人力资源矩阵.doc

人力资源矩阵.doc
人力资源矩阵.doc

矩阵式人力资源管理

一、什么是矩阵式人力资源管理

矩阵有两个维度:纵向和横向。横向是人力资源部服务的企业内部客户,如营销部门、研发部门、生产部门、其他职能部门等。纵向是人力资源部工作的职能,如人事、招聘、培训、薪资、绩效等。在5*N构成的表格里,不同年份的不同季度,把当前的重点工作进行标识,运用内部咨询项目的方式开展工作,叫做矩阵式人力资源管理。

人力资源部的工作分为日常和重点,人力资源是业务的配套,随着业务发展的阶段变化,工作重点会有相应的偏向性。

矩阵

二、矩阵式人力资源管理的意义

传统的人力资源管理是单维的,建立在职能划分基础上。如人事、招聘、培训、薪资、绩效等。根据教科书而来。一方面没有划分日常工作和重点项目,更重要的是,没有关注企业内部各大部门的区别,和不同时间段各大部门由于业务的变化而对人力资源部工作的需求的变化。缺少对业务变化的观察和需求捕捉的敏感性。导致在资源配置上,不能集中性的确定目标和实现目标,也忽视根据不同部门不同人群的特点采取差异化的措施。

教科书的设计,在于建立系统而全面的柜子和抽屉。但企业的重点在于实施,实施讲究有所为,有所不为。

矩阵式的思维,能够促使人力资源部的工作去追随业务的节拍。而不是脱节。而每个年份每个季度,矩阵里的不同格子究竟要做什么重点项目,就促使人力资源部经理经常去思考企业整体的发展,各大部门当前的需求,从而使战略这个概念性的东西,能建立在扎实的基础上。

从农事规律的角度,春耕、夏种、秋收、冬藏,种瓜得瓜,种豆得豆。

技能矩阵,让培训管理有的放矢

最近,集团人力总监罗总意识到了我们HR系统的专业基础较为薄弱,于是要求培训部制订与组织实施HR

队伍的提升计划。培训部接到任务一想:既然是底子薄,那就补充HR专业课程所需结构化的知识呗!于是左找右算,总算请来了南昌大学经济与管理学院的副院长何筠教授来给我们在周日上课,课程很全面,从人力资源规划、工作分析、招聘与选拔,再到绩效薪酬,应有尽有。罗总对HR队伍的成长也很关注,每次周日上完课后他都会去问问自己的秘书(秘书同时也兼着公司HR职位)这课老师讲得怎么样,对他自己有无帮助,秘书总是很开心地告诉他讲得很好,很有用。可是过了一阵子后,罗总又听到有人跟他反映这个老师讲的一点都不好,全是理论层面的东西,泛泛之谈,对企业实际的人力资源管理操作一点帮助都没有。好了,领导一听这话就犯难了,没办法,于是召集大家开个讨论会,听听大家的意见,讨论的主题是——老师的课讲的好不好,好,请举例说明,不好也请呈出事实。通过对大家的意见收集来决定是否继续这个培训计划。

在参加这个课程好坏研讨会之前,我一直在协助公司推行HR 队伍的任职资格标准工作。其中,在前期的职位分析工作开展过程中发现,收集上来的公司的职位说明书有很大的问题:工作描述部分对于职责项的罗列不注重职责所呈现的活动关系分析,举个很明显的例子吧——招聘序列的岗位(包括招聘专员、招聘主管甚至是招聘经理)总是将“制订人力资源规划”和“人力资源需求分析”写成并列的职责项,培训管理的岗位也是将“培训规划的制订”和“培训需求分析”罗列成不同的职责。很明显,这种工作活动的分析与分类是错误的,在实现“制订人力资源(培训)规划”这项职责时对应的工作任务要素就应该是“人力资源(培训)需求分析”,它们之间是包含与被包含的关系,而并不是并列或者是流程递进的关系,肯定是不能将它们写成相同层级的职责项。

那次讨论会异常激烈,最后大家得出的结论是不是课程本身的问题,而是我们日常在开展培训工作中没做好培训需求分析的问题,以后在培训的时候需要分析不同岗位成员对课程的不同需求。于是有关hr 队伍提升的培训讨论如此就告一段落啦。

会后,我对企业培训管理流程中涉及到的主要活动进行分析后,发现企业培训做得好不好,不仅仅是培训需求分析有没有做到位,还有企业的培训规划制订包括个人发展计划有没有做到位。

通常,企业在做培训需求分析时,都会从组织、岗位、个人三个层面来进行需求分析,如果仔细分析这三个层面的需求分析活动,就会发现有如下的内在联系:

培训需求分析对应的活动关系表

从上表中可以清晰地知道:

1、培训需求分析应该有三个层面,这三个层面都有不同活动分析侧重点,并且三个层面的活动分析应该是逐项递进的。

组织层面侧重于组织活动的罗列与到岗位的分解;

岗位层面侧重于岗位工作活动所需要的行为分析以及由行为推导出ksa 层面的要素;

培训需求分析层面

对应的活动分析

对应的活动产出

组织层面

对实现组织(部门绩效)所需要的关键活动进行罗列与分析,将组织活动项分解到不同的岗位

根据组织活动的分析与分解确定培训的方向、政策与重点

岗位层面

对岗位所需的工作活动与活动实现所需要的行为表现进行分析,由岗位所需的行为推导出实现行为所需要态度、知识、技能

根据岗位所需要的行为表现,结合培训的方向、政策与重点,得出整体培训需求分析报告

个人层面

评估不同的岗位成员在岗位所需要的态度、知识、技能的掌握程度,有针对性地提出需要改进要项

根据不同岗位成员在岗位要求具备的态度、知识、技能三个层面所需要的改进要项制订个人发展计划,并汇总得出公司的具体的该实施的培训计划(规划),包括培训总预算

个人层面侧重于评估不同岗位成员在岗位所需的ksa要素(K,knowledge,知识;S,skill,技能;A,attention,态度)的程度水平(通常这种程度水平对不同的岗位有不同的要求,由低到高归纳起来可分为三种:在他人的指导下才能完成、能独立完成、能指导他人完成)在《薪酬管理》第二版(刘昕著)一书中,把这种程度水平称为技能深度。举例:公司的招聘主管在“人力资源需求分析”上要求其不仅能够掌握和运用人力资源需求分析所需的几种方法与工具,还必须要能够编制相关的教材或者流程来指导培训他人。但评估发现该岗位员工不能够指导或者培训他人如何进行人力资源需求分析,那么就得出该岗位成员所需要的改进项了,这种改进项提炼成培训计划就是部属教导或者流程建设与优化等知识技能提升计划了。

2、三个层面的活动分析都应该有不同的产出,上一项产出是下一项产出的前提和基础,这种产出可能在企业内部会被分配成不同层级的岗位任务,比如说组织层面确定培训方向、重点等工作是培训经理的工作内容;岗位层面整体的培训需求分析报是培训主管的工作;个人发展计划则是培训专员的工作。

3、企业培训管理工作要想做的有效,就必须结合组织、岗位、个人三个层面进行有效需求分析,这项工作如同组织的绩效管理一样,必须将组织目标分解到部门岗位乃至个人才能保证人力资源管理各项业务开展有效支撑组织战略运营的实现。

4、培训需求分析告诉我们,所谓的培训计划必须来源于组织、岗位乃至个人的活动与行为。很多时候企业内部的培训管理者总是想当然的将市面流行的课程不假思索地移接到企业内部,这样有些浪费资源,而且效果不是很好,其实培训管理者只需要通过进行简单的活动分析,找出培训的重点然后反馈给培训讲师,让其有针对性进行分析和讲解,效果会更好。这种方法在当今培训界叫做咨询式培训。

那么,有什么工具可以支撑企业在开展培训管理工作时,将培训需求分析工作从组织层面落地到员工个人从而制订出有效的培训规划呢?这里给大家推荐一种叫做技能矩阵的工具,以人力资源培训部使用技能矩阵来确定培训计划和目标为例,进行实际操作示范。

1、对培训部门职能和岗位职责等实现所需要的工作活动进行分层分类罗列(通常可以按职责、任务、行为表现进行层级归纳),见下面:

职责任务行为表现

培训规划培训需求分析根据公司经营方向与年度战略、人力资源规划及公司现状制定公司培训政策、方向与重点

分析培训需求信息,并出具培训需求报告

……

…………

培训活动的组织与实施……

……

………………

………………

2、根据行为实现推导出岗位所需要的态度、知识、技能等培训项目,并将这些技能项目罗列至表格纵排。知道做什么、怎么做,但愿不愿意做、能不做还需要KSA层面的要素来支撑。

3、根据岗位职责实现所需的行为要求确认部门岗位成员在每个培训要项中要达到的程度水平,并用数字表示他的目标技能程度(3表示指导他人、2表示独立完成、1表示需要他人指导,0表示不需要该项技能)。注意不同的岗位对技能有不同的需求,有些技能对于岗位来说是不需要的,所以0表示没有;

4、由其直接上司简单评估各岗位成员在每个技能项中的实际水平,并用不同的颜色表示,绿色(黑色)表示已经达到、黄色(灰色)技能还需要提升、红色(白色)表示技能从未被训练。

5、根据对部门岗位成员技能的评估,可得出该部门每项技能提升的需求(就是黄色和红色的框数量),也可以计算出该部门岗位成员每项技能现状(用百分比表示:已达标技能数量/人员总数)

6、最后可根据每项技能现状的加权平均计算出该部门目前技能总现状,从而结合组织工作开展的实际需求设定合理的技能达标率。

7、根据上述技能矩阵表制定个人发展计划。

知识与技能项目

部门成员

需求技能现状技能达标率

张三李四王二

3 1/3*100% 100% 3 3 3

公司培训管理的

各项规章制度

培训需求调查的

3 2/3*100% 100% 3 2 1

方法与步骤

OJT培训知识 2 0/3*100% 2/3*100% 2 0 3

1 0/3*100% 1/3*100% 3 0 0

培训效果评估的

方法

……………………

合计(n1+n2+…)/n (N1+N2+…)/N M1 M2 M3

注意:M1,2,3…=黑色框数量/有数字的框的数量,用来表示个技能目前的达标水准。

由上图可知,技能矩阵局有如下好处:

能够清晰地、量化地描述不同岗位成员对知识技能的具体需求,从而很快显示出个人的发展计划;

技能矩阵通常可以形象地描述组织对各岗位要求的一岗多技之需求,对于员工横向能力的提升能做出有效的指引,丰田的多能工培养就是通过这种方式得以实现;

对于集团化企业,利用技能矩阵可以显示、监督、控制下属产品事业单位的管理者培养下属的情况,比如说下属A公司人力资源部技能现状的平均值为33%,B公司的人力资源部技能现状为45%,很显然B公司的人才培养要比A公司好。

由此可见,技能矩阵是企业做好培训管理工作的一大利器,各位HR朋友看到这里后,就赶紧去实践一下吧!

风险矩阵案例

三角模糊数互补判断矩阵案例 (模糊层次矩阵) 民航是一个高风险的服务行业,安全状况的好坏直接影响着其声誉、经济效益乃至生存。作为旅客登机出行的必经之地——机场则尤为重要。我国于2008年2月1日起,正式实施“民用机场运行安全管理规定”[2],通过建立一套完善有效的安全管理体系,对保证航空安全有着重要的作用和意义,而其中的安全风险管理则是重要组成部分。目前美国、加拿大等国家在实施安全管理系统时,采用了风险评估矩阵来进行风险管理。该矩阵将风险的可能性和严重性联系在一起,可以根据用途进行细化,但是对于处理大量数据时,具有一定的局限性。 我国学者曾采用层次分析法(AHP),对民用机场影响飞行安全的各因素进行了评估。但是,对于层次分析法,当判断矩阵不具有一致性时,需要调整判断矩阵的元素,使其具有一致性,这不排除要经过若干次调整、检验、再调整、再检验的过程才能使判断矩阵具有一致性;另外,判断矩阵的一致性与人类思维的一致性有显著差异[2-6]。 在进行安全风险管理时,存在着很多不确定因素困扰着风险评估,其主要原因是专家的意见存在着偏差,人为因素难以进行清晰明确的分析,然而这些不确定因素却是正常的和不可避免的。因此,引入了模糊数学,克服了层次分析法的局限性以及人类思维的主观性,从而形成了模糊层次分析法(Fuzzy Analytical Hierarchy Process,FAHP)。 笔者拟采取模糊层次分析法对某一民用机场影响飞行安全的各因素进行评估,这将不仅能够客观地评估民用机场的安全现状、发现隐患和薄弱环节,而且对于改善其安全有着积极的 作用。 1 预备知识

其中,λ值的选择取决于决策者的风险态度。 当λ>0.5时,称决策者是追求风险的; 当λ=0.5时,称决策者是风险中立的;

正规矩阵

第二学期第八次课 设A 是n 维酉空间V 内的线性变换,如果V 内的线性变换A * 满足? α,β∈V,有 (A α,β)=(α,A * β) 则称A * 是A 的共轭变换. A * 为A 的共轭变换当且仅当它们在标准正交基下的矩阵互为共轭转置. 共轭变换的五条性质: 1)E *=E 2)(A * )*= A 3)(k A )* =k A * 4)(A +B )* =A * +B * 5)(AB )* =B * A * 如果A *= A,则称A 是一个厄米特变换. 设A 是n 阶复矩阵,如果A '=A,则称A 是一个厄米特矩阵. n 个复变量n 21x x x ,, ,?的二次齐次函数 ∑∑===n i n j j i ij x x a f 11 (ji ij a a =) 称为一个厄米特二次型.(对称变换、实对称矩阵、实二次型的推广)。 (酉变换和厄米特变换都是下面的正规变换的特殊情形.) 如果A *A = A A * ,则称A 为一个正规变换. (将酉变换的性质推广,有一般的结果:) 命题 酉空间V 上的线性变换A 的不变子空间M 的正交补⊥ M 是共轭变换A * 的不变子空间. 证明 ? α∈M, β∈⊥M ,有 (α,A * β)=(A α,β)=0 这表明A * β∈⊥ M .

命题酉空间上的正规变换A的属于特征值λ的特征向量ξ的是共轭变换A*的属于特征值λ的特征向量. 证明按假设,有Aξ=λξ则 (A*ξ-λξ,A*ξ-λξ)=((A-λE)*ξ, A*ξ-λξ) =(ξ,(A-λE)(A-λE)*ξ) =(ξ,(A-λE)*(A-λE)ξ) =(ξ,0)=0 从而A*ξ=λξ. 命题酉空间上的正规变换的属于不同特征值的特征向量互相正交. 证明设Aξ=λξ,Aη=μη则 λ(ξ,η)=(Aξ,η)=(ξ,A*η)=(ξ,μη)=μ(ξ,η) 必有(ξ,η)=0. 定理n维酉空间上的正规变换在某组标准正交基下的矩阵是对角阵. 证明对维数n做数学归纳法. 推论n维酉空间上的酉变换在某组标准正交基下的矩阵是对角阵. 命题厄米特变换的特征值都是实数. 证明若Aξ=λξ,则λξ=A*ξ=Aξ=λξ?λ=λ?λ是实数.

矩阵理论(新)

2011学年 (A) 学号姓名成绩 考试科目:《矩阵理论》(A)考试日期:2011年 1 月10 日 注意事项:1、考试7个题目共7页 2、考试时间120分钟 题目:一(本题35分) 二(本题18分) 三(本题14分) 四(本题08分) 五(本题07分) 六(本题09分) 七(本题09分) (注: I表示单位矩阵;H A表示H转置;det(A)代表行列式)

姓名: 学号: A 一. 填空(35分) ( 任意选择填写其中35个空即可 ) (1)1113A ??= ?-?? ,则2(2)A I -= ,A 的Jordan 形A J = (2)若3阶阵2≠A I ,且2440-+=A A I ,则Jordan 形A J = (3) I 是单位矩阵,则范数1||I||||I||∞== ;cos 0n n ?= (4)Hermite 阵的特征根全为 , 斜(反)Hermite 阵的特征根必为纯虚数或 (5)秩 ()()()r A B r A r B ?-= ; ()A B A B +++?-?= ;; ()T T T A B A B ?-?= ;()H H H A B A B ?-?= (6) 若2320++=A A I ,则A 一定相似于 (7)d dt tA e = ,d dt tA e -= ,dsin(At)dt = (8)2()A A += ;00A B +??= ??? ; (, 0)0A A ++??- ??? = (9)设A 的各列互相正交且模长为1,则 H A A +-= (10)(),ij A a =则 22 ,,()()H H ij ij i j i j A A a AA a -=-=∑∑tr ||tr || (11) 若 ()0H A A =tr 则A = (12) (正规阵无偏性)若A 是上三角形正规阵,则A 一定是 (13) 若0n n n n B D C ???? ??? 为正规阵, 则D = (14)021, ,103a A B b ????== ? ????? 则A B ?的特征根为 (15) 0.20.30.210.50.20.310.30.40.21A x ???? ???== ??? ?????? ?, , 则谱半径(最大特征根) ()A ρ范围是 ;且A x ∞= ;||A||∞= (16)01,10A -??= ??? 则 ()=A H A e e

矩阵的运算及其运算规则

矩阵基本运算及应用 牛晨晖 在数学中,矩阵是一个按照长方阵列排列的或集合。矩阵是高等代中的常见工具,也常见于统计分析等应用数学学科中。在物理学中,矩阵于电路学、、光学和中都有应用;中,制作也需要用到矩阵。矩阵的运算是领域的重要问题。将为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算。在电力系统方面,矩阵知识已有广泛深入的应用,本文将在介绍矩阵基本运算和运算规则的基础上,简要介绍其在电力系统新能源领域建模方面的应用情况,并展望随机矩阵理论等相关知识与人工智能电力系统的紧密结合。 1矩阵的运算及其运算规则 1.1矩阵的加法与减法 1.1.1运算规则 设矩阵,, 则 简言之,两个矩阵相加减,即它们相同位置的元素相加减! 注意:只有对于两个行数、列数分别相等的矩阵(即同型矩阵),加减法运算才有意义,即加减运算是可行的.

1.1.2运算性质 满足交换律和结合律 交换律; 结合律. 1.2矩阵与数的乘法 1.2.1运算规则 数乘矩阵A,就是将数乘矩阵A中的每一个元素,记为或.特别地,称称为的负矩阵. 1.2.2运算性质 满足结合律和分配律 结合律:(λμ)A=λ(μA);(λ+μ)A =λA+μA. 分配律:λ(A+B)=λA+λB. 1.2.3典型举例 已知两个矩阵 满足矩阵方程,求未知矩阵. 解由已知条件知

? 1.3矩阵与矩阵的乘法 1.3.1运算规则 设,,则A与B的乘积是这样一个矩阵: (1) 行数与(左矩阵)A相同,列数与(右矩阵)B相同,即. (2) C的第行第列的元素由A的第行元素与B的第列元素对应相乘,再取乘积之和. 1.3.2典型例题 设矩阵 计算 解是的矩阵.设它为

层次分析法

城市核心竞争力的多层次评价指标 作者:未知来源:网络添加日期:10年02月06日 一、城市核心竞争力评价指标体系的建立 (一)层次体系建立 1.城市竞争力的评价指标 城市竞争力是一个混沌的系统,这些系统以其表现方式的不同可概括成两类:硬分力和软分力,其中硬分力=人才力+资本力+科技力+环境力+区位力+设施力+结构力,软分力=文化力+制度力+管理力+开放力,这样城市竞争力的框架便表示为:城市竞争力=硬分力+软分力。 2.城市核心竞争力的定义 城市核心竞争力是一座城市所具有的关键性能力,这种能力能使一座城市在某一个行业(或产业)、某一个领域取得领先地位,获得竞争优势。所以,在这些关键性领域的投入与产出比例一般要高于其他领域。 3.城市核心竞争力的评价方法 确定权重的方法很多,由于城市核心竞争力判别系统是一个多级递阶结构,采用层次分析法较为适宜。 4.建立的指标层次体系 城市核心竞争力包含软实力与硬实力两方面。前者包含有:文化力、制度力、管理力、开放力。后者包含有:人才力、资本力、科技力、环境力、区位力、设施力、结构力。 (二)层次分析方法的基本过程 1.建立层次结构模型 在这一步中,我们首先要确定目标,随后找出影响目标的几个主因,而然后在每个主因下再找出分别影响这些主因的分因。 2.构造判断矩阵

确定各层次因素之间的相对重要性并赋以相应的分值,构造出各层次中的所有判断矩阵。分值标准如上表: 3.层次单排序 对判断矩阵B,计算满足BW=λmaxW的特征根与特征向量,式中λmax 为B 的最大特征根,W 为对应于λmax 的正规化特征向量,W的分量Wi 是相应因素单排序的权值。为了检验矩阵的一致性,需要计算它的一致性指标CI,定义CI=(λmax- n) /(n- 1)。随机一致性指标RI,可查表确定。 4.层次总排序 层次总排序需要从上到下逐层顺序进行,对于最高层下面的第二层,其层次单排序即为总排序。随后对这个总的排序矩阵计算特征值与特征向量。 5.一致性检验 对总排序矩阵的计算结果仍然要进行一致性检验,方法可参考步骤(3) 二、城市核心竞争力层次评价步骤 1.建立城市核心竞争力层次结构模型 根据以上层次结构模型建立城市核心竞争力的层次结构模型,即城市核心竞争力包含软实力与硬实力两方面。前者包含有:文化力、制度力、管理力、开放力。后者包含有:人才力、资本力、科技力、环境力、区位力、设施力、结构力。 2.构造判断矩阵 首先,建立城市核心竞争力层次矩阵,设为A,其表达如下: 其次,细化硬实力矩阵,设为B1,表达如下:

一般矩阵可逆的判定电子教案

一般矩阵可逆的判定

一般矩阵可逆的判定 Good (11统计数学与统计学院 1111060231) 摘要:作为一张表,矩阵的运算规则具有特殊性。在运算的过程中,逆矩阵则是作为矩阵乘法的逆运算而存在的。由于矩阵乘法的逆运算仅限于方阵,故而逆矩阵又作为一项特殊的矩阵除法运算而存在。对于矩阵的运算来说,逆矩阵是不可缺少的一部分。在以线性代数为基础的研究中,逆矩阵是解决实际问题的一个最直观,最实用的工具。然而在实际研究中,并不是所有方阵都存在逆矩阵,那么对于矩阵可逆的判定就显得极其重要了。 关键字:阶方阵;;;; 0 引言 逆矩阵是矩阵乘法逆运算的结果。这个逆运算的过程被作为矩阵运算的一部分而不可或缺。对于所有矩阵而言,只有方阵中可逆的那部分才存在逆矩阵;就好像四边形一样,只有当矩形的四边相等才能被叫做正方形。然而也就是这很特殊的一小部分,它的运用却充斥着所有与线性代数相关的领域。比如:物理学,经济学,统计学,数学,社会管理学等等。对于矩阵的运算来说,逆矩阵的运算至关重要。由于矩阵在实际运用中具有的重要作用,而逆矩阵对于矩阵来说又具有重要的作用。在以矩阵为研究对象的研究过程中,研究逆矩阵也就有了很重要的意义。 对于研究逆矩阵的过程中,“什么样的矩阵才可逆?”是值得深讨的问题。就像求四边形中的正方形一样,要求正方形,最基本的前提就是:四边形必须是矩形。只有四边形满足四个内角都是90度的时候,四边形才称的上是矩形。而对于矩形来说,只有满足矩形的四条边都相等时,这样的矩形才能被称为正方形。对于矩阵可逆来说,一个矩阵要可逆,最基本的前提:必须满足矩阵的行列相等,矩阵必须是一个方阵才行。研究方阵的可逆,对于实际

矩阵的开题报告doc

矩阵的开题报告 篇一:矩阵变换及应用开题报告 鞍山师范学院 数学系 13届学生毕业设计(论文)开题报告 课题名称:浅谈矩阵的变换及其应用 学生姓名:李露露 专业:数学与应用数学 班级:10级1班 学号: 30 指导教师:裴银淑 XX年 12月 26日 一、选题意义 1、理论意义: 矩阵是数学中的一个重要内容,是线性代数核心。矩阵的变换是矩阵中一种 十分重要的运算,它在解线性方程组求逆矩阵及矩阵理论的探讨中都可起到 非常重要的作用。很多复杂、繁琐的问题经过变换都可以化为简单、易于解 决的问题。因此,矩阵变换是研究代数问题的一个重要工具。 2、现实意义:

矩阵变换在物理、力学、信号与信息处理、通信、电子、系统、控制、模式 识别、土木、电机、航空航天等众多学科中式最富创造性和灵活性,并起着 不可代替的作用。 二、论文综述 1、国内外有关研究的综述: 矩阵不仅是个数学学科,而且也是许多理工学科的重要数学工具,因此国内 外有许多有关于矩阵的研究。英国数学家西尔维斯特首先使用了“矩阵”一词, 他与矩阵论的创立者凯莱一起发展了行列式理论。1858年,凯莱发表了关于矩 阵的第一篇论文《矩阵论的研究报告》。自此以后,国内外有了许多关于矩阵的 研究。在张贤达所著的《矩阵分析与应用》一书中,就有关于矩阵变换的内容, 在第一章中有关于矩阵初等变换的内容,并有初等变换在矩阵方程中的应用,在 第四章中也提到了Householder变换和Givens旋转。美国著名的约翰斯.霍普金 斯大学的RogerA.Horn和威廉姆和玛丽学院的

CharlesR.Johnson联合编著的《矩 阵分析》也有关于矩阵变换的内容,此书主要涉及的是矩阵变换的应用。国内外 关于矩阵变换的研究都取得了很大的进展,为矩阵知识所涉及的各个领域都作出 了巨大贡献。 2 、本人对以上综述的评价: 矩阵理论一直都是各个学科的基本数学工具,矩阵变换是矩阵理论的基础, 近年来有许多关于矩阵变换的研究,这些研究将一些繁琐复杂的问题简单化,也 极大地推进和丰富了电子信息、航空航天等领域的发展,同时促进了更多的数学 家加入到研究矩阵变换的队伍中,这样就使得矩阵变换知识日渐完善,并应用到 更多的领域中去。 三、论文提纲 前言 (一)、矩阵初等变换及应用 1、矩阵初等变换的基本概念 2、初等变换在方程组中的应用 3、初等变换在向量组中的应用

四元数正规矩阵的几个定理

四元数正规矩阵的几个定理1 邹黎敏,陈香萍,伍俊良,李声杰 重庆大学数理学院,重庆(400044) E-mail :zlmlohr@https://www.360docs.net/doc/1811866455.html, 摘 要:利用四元数正规矩阵可对角划的性质,得到了四元数正规矩阵的一些性质及判定准则。同时获得了四元数正规矩阵弱直积,矩阵方程,特征值的几个定理。 关键词: 四元数体,正规矩阵,弱直积,特征值 中图分类号: O241.6 文献标识码: A 1.引言与符号约定 近年来,人们对于四元数体上代数问题的研究非常深入,不仅仅是由于四元数乘积的非交换特性这一现象引起了人们对四元数代数问题的广泛兴趣(参考[1-3]),同时还因为四元数本身在众多的应用问题中也存在广泛的联系,如四元数在量子力学,刚体力学方面的应用,四元数在计算机图形图像处理和识别方面的应用,四元数在空间定位方面的应用等,也促使人们对四元数代数问题加以研究(参见[4-8])。 四元数矩阵的研究是四元数代数理论中的一个重要方面,特别在自共轭四元数矩阵的特征值、奇异值、合同、正定性以及自共轭四元数矩阵的子式等方面有着广泛的研究[文9-14]。但很少有文献对四元数正规矩阵进行研究。本文借助于四元数体上正规矩阵的概念以及相似分解,给出了四元数正规矩阵的一些性质和判定准则,得到了四元数正规矩阵弱直积,合同化简以及特征值不等式的几个定理。 文中用R 表示实数域,C 表示复数域,H 表示R 上的四元数体,R 和H 上n 阶矩阵的全体分别记为n n R ×和n n H ×,*'A A =表示A 的共轭转置,k a j a i a a a 3210+++=表示实四元数(3210,,,a a a a 为实数) ,用α和n I 分别表示H 上任意n 维四元数列向量和n 阶单位矩阵,)Re(a 表示a 和实部,* a 表示a 的共轭四元数,* α表示α的共轭转置向量, a a a N *)(=和N (α)=αα*分别表示a 和α的范数。 2.一些定义和引理 定义 1. 设n n H A ×∈,如果**AA A A =,则称A 是正规矩阵,则易知自共轭四元数矩阵,斜自共轭矩阵和下面定义的酉矩阵均为正规矩阵。 定义2. 设n n H A ×∈,如果n I AA A A ==* * ,则称A 是H 上的一个n 阶酉矩阵,其全体记为()u n H ,。 定义3[10] . 设() ij m n A a ×=与() ij p q B b ×=是H 上的矩阵,称H 上mp nq ×阵 1 本课题得到国家自然科学基金(60574073和10471142)和重庆市科委科学研究基金(CSTC,2005CF9057)的资 助。

矩阵的基本概念

§1 矩阵及其运算 教学要求:理解矩阵的定义、掌握矩阵的基本律、掌握几类特殊矩阵(比如零矩阵,单位矩阵,对称矩阵和反对称矩阵 ) 的定义与性质、注意矩阵运算与通常数的运算异同。能熟练正确地进行矩阵的计算。 知识要点: 一、矩阵的基本概念 矩阵,是由个数组成的一个行列的矩形表格,通常用大写 字母表示,组成矩阵的每一个数,均称为矩阵的元素,通常 用小写字母其元素表示,其中下标都是正整数, 他们表示该元素在矩阵中的位置。比如,或 表示一个矩阵,下标表示元素位于该矩阵的第行、第列。元素全为零的矩阵称为零矩阵。 特别地,一个矩阵,也称为一个维列向量;而一个矩阵,也称为一个维行向量。

当一个矩阵的行数与烈数相等时,该矩阵称为一个阶方阵。对于方阵,从左上角到右下角的连线,称为主对角线;而从左下角到右上角的连线称为付对角线。若一个阶方阵的主对角线上的元素 都是,而其余元素都是零,则称为单位矩阵,记为,即: 。如一个阶方阵的主对角线上(下)方的元 素都是零,则称为下(上)三角矩阵,例如,是 一个阶下三角矩阵,而则是一个阶上三角 矩阵。今后我们用表示数域上的矩阵构成的集合, 而用或者表示数域上的阶方阵构成的集合。 二、矩阵的运算 1、矩阵的加法:如果是两个同型矩阵(即它们具 有相同的行数和列数,比如说),则定义它们的和 仍为与它们同型的矩阵(即),的元素为和 对应元素的和,即:。

给定矩阵,我们定义其负矩阵为:。这样我们 可以定义同型矩阵的减法为:。由于矩阵的加法运算归结为其元素的加法运算,容易验证,矩阵的加法满足下列运算律: ( 1)交换律:; ( 2)结合律:; ( 3)存在零元:; ( 4)存在负元:。 2 、数与矩阵的乘法: 设为一个数,,则定义与的乘积仍 为中的一个矩阵,中的元素就是用数乘中对应的 元素的道德,即。由定义可知:。容易验证数与矩阵的乘法满足下列运算律: (1 ); (2 ); (3 ); (4 )。

矩阵的各种运算详解.

一、矩阵的线性运算 定义1 设有两个矩阵和,矩阵与的和记作, 规定为 注:只有两个矩阵是同型矩阵时,才能进行矩阵的加法运算. 两个同型矩阵的和,即为两个矩阵对应位置元素相加得到的矩阵. 设矩阵记 , 称为矩阵的负矩阵, 显然有 . 由此规定矩阵的减法为 . 定义2 数与矩阵A的乘积记作或, 规定为 数与矩阵的乘积运算称为数乘运算. 矩阵的加法与矩阵的数乘两种运算统称为矩阵的线性运算. 它满足下列运算规律:设都是同型矩阵,是常数,则 (1) (2) ; (3) (4) (5) (6) (7) (8) 注:在数学中,把满足上述八条规律的运算称为线性运算. 二、矩阵的相乘 定义3设 矩阵与矩阵的乘积记作, 规定为

其中,( 记号常读作左乘或右乘. 注: 只有当左边矩阵的列数等于右边矩阵的行数时, 两个矩阵才能进行乘法运算. 若,则矩阵的元素即为矩阵的第行元素与矩阵的第列对应元素乘积的和. 即 . 矩阵的乘法满足下列运算规律(假定运算都是可行的): (1) (2) (3) (4) 注: 矩阵的乘法一般不满足交换律, 即 例如, 设则 而 于是且 从上例还可看出: 两个非零矩阵相乘, 可能是零矩阵, 故不能从必然推出 或 此外, 矩阵乘法一般也不满足消去律,即不能从必然推出例如, 设 则 但 定义4如果两矩阵相乘, 有 则称矩阵A与矩阵B可交换.简称A与B可换. 注:对于单位矩阵, 容易证明 或简写成 可见单位矩阵在矩阵的乘法中的作用类似于数1. 更进一步我们有 命题1设是一个n阶矩阵,则是一个数量矩阵的充分必要条件是与任何n阶矩阵可换。

命题2设均为n阶矩阵,则下列命题等价: (1) (2) (3) (4) 三、线性方程组的矩阵表示 设有线性方程组 若记 则利用矩阵的乘法, 线性方程组(1)可表示为矩阵形式: (2) 其中矩阵称为线性方程组(1)的系数矩阵. 方程(2)又称为矩阵方程. 如果是方程组(1)的解, 记列矩阵 则 , 这时也称是矩阵方程(2)的解; 反之, 如果列矩阵是矩阵方程(2)的解, 即有矩阵等式 成立, 则即也是线性方程组(1)的解. 这样, 对线性方程组(1)的讨论便等价于对矩阵方程(2)的讨论. 特别地, 齐次线性方程组可以表示为 将线性方程组写成矩阵方程的形式,不仅书写方便,而且可以把线性方程组的理论与矩阵理论联系起来,这给线性方程组的讨论带来很大的便利. 四、矩阵的转置 定义6把矩阵的行换成同序数的列得到的新矩阵, 称为的转置矩阵, 记作(或 ). 即若 则

一般矩阵可逆的判定

一般矩阵可逆的判定 Good (11统计数学与统计学院 1111060231) 摘要:作为一张表,矩阵的运算规则具有特殊性。在运算的过程中,逆矩阵则是作为矩阵乘法的逆运算而存在的。由于矩阵乘法的逆运算仅限于方阵,故而逆矩阵又作为一项特殊的矩阵除法运算而存在。对于矩阵的运算来说,逆矩阵是不可缺少的一部分。在以线性代数为基础的研究中,逆矩阵是解决实际问题的一个最直观,最实用的工具。然而在实际研究中,并不是所有方阵都存在逆矩阵,那么对于矩阵可逆的判定就显得极其重要了。 关键字:n阶方阵A;A≠0;r A=n;?λn≠0;AB=BA=I n 0 引言 逆矩阵是矩阵乘法逆运算的结果。这个逆运算的过程被作为矩阵运算的一部分而不可或缺。对于所有矩阵而言,只有方阵中可逆的那部分才存在逆矩阵;就好像四边形一样,只有当矩形的四边相等才能被叫做正方形。然而也就是这很特殊的一小部分,它的运用却充斥着所有与线性代数相关的领域。比如:物理学,经济学,统计学,数学,社会管理学等等。对于矩阵的运算来说,逆矩阵的运算至关重要。由于矩阵在实际运用中具有的重要作用,而逆矩阵对于矩阵来说又具有重要的作用。在以矩阵为研究对象的研究过程中,研究逆矩阵也就有了很重要的意义。 对于研究逆矩阵的过程中,“什么样的矩阵才可逆?”是值得深讨的问题。就像求四边形中的正方形一样,要求正方形,最基本的前提就是:四边形必须是矩形。只有四边形满足四个内角都是90度的时候,四边形才称的上是矩形。而对于矩形来说,只有满足矩形的四条边都相等时,这样的矩形才能被称为正方形。对于矩阵可逆来说,一个矩阵要可逆,最基本的前提:必须满足矩阵的行列相等,矩阵必须是一个方阵才行。研究方阵的可逆,对于实际应用才存在实际意义。那么对于方阵来说,又需要满足什么样的条件,方阵才可逆呢?本文也就是从可逆矩阵的判定条件入手,着重分析可逆判定的充要条件。最后介绍几种常用的求解逆矩阵的方法。 1 矩阵的概念 1.0矩阵的定义 定义1:令F是一个数域,用F上的m×n个数a ij(i=1,2,?,m;j=1,2,?,n)排成m行n列的矩阵列,则称为m×n阵,也称为一个F上的矩阵,简记为A mn。 A=a11a12 a21a22 ?a1n ?a2n ?? a m1a m2 ?? ?a mn 1.1逆矩阵的定义 定义2:设A是数域F上的n阶方阵,若数域F上同时存在一个n阶方阵B,使得 AB=BA=I n 则称B是A的逆矩阵,记作:B=A?1。

矩阵式组织结构.doc

矩阵式组织结构 新华网(2003-03-19)来源:中华工商时报 矩阵式结构的出现是企业管理水平的一次飞跃。当环境一方面要求专业技术知识,另一方面又要求每个产品线能快速做出变化时,就需要矩阵式结构的管理。前面我们讲过,职能式结构强调纵向的信息沟通,而事业部式结构强调横向的信息流动,矩阵式就是将这两种信息流动在企业内部同时实现。 在实际操作中,这种双重管理的结构建立和维持起来都很困难,因为有权力的一方常常占据支配地位。因此比较成熟的矩阵式管理模式为带有项目/产品小组性质的职能型组织。职能部门照常行使着管理职能,但公司的业务活动是以项目的形式存在的。项目由项目经理全权负责,他向职能经理索要适合的人力资源,在项目期间,这些员工归项目经理管理。而职能经理的责任是保证人力资源合理有效的利用。 与前两种结构不同,矩阵式结构很少能从组织结构图中判断出来,需要根据企业具体的管理行为加以判断。而企业是否应该实行矩阵式管理,应该依据下面三个条件加以判断:条件一:产品线之间存在着共享希缺资源的压力。该组织通常是中等规模,拥有中等数量的产品线。在不同产品共同灵活地使用人员和设备方面,组织有很大压力。比如,组织并不足够大,不能为每条产品线安排足够的工程师,于是工程师以兼职项目服务的形式被指派承担产品服务。 条件二:环境对两种或更多的重要产品存在要求。例如对技术质量和产品快速更新的要求。这种双重压力意味着在组织的职能和产品之间需要一种权力的平衡。为了保持这种平衡就需要一种双重职权的结构。 条件三:组织所处的环境条件是复杂和不确定的。频繁的外部变化和部门之间的高度依存,要求无论在纵向还是横向方面要有大量的协调与信息处理。 根据上面的条件可以看出,提供咨询服务的公司最适合采用矩阵式结构。例如中型规模的咨询公司,这样的公司规模在几十人至上百人,咨询顾问可以根据业务专业划分为不同的职能团队,例如财务咨询,生产、工程咨询,管理咨询小组。由于咨询顾问的成本较高,优秀的咨询顾问资源相对稀缺,而咨询公司没有统一的产品,需要根据客户的具体情况进行二次设计,每一个项目都是一个全新的产品,无法通过流水线作业完成。而且,产品的质量需要由项目经理和职能经理共同控制。矩阵式的结构能最好的满足以上的条件。 矩阵式结构的优势在于它能使人力、设备等资源在不同的产品/服务之间灵活分配,组织能够适应不断变化的外界要求。这种结构也给员工提供了获得职能和一般管理的两方面技能。在矩阵式组织里,关键组织成员的角色定位非常重要。这些关键组织成员包括:高层领导者、矩阵主管和员工。 高层领导者的主要职责是维持职能经理和产品经理之间的权力平衡。高层领导者也必须愿意进行决策委托,鼓励职能经理和产品经理直接接触,共同解决问题,这将有助于信息共享和协调。 矩阵主管的问题在于如何控制他们的下属。由于下属接受两个主管同时领导,不自觉的员工会利用这个机会钻空子,造成主管对他的管理真空化。因此,职能和产品主管必须一起工作,解决问题。职能主管主要解决下属的技术水平问题,而项目主管则具体管理下属在这个项目上的行为、工作结果和绩效。这些活动需要大量的时间、沟通、耐心以及和别人共同工作的技巧,这些都是矩阵管理的一部分。 员工接受双重领导,经常能体会到焦虑与压力。他的两个直接经理的命令经常会发生冲突。这时双重主管的员工必须能够面对产品经理和职能经理的指令,形成一个综合决策来确定如何分配他的时间。员工们必须和他的两个主管保持良好关系,他们应该显示出对这两个主管的双重忠诚。

矩阵多项式与多项式矩阵

§8矩阵多项式与多项式矩阵 设A 是n 阶阵,则为矩阵A 的特征多项式 事实上,n n n n a a a A E f ++++=-=--λλλλλ111)( 因此有 一、Hamilton -Cayley Th (哈密顿—开莱) Th 2.每个n 阶矩阵A ,都是其特征多项式的根,即 0111=++++--E a A a A a A n n n n (矩阵) 注:该定理旨在用于:当一个n 阶矩阵的多项式次数高于n 次时,则可用该定理将它化为次数小于n 的多项式来计算。 eg 1.设???? ? ??-=010110201A 试计算E A A A A A 432)(2458-++-=? 解:A 的特征多项式为 12)(23+-=-=λλλλA E f 取多项式432)(2 458-++-=λλλλλ? )()()149542(235λλλλλλr f +?-+-+= 余项103724)(2+-=λλλr 由上定理0)(=A f ???? ? ??----=+-==∴346106195026483103724)()(2E A A A r A ? Df 2.一般地,设)(λ?是多项式,A 为方阵,若0)(=A ?,则称)(λ?是矩阵A 的零化多项式。 根据定义:每个矩阵都有其零化多项式,即A E f -=λλ)( Df 3.设A 是n 阶矩阵,则的首项系数为1的次数最小的零化多项式)(λm ,称为A 的最小多项式。 显然:①矩阵A 的零化多项式都被其最小多项式整除。 ②矩阵A 的最小多项式是唯一的 Th 3.矩阵A 的最小多项式的根必是A 的特征根;反之,A 的特征根也必是A 的最小多项式的根——特征多项式与最小多项式之间的关系。 由此可得,求最小多项式的一个方法: 设n n C A ?∈,其所有不同的特征值为s λλλ,,,21 ,则其特征多项式为ks s k k A E f )()()()(2121λλλλλλλλ---=-=

可逆矩阵判定典型例题

典型例题(二)方阵可逆的判定 例1 设A 是n 阶方阵, 试证下列各式: (1)若0||≠A , 则 T T A A )()(11--=; (2)若A 、B 都是n 阶可逆矩阵, 则* **)(A B AB =; (3) T T A A )()(**=; (4)若0||≠A , 则* 11*)()(--=A A ; (5) * 1*)1()(A A n --=-; (6)若0||≠A , 则l l A A )()(11--=(l 为自然数); (7) * 1*)(A k kA n -=. 证 (1)因为0||≠A , 故A 是可逆矩阵, 且 E AA =-1 两边同时取转置可得 E E A A AA T T T T ===--)()()(11 故由可逆矩阵的定义可知 T A )(1-是A T 的逆矩阵. 即 1 1)()(--=T T A A (2)利用方阵与其对应的伴随矩阵的关系有 E AB AB AB ||)()(*= (2-7) 另一方面 B I A B B A A B AB A B )|(|)())((*****== E AB E B A B B A |||| ||||*=== (2-8) 比较式(2-7)、(2-8)可知 ))(()()(***AB A B AB AB = 又因为A 、B 均可逆, 所以(AB )也可逆, 对上式两端右乘1 )(-AB 可得 ***)(A B AB = (3)设n 阶方阵A 为 ?????????? ????=nn n n n n a a a a a a a a a A 2 1 2222111211 于是可得A 的伴随矩阵* A 为

矩阵

//显示矩阵按键移位动态// #include #define GPIO_DIG P0 #define GPIO_KEY P1 sbit LSA=P2^2; sbit LSB=P2^3; sbit LSC=P2^4; unsigned char code DIG_CODE[17]={ 0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07, //0、1、2、3、4、5、6、7、8、9、A、b、C、d、E、F的显示码 0x7f,0x6f,0x77,0x7c,0x39,0x5e,0x79,0x71}; unsigned char KeyValue; unsigned char KeyState; //记录按键的状态,0没有,1有 unsigned char DisplayData[8]; void Delay10ms(unsigned int c); //误差0us void KeyDown(); //检测按键函数 void DigDisplay(); //动态显示函数 void main(void) { KeyState=0; while(1) { KeyDown(); if(KeyState==1) { DisplayData[7]=DisplayData[6]; DisplayData[6]=DisplayData[5]; DisplayData[5]=DisplayData[4]; DisplayData[4]=DisplayData[3]; DisplayData[3]=DisplayData[2]; DisplayData[2]=DisplayData[1]; DisplayData[1]=DisplayData[0]; DisplayData[0]=DIG_CODE[KeyValue]; KeyState=0; } DigDisplay(); } }

矩阵的运算及其运算规则

矩阵基本运算及应用 201700060牛晨晖 在数学中,矩阵是一个按照长方阵列排列的或集合。矩阵是高等代中的常见工具,也常见于统计分析等应用数学学科中。在物理学中,矩阵于电路学、、光学和中都有应用;中,制作也需要用到矩阵。矩阵的运算是领域的重要问题。将为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算。在电力系统方面,矩阵知识已有广泛深入的应用,本文将在介绍矩阵基本运算和运算规则的基础上,简要介绍其在电力系统新能源领域建模方面的应用情况,并展望随机矩阵理论等相关知识与人工智能电力系统的紧密结合。 1矩阵的运算及其运算规则 1.1矩阵的加法与减法 1.1.1运算规则 设矩阵,, 则

简言之,两个矩阵相加减,即它们相同位置的元素相加减! 注意:只有对于两个行数、列数分别相等的矩阵(即同型矩阵),加减法运算才有意义,即加减运算是可行的. 1.1.2运算性质 满足交换律和结合律 交换律; 结合律. 1.2矩阵与数的乘法 1.2.1运算规则 数乘矩阵A,就是将数乘矩阵A中的每一个元素,记为或. 特别地,称称为的负矩阵. 1.2.2运算性质 满足结合律和分配律

结合律:(λμ)A=λ(μA);(λ+μ)A =λA+μA. 分配律:λ(A+B)=λA+λB. 1.2.3典型举例 已知两个矩阵 满足矩阵方程,求未知矩阵. 解由已知条件知 1.3矩阵与矩阵的乘法 1.3.1运算规则 设,,则A与B的乘积是这样一个矩阵: (1) 行数与(左矩阵)A相同,列数与(右矩阵)B相同,即 .

(2) C的第行第列的元素由A的第行元素与B的第列元素对应相乘,再取乘积之和. 1.3.2典型例题 设矩阵 计算 解是的矩阵.设它为 可得结论1:只有在下列情况下,两个矩阵的乘法才有意义,或说乘法运算是可行的:左矩阵的列数=右矩阵的行数;结论2在矩阵的乘法中,必须注意相乘的顺序.即使在与均有意义时,也未必有=成立.可见矩阵乘法不满足交换律;结论3方阵A和它同阶的单位阵作乘积,结果仍为A,即. 1.3.3运算性质(假设运算都是可行的)

矩阵可逆的一个充分必要条件的几种讲法

矩阵可逆的一个充分必要条件的几种讲法 不论是在线性代数的教学中还是高等代数的教学中,矩阵的相关内容都是十分重要的。而其中矩阵可逆的部分又是要重点讲授的,因为逆矩阵在讨论研究矩阵问题时有重要作用。在矩阵可逆的这部分内容中,矩阵可逆及逆矩阵的定义是必然要介绍的,而矩阵可逆的条件中有一个充分必要条件即一个方阵可逆的充分必要条件是它的行列式不等于零是一定会讲授的,也是应用较多的,因此要求同学们一定理解掌握。 而就这一个充分必要条件不同的教师有不同的讲法,本文根据自己的体会,介绍了这一个充分必要条件的三种讲法并进行了一定的对比分析。 第一种讲法是非常常见的,很多教师都采用,特别是刚开始 教线性代数的新教师。我在第一次教这部分时也用的是这种讲法。首先介绍了矩阵可逆的定义[1],即设A为n阶方阵,如果存在n阶方阵B,使得AB=BA=E(E是n阶单位矩阵),则称方阵A是可逆的,而B称为A的逆矩阵。在同学们知道理解了矩阵可逆及逆矩阵概念后,就引入介绍矩阵可逆的条件,我们主要介绍矩阵可逆的一个常用的充分必要条件。而为了介绍这个充分必要条件,首先需要介绍一个相关的内容,那就是伴随矩阵的相关概念[2] 。对于伴随矩阵首先介绍伴随矩阵的定义: 设矩阵A,则称矩阵为A的伴随矩阵,其中Aij是矩阵A中元素

aij 的代数余子式。 接着介绍伴随矩阵的一个重要性质:同时给出其证明:事实 上,由代数余子式的性质同理可得,所以。 这样准备工作已做好,就来讲最重要的矩阵可逆的充分必要条件。 定理(矩阵可逆的充分必要条件)矩阵 A 可逆的充分必要条 件是,且。 证明:(必要性)若,且,则,故 A 可逆且。 (充分性)若 A 可逆,,那么,因此。 以上是第一种讲法的基本过程,当然这其中还有很多教师的引导讲解,这里未体现。但这种讲法的讲授思路和顺序基本按照教材中给出的顺序来讲,其实就是直接教授给学生们概念和结论,让学生们去理解应用,缺乏探究这些结论的过程。而第二种讲法恰恰是由矩阵可逆的定义出发按照正常的推理过程得到了矩阵可逆的充分必要条件。 第二种讲法首先仍是介绍矩阵可逆的定义,接着就探究矩阵可逆的充分必要条件。探究过程如下: 由矩阵可逆的定义,要想方阵 A 可逆,首先得找出同阶方阵B,使得AB=E再看BA是否也等于E。那么我们假设A=, B=, 那么由矩阵乘法,AB的第i行第j列(i , j=1 , 2,…,n)元素应该是(1) 此时引导学生从已有知识中寻找与该问题类似或相关的内容来

各种矩阵

等价矩阵 线性代数和矩阵论中,两个矩阵之间的等价是一种矩阵之间的等价关系。假设有 两个的矩阵,记作A和B。它们之间等价当且仅当存在两个可逆的方块矩阵:的矩阵P以及的矩阵Q,使得 相似关系有所不同。如果两个矩阵A和B相似,那么它们一定是等价矩阵,因为按照矩阵相似的定义,可以找到一个可逆矩阵P,使得 由于其中的P-1也是可逆的矩阵,所以A和B相似必然推出它们等价。但是,等价的矩阵不一定是相似的。首先相似的两个矩阵必须是大小相同的两个方块矩阵,而等价矩阵则没有这个要求。其次,即使两个等价矩阵都是同样大小的方阵,中用到的Q也不一定是P的逆矩阵。 性质 等价关系。 两个矩阵等价当且仅当: 其中一者能够经过若干次初等行或列变换变成另一者。 它们有相同的秩。 参见 相似矩阵 合同矩阵 这是与数学相关的小作品。你可以通过编辑或修订扩充其内容。 相似矩阵 线性代数中,相似矩阵是指存在相似关系的矩阵。相似关系是两个矩阵之间的一种等价关系。两个n×n矩阵A与B为相似矩阵当且仅当存在一个n×n的可逆矩阵P,使得: 或

矩阵A与B之间的相似变换矩阵。 相似矩阵保留了矩阵的许多性质,因此许多对矩阵性质的研究可以通过研究更简单的相似矩阵而得到解决。 严格定义 域为K的n×n的矩阵A与B为域L上的相似矩阵当且仅当存在一个系数域为L 的n×n的可逆矩阵P,使得: 矩阵A与B“相似”。B称作A通过相似变换矩阵:P得到的矩阵。术语相似变换的其中一个含义就是将矩阵A变成与其相似的矩阵B。 性质 等价关系,也就是说满足: 1反身性:任意矩阵都与其自身相似。 2对称性:如果A和B相似,那么B也和A相似。 3传递性:如果A和B相似,B和C相似,那么A也和C相似。 子域,A和B是两个系数在K中的矩阵,则A和B在K上相似当且仅当它们在L 上相似。这个性质十分有用:在判定两个矩阵是否相似时,可以随意地扩张系数域至一个代数闭域,然后在其上计算若尔当标准形。 置换矩阵,那么就称A和B“置换相似”。如果两个相似矩阵A和B之间的转换矩阵P是一个酉矩阵,那么就称A和B“酉相似”。谱定理证明了每个正交矩阵都酉相似于某个对角矩阵。 相似变换下的不变性质 两个相似的矩阵有许多相同的性质: ?两者的秩相等。 ?两者的行列式相等。 ?两者的迹数相等。 ?两者拥有同样的特征值,尽管相应的特征向量一般不同。 ?两者拥有同样的特征多项式。 ?两者拥有同样的初等因子。 这种现象的原因有两个: ?两个相似的矩阵可以看做是同一个线性变换的“两面”,即在两个不同的基下的表现。 ?映射X P?1XP是从n阶方阵射到n阶方阵的一个双射同构,因为P 是可逆的。 可对角化的,如果它与一个对角矩阵相似。不是所有的矩阵都可以对角化,但至少在复数域(或任意的代数闭域)内,所有的矩阵都相似于一些被称为若尔当标准形的简单的矩阵。另一种标准形:弗罗贝尼乌斯标准形则在任意的域上都适用。只要查看A和B所对应的标准形是否一致,就能知道两者是否相似。 参见 ?合同矩阵

人力资源矩阵.doc

矩阵式人力资源管理 一、什么是矩阵式人力资源管理 矩阵有两个维度:纵向和横向。横向是人力资源部服务的企业内部客户,如营销部门、研发部门、生产部门、其他职能部门等。纵向是人力资源部工作的职能,如人事、招聘、培训、薪资、绩效等。在5*N构成的表格里,不同年份的不同季度,把当前的重点工作进行标识,运用内部咨询项目的方式开展工作,叫做矩阵式人力资源管理。 人力资源部的工作分为日常和重点,人力资源是业务的配套,随着业务发展的阶段变化,工作重点会有相应的偏向性。 矩阵 二、矩阵式人力资源管理的意义 传统的人力资源管理是单维的,建立在职能划分基础上。如人事、招聘、培训、薪资、绩效等。根据教科书而来。一方面没有划分日常工作和重点项目,更重要的是,没有关注企业内部各大部门的区别,和不同时间段各大部门由于业务的变化而对人力资源部工作的需求的变化。缺少对业务变化的观察和需求捕捉的敏感性。导致在资源配置上,不能集中性的确定目标和实现目标,也忽视根据不同部门不同人群的特点采取差异化的措施。 教科书的设计,在于建立系统而全面的柜子和抽屉。但企业的重点在于实施,实施讲究有所为,有所不为。 矩阵式的思维,能够促使人力资源部的工作去追随业务的节拍。而不是脱节。而每个年份每个季度,矩阵里的不同格子究竟要做什么重点项目,就促使人力资源部经理经常去思考企业整体的发展,各大部门当前的需求,从而使战略这个概念性的东西,能建立在扎实的基础上。 从农事规律的角度,春耕、夏种、秋收、冬藏,种瓜得瓜,种豆得豆。 技能矩阵,让培训管理有的放矢 最近,集团人力总监罗总意识到了我们HR系统的专业基础较为薄弱,于是要求培训部制订与组织实施HR 队伍的提升计划。培训部接到任务一想:既然是底子薄,那就补充HR专业课程所需结构化的知识呗!于是左找右算,总算请来了南昌大学经济与管理学院的副院长何筠教授来给我们在周日上课,课程很全面,从人力资源规划、工作分析、招聘与选拔,再到绩效薪酬,应有尽有。罗总对HR队伍的成长也很关注,每次周日上完课后他都会去问问自己的秘书(秘书同时也兼着公司HR职位)这课老师讲得怎么样,对他自己有无帮助,秘书总是很开心地告诉他讲得很好,很有用。可是过了一阵子后,罗总又听到有人跟他反映这个老师讲的一点都不好,全是理论层面的东西,泛泛之谈,对企业实际的人力资源管理操作一点帮助都没有。好了,领导一听这话就犯难了,没办法,于是召集大家开个讨论会,听听大家的意见,讨论的主题是——老师的课讲的好不好,好,请举例说明,不好也请呈出事实。通过对大家的意见收集来决定是否继续这个培训计划。

相关文档
最新文档