相似三角形考点分析(三)---相似中常用的辅助线作法

相似三角形考点分析(三)---相似中常用的辅助线作法
相似三角形考点分析(三)---相似中常用的辅助线作法

相似三角形考点分析(三)相似中常用的辅助线作法

添加平行线构造“ A”“X”型

定理:平行于三角形一边的直线和其它两边(或两边延长线)相交,所构成的三角形与原三角形相似. 定理的基本图形:

C

RD FC

例2、如图,直线交厶ARC的RC,AR两边于D,E,与CA延长线交于F,若 = =2,求RE:EA的比值.

DC FA

变式练习:

如图,直线交厶ARC的RC,AR两边于D,E,与CA延长线交于F,若DC —E D=2,求RE:EA的比值.

例 3、RE^ AD 求证:EF? RO AC- DF

变式、如图,△ ARC中, AR

例4、已知:如图,在△ARC中, AD为中线,E在AR上, AE=AC CE交AD于F, EF: FC=3: 5, EB=8cm求AR

AC 的长.

E nr

图"33

相似三角形添加辅助线的方法举例有答案新

相似三角形添加辅助线的方法举例 例1: 已知:如图,△ABC 中,AB =AC ,BD ⊥AC 于D . 求证: BC 2 =2CD ·AC . 例2.已知梯形ABCD 中,BC AD //,AD BC 3=,E 是腰AB 上的一点,连结CE (1)如果AB CE ⊥ ,CD AB =,AE BE 3=,求B ∠的度数; (2)设BC E ?和四边形AECD 的面积分别为1S 和2S ,且2132S S =,试求 AE BE 的值 例3.如图4-1,已知平行四边ABCD 中,E 是AB 的中点, AD AF 31= ,连E 、F 交AC 于G .求AG :AC 的值. 例4、如图4—5,B 为AC 的中点,E 为BD 的中点,则AF :AE=___________. 例5、如图4-7,已知平行四边形ABCD 中,对角线AC 、BD 交于O 点,E 为AB 延长线上一点,OE 交BC 于F ,若AB=a ,BC=b ,BE=c ,求BF 的长. 例6、已知在△ABC 中,AD 是∠BAC 的平分线.求证:CD BD AC AB = . 相似三角形添加辅助线的方法举例答案 例1: 已知:如图,△ABC 中,AB =AC ,BD ⊥AC 于D . 求证: BC 2 =2CD ·AC . 分析:欲证 BC 2=2CD ·AC ,只需证 BC AC CD BC = 2.但因为结论中有“2”,无法直接找到它们所在的相似三角形,因此需要结合图形特点及结论形式,通过添加辅助线,对其中某一线段进行倍、分变形,构造出单一线段后,再证明三角形相似.由“2”所放的位置不同,证法也不同. 证法一(构造2CD ):如图,在AC 截取DE =DC , ∵BD ⊥AC 于D , ∴BD 是线段CE 的垂直平分线, ∴BC=BE ,∴∠C=∠BEC , 又∵ AB =AC , ∴∠C=∠ABC . ∴ △BCE ∽△ACB . ∴ BC AC CE BC =, ∴BC AC CD BC =2 ∴BC 2 =2CD ·AC . 证法二(构造2AC ):如图,在CA 的延长线上截取AE =AC ,连结BE , ∵ AB =AC , ∴ AB =AC=AE . ∴∠EBC=90°, 又∵BD ⊥AC . ∴∠EBC=∠BDC=∠EDB=90°, B C B C E B C

〖数学专题〗北师大版九年级数学上专题(十一)含答案:相似三角形中的辅助线作法归类

思维特训(十一)相似三角形中的辅助线作法归类 在添加辅助线时,所添加的辅助线往往能构造出一组或多组相似三角形,或得到成比例的线段,或得出等角、等边,从而为证明三角形相似或进行有关的计算找到等量关系. 作辅助线的方法主要有以下几种: (1)作平行线构造“A”型或“X”型相似;(2)作平行线转换线段比;(3)作垂直证明相似. 图11-S-1 类型一作平行线构造“A”型或“X”型相似 1.如图11-S-2,已知平行四边形ABCD中,对角线AC,BD相交于点O,E为AB 延长线上一点,OE交BC于点F,若AB=a,BC=b,BE=c,求BF的长. 图11-S-2 2.如图11-S-3,在△ABC中,AD为BC边上的中线,CF为任一直线,CF交AD 于点E,交AB于点F. 求证:AE DE= 2AF BF.

图11-S -3 3.在一节数学课上,老师出示了这样一个问题让学生探究:如图11-S -4,在△ABC 中,D 是BA 延长线上一动点,点F 在BC 上,且CF BF =1 2 ,连接DF 交AC 于点E . (1)如图①,当E 恰为DF 的中点时,请求出AD AB 的值; (2)如图②,当DE EF =a (a >0)时,请求出AD AB 的值(用含a 的代数式表示). 思考片刻后,同学们纷纷表达自己的想法: 甲:过点F 作FG ∥AB 交AC 于点G ,构造相似三角形解决问题; 乙:过点F 作FG ∥AC 交AB 于点G ,构造相似三角形解决问题; 丙:过点D 作DG ∥BC 交CA 的延长线于点G ,构造相似三角形解决问题. 老师说:“这三位同学的想法都可以”. 请参考上面某一种想法,完成第(1)问的求解过程,并直接写出第(2)问中AD AB 的值. 图11-S -4

2017中考全等三角形专题(8种辅助线的作法)

全等三角形问题中常见得辅助线得作法【三角形辅助线做法】 图中有角平分线,可向两边作垂线。也可将图对折瞧,对称以后关系现。 角平分线平行线,等腰三角形来添。角平分线加垂线,三线合一试试瞧。 线段垂直平分线,常向两端把线连。要证线段倍与半,延长缩短可试验。 三角形中两中点,连接则成中位线。三角形中有中线,延长中线等中线。 1、等腰三角形“三线合一”法:遇到等腰三角形,可作底边上得高,利用“三线合一”得性质解题 2、倍长中线:倍长中线,使延长线段与原中线长相等,构造全等三角形 3、角平分线在三种添辅助线 4、垂直平分线联结线段两端 5、用“截长法”或“补短法”: 遇到有二条线段长之与等于第三条线段得长, 6、图形补全法:有一个角为60度或120度得把该角添线后构成等边三角形 7、角度数为30、60度得作垂线法:遇到三角形中得一个角为30度或60度,可以从角一边上一点向角得另一边作垂线,目得就是构成30-60-90得特殊直角三角形,然后计算边得长度与角得度数,这样可以得到在数值上相等得二条边或二个角。从而为证明全等三角形创造边、角之间得相等条件。 8、计算数值法:遇到等腰直角三角形,正方形时,或30-60-90得特殊直角三角形,或40-60-80得特殊直角三角形,常计算边得长度与角得度数,这样可以得到在数值上相等得二条边或二个角,从而为证明全等三角形创造边、角之间得相等条件。 常见辅助线得作法有以下几种:最主要得就是构造全等三角形,构造二条边之间得相等,二个角之间得相等。 1)遇到等腰三角形,可作底边上得高,利用“三线合一”得性质解题,思维模式就是全等变 换中得“对折”法构造全等三角形. 2)遇到三角形得中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用得思 维模式就是全等变换中得“旋转”法构造全等三角形. 3)遇到角平分线在三种添辅助线得方法,(1)可以自角平分线上得某一点向角得两边作垂

三角形常见的辅助线

全等三角形问题中常见的辅助线的作法 常见辅助线的作法有以下几种: 1. 遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折” 2. 遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转” 3. 遇到角平分线,可以自角平分线上的某一点向角的两边作垂线, 利用的思维模式是三角形全等变换中的“对折” ,所考知识点常常 是角平分线的性质定理或逆定理. 4. 过图形上某一点作特定的平分线,构造全等三角形,利用的思维模式是全等变换中的“平移”或“翻转折叠” 5. 截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,是之与特定线段相等,再利用 三角形全等的有关性质加以说明?这种作法,适合于证明线段的和、差、倍、分等类的题目 特殊方法:在求有关三角形的定值一类的问题时,常把某点到原三角形各顶点的线段连接起来,利用三角形面积的知识解答. 一、倍长中线(线段)造全等 应用:1、(09崇文二模)以ABC 的两边AB 、AC 为腰分别向外作等腰Rt^ABD 和等腰Rt^ACE , ? BAD = ? CAE = 90 (1)如图① 当 ABC 为直角三角形时,AM 与 DE 的位置关系是 线段AM 与DE 的数量关系是 (2)将图①中的等腰Rt'ABD 绕点A 沿逆时针方向旋转 二(0<二<90)后,如图②所示,(1 )问中得到的两个结论是否发生改 变?并说明理由. 连接DE ,M 、N 分别是 BC 、DE 的中点?探究: AM 与DE 的位置关系及数量关系. 例1、已知, 例2、如图, 例3、如图,

相似三角形之常用辅助线

相似三角形之常用辅助线 在与相似有关得几何证明、计算得过程中 ,常常需要通过相似三角形,研究两条线段之间得比例关系,或者转移线段或角。而有些时候,这样得相似三角形在问题中,并不就是十分明显、因此,我们需要通过添加辅助线,构造相似三角形,进而证明所需得结论。 专题一、添加平行线构造“A"“X”型 定理:平行于三角形一边得直线与其它两边(或两边延长线)相交,所构成得三角形与原三角形相似。 定理得基本图形: 例1、平行四边形ABCD中,E为AB中点,AF:FD=1:2,求AG:GC 变式练习: 已知在△ABC中,AD就是∠BAC得平分线.求证:、(本题有多种解法,多想想) 例2、如图,直线交△ABC得BC,AB两边于D,E,与CA延长线交于F,若==2,求BE:EA得比值、 变式练习:如图,直线交△ABC得BC,AB两边于D,E,与CA延长线交于F,若错误!= 错误!=2,求BE:E A得比值。 例3、BE=AD,求证:EF·BC=AC·DF 变式1、如图,△ABC中,AB

三角形辅助线的作法总结

三角形辅助线的作法总 结 集团档案编码:[YTTR-YTPT28-YTNTL98-UYTYNN08]

三角形---作辅助线 知识点一:利用转化倍角,构造等腰三角形 当一个三角形中出现一个角是另一个角的2倍时,我们就可以通过转化倍角寻找到等腰三角形. 如图①中,若∠ABC=2∠C,如果作BD平分∠ABC,则△DBC是等腰三角形; 如图②中,若∠ABC=2∠C,如果延长线CB到D,使BD=BA,连结AD,则△ADC是等腰三角形; 如图③中,若∠B=2∠ACB,如果以C为角的顶点,CA为角的一边,在形外作∠ACD=∠ACB,交BA的延长线于点D,则△DBC是等腰三角形. 1、如图,△ABC中,AB=AC,BD⊥AC交AC于D. 求证:∠DBC= 1 2 ∠BAC. 2、如图,△ABC中,∠ACB=2∠B,BC=2AC. 求证:∠A=90°. 知识点二:利用角平分线+平行线,构造等腰三角形 当一个三角形中出现角平分线和平行线时,我们就可以寻找到等腰三角形. 如图①中,若AD平分∠BAC,AD∥EC,则△ACE是等腰三角形; 如图②中,AD平分∠BAC,DE∥AC,则△ADE是等腰三角形; 如图③中,AD平分∠BAC,CE∥AB,则△ACE是等腰三角形; 如图④中,AD平分∠BAC,EF∥AD,则△AGE 3AB EF⊥ 线于点. 4AD F AC. 求证:EF∥AB. 知识点三:利用角平分线+垂线,构造等腰三角形 中, 若AD平分∠BAC,AD⊥DC,则△AEC是等腰三角形. 5、如图2,已知等腰Rt△ABC中,AB=AC,∠BAC=90°,BF BD交BF的延长线于D。求证: BF=2CD. 知识点四:截长补短法 6、如图,已知:正方形ABCD中,∠BAC的平分线交BC于E, 求证:AB+BE=AC. 知识点五:倍长中线法 中在一个三角形内。 7、如图(7)AD是△ABC的中线,BE交AC于E,交AD于F,且 求证:AC=BF D C B A B ① D B ② C B D B C B A B C B C D A ①② B C D A ③ B C D A

(完整版)相似三角形中几种常见的辅助线作法(有辅助线)

相似三角形中几种常见的辅助线作法 在添加辅助线时,所添加的辅助线往往能够构造出一组或多组相似三角形,或得到成比例的线段或出等角,等边,从而为证明三角形相似或进行相关的计算找到等量关系。主要的辅助线有以下几种: 一、添加平行线构造“A ”“X ”型 例1:如图,D 是△ABC 的BC 边上的点,BD :DC=2:1,E 是AD 的中点,求:BE :EF 的值. 解法一:过点D 作CA 的平行线交BF 于点P ,则 ∴PE=EF BP=2PF=4EF 所以BE=5EF ∴BE :EF=5:1. 解法二:过点D 作BF 的平行线交AC 于点Q , ∴BE :EF=5:1. 解法三:过点E 作BC 的平行线交AC 于点S , 解法四:过点E 作AC 的平行线交BC 于点T , ∵BD=2DC ∴ ∴BE :EF=5:1. 变式:如图,D 是△ABC 的BC 边上的点,BD :DC=2:1,E 是AD 的中点, 连结BE 并延 长交AC 于F, 求AF :CF 的值. 解法一:过点D 作CA 的平行线交BF 于点P , 解法二:过点D 作BF 的平行线交AC 于点Q , 解法三:过点E 作BC 的平行线交AC 于点S , 解法四:过点E 作AC 的平行线交BC 于点T , , 1==AE DE FE PE ,2==DC BD PF BP ,则2==EA DA EF DQ ,3==DC BC DQ BF , EF EF EF EF DQ EF BF BE 563=-=-=-=,则DC CT DT 2 1 ==;TC BT EF BE =, DC BT 2 5=

例2:如图,在△ABC的AB边和AC边上各取一点D和E,且使AD=AE, DE延长线与BC延长线相交于F ,求证: (证明:过点C作CG//FD交AB于G) 例3:如图,△ABC中,AB

全等三角形常用辅助线做法

五种辅助线助你证全等 姚全刚 在证明三角形全等时有时需添加辅助线,对学习几何证明不久的学生而言往往是难点.下面介绍证明全等时常见的五种辅助线,供同学们学习时参考. 一、截长补短 一般地,当所证结论为线段的和、差关系,且这两条线段不在同一直线上时,通常可以考虑用截长补短的办法:或在长线段上截取一部分使之与短线段相等;或将短线段延长使其与长线段相等. 例1.如图1,在△ABC中,∠ABC=60°,AD、CE分别平分∠BAC、∠ACB.求证:AC=AE+CD. 分析:要证AC=AE+CD,AE、CD不在同一直线上.故在AC上截取AF=AE,则只要证明CF=CD. 证明:在AC上截取AF=AE,连接OF. ∵AD、CE分别平分∠BAC、∠ACB,∠ABC=60° ∴∠1+∠2=60°,∴∠4=∠6=∠1+∠2=60°. 显然,△AEO≌△AFO,∴∠5=∠4=60°,∴∠7=180°-(∠4+∠5)=60° 在△DOC与△FOC中,∠6=∠7=60°,∠2=∠3,OC=OC ∴△DOC≌△FOC,CF=CD ∴AC=AF+CF=AE+CD. 截长法与补短法,具体作法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,使之与特定线段相等,再利用三角形全等的有关性质加以说明。这种作法,适合于证明线段的和、差、倍、分等类的题目。

例2:如图甲,AD∥BC,点E在线段AB上,∠ADE=∠CDE,∠DCE=∠ECB。求证:CD=AD+BC。 思路分析: 1)题意分析:本题考查全等三角形常见辅助线的知识:截长法或补短法。 2)解题思路:结论是CD=AD+BC,可考虑用“截长补短法”中的“截长”,即在CD上截取CF=CB,只要再证DF=DA即可,这就转化为证明两线段相等的问题,从而达到简化问题的目的。 解答过程: 证明:在CD上截取CF=BC,如图乙 ∴△FCE≌△BCE(SAS), ∴∠2=∠1。 又∵AD∥BC,

相似三角形之常用辅助线

相似三角形之常用辅助线 在与相似有关的几何证明、计算的过程中,常常需要通过相似三角形,研究两条线段之间的比例关系,或者转移线段或角。而有些时候,这样的相似三角形在问题中,并不是十分明显。因此,我们需要通过添加辅助线,构造相似三角形,进而证明所需的结论。 专题一、添加平行线构造“A ”“X ”型 定理:平行于三角形一边的直线和其它两边(或两边延长线)相交,所构成的三角形与原三角形相似. 定理的基本图形: 例1、平行四边形ABCD 中,E 为AB 中点,AF :FD =1:2,求AG :GC 变式练习: 已知在△ABC 中,AD 是∠BAC 的平分线.求证:. (本题有多种解法,多想想) 例2、如图,直线交△ABC 的BC,AB 两边于D,E,与CA 延长线交于F,若 DC BD =FA FC =2,求BE:EA 的比值. 变式练习:如图,直线交△ABC 的BC,AB 两边于D,E,与CA 延长线交于F,若BD DC = FE ED =2,求BE:EA 的比 值. 例3、BE =AD ,求证:EF ·BC =AC ·DF 变式1、如图,△ABC 中,AB

全等三角形辅助线经典做法习题 (1)

全等三角形证明方法中辅助线做法 一、截长补短 通过添加辅助线利用截长补短,从而达到改变线段之间的长短,达到构造全等三角形的条件 1.如图1,在△ABC中,∠ABC=60°,AD、CE分别平分∠BAC、∠ACB.求证:AC=AE+CD. 分析:要证AC=AE+CD,AE、CD不在同一直线上.故在AC上截取AF=AE,则只要证明CF=CD. 证明:在AC上截取AF=AE,连接OF. ∵AD、CE分别平分∠BAC、∠ACB,∠ABC=60° ∴∠1+∠2=60°,∴∠4=∠6=∠1+∠2=60°. 显然,△AEO≌△AFO,∴∠5=∠4=60°,∴∠7=180°-(∠4+∠5)=60° 在△DOC与△FOC中,∠6=∠7=60°,∠2=∠3,OC=OC ∴△DOC≌△FOC,CF=CD ∴AC=AF+CF=AE+CD. 2.如图,在△ABC中,AD平分∠BAC,∠C=2∠B,试判断AB,AC,CD三者之间的数量关系,并说明理由.

3.如图,在△ABC 中,∠A=60°,BD ,CE 分别平分∠ABC 和∠ACB,BD ,CE 交于点O,试判断BE,CD,BC 的数量关系,并加以证明. 4.如图,AD ∥BC,DC ⊥AD,AE 平分∠BAD,E 是DC 的中点.问:AD,BC,AB 之间有何关系?并说明理由. 5.(德州中考)问题背景: 如图1:在四边形ABCD 中,AB=AD ,∠BAD=120°,∠B=∠ADC=90°.E ,F 分别是BC ,CD 上的点.且∠EAF=60°.探究图中线段BE ,EF ,FD 之间的数量关系. (1)小王同学探究此问题的方法是,延长FD 到点G.使DG=BE.连接AG ,先证明△ABE ≌△ADG ,再证明△AEF ≌△AGF ,可得出结论,他的结论应是; (2)如图2,若在四边形ABCD 中,AB=AD ,∠B+∠D=180°.E ,F 分别是BC ,CD 上的点,且∠EAF=2 1 ∠BAD ,上述结论是否仍然成立,并说明理由.

三角形辅助线的作法总结

三角形---作辅助线 知识点一:利用转化倍角,构造等腰三角形 当一个三角形中出现一个角是另一个角的2倍时,我们就可以通过转化倍角寻找到等腰三角形. 如图①中,若∠ABC=2∠C,如果作BD平分∠ABC,则△DBC是等腰三角形; 如图②中,若∠ABC=2∠C,如果延长线CB到D,使BD=BA,连结AD,则△ADC是等腰三角形; 如图③中,若∠B=2∠ACB,如果以C为角的顶点,CA为角的一边,在形外作∠ACD=∠ACB,交BA的延长线于点D,则△DBC是等腰三角形. 1、如图,△ABC中,AB=AC,BD⊥AC交AC于D.求证:∠DBC= 1 2 ∠BAC. 2、如图,△ABC中,∠ACB=2∠B,BC=2AC.求证:∠A=90°. 知识点二:利用角平分线+平行线,构造等腰三角形 当一个三角形中出现角平分线和平行线时,我们就可以寻找到等腰三角形. 如图①中,若AD平分∠BAC,AD∥EC,则△ACE是等腰三角形; 如图②中,AD平分∠BAC,DE∥AC,则△ADE是等腰三角形; 如图③中,AD平分∠BAC,CE∥AB,则△ACE是等腰三角形; 如图④中,AD平分∠BAC,EF∥AD,则△AGE D C B A ① D ② C D C ④ F C D A B C B C D A ①② B C D A ③ B C D A

3、如图,△ABC 中,AB =AC ,在AC 上取点P ,过点P 作EF ⊥BC ,交BA 的延长线于点E ,垂足为点F .求证:.AE =AP . 4、如图,△ABC 中,AD 平分∠BAC ,E 、F 分别在BD 、AD 上,且DE =CD ,EF =AC . 求证:EF ∥AB . 知识点三:利用角平分线+垂线,构造等腰三角形 当一个三角形中出现角平分线和垂线时,我们就可以寻找到等腰三角形.如图1中, 若AD 平分∠BAC ,AD ⊥DC ,则△AEC 是等腰三角形. 5、如图2,已知等腰Rt △ABC 中,AB =AC ,∠BAC =90°,BF 平分∠ABC ,CD ⊥BD 交BF 的延长线于D 。求证: BF =2CD . 知识点四:截长补短法 6、如图,已知:正方形ABCD 中,∠BAC 的平分线交BC 于E , 求证:AB+BE=AC . F C D E B A F B A C P E E 图1 A B C D 图2 B F D C A D

三角形中位线中的常见辅助线

三角形中位线中的常见辅助线 知识梳理 知识点一中点 一、与中点有关的概念 三角形中线的定义:三角形顶点和对边中点的连线 等腰三角形底边的中线三线合一(底边的中线、顶角的角平分线、底边的高重合)三角形中位线定义:连结三角形两边中点的线段叫做三角形的中位线. 三角形中位线定理:三角形的中位线平行于第三边并且等于它的一半. 中位线判定定理:经过三角形一边中点且平行于另一边的直线必平分第三边.直角三角形斜边中线:直角三角形斜边中线等于斜边一半 斜边中线判定:若三角性一边上的中线等于该边的一半,则这个三角形是直角三角形 二、与中点有关的辅助线 方法一:倍长中线 解读:凡是出现中线或类似中线的线段,都可以考虑倍长中线,倍长中线的目的可以旋转等长度的线段,从而达到将条件进行转化的目的。 方法二:构造中位线 解读:凡是出现中点,或多个中点,都可以考虑取另一边中点,或延长三角形一边,从而达到构造三角形中位线的目的。

方法三:构造三线合一 解读:只要出现等腰三角形,或共顶点等线段,就需要考虑构造三线合一,从而找到突破口 其他位置的也要能看出 方法四:构造斜边中线 解读:只要出现直角三角形,或直角,则考虑连接斜边中线段,第一可以出现三条等线段,第二可以出现两个等腰三角形,从而转化线段关系。 其他位置的也要能看出

C E D B A 常见考点 构造三角形中位线 考点说明:①凡是出现中点,或多个中点,都可以考虑取四边形对角线中点、等腰三 角形底边中点、直角三角形斜边中点或其他线段中点; ②延长三角形一边,从而达到构造三角形中位线的目的。 “题中有中点,莫忘中位线”.与此很相近的几何思想是“题中有中线,莫忘加倍延”,这两个是常用几何思想,但注意倍长中线的主要目的是通过构造三角形全等将分散的条件集中起来.平移也有类似作用. 典型例题 【例1】 已知:AD 是ABC △的中线,AE 是ABD △的中线,且AB BD =,求证:2AC AE =. 举一反三 1. 如右下图,在ABC ?中,若2B C ∠=∠,AD BC ⊥,E 为BC 边的中点.求证:2AB DE =.

辅助线做法勾股定理

全等三角形》问题中常见的辅助线的作法(含答案) 【三角形辅助线做法】 图中有角平分线,可向两边作垂线。 也可将图对折看,对称以后关系现。 角平分线平行线,等腰三角形来添。 角平分线加垂线,三线合一试试看。 线段垂直平分线,常向两端把线连。 要证线段倍与半,延长缩短可试验。 三角形中两中点,连接则成中位线。 三角形中有中线,延长中线等中线。 【常见辅助线的作法有以下几种】 1、遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”。 2、遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”。 3、遇到角平分线,可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理。 4、过图形上某一点作特定的平分线,构造全等三角形,利用的思维模式是全等变换中的“平移”或“翻转折叠”。 5、截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,是之与特定线段相等,再利用三角形全等的有关性质加以说明。这种作法,适合于证明线段的和、差、倍、分等类的题目。 6、特殊方法:在求有关三角形的定值一类的问题时,常把某点到原三角形各顶点的线段连接起来,利用三角形面积的知识解答。 例3、如图,ABC ?中,AC DC BD ==,E 是DC 的中点,求证:AD 平分BAE ∠. 证 例2、如图,BD AC //,EA ,EB 分别平分CAB ∠,DBA ∠, CD 过点E ,求证:BD AC AB += 证明:在AB 上截取AC AF =,连接EF ∴ ∴ E C A B D F E A B C

常见三角形辅助线口诀

初二几何常见辅助线口诀 三角形 图中有角平分线,可向两边作垂线。也可将图对折看,对称以后关系现。角平分线平行线,等腰三角形来添。角平分线加垂线,三线合一试试看。线段垂直平分线,常向两端把线连。线段和差及倍半,延长缩短可试验。线段和差不等式,移到同一三角去。三角形中两中点,连接则成中位线。三角形中有中线,倍长中线得全等。四边形 平行四边形出现,对称中心等分点。梯形问题巧转换,变为三角或平四。平移腰,移对角,两腰延长作出高。如果出现腰中点,细心连上中位线。上述方法不奏效,过腰中点全等造。证相似,比线段,添线平行成习惯。等积式子比例换,寻找线段很关键。直接证明有困难,等量代换少麻烦。斜边上面作高线,比例中项一大片。 由角平分线想到的辅助线 一、截取构全等

如图, AB//CD, BE平分/ ABC CE平分/ BCD点E在AD上,求证:BC=AB+C。 分析:在此题中可在长线段BC上截取BF=AB再证明CF=CD从而达到证明的目的。这里面用到了角平分线来构造全等三角形。另外一个全等自已证明。此题的证明也可以延长BE与CD的延长线交于点来证明。自已试一试。 二、角分线上点向两边作垂线构全等 如图,已知AB>AD, / BAC K FAC,CD=B C求证:/ ADC# B=180 分析:可由C向/BAD的两边作垂线。近而证/ ADC与Z B之和为平角 三、三线合一构造等腰三角形 如图,AB=AC Z BAC=90, AD为Z ABC的平分线,CEL BE.求证:BD=2CE 分析:延长此垂线与另外一边相交,得到等腰三角形,随后全等。 四、角平分线+平行线 女口图,AB>AC, Z 1 = Z2,求证:AB-AC>BD-CD c

三角形辅助线的作法总结

三角形---作辅助线 知识点一:利用转化倍角,构造等腰三角形 当一个三角形中出现一个角就是另一个角的2倍时,我们就可以通过转化倍角寻找到等腰三角形、 如图①中,若∠ABC=2∠C,如果作BD平分∠ABC,则△DBC就是等腰三角形; 如图②中,若∠ABC=2∠C,如果延长线CB到D,使BD=BA,连结AD,则△ADC 就是等腰三角形; 如图③中,若∠B=2∠ACB,如果以C为角的顶点,CA为角的一边,在形外作∠ACD=∠ACB,交BA的延长线于点D,则△DBC就是等腰三角形、 1、如图,△ABC中,AB=AC,BD⊥AC交AC于D、求证:∠ DBC= 1 2 ∠BAC、 2、如图,△ABC中,∠ACB=2∠B ,BC=2AC、求证:∠A=90°、 知识点二:利用角平分线+平行线,构造等腰三角形当一个三角形中出现角平分线与平行线时,我们就可以寻找到等腰三角形、 如图①中,若AD平分∠BAC,AD∥EC,则△ACE就是等腰三角形; 如图②中,AD平分∠BAC,DE∥AC,则△ADE就是等腰三角形; 如图③中,AD平分∠BAC,CE∥AB,则△ACE就是等腰三角形; 如图④中,AD平分∠BAC,EF∥AD,则△AGE 3、如图P,BC, E,、 4、如图,且 求证:EF 知识点三:利用角平分线+垂线, 当一个三角形中出现角平分线与垂线时, 中, 若AD平分∠BAC,AD⊥DC,则△AEC就是等腰三角形、 5、如图2,已知等腰Rt△ABC中,AB=AC,∠BAC=90°,BF平分∠ BF的延长线于D。求证: BF=2CD、 知识点四:截长补短法 6、如图,已知:正方形ABCD中,∠BAC的平分线交BC于E, 求证:AB+BE=AC. 知识点五:倍长中线法 D C B A ① D ② C D C A B C B C D A ①② B C D A ③ B C D A

常见三角形辅助线口诀

初二几何常见辅助线口诀三角形 图中有角平分线,可向两边作垂线。 也可将图对折看,对称以后关系现。 角平分线平行线,等腰三角形来添。 角平分线加垂线,三线合一试试看。 线段垂直平分线,常向两端把线连。 线段和差及倍半,延长缩短可试验。 线段和差不等式,移到同一三角去。 三角形中两中点,连接则成中位线。 三角形中有中线,倍长中线得全等。 四边形 平行四边形出现,对称中心等分点。 梯形问题巧转换,变为三角或平四。 平移腰,移对角,两腰延长作出高。 如果出现腰中点,细心连上中位线。 上述方法不奏效,过腰中点全等造。 证相似,比线段,添线平行成习惯。 等积式子比例换,寻找线段很关键。 直接证明有困难,等量代换少麻烦。 斜边上面作高线,比例中项一大片。

由角平分线想到的辅助线 一、截取构全等 如图,AB证:BD=2CE。 分析:延长此垂线与另外一边相交,得到等腰三角形,随后全等。 四、角平分线+平行线 如图,AB>AC, ∠1=∠2,求证:AB-AC>BD-CD。 分析:AB上取E使AC=AE,通过全等和组成三角形边边边的关系可证。 由线段和差想到的辅助线 五、截长补短法 AC平分∠BAD,CE⊥AB,且∠B+∠D=180°,求证:AE=AD+BE。

分析:过C点作AD垂线,得到全等即可。 由中点想到的辅助线 一、中线把三角形面积等分 如图,ΔABC中,AD是中线,延长AD到E,使DE=AD,DF是ΔDCE的中线。已知ΔABC的面积为2,求:ΔCDF的面积。 分析:利用中线分等底和同高得面积关系。 二、中点联中点得中位线 如图,在四边形ABCD中,AB=CD,E、F分别是BC、AD的中点,BA、CD的延长线分别交EF的延长线G、H。求证:∠BGE=∠CHE。 分析:联BD取中点联接联接,通过中位线得平行传递角度。 三、倍长中线 如图,已知ΔABC中,AB=5,AC=3,连BC上的中线AD=2,求BC的长。

相似三角形中的辅助线及动点问题(经典题型)

第2讲相似三角形中的辅助线及动点 在解相似三角形问题时,常需要作辅助线来沟通已知条件和未知条件, 在添加辅助线时,所添加的辅助线往往能够构造出一组或多组相似三角形,或得到成比例的线段或得 出等角,等边,从而为证明三角形相似或进行相关的计算找到等量关系。主要的辅助线有以下几种: 、作平行线 例1.如图,.VABC 的AB 边和AC 边上各取一点 ” BF BD 求证: CF CE 例2.如图,△ ABC 中,AB

例4.如图从—ABCD 顶点C向AB和AD的延长线引垂线CE和CF,垂足分别为E、F,求证: 2 AB AE AD AF =AC2。 三、作延长线例5.如图,在梯形ABCD中,AD // BC,若/ BCD的平分线CH丄AB于点H , BH=3AH,且四边形AHCD的面积为21,求厶HBC的面积。 例6?如图,https://www.360docs.net/doc/0d13173286.html,BC中,CD为斜边AB上的高,E为CD的中点,AE的延长线交BC 于F, FG _ AB于G, 求证:FG2=CF *BF

四、作中线 例 7 如图,. :ABC 中,AB 丄AC , AE 丄 BC 于 E , D 在 AC 边上,若 BD=DC=EC=1,求 AC 。 2、如图,正方形 ABCD 勺边长为2, AE = EB MN= 1,线段MN 的两端在CB CD 上滑动,当CM 为 何值时,△ AED 与以M 、N 、C 为顶点的三角形相似? 动点题型 1、如图正方形ABCD 的边长为2, AE=EB ,线段MN 的两端点分别在 MN=1,当CM 为何值时厶AED 与以M 、N 、C 为顶点的三角形相似? CB 、CD 上滑动,且 u c D N C

相似三角形中的辅助线归纳总结

相似三角形中的辅助线 在解相似三角形问题时,常需要作辅助线来沟通已知条件和未知条件, 在添加辅助线时,所添加的辅助线往往能够构造出一组或多组相似三角形,或得到成比例的线段或得出等角,等边,从而为证明三角形相似或进行相关的计算找到等量关系。主要的辅助线有以下几种: 一、作平行线 例1. 如图,?ABC 的AB 边和AC 边上各取一点D 和E ,且使AD =AE ,DE 延长线与BC 延长线相交于F ,求证: BF CF BD CE = B D A C F E 证明:过点C 作CG//FD 交AB 于G F ∴ = AD AG AE AC 又 AD AE =,∴=AG AC ∴=DG CE GC DF //,∴= BD DG BF CF ∴= BD CE BF CF 小结:本题关键在于AD =AE 这个条件怎样使用。由这道题还可以增加一种证明线段相等的方法:相似、成比例。 例2. 如图,△ABC 中,AB

分析:证明等积式问题常常化为比例式,再通过相似三角形对应边成比例来证明。 欲证,需证 ,而这四条线段所在的两个三角形显然AB DF AC EF AB AC EF DF ?=?=不相似,因而要通过两组三角形相似,运用中间比代换得到,为构造相似三角形,需添加平行线。 方法一:过E 作EM//AB ,交BC 于点M ,则△EMC ∽△ABC (两角对应相等,两三角形相似)。 ∴ =?=?EM AB EC AC EM AC AB EC 即, ∴= AB AC EM EC 同理可得??EMF DBF ~ ∴ =EF DF EM BD , 又, BD EC EM EC EM BD =∴= ( 为中间比),EM BD ∴=AB AC EF DF , ∴?=?AB DF AC EF 方法二:如图,过D 作DN//EC 交BC 于N

《全等三角形》常见的辅助线作法----例题精讲

《全等三角形》问题中常见的辅助线的作法 【三角形辅助线做法】 图中有角平分线,可向两边作垂线。 也可将图对折看,对称以后关系现。 角平分线平行线,等腰三角形来添。 角平分线加垂线,三线合一试试看。 线段垂直平分线,常向两端把线连。 要证线段倍与半,延长缩短可试验。 三角形中两中点,连接则成中位线。 三角形中有中线,延长中线等中线。 【常见辅助线的作法有以下几种】 1、遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”。 2、遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等 变换中的“旋转”。 3、遇到角平分线,可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形 全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理。 4、过图形上某一点作特定的平分线,构造全等三角形,利用的思维模式是全等变换中的“平移”或“翻转折叠”。 5、截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长, 是之与特定线段相等,再利用三角形全等的有关性质加以说明。这种作法,适合于证明线段的和、 差、倍、分等类的题目。 6、特殊方法:在求有关三角形的定值一类的问题时,常把某点到原三角形各顶点的线段连接起来, 利用三角形面积的知识解答。 一、倍长中线(线段)造全等 (一)例题讲解 例1、(“希望杯”试题)已知,如图ABC ?中,5=AB ,3=AC ,求中线AD 的取值范围。 分析:本题的关键是如何把AB ,AC,AD 三条线段转化到同一个三角形当中。 解:延长AD到E ,使DA DE =,连接BE 又∵CD BD =,CDA BDE ∠=∠ ∴()SAS CDA BDE ???,3==AC BE ∵BE AB AE BE AB +- (三角形三边关系定理) 即822 AD ∴41 AD 经验总结:见中线,延长加倍。 例2、如图,ABC ?中,E 、F分别在A B、AC 上,DF DE ⊥,D是中点,试比较CF BE +与EF 的大小。 证明:延长FD 到点G,使DF DG =,连接BG 、EG ∵CD BD =,DG FD =,CDF BDG ∠=∠ ∴CDF BDG ??? E C A B D A

三角形常见辅助线练习题

三角形常见辅助线作法练习题 1如图:D 、E 为△ABC 内两点,求证:AB +AC >BD +DE +CE. 2如图:已知D 为△ABC 内的任一点,求证:∠BDC >∠BAC 。 3如图:已知AD 为△ABC 的中线,且∠1=∠2,∠3=∠4,求证:BE +CF >EF 4如图:AD 为 △ABC 的中线,求证:AB +AC >2AD A B C D E A B C D E F G A C D E F 123 4 A B C D

5已知△ABC ,AD 是BC 边上的中线,分别以AB 边、AC 边为直角边各向形外作等腰直角三角形, 求证EF =2AD 。 6如图:在△ABC 中,AB >AC ,∠1=∠2,P 为AD 上任一点。求证:AB -AC >PB -PC 。 7如图:在Rt △ABC 中,AB =AC ,∠BAC =90°,∠1=∠2,CE ⊥BD 的延长于E 。求证:BD =2CE 8已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD 9已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2 A B C D E F A B C D P 1 2D A E 1 2 A D B C

B A C D F 2 1 E 10已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC 11已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠C 12已知:AC 平分∠BAD ,CE ⊥AB ,∠B+∠D=180°,求证:AE=AD+BE 13. 如图,四边形ABCD 中,AB ∥DC ,BE 、CE 分别平分∠ABC 、∠BCD ,且点E 在AD 上。求证:BC=AB+DC 。 14.如图,已知∠A=∠D,AB=DE,AF=CD,BC=EF.求证:BC ∥EF C D B A

中考相似三角形之常用辅助线

中考相似三角形之常 用辅助线 Revised on November 25, 2020

相似三角形之常用辅助线 在与相似有关的几何证明、计算的过程中,常常需要通过相似三角形,研究两条线段之间的比例关系,或者转移线段或角。而有些时候,这样的相似三角形在问题中,并不是十分明显。因此,我们需要通过添加辅助线,构造相似三角形,进而证明所需的结论。 专题一、添加平行线构造“A ”“X ”型 定理:平行于三角形一边的直线和其它两边(或两边延长线)相交,所构成的三角形与原三角形相似. 定理的基本图形: 例1、平行四边形ABCD 中,E 为AB 中点,AF :FD =1:2,求AG :GC 变式练习: 已知在△ABC 中,AD 是∠BAC 的平分线.求证:. (本题有多种解法,多想想) 例2、如图,直线交△ABC 的BC,AB 两边于D,E,与CA 延长线交于F,若 DC BD =FA FC =2,求BE:EA 的比值. 变式练习:如图,直线交△ABC 的BC,AB 两边于D,E,与CA 延长线交于F,若BD DC = FE ED =2,求BE:EA 的 比值. 例3、BE =AD ,求证:EF ·BC =AC ·DF 变式1、如图,△ABC 中,AB

相关文档
最新文档