尽量不要用于根治性放疗。小靶区,射野数可以用得较多;大靶区,射野数要相应减少[4]。但考虑低剂量射线对正常组织确定和不确定效应的影响,尽量减少正常组织受照体积和剂量是计划设计的难点,也就是说,用最少设野和最小的跳数,产生符合肿瘤放射物理和临床治疗的放疗计划是对计划设计人员的最大挑战。 2.3 射线类型的选择:在适形计划设计时应根据各射线的特点选择不同类型和能量的射线,或混合使用不同射线。如浅表靶区选择4、6MV的X线或电子线,腹盆腔内采用高能量射线优于低能量射线。对肺等低密度组织肿瘤射线选择,傅卫华等研究指出[3],18MV等高能X 射线虽然比6MV的X线具有更强的穿透能力,但是由于侧向电子失衡,高剂量收缩,会导致靶区的剂量覆盖率下降,相同布野条件下18MV 的X射线的靶区剂量亏损比6MV的X线严重,而危及器官的受量情况基本相同,另外,目前有不少正在使用的治疗计划系统没有提供能够有效修正侧向电子失衡的算法。所以肺部肿瘤最好选用能量较低的X线如6MV等。本人在TPS上用单野对比6MV与15MV射线对肺V20影响,结果与前人所提结论相符合。RTOG 91-05建议治疗非小细胞肺癌X线能量选择应在4~12MV。靶区内有较大空腔者要考虑二次建成对剂量分布的影响,选择能量较低的6MV X射线。 2.4 不同部位计划设计的特点:由于身体各部位解剖结构的差异,设计照射野的特点有所不同,本人有如下倾向。颅内肿瘤由于前有眼睛,中有脑干、垂体、视神经等,多野非共面,楔形滤板修饰剂量分布,如果靶区复杂,可根据每层靶区与保护器官的关系分野设计。头颈部施照时由于保护器官多,相互关系紧密,可选择不同能量和类型的射线混合使用,如鼻咽癌、下咽癌、甲状腺癌等,靶区范围大,要做到全而不漏,可选择光子线与电子线混合使用,相互补充。肺癌设野以避开脊髓向肺门和纵隔方向斜对穿可能会减少肺受照体积同时可包及肺癌的部分淋巴引流区,且纵隔内大血管和气管对射线耐受性要高于肺(包及心脏除外)。食管癌则要注意食管、椎体和降主动脉之间的区域,调整左后斜野的方向和权重,使剂量分布应包及该区域。腹部则多采用三野或四野盒式照射。盆腔以奇数野设计,降低肠道、膀胱等器官的受量,减少处方剂量包及的非靶区体积。 3. 计划评估 在靶区外的剂量分布,要注意受照器官对受照体积和对低剂量射线的耐受量,如脊髓、肺、肝脏、肾脏、消化道、晶体等。在肺及胸部肿瘤放疗时,对肺评估不仅V20,低剂量的受照也不容忽视,如V5等,有资料表明当V5大于42%时,放射性肺炎(RP)的发生率大于38%[5]。NCCN非小细胞肺癌临床实践指南(2010)中对肺受照剂量体积限制为V20小于37%,肺V20的定义是指双肺减去重合的CTV后肺组织中接受放射剂量≥20Gy的部分所占百分比。在上腹部的放疗计划评估中须对肝脏的受照进行评估,NCCN胃癌临床实践指南中对肝脏组织的限量是60%肝脏<30Gy,上海中山医院曾昭冲认为,当单次剂量大于4Gy就出现肝细胞再增殖能力明显下降,近年多野适形放疗

体部肿瘤三维适形放射治疗的质量控制

体部肿瘤三维适形放射治疗的质量控制 [摘要] 目的:探讨体部肿瘤三维适形放射治疗临床实施过程中的质量控制。方法:29例体部肿瘤患者均采用双螺旋CT模拟激光定位扫描,由网络系统将扫描图像输送到北京大恒公司计划系统设计三维适形计划,用能量6 MV直线加速器实施治疗计划。结果:近期疗效为完全缓解27.6%(8/29),部分缓解65.5%(19/29),无变化6.9%(2/29),总有效率为93.1%,所有患者均能耐受并按计划完成放射治疗。结论:临床治疗中一些措施切实可行,可达到三维适形放射治疗过程中质量控制的要求。 [关键词] 体部肿瘤;三维适形放射治疗;质量控制 早期体部肿瘤患者的首选是手术治疗。对于年老体弱,不愿意或不能手术的患者,放射治疗是其主要的治疗手段之一。三维适形放射治疗(3D conformal radiation therapy,3DCRT)是一种高精度的放射治疗技术,它通过多个共面或非共面照射野,使放疗等剂量分布的形状与靶区(病变)的形状在三维方面上一致,同时避免了对周围重要器官的照射,在提高肿瘤局控率的同时,降低了正常组织并发症的发生[1]。要保证三维适形放射治疗(3DCRT)的精确实施,必须要满足其质量控制的三个环节,即精确定位,精确计划,精确治疗。我院根据自身设备条件,对体部肿瘤三维适形放射治疗实施过程中,在CT定位、勾画靶区及准确摆位等方面作了初步的探讨。 1 材料与方法

1.1 临床资料 2006年10月~2007年12月,29例均是不能手术或不愿手术的体部肿瘤患者。其中,胸部肿瘤14例(肺癌9例,食管癌5例),腹部肿瘤6例(胰腺癌3例、肝癌3例),盆腔肿瘤9例(直肠癌4例、宫颈癌2例、卵巢癌1例、膀胱癌2例);男性19例,女性10例。年龄29~73岁,平均51岁,卡氏评分≥60分。全部患者采用北京大恒公司计划系统和能量6 MV医能直线加速器实施三维适形放射治疗。 1.2 治疗方法 1.2.1 精确定位定位前仔细阅读CT片,明确肿瘤与邻近组织器官的关系和易辨别的骨性位置关系。先将体模平辅于定位床上,以病人舒适同时又有利于治疗的姿势(俯卧或仰卧)于体模上,告诉病人全身放松,平静呼吸,抽吸真空至体模坚硬固定。29例患者均采用双螺旋CT模拟激光定位扫描,将扫描参考中心尽可能靠近靶区中心或附近骨性标志位置,同时在身体两侧等中心平面处按激光十字线放置三个直径为2 mm的金属球。扫描包括靶区上下一定距离,肿瘤区域层距3~5 mm,通常40~60层,由网络系统将扫描图像输送到治疗计划系统工作站,进行正常组织和靶区三维影像重建。 1.2.2 精确计划先由放疗医生勾画出肿瘤体积(GTV),临床靶体积(CTV)和重要组织器官,物理师勾画体表轮廓和计划靶区体积(PTV)。根据医生要求做出精确的计划设计,得到一个3~6野共面和非共面的治疗计划;利用剂量体积直方图(DVH)和等剂量曲线的分布,

相关文档
最新文档