断裂力学分析

断裂力学分析
断裂力学分析

在断裂模型中最重要的区域,是围绕裂纹边缘的部位。裂纹的边缘,在2D模型中称为裂纹尖端,在3D模型中称为裂纹前缘。如图10-109所示。

图10-109

在线弹性问题中,在裂纹尖端附近(或裂纹前缘)某点的位移随r而变化,

r是裂纹尖端到该点的距离,裂纹尖端处的应力与应变是奇异的,随1/r变化。

为选取应变奇异点,相应的裂纹面需与它一致,围绕裂纹顶点的有限元单元应该是二次奇异单元,其中节点放到1/4边处。图10-110表示2D和3D模型的奇异单元。

图10-110

对2D断裂模型推荐采用PLANE2单元,其为六节点三角形单元。围绕裂纹尖端的第一行单元,必须具有奇异性,如图10-110(a)所示。PREP7中KSCON命令(MainMenu>Preprocessor> Meshing Shape&Size> ConcentratKPs Create)用于指定关键点周围的单元大小,它特别适用于断裂模型。本命令自动围绕指定的关键点产生奇异单元。命令的其他选项可以控制第一行单元的半径,以及控制周围的单元数目等,图10-111显示用KSCON命令产生的断裂模型。

图10-111

建立2D模型的其他建议:

●尽可能利用对称条件。在许多情况下根据对称或反对称边界条件,只需要模拟裂纹区的一半,如图10-112所示。

图10-112

●为获得理想的计算结果,围绕裂纹尖端的第一行单元,其半径应该是八分之一裂纹长或更小。沿裂纹周向每一单元最好有30°~40°。

●裂纹尖端的单元不能有扭曲,最好是等腰三角形。

3D断裂模型

3D模型推荐使用的单元类型为二十节点块体单元SOLID95,如图10 110(b)所示。围绕裂纹前缘的第一行单元应该是奇异单元。这种单元是楔形的,单元的KLPO面退化成KO线。产生3D断裂模型要比2D模型复杂,KSCON命令不能用于3D模型,必须保证裂纹前缘沿着单元的KO边。

建立3D断裂模型的建议如下:

●推荐的单元尺寸与2D模型一样。此外在所有的方向上,单元的相邻边之比不能超过4∶1。

●在弯曲裂纹前缘上,单元的大小取决于局部曲率的数值。例如,沿圆环状弯曲裂纹前缘,在150~3000的角度内至少有一个单元。

●所有单元的边(包括在裂纹前缘上的)都应该是直线。

10.4.2计算断裂参数

在静态分析完成后,可以通过通用后处理器POST1来计算断裂参数,如前面提到的应力强度因子、J积分及能量释放率等。

10 4 2 1应力强度因子

用POST1中的KCALC命令(MainMenu>GeneralPostproc>NodalCalcs>StressIntFactr)计算复合型断裂模式中的应力强度因子(KⅠ,KⅡ,KⅢ)。该命令仅适用于在裂纹区域附近具有均匀的各向同性材料的线弹性问题。使用KCALC命令的步骤如下:

(1)定义局部的裂纹尖端或裂纹前缘的坐标系,以X轴平行于裂纹面(在3D模型中垂直于裂纹前缘),Y轴垂直于裂纹面,如图10-113所示。注意:当使用KCALC命令时,坐标系必须是激活的模型坐标系[CSYS]

和结果坐标系[RSYS]。

命令:LOCAL(或CLOCAL,CS,CSKP等)

GUI:UtilityMenu>WorkPlane>LocalCoordinateSystems>CreateLocalCS>AtSpecifiedLoc

(2)定义沿裂纹面的路径,应以裂纹尖端作为路径的第一点。对于半个裂纹模型而言,沿裂纹面需有两个附加点,这两个点都沿裂纹面;对于整体裂纹模型,则应包括两个裂纹面,共需四个附加点,两个点沿一个裂纹面,其他两个点沿另一个裂纹面。图10-114给出了2D模型的情况。

命令:PATH,PPATH

GUI:MainMenu>GeneralPostproc>PathOperations>DefinePath

(3)计算KⅠ,KⅡ,KⅢ,KCALC命令中的KPLAN域用于指定模型是平面应变或平面应力。除了薄板的分析,在裂纹尖端附近或其渐近位置,其应力一般是考虑为平面应变。KCSYM域用来指定半裂纹模型是否具有对称边界条件、反对称边界条件或是整体裂纹模型。

命令:KCALC

GUI:MainMenu>GeneralPostproc>NodalCalcs>StressIntFactr

10 4 2 2J积分

J积分的最简单形式,可以定义为与路径无关的曲线积分,它能度量裂纹尖端附近的奇异应力和应变的强度。下面的公式是2D情况下的定积分表达式。它假定裂缝位于总体直角坐标X Y平面,而X轴平行于裂缝。

●计算路径移动的距离DX 。一般情况下取为路径总长度的1%。可以通过下面的命令得到路径的总长度。

*GET ,Name ,PATH ,,LAST ,S

●沿X 轴的负方向移动 DX/2距离 [PCALC ,ADD ,XG ,XG ,,,,东西、2],将UX 和UY 映射到路径上[PDEF],取名为UX1和UY1。

●沿X 轴的正方向移动DX/2距离(即从原点处移动 DX/2的距离),将 UX 和UY 映射到路径上,取名UX2和UY2。

●把路径移回原点(距离-DX/2),然后采用PCALC 计算(UX2-UX1)/DX 和(UY2-UY1)/DX ,它就分别代表x /u x δδ和y /u y δ。

(12)采用第(10)步和第(11)步计算得到的数据,计算J积分的第二项,并对路径的距离S[PCALC]积分。

(13)采用(5)~(7)和(12)步所获得的数值,按前面的公式计算J积分值。可把上述步骤写入一个宏,以简化J积分计算。

断裂力学习题

断裂力学习题 一、问答题 1、什么是裂纹? 2、试述线弹性断裂力学的平面问题的解题思路。 3、断裂力学的任务是什么? 4、试述可用于处理线弹性条件下裂纹体的断裂力学问题两种方法: 5、试述I型裂纹双向拉伸问题中的边界条件,如何根据该边界条件确定一复变函数,并由此构成应力函数,最后写出问题的解。 6、什么是应力场强度因子K1?什么是材料的断裂韧度K1C?对比单向拉伸条件下的应力σ及断裂强度极限σb,,说明K1与K1C的区别与联系? 7、在什么条件下应力强度因子K的计算可以用叠加原理 8、试说明为什么裂纹顶端的塑性区尺寸平面应变状态比平面应力状态小? 9、试说明应力松驰对裂纹顶端塑性区尺寸有何影响。 10、K准则可以解决哪些问题? 11、何谓应力强度因子断裂准则?线弹性断裂力学的断裂准则与材料力学的强度条件有何不同? 12、确定K的常用方法有哪些? 13、什么叫裂纹扩展能量释放率?什么叫裂纹扩展阻力? 14、从裂纹扩展过程中的能量变化关系说明裂纹处于不稳定平衡的条件是什么? 15、什么是格里菲斯裂纹?试述格氏理论。 16、奥罗万是如何对格里菲斯理论进行修正的? 17、裂纹对材料强度有何影响? 18、裂纹按其力学特征可分为哪几类?试分别述其受力特征 19、什么叫塑性功率? 20什么是G准则? 21、线弹性断裂力学的适用范围。 22、“小范围屈服”指的是什么情况?线弹性断裂力学的理论公式能否应用?如何应用? 23、什么是Airry应力函数?什么是韦斯特加德(Westergaard)应力函数?写出Westergaard应力函数的形式,并证明其满足双调和方程。

24、裂纹按其几何特征可分为哪几类? 25、判断下图所示几种力情况下,裂纹扩展的类型 26、D-B 模型的适用条件是什么? 27、什么叫裂纹的亚临界扩展?什么叫门槛值? 28、什么叫腐蚀?什么叫应力腐蚀?什么叫腐蚀临界应力强度因子K ⅠSCC ? 29、什么叫应力疲劳?什么叫应变腐蚀?两者的裂纹扩展速率表达式是否相同?为什么? 30、什么叫腐蚀疲劳? 31、试述金属材料疲劳破坏的特点 32、现有的防脆断设计方法可分为哪几种? 33、什么是疲劳裂纹门槛值,哪些因素影响其值的大小?它有什么实用价值? 34、应力腐蚀裂纹扩展的特征? 第二类椭圆积分Φ0的值 受扭薄壁圆筒

工程断裂力学

工程断裂力学76 (2009) 709–714 内容列表可以在ScienceDirect期刊获得 工程断裂力学 杂志主页: https://www.360docs.net/doc/163324276.html,/locate/engfracmech AA7075-T651在交变载荷下裂纹形核的显微结构形貌 H. Weiland a,*, J. Nardiello b, S. Zaefferer c, S. Cheong a, J. Papazian b, Dierk Raabe c a 美国铝业有限公司,100技术驱动,美国铝业中心,宾夕法尼亚15069,美国 b 诺斯罗普2格鲁曼公司AEW/EW系统,925 S,.牡蛎湾路,贝思佩奇,纽约11714,美国 c普朗克铁研究所,普朗克Stra?e 1,,杜塞尔多夫D 40237,德国 文章信息摘要 文章历史: 一系列由7075-T651铝合金制作的疲劳试验样品被打断成各种寿命的部分和2007年1月9日收到一定数量脱胶,破裂的粒子和在金属基体中的破裂决定了定量是加载周期的函数2008年11月24日收到修订后的形式根据发现,只有破裂的第二相粒子,在一个基体裂纹中形核。晶体学关于一个独2008年11月26日录入立的裂纹和它的三维形状是由在扫描显微镜下一系列的切片通过应用聚焦离子束2008年12月10日网上可获得粉末与取向成像显微技术结合决定。这些极限数据显示裂纹萌生方向,受金属基体 中扩展的裂纹的晶体取向影响。。 关键字: 裂纹萌生 AA7075 3D微观结构 疲劳 @2008爱思唯尔有限公司保留所有权利。 1.介绍 优化的铝合金对航天航空应用,需要定量的理解不同控制形核的显微结构特性和裂纹在金属基体中的扩展。此外,在整体部分,裂纹在连接处的停滞不是给定的,显微结构的作用变得越来越重要。需要定量的理解,在复杂微观结构下的损伤演化。 当前对于航空航天应用铝合金的发展,基于一个良好的理解,关于微观结构下破坏的相关性质影响,例如断裂韧性和疲劳[1-5]。然而,铝合金上个世纪上半年的发展,例如AA7075,主要使用Edisonian方法。尽管存在一些研究,关于老化条件对性能的影响,详细分析显微结构属性下控制裂纹形核和单调生长区间,或者在那时候开发的铝合金没有采用交变载荷。然而,在早期理论上可知,含铁第二相在5-50微米直径范围,一般被称为夹杂相,是裂纹的起始点位置[1]。因此,此后的铝合金发展包括减少铁和硅元素提高损伤的相关性质。另一方面,如果粒子密度减少,正如当前阶段铝合金,其他显微结构下的特征,例如晶界和晶粒取向,将有助于裂纹的形核和扩展。读者可以参考文献[1-5],详细的讨论商业铝合金微观结构的损坏的影响。它必须指出,外推法得到的知识在Al-Cu系统(2xxx系列合金)不能容易的推测Al–Zn(7xxx系列合金),因为相和强化机制不同。 在目前的研究中,一部分数量脱粘和破裂的粒子,决定了一定数量是疲劳循环的函数,来自中断的疲劳试验。此外,破裂粒子在开裂基体中形核的尺寸和相关的裂纹长度是确定的。晶体学中关于裂纹和三维形状由来自一系列的切片通过聚焦离子束制粉和取向成像显微技术的结合决定。这些数据显示一开始裂纹的生长方向,同时由粒子周围的局部应力场和基体中正在生长的裂纹的晶向决定。 如今工作的目的,确定一定数量第二相粒子在交变载荷控制裂纹形核的作用,目的是确定以微观结构为基础,预测以这些合金制成的机身零件部分寿命。后者将另行公布。

ansys断裂力学技巧

Ansys断裂力学 裂纹和瑕疵在很多结构和零部件中会出现,有时会导致严重的后果。断裂力学就是研究裂纹扩散问题的学科。 12.1 断裂力学的理解 断裂力学就是解决结构在外载荷作用下,裂纹和瑕疵如何扩散的问题。它包含裂纹扩散相应的解析预报和实验结果验证。解析预报是通过断裂参数的计算得出的,如裂纹区域的应力强度因子,它可以用来评估裂纹的生长率。最具典型的是,裂纹的长度随着一些循环载荷的每一次作用而增长,如飞机上机舱的增压-减压。另外,环境的情况,如温度或光线的照射等,都会影响某些材料的断裂性能。 在研究中,断裂问题需重点研究的典型参数如下: ●应力强度因子(K I, K II和K III),是断裂的三个基本形式。 ●J-积分,是一种不受线路影响的线积分,用来测量裂纹端点的奇异应力和应变。 ●能量释放率(G),它代表裂纹开始和终止处的能量的大小。 12.2 求解断裂力学问题 求解断裂力学问题包括执行线弹性或弹塑性静态分析,以及使用专用的后处理命令或宏来计算需要的断裂参数。此处分成两个部分来介绍: ●裂纹区域的建模 ●计算断裂参数 12.2.1裂纹区域的建模 断裂模型中最重要的部分就是裂纹边界的部分。在ansys中,在二维模型和三位模型中,分别将裂纹的边界看成是裂纹端点和裂纹前端。如图12.1所示。 r是距离裂纹端点的长度。裂 裂纹面应该是重合 纹端点处的应力和应变是奇异的, 的,裂纹端点(或裂纹前端)附近的单元应该是二次的,即角点之间有中间节点。这种单元被称为奇异单元。

12.2.1.1 二维断裂模型 二维断裂模型的推荐单元类型是PLANE2,6节点的三角实体单元。裂纹端点附近的单元的第一行是奇异的,如图12.2(a)所示。前处理模块PREP7的命令(Main Menu> Preprocessor> Meshing> Size Cntrls> Concentrat KPs> Create)可以定义某关键点附近的单元划分的大小,在断裂模型中特别有用。它在指定关键点附近可以自动生成奇异单元。此命令的其他域可以控制单元第一行的半径,在圆周方向的单元的数量等。图12.3为命令KSCON 生成的断裂模型。

断裂力学读书报告

断裂力学读书报告 1、读论文有感 我所读的论文是《灰色模型在不确定性疲劳寿命预测中的研究》。之所以选择这样一篇论文来读,主要有两个方面在吸引着我,一个是灰色模型,另一个则是不确定性疲劳寿命。 对于不确定性系统的研究主要有三张方法,即概率统计、模糊数学和灰色模型。首先,需要来讲一下文章中主要提到的灰色模型。 灰色模型是由华中科技大学控制科学与工程系教授,博士生导师邓聚龙于1982年提出的。控制论中,信息多少常以颜色深浅来表示。信息充足、确定(已知)的为白色,信息缺乏、不确定(未知)的为黑色,部分确定与部分不确定的为灰色。那些既有已知参数又有未知参数的系统,如:人体就是既有白色参数(已知的外型参数)又有黑色参数(未知的人体穴位功能)的灰色系统。白色系统是全开放性的、黑色系统是全封闭性的。灰色系统则介于两者之间,是半开放半封闭性的。如果一个系统具有层次、结构关系的模糊性,动态变化的随机性,指标数据的不完备或不确定性,则称这些特性为灰色性。具有灰色性的系统称为灰色系统。 从灰色系统中抽象出来的模型。灰色系统是既含有已知信息,又含有未知信息或非确知信息的系统,这样的系统普遍存在。研究灰色系统的重要内容之一是如何从一个不甚明确的、整体信息不足的系统中抽象并建立起一个模型,该模型能使灰色系统的因素由不明确到明确,由知之甚少发展到知之较多提供研究基础。灰色系统理论是控制论的观点和方法延伸到社会、经济领域的产物,也是自动控制科学与运筹学数学方法相结合的结果。 其次就是不确定性。不确定性指的是测量物理量的不确定性,由于在一定条件下,一些力学量只能处在它的本征态上,所表现出来的值是分立的,因此在不同的时间测量,就有可能得到不同的值,就会出现不确定值,也就是说,当你测量它时,可能得到这个值,可能得到那个值,得到的值是不确定的。只有在这个力学量的本征态上测量它,才能得到确切的值。而疲劳寿命问题就是一个发展变化的受众多因素影响的复杂过程。

断裂力学期末考试试题含答案

一、 简答题(80分) 1. 断裂力学中,按裂纹受力情况,裂纹可以分为几种类型?请画出这些类型裂纹的受力示意图。(15分) 2 请分别针对完全脆性材料和有一定塑性的材料,简述裂纹扩展的能量平衡理论?(15分) 3. 请简述应力强度因子的含义,并简述线弹性断裂力学中裂纹尖端应力场的特点?(15) 4. 简述脆性断裂的K 准则及其含义?(15) 5. 请简述疲劳破坏过程的四个阶段?(10) 6. 求出平面应变状态下裂纹尖端塑性区边界曲线方程,并解释为什么裂纹尖端塑性区尺寸在平面应变状态比平面应力状态小?(5分) 7. 对于两种材料,材料1的屈服极限s σ和强度极限b σ都比较高,材料2的s σ和b σ相对较低,那么材料1的断裂韧度是否一定比材料2的高?试简要说明断裂力学与材料力学设计思想的差别? (5分) 二、 推导题(10分) 请叙述最大应力准则的基本思想,并推导出I-II 型混合型裂纹问题中开裂角的表达式? 三、 证明题(10分) 定义J 积分如下, (/)J wdy T u xds Γ =-????,围绕裂纹尖端的回路Γ,始于裂纹下表面,终于裂纹上表面,按逆时针方向转动,其中w 是板的应变能密度,为作用在路程边界上的力,是路程边界上的位移矢量,ds 是路程曲线的弧元素。证明J 积分值与选择的积分路程无关,并说明J 积分的特点。 四、 简答题(80分) 1. 断裂力学中,按裂纹受力情况,裂纹可以分为几种类型?请画出这些类型裂纹的受力示意图。(15分) 答: 按裂纹受力情况把裂纹(或断裂)模式分成三类:张开型(I 型)、滑开型(II 型)和撕开型(III 型),如图所示

弹塑性断裂力学结课报告.

弹塑性断裂力学 在本文总共分四部分,第一部分断裂力学习题,第二部分为断裂力学在岩石方面的研究及应用,第三部分为断裂力学的学习总结,第四部分为个人总结及建议。 一、断裂力学习题 1、某一合金构件,在275℃回火时,01780MPa σ=,52k K MPa m =,600℃回火时,01500MPa σ=,100Ic K MPa m =,应力强度因子的表达式为 1.1I K a σπ=,裂纹长度a=2mm ,工作应力为00.5σσ=。试按断裂力学的观点评 价两种情况下构件的安全性。(《断裂力学》 徐振兴 湖南大学出版社 P7) 解:由断裂失稳判据K<错误!未找到引用源。c ,临界条件K=错误!未 找到引用源。c 且a=2mm ,工作应力0=0.5σσ错误!未找到引用源。, 1.1I K a σπ=得 在275℃回火时,152Ic K MPa m =,得 111.117800.50.00277.6I Ic K MPa m K π=????=> 在600℃回火时,2100Ic K MPa m =,得 221.115000.50.00265.4I Ic K MPa m K π=????=< 由断裂准则可知,在275℃时K >错误!未找到引用源。c ,即裂纹会发 生失稳破坏;在600℃回火时K<错误!未找到引用源。K c ,即裂纹不会 发生失稳破坏。 2、有一长50cm 、宽25cm 的钢板,中央有长度2a =6cm 的穿透裂纹。已知材料的K Ic =95MPa m ,其屈服强度为ys δ=950MPa 。试求裂纹起裂扩展时的应力。(《工程断裂力学》 郦正能 北京航空航天大学出版社 P51) 解:(1)不考虑塑性区修正,但考虑有限宽度修正

有限元与断裂力学

有限元与断裂力学 2013024122 王增贤 1.1研究背景及意义 断裂力学是最近半个世纪才发展起来的一门新兴科学,它是对经典连续介质 力学的一个重要贡献"断裂力学主要研究带裂纹固体的强度和裂纹传播的规律, 它的主要任务是研究裂纹尖端应力应变情况,掌握裂纹在荷载作用下的扩展规律, 了解带裂纹体的承载能力,从而提出抗裂纹设计方法,以保证构件的安全工作=.l" 断裂力学产生于人们对各种工程断裂事故的思考"为了避免断裂事故,人们 与之进行了长期的!艰苦的和卓有成效的斗争"起初凭经验,后来发展成为理论" 在断裂力学出现以前,传统的控制构件不发生断裂而能够安全工作的理论,称为 强度条件或安全设计,其基本思想是保证构件的工作应力不超过材料的许用应力, 即 安全设计对确保构件安全工作起了重大作用,至今仍然是必不可少的"但人 们在长期的生产实践中,逐步认识到在某种情况下,/安全设计0设计出的构件并 不安全,断裂事故仍不断发生,特别是对于高强度材料构件,焊接结构,处在低 温或腐蚀环境中的结构等,断裂事故就更加频繁"例如,1938一1940年比利时阿 尔伯运河上几座大桥的断裂;1943一1947年美国5000余艘焊接船竟然连续发生 了一千多起断裂事故,其中238艘完全毁坏;1949年东俄亥俄煤气公司的圆柱形 液态天然气罐爆炸使周围街市变为废墟"这些接连不断的工程断裂事故引起了人 们高度的警觉,这些事故发生在工作应力低于材料的屈服极限的条件下,用传统 的安全设计观点是无法解释的"从大量断裂事故分析中发现,断裂皆起源于构件 有缺陷"传统的设计思想的一个严重问题是把材料视为无缺陷的均匀连续体,而 实际上构件总是存在着形式不同的缺陷,因而实际材料的强度大大低于理论模型 的强度"断裂力学正好弥补了传统设计思想的不足" 根据国际坝工委员会(ICOLD)1988年所作关于大坝工作状态的调查报告, 在失事的243座混凝土坝中,有30座是由裂纹问题而引起的"我国曾对98座大 中型水电工程进行耐久性调查,结果发现70%大坝存在不同程度的裂纹"混凝土 坝存在各种类型的裂纹,裂纹的存在和扩展,使大坝的承载力受到一定程度的削弱,同时还会引起坝体渗漏!加速混凝土碳化!降低混凝土抵抗各种侵蚀性介质 的耐腐蚀性能力等,甚至危害大坝的正常运行或缩短大坝使用寿命,因此裂纹问 题是影响工程结构质量和耐久性的重要因素之一"结构中裂纹的存在并不可怕, 可怕的是裂纹的发展问题,因此研究裂纹的稳定性!预测裂纹的发展是评估结构 的安全性!可靠性和耐久性必不可少的重要内容和关键技术" 1.2断裂力学的研究现状 断裂力学的基本概念最早是英国物理学家Griffith于1920年在对玻璃的断裂 研究中提出来的"Griffith用材料内部有缺陷(裂纹)的观点,解释了材料实际强度 仅为理论强度的千分之一的现象,同时认为,裂纹体受载时,如果裂纹扩展所需 的表面能小于弹性能的释放值,则裂纹就扩展并将最后导致断裂"这一理论在玻

断裂力学答案

( ( = K I + K I(2) 1.简述断裂力学的发展历程(含3-5 个关键人物和主要贡献)。 答:1)断裂力学的思想是由Griffith 在1920 年提出的。他首先提出将强度与裂纹长度定量 地联系在一起。他对玻璃平板进行了大量的实验研究工作,提出了能量理论思想。(2)断裂 力学作为一门科学,是从1948 年开始的。这一年Irwin 发表了他的第一篇经典文章“Fracture Dynamic(断裂动力学)”,研究了金属的断裂问题。这篇文章标志着断裂力学的诞生。(3) 关于脆性断裂理论的重大突破仍归功于Irwin。他于1957 年提出了应力强度因子的概念,在 此基础上形成了断裂韧性的概念,并建立起测量材料断裂韧性的实验技术。这样,作为断裂 力学的最初分支——线弹性断裂力学就开始建立起来了。(4)1963 年,Wells 提出了裂纹张 开位移(COD)的概念,并用于大范围屈服的情况。研究表明,在小范围屈服情况下COD 法与LEFM 是等效的。(5)1968 年,Rice 等人根据与路径无关的回路积分,提出了J 积分 的概念。J 积分是一个定义明确、理论严密的应力应变参量,它的实验测定也比较简单可靠。 J 积分的提出,标志着弹塑性断裂力学基本框架形成。 2.断裂力学的定义,研究对象和主要任务。 答:1)断裂力学的定义:断裂力学是一门工程学科,它定量地研究承载结构由于所含有的 一条主裂纹发生扩展而产生失效的条件。 (2)研究对象:断裂力学的研究对象是带有裂纹的承载结构。 (3)主要任务:研究裂纹尖端附近应力应变分布,掌握裂纹在载荷作用下的扩展规律;了 解带裂纹构件的承载能力,进而提出抗断设计的方法,保证构件安全工作。 3.什么是平面应力和平面应变状态,二者有什么特点?请举例说明之。 答:(1)平面应力:薄板问题,只有xoy 平面内的三个应力分量σ x、σ y、τ xy; ε z ≠ 0, 属三向应变状态。 (2)平面应变:长坝问题,与oz 轴垂直的各横截面相同,载荷垂直于z 轴且沿z 轴方向无 变化; ε z = 0, σ z ≠ 0,属三向应力状态;材料不易发生塑性变形,更具危险。 4.什么是应力强度因子的叠加原理,并证明之。掌握工程应用的方法。 答:(1)应力强度因子的叠加原理:复杂载荷下的应力强度因子等于各单个载荷的应力强 度因子之和。 (1) 在外载荷T2作用下,裂纹前端应力场为 σ2,则相应的应力强度因子为K I(2) = σ 2 π a 如果外载荷T1和T2联合作用,则裂纹前端应力场为 σ1+ σ2,则相应的应力强度因子为 K I = (σ 1 + σ 2 ) π a = σ 1 π a + σ 2 π a (1) 6.为什么裂纹尖端会发生应力松弛?如何对应力强度因子进行修正? 答:裂纹尖端附近存在着小范围的塑性区(设塑性区是以裂纹尖端为圆心,半径为r0 的圆 π a 形区域),材料屈服后,多出来的应力将要松驰(即传递给r>r0 的区域),使r0 前方局部地 区的应力升高,又导致这些地方发生屈服。即屈服导致应力松弛。 Irwin 提出了有效裂纹尺寸的概念a eff = a + r y对应力强度因子进行修正,在小范围条件下,

断裂力学论文

中国矿业大学 断裂力学课程报告课程总结及创新应用 XXX 2014/5/7 班级:工程力学XX班 学号:0211XXXX

断裂力学结课论文 一、学科简介 1、学科综述 结构的破坏控制一直是工程设计的关键所在。工程构件中难免有裂纹,从而会产生应力集中、结构失效等问题。裂纹既可能是结构零件使用前就存在的,也可能是结构在使用过程中产生的。但裂纹的存在并不意味着构件的报废,而是要求我们能准确地预测含裂纹构件的使用寿命或剩余强度。针对脆性材料的研究已有完善的弹性理论方法,并获得了广发的应用。但对于工程中许多由韧性较好的中、低强度金属材料制成的构件,往往在裂纹处先经历大量的塑性变形,然后才发生断裂破坏或失稳等。这说明,韧性好的金属材料有能力在一定程度上减弱裂纹的危险,并可以增大结构零件的承载能力或延长器使用寿命,这也是韧性材料的优点所在。但与此同时,这给预测强度的力学工作者带来了更复杂的问题,即不可逆的非塑性变形,这也是开展工程构架弹塑性变形的原因之一。 因而,裂纹的弹塑性变形研究具有广泛的工程背景和重要的理论意义。作为研究裂纹规律的一门学科,即断裂力学,它是50年代开始蓬勃发展起来的固体力学新分支,是为解决机械结构断裂问题而发展起来的力学分支,被广泛地应用于航海、航空、兵器、机械、化工和地质等诸多领域,它将力学、物理学、材料学以及数学、工程科学紧密结合,是一门涉及多学科专业的力学专业课程。 断裂力学有微观断裂力学与宏观断裂力学之分。一方面,需要深入到微观领域弄清微观的断裂机理,才能深入了解宏观断裂的现象。另一方面,宏观断裂力学仍然没有发展完善,尤其是在工程实际中的应用还远未成熟,即使平面弹塑性断裂力学也依然有许多亟待解决的问题。 2、断裂力学研究的主要问题 1、多少裂纹和缺陷是允许存在的? 2、用什么判据来判断断裂发生的时机? 3、研究对象的寿命图和估算?如何进行裂纹扩展率的测试及研究影响裂纹扩展率的因素。 4、如何在既安全又能避免不必要的停产损失的情况下安排探伤检测周期。 5、若检测出裂纹又应如何处理? 3、生活中常见的断裂破坏及破坏的主要特征 断裂在生活及工程中引发的问题和事故:1、海洋平台发生崩溃;2、压力容器发生破裂;3、吊桥的钢索断;4、天然气管道破裂;5、房屋开裂倒塌;6、气轮机叶片断裂。 断裂破坏的主要特征:1、尽管材料可能是由延性材料制成,但是灾难性破坏大多有脆性特征。2、大多数是低应力破坏,破坏时应力远小于屈服极限或设计的极限应力。3、大多数破坏始于缺陷、孔口、缺口根部等不连续部位。4、断裂破坏传播速度很高,难以防范和补救。5、高速撞击、高强度材料、低温情况下更容易发生。 4、断裂力学的发展历史 断裂力学的发展迄今为止大致经历了一下几个阶段,首先1920—1949年间主要以能量的方法求解,其中最有影响的是英国科学家Griffith提出的能量断裂理论以及据此建立的断裂判据。而后从1957年开始时线弹性断裂理论阶段,提出了应力强度因子概念及相应的判断依据。到1961—1968年间是弹塑性理论阶段,其中以1961年的裂纹尖端位移判据和

断裂力学的发展与研究现状 - glearningtjueducn

万方数据

万方数据

万方数据

万方数据

断裂力学的发展与研究现状 作者:康颖安, KANG Ying-an 作者单位:湖南工程学院,机械工程系,湖南,湘潭,411101 刊名: 湖南工程学院学报(自然科学版) 英文刊名:JOURNAL OF HUNAN INSTITUTE OF ENGINEERING(NATURAL SCIENCE EDITION) 年,卷(期):2006,16(1) 被引用次数:1次 参考文献(10条) 1.范天佑断裂理论基础 2003 2.陈会军;李永东;唐立强多孔材料中裂纹尖端的渐近场[期刊论文]-哈尔滨工程大学学报 2000(03) 3.张淳源粘弹性断裂力学 1994 4.张俊彦;张淳源裂纹扩展条件及其温度场研究 1996(01) 5.Rice J R;Rosengren G F Plane strain deformation near a crack tip in a powerlaw hardening material 1968 6.Hutchinson J W Singular behavior at the end of a tensile crack in a hardening material 1968 7.黄克智弹塑性断裂力学的一个重要进展 1993(01) 8.Wells A A Applications of fracture mechanics at/and beyond general yielding 1963 9.Irwin G R Analysis of stress and strains near the end of a crack traversing a plate 1957 10.沈成康断裂力学 1996 引证文献(1条) 1.单丙娟浅谈断裂力学的发展与研究现状[期刊论文]-内蒙古石油化工 2007(7) 本文链接:https://www.360docs.net/doc/163324276.html,/Periodical_hngcxyxb-zr200601011.aspx

(完整版)断裂力学试题

2007断裂力学考试试题 B 卷答案 一、简答题(本大题共5小题,每小题6分,总计30分) 1、(1)数学分析法:复变函数法、积分变换;(2)近似计算法:边界配置法、有限元法;(3)实验标定法:柔度标定法;(4)实验应力分析法:光弹性法. 2、假定:(1)裂纹初始扩展沿着周向正应力θσ为最大的方向;(2)当这个方向上的周向正应力的最大值max ()θσ达到临界时,裂纹开始扩展. 3、应变能密度:r S W = ,其中S 为应变能密度因子,表示裂纹尖端附近应力场密度切的强弱程度。 4、当应力强度因子幅值小于某值时,裂纹不扩展,该值称为门槛值。 5、表观启裂韧度,条件启裂韧度,启裂韧度。 二、推导题(本大题10分) D-B 模型为弹性化模型,带状塑性区为广大弹性区所包围,满足积分守恒的诸条件。 积分路径:塑性区边界。 AB 上:平行于1x ,有s T dx ds dx σ===212,,0 BD 上:平行于1x ,有s T dx ds dx σ-===212,,0 5分 δ σσσσΓ s D A s D B s B A s BD A B i i v v v v dx x u T dx x u T ds x u T Wdx J =+=+-=??-??-=??-=???)()(1 122112212 5分 三、计算题(本大题共3小题,每小题20分,总计60分) 1、利用叠加原理:微段→集中力qdx →dK = Ⅰ ?0 a K =?Ⅰ 10分 A

令cos cos x a a θθ==,cos dx a d θθ= ?111sin () 10 cos 22(cos a a a a a K d a θθθ--==Ⅰ 当整个表面受均布载荷时,1a a →. ?12()a a K -==Ⅰ 10分 2、边界条件是周期的: a. ,y x z σσσ→∞==. b.在所有裂纹内部应力为零.0,,22y a x a a b x a b =-<<-±<<±在区间内 0,0y xy στ== c.所有裂纹前端y σσ> 单个裂纹时 Z = 又Z 应为2b 的周期函数 ?sin z Z πσ= 10分 采用新坐标:z a ξ=- ?sin ()a Z π σξ+= 当0ξ→时,sin ,cos 1222b b b π π π ξξξ== ?sin ()sin cos cos sin 22222a a a b b b b b π π π π π ξξξ+=+ cos sin 222a a b b b π π π ξ= + 222 2[sin ()]( )cos 2 cos sin (sin )2222222a a a a a b b b b b b b π π π π π π π ξξξ+=++

损伤与断裂力学读书报告

中国矿业大学 2012 级硕士研究生课程考试试卷 考试科目损伤与断裂力学 考试时间2012. 12 学生姓名张亚楠 学号ZS12030092 所在院系力建学院 任课教师高峰 中国矿业大学研究生院培养管理处印制

《损伤与断裂力学》读书报告 一.断裂力学 1.基本概念及研究内容 断裂力学是为解决机械结构断裂问题而发展起来的力学分支,它将力学、物理学、材料学以及数学、工程科学紧密结合,是一门涉及多学科专业的力学专业课程。 随时间和裂纹长度的增长,构件强度从设计的最高强度逐渐地减少。假设在储备强度A点时,只有服役期间偶而出现一次的最大载荷才能使构件发生断裂;在储备强度B点时,只要正常载荷就会发生断裂。因此,从A点到B点这段期间就是危险期,在危险期中随时可能发生断裂。如果安排探伤检查的话,检查周期就不能超过危险期。如下图所示: 问题是储备强度究竟是个什么样的参量?它与表征裂端区应力变场强度的参量有何关系?如何计算它?如何测量它?它随时间变化的规律如何?受到什么因素的影响?这一系列问题如能找到答案的话,则提出的以上五个工程问题就有可能得到解决。断裂力学这门学科就是来解决这些问题的。 1.1影响断裂力学的两大因素 a.荷载大小b.裂纹长度 考虑含有一条宏观裂纹的构件,随着服役时间后使用次数的增加,裂纹总是愈来愈长。在工作载荷较高时,比较短的裂纹就有可能发生断裂;在工作载荷较低时,比较长的裂纹才会带来危险。这表明表征裂端区应力变场强度的参量与载荷大小和裂纹长短有关,甚至可能与构件的几何形状有关。

1.2脆性断裂与韧性断裂 韧度(toughness ):是指材料在断裂前的弹塑性变形中吸收能量的能力。它是个能量的概念。 脆性(brittle )和韧性(ductile ):一般是相对于韧度低或韧度高而言的,而韧度的高低通常用冲击实验测量。 高韧度材料比较不容易断裂,在断裂前往往有大量的塑性变形。如低强度钢,在断裂前必定伸长并颈缩,是塑性大、韧度高的金属。金、银比低强度钢更容易产生塑性变形,但是因为强度太低,因此吸收能量的能力还是不高的。玻璃和粉笔则是低韧度、低塑性材料,断裂前几乎没有变形。 脆性断裂:如下图所示的一个带环形尖锐切口的低碳钢圆棒,受到轴向拉伸载荷的作用,在拉断时,没有明显的颈缩塑性变形,断裂面比较平坦,而且基本与轴向垂直,这是典型的脆性断裂。粉笔、玻璃以及环氧树脂、超高强度合金等的断裂都属于脆性断裂这一类。 韧性断裂:若断裂前的切口根部发生了塑性变形,剩余截面的面积缩小(既发生颈缩),段口可能呈锯齿状,这种断裂一般是韧性断裂。前边提到的低强度钢的断裂就属于韧性断裂。 像金、银的圆棒试样,破坏前可颈缩至一条线那样细,这种破坏是大塑性破坏,不能称为韧性断裂。 2.能量守恒与断裂判据 2.1传统强度理论 在现代断裂力学建立以前,机械零构件是根据传统的强度理论进行设计的,不论在机械零构件的哪一部分,设计应力的水平一般都不大于材料的屈服应力,即 n ys σσ≤

断裂力学答案

( ( = K I + K I(2) 1.简述断裂力学的发展历程(含 3-5 个关键人物和主要贡献)。 答: 1)断裂力学的思想是由 Griffith 在 1920 年提出的。他首先提出将强度与裂纹长度定量 地联系在一起。他对玻璃平板进行了大量的实验研究工作,提出了能量理论思想。(2)断裂 力学作为一门科学,是从 1948 年开始的。这一年 Irwin 发表了他的第一篇经典文章“Fracture Dynamic (断裂动力学)”,研究了金属的断裂问题。这篇文章标志着断裂力学的诞生。(3) 关于脆性断裂理论的重大突破仍归功于 Irwin 。他于 1957 年提出了应力强度因子的概念,在 此基础上形成了断裂韧性的概念,并建立起测量材料断裂韧性的实验技术。这样,作为断裂 力学的最初分支——线弹性断裂力学就开始建立起来了。(4)1963 年,Wells 提出了裂纹张 开位移(COD )的概念,并用于大范围屈服的情况。研究表明,在小范围屈服情况下 COD 法与 LEFM 是等效的。(5)1968 年,Rice 等人根据与路径无关的回路积分,提出了 J 积分 的概念。J 积分是一个定义明确、理论严密的应力应变参量,它的实验测定也比较简单可靠。 J 积分的提出,标志着弹塑性断裂力学基本框架形成。 2.断裂力学的定义,研究对象和主要任务。 答: 1)断裂力学的定义:断裂力学是一门工程学科,它定量地研究承载结构由于所含有的 一条主裂纹发生扩展而产生失效的条件。 (2)研究对象:断裂力学的研究对象是带有裂纹的承载结构。 (3)主要任务:研究裂纹尖端附近应力应变分布,掌握裂纹在载荷作用下的扩展规律;了 解带裂纹构件的承载能力,进而提出抗断设计的方法,保证构件安全工作。 3.什么是平面应力和平面应变状态,二者有什么特点?请举例说明之。 答:(1)平面应力:薄板问题,只有 xoy 平面内的三个应力分量σ x 、σ y 、τ xy ; ε z ≠ 0 , 属三向应变状态。 (2)平面应变:长坝问题,与 oz 轴垂直的各横截面相同,载荷垂直于 z 轴且沿 z 轴方向无 变化; ε z = 0 , σ z ≠ 0 ,属三向应力状态;材料不易发生塑性变形,更具危险。 4.什么是应力强度因子的叠加原理,并证明之。掌握工程应用的方法。 答:(1)应力强度因子的叠加原理:复杂载荷下的应力强度因子等于各单个载荷的应力强 度因子之和。 (1) 在外载荷 T 2 作用下,裂纹前端应力场为 σ2,则相应的应力强度因子为 K I(2) = σ 2 π a 如果外载荷 T 1 和 T 2 联合作用,则裂纹前端应力场为 σ1+ σ2 ,则相应的应力强度因子为 K I = (σ 1 + σ 2 ) π a = σ 1 π a + σ 2 π a (1) 6.为什么裂纹尖端会发生应力松弛?如何对应力强度因子进行修正? 答:裂纹尖端附近存在着小范围的塑性区(设塑性区是以裂纹尖端为圆心,半径为 r0 的圆 π a 形区域),材料屈服后,多出来的应力将要松驰(即传递给 r>r0 的区域),使 r0 前方局部地 区的应力升高,又导致这些地方发生屈服。即屈服导致应力松弛。 Irwin 提出了有效裂纹尺寸的概念 a eff = a + r y 对应力强度因子进行修正,在小范围条件下,

灾后重建学习报告

灾后重建和工程调研讲座学习报告 杨碧璇 (四川大学建筑与环境学院2014级,四川成都 610065,2014141473194) 摘要:破坏性地震会给国家经济建设和人民生命财产安全造成直接和间接的危害和损失,尤其是强烈的地震会给人类带来巨大的灾害。因此,如何提高建筑物的抗震能力就成为一个很关注的问题。施工质量的影响是深远的,在整个施工过程中,任何一个环节出现问题,都可能影响建筑结构本身的抗震能力。本文根据四次讲座内容进行大致描述,并发表心得体会1.引言 地震原理地震是由于地面的运动,使地面上原来处于静止的建筑受到动力作用而产生强迫振动,因而在结构中产生内力、变形和位移。经过简化后模型的动力学分析,即一次次的震害分析进行修正、补充,得到一些建筑物在地震作用下的反应机理及破坏形式,提出了一些建筑物抗震的计算方法及设计的基本原则,使地震的危害降到最低 破坏性地震会给国家经济建设和人民生命财产安全造成直接和间接的危害和损失,尤其是强烈的地震会给人类带来巨大的灾害。目前,每年全世界由地震灾害造成的平均死亡人数达8000-10000 人,平均经济损失每次达十亿美元。尽管如此,地震造成的惨重人员伤亡和巨大的财产损失,主要却是由建筑物的破坏所引起。因此,如何提高建筑物的抗震能力就成为一个很关注的问题。 2.各部分内容及感想 2.1第一次讲座:灾后重建和工程调研(李碧雄) 李老师对汶川8 O级特大地震导致大量教学楼严重破坏或完全坍塌进行了广泛调研,分析了砖木结构、砖混结构和框架结构教学楼的震害特征和震害原因。分析结果表明,传统的砖木结构和砖混结构缺乏必要的整体连接措施;建筑体型不对称加剧了地震中建筑的倾倒。建议高烈度地区的框架结构教学楼应重视剪力墙的设置,砌体结构的窗间墙采用组合砌体:合理的建筑平面布局方案是提高教学楼抗震能力的重要途径,并重视对建筑质量的全过程控制。 通过学习我可以了解到,砖混结构中,以大开间、大开窗、外走廊等建筑样式的震害最为严重。不少地方在上世纪90年代以前建造的砖混结构房屋中较多地使用了大开间、大开窗、外走廊等建筑样式。当时的抗震规范没有在圈梁和构造柱的设置上提出更多要求。再加上大量与墙体连接不充分的预制空心楼板,使砖混结构的整体性受到影响。这些结构建筑在重灾区普遍遭受到严重的破坏甚至是整体倒塌。砌体混合结构形式的建筑,在重灾区普遍损毁严重。无论是底部框架砖混的竖向混合结构还是部分框架部分砖混的水平混合结构,由于刚度突变、传力途径复杂和变形能力不协调等因素,大量此类建筑受损严重。框架结构中,出现了框架柱先于框架梁受到破坏的现象。震害调查显示,此次地震中,部分房屋的一些框架结构的破坏体现为框架柱先于框架梁受到破坏。灾区的不少厂房、库房的排架结构由于跨度大、屋架重、柱间连接薄弱,加上年久失修等原因,在此次地震中受损严重,垮塌较多。农村自建房在重灾区受灾情况十分严重,倒塌现象普遍。上世纪90年代前,农村自建房大量使用砖瓦、木头等简易材料。由于由于缺乏相应的建造技术,再加上砌筑墙体的黏合材料强度差,一般情况下也没有进行专门的抗震设计,因此震害十分严重,倒塌普遍。木结构房屋和轻钢结构房屋在此次地震中损坏较轻。木结构采用榫卯进行连接,榫头在榫卯节点处可轻微转动,具有“柔性”连接的特点;柱根直接放在柱基石上,水平震动时柱根可在柱基石上轻微滑动;厚重的屋盖通过穿斗或斗拱的连接方式与内柱、檐柱体系连成一体,保证了木结构房屋的整体性。木结构的这些特点使得重灾区的木结构房屋除有不少屋面瓦脱落外,多数房屋损坏较轻。

断裂力学复习题(实际)解答(课件)

断裂力学复习题 1.裂纹按几何特征可分为三类,分别是(穿透裂 纹)、(表面裂纹)和(深埋裂纹)。按力学特征也可分为三类,分别是(张开型)、(滑开型)和(撕开型)。 2.应力强度因子是与(外载性质)、(裂纹)及 (裂纹弹性体几何形状)等因素有关的一个量。材料的断裂韧度则是(应力强度因子)的临界值,是通过(实验)测定的材料常数。 3.确定应力强度因子的方法有:(解析法),(数 值法),(实测法)。 4.受二向均匀拉应力作用的“无限大”平板, 具有长度为2a 的中心贯穿裂纹,求应力强度因子ⅠK 的表达式。 【解】将x 坐标系取在裂纹面上,坐标原点取在 裂纹中心,则上图所示问题的边界条件为: ① 当y = 0,x → ∞时,σσσ==y x ; ② 在y = 0,a x <的裂纹自由面上, 0,0==xy y τσ;而在a x >时,随a x →,∞→y σ。

可以验证,完全满足该问题的全部边界条件的解 析函数为 22Ⅰ )(a z z z Z -=σ (1) 将坐标原点从裂纹中心移到裂纹右尖端处,则有 z =ζ+a 或ζ= z -a , 代入(1),可得: )2() ()(I a a Z ++=ζζζσζ 于是有: a a a a a K πσζζσπζζζσπζζζ=++?=++?= →→)2()(2lim )2() (2lim 00Ⅰ 5.对图示“无限大”平板Ⅱ型裂纹问题,求应 力强度因子ⅡK 的表达式。

【解】将x 坐标系取在裂纹面上,坐标原点取在 裂纹中心,则上图所示问题的边界条件为: ① 当y = 0,x → ∞时,ττσσ===xy y x ,0; ② 在y = 0,a x <的裂纹自由面上,0,0==xy y τσ;而在a x >时,随a x →,∞→xy τ。 可以验证,完全满足该问题的全部边界条件的解 析函数为 2 2Ⅱ )(a z z z Z -=τ (1) 将坐标原点从裂纹中心移到裂纹右尖端处,则有 z =ζ+a 或ζ= z -a , 代入(1),可得: ) 2()()(Ⅱa a Z ++=ζζζτζ 于是有: a a a a a K πτζζτπζζζτπζζζ=++?=++?=→→) 2()(2lim )2()(2lim 00Ⅱ 6.对图示“无限大”平板Ⅲ型裂纹问题,求应 力强度因子ⅢK 的表达式。

岩石的损伤力学及断裂力学综述

岩石的断裂力学及损伤力学综述 摘要:论述了国内外断裂力学及损伤力学的学科发展历程,总结了岩体断裂力学损伤力学的研究内容、研究特点以及岩石力学专家们一些年来所取得的主要成果,并简单介绍了断裂力学损伤力学在岩土工程中的实际应用。最后,通过对岩石破坏的断裂-损伤理论的阐述,指出了综合考虑损伤与断裂的破坏理论是能更好地反映岩石实际破坏过程的一种新的理论, 可在以后的理论研究和实际工程中得以更为广泛的应用。 关键词:岩石 断裂力学 损伤力学 应用 1 引 言 岩石的破坏过程总是伴随着损伤(分布缺陷)和裂纹(集中缺陷)的交互扩展, 这种耦合效应使得裂纹尖端附近区域材料必然具有更严重的分布缺陷。岩石的破坏, 如脆性断裂和塑性失稳, 虽然有突然发生的表面现象, 但是, 从材料损伤的发生、发展和演化直到出现宏观的裂纹型缺陷, 伴随着裂纹的稳定扩展或失稳扩展, 是作为过程而展开的。 经典的断裂力学广泛研究的是裂纹及其扩展规律问题。物体中的裂纹被理想化为一光滑的零厚度间断面。在裂纹的前缘存在着应力应变的奇异场,而裂纹尖端附近的材料假定同尖端远处的材料性质并无区别。象裂纹这样的缺陷可称它为奇异缺陷,因此经典断裂力学中物体的缺陷仅仅表现为有奇异缺陷的存在。 而损伤力学所研究的是连续分布的缺陷, 物体中存在着位错、微裂纹与微孔洞等形形色色的缺陷,这些统称为损伤。从宏观来看, 它们遍布于整个物体。这些缺陷的发生与发展表现为材料的变形与破坏。损伤力学就是研究在各种加载条件下, 物体中的损伤随变形而发展并导致破坏的过程和规律。 事实上, 物体中往往同时存在着奇异缺陷和分布缺陷。在裂纹(奇异缺陷)附近区域中的材料必然具有更严重的分布缺陷, 它的力学性质必然不同于距离裂纹尖端远处的材料。因此, 为了更切合实际, 就必须把损伤力学和断裂力学结合起来, 用于研究物体更真实的破坏过程。 2 断裂力学 2.1 断裂力学学科发展 “断裂力学”指的是固体力学的一个重要分支,该学科要在假定裂纹存在的条件下,寻求裂纹长度、材料抗裂纹增长的固有阻力、以及能使裂纹高速扩展从而导致结构失效的应力之间的定量关系[]1。 断裂力学最早是在1920年提出的。当时格里菲斯为了研究玻璃、陶瓷等脆性材料的实际强度比理论强度低的原因,提出了在固体材料中或在材料的运行过程中存在或产生裂纹的设想,计算了当裂纹存在时,板状构件中应变能变化进而得出了一个十分重要的结果:常数≡a c δ。 1949年,奥罗万在分析了金属构件的断裂现象后对格里菲斯的公式提出了修正,他认为产生裂纹所释放的应变能不仅能转化为表面能,也应转化为裂纹前沿

钢桥结构的断裂与疲劳综述

清华大学土木系 钢桥结构的疲劳 破坏分析 XXX 201XXXXXX 2014-9 《钢结构断裂与疲劳》课程论文

钢桥结构的疲劳破坏分析 (XXXX,土硕X,学号:201XXXXXX) 摘要:随着钢桥设计理论和制造技术的快速发展,国内外钢桥迎来了蓬勃发展的时代。但同时,钢桥的疲劳问题也越来越引起人们的注意。本文从国内外研究现状、现存技术问题及研究方法等方面对钢桥疲劳问题进行综合阐述。 关键词:钢桥疲劳寿命焊接节点 1前言 在20 世纪三十年代以后,随着钢桥设计理论和制造技术的快速发展,国外公路钢桥迎来了蓬勃发展的时代。虽然我国的公路钢桥发展起步较晚,但是从20 世纪八十年代中期以后,随着国内经济与技术水平的迅速提高,我国大跨度公路钢桥进入了建设的高峰期。尤其进入21 世纪后,我国快速建成了一批规模进入世界前列的钢桥。随着钢桥的建设规模记录不断被刷新,钢桥已成为大跨度桥梁的主要形式[1]。 近年来,虽然人们对疲劳断裂问题的研究已有一定的进展,工程师也采取了不少预防措施,但是陆续还是有一些钢桥发生疲劳破坏事故,这说明进行钢桥疲劳破坏分析、预测是十分必要的。但是这项工作同时也是十分困难的。本文就目前国内外的钢桥疲劳破坏的相关情况予以综述,让读者更加了解钢桥的疲劳破坏。2国内外研究现状 2.1国外钢桥疲劳问题研究历程及现状 人们对疲劳问题的研究历史最早可以追溯到19世纪初[2]。当时金属材料在交通工具和机械设备中逐渐得到广泛的应用,但其中的一些运动部件时常发生破坏。这些破坏多发生在部件截面尺寸突变处,而且破坏时的应力远低于材料的屈服强度,这些问题引起了工程师们的关注。 1829年,德国矿业工程师W.A.J.Albert对矿山传送带链条进行了反复加载试验,这被公认为是人类最早的疲劳研究工作[3]。1837年,他发表了第一篇关于疲劳试验结果的论文[4]。 1843年,苏格兰土木工程师W.J.M.Rankine最早研究发现了铁路机车车轴的疲劳破坏是由裂纹出现和发展造成的。 1847年,德国工程师W?hler开始对疲劳问题进行深入系统的研究。1850~1869年间,W?hler利用自行设计的疲劳试验机,对机车车轴进行疲劳试验。

相关文档
最新文档