1.3.1函数的最值 教学设计

1.3.1函数的最值 教学设计
1.3.1函数的最值 教学设计

《函数的最大(小)值与导数》教案完美版

《函数的最大(小)值与导数》教案 §1.3.3 函数的最大(小)值与导数(1) 【教学目标】 1.使学生理解函数的最大值和最小值的概念,掌握可导函数)(x f 在闭区间[]b a ,上所有点(包括端点b a ,)处的函数中的最大(或最小)值必有的充分条件; 2.使学生掌握用导数求函数的极值及最值的方法和步骤. 【教学重点】利用导数求函数的最大值和最小值的方法. 【教学难点】函数的最大值、最小值与函数的极大值和极小值的区别与联系. 【教学过程】 一、复习引入: 1.极大值: 一般地,设函数f (x )在点x 0附近有定义,如果对x 0附近的所有的点,都有f (x )<f (x 0),就说f (x 0)是函数f (x )的一个极大值,记作y 极大值=f (x 0),x 0是极大值点. 2.极小值:一般地,设函数f (x )在x 0附近有定义,如果对x 0附近的所有的点,都有f (x )>f (x 0).就说f (x 0)是函数f (x )的一个极小值,记作y 极小值=f (x 0),x 0是极小值点. 3.极大值与极小值统称为极值 注意以下几点: (ⅰ)极值是一个局部概念.由定义,极值只是某个点的函数值与它附近点的函数值比较是最大或最小.并不意味着它在函数的整个的定义域内最大或最小. (ⅱ)函数的极值不是唯一的即一个函数在某区间上或定义域内极大值或极小值可以不止一个. (ⅲ)极大值与极小值之间无确定的大小关系.即一个函数的极大值未必大于极小值,如下图所示,1x 是极大值点,4x 是极小值点,而)(4x f >)(1x f . (ⅳ)函数的极值点一定出现在区间的内部,区间的端点不能成为极值点. 而使函数取得最大值、最小值的点可能在区间的内部,也可能在区间的端点. 4. 判别f (x 0)是极大、极小值的方法: 若0x 满足0)(0='x f ,且在0x 的两侧)(x f 的导数异号,则0x 是)(x f 的极值点,)(0x f 是极值,并且如果)(x f '在0x 两侧满足“左正右负”,则0x 是)(x f 的极大值点,)(0x f 是极大值;如果)(x f '在0x 两侧满足“左负右正”,则0x 是)(x f 的极小值点,)(0x f 是极小值. 5. 求可导函数f (x )的极值的步骤: (1)确定函数的定义区间,求导数f ′(x ); (2)求方程f ′(x )=0的根; (3)用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列成表格.检查f ′(x )在方程根左右的值的符号,如果左正右负,那么f (x )在这个根处取得极大值;如果左负右正,那么f (x )在这个根处取得极小值;如果左右不改变符号即都为正或都为负,那么f (x ) 在这个根处无极值. 二、讲解新课: 1.函数的最大值和最小值

《与三角函数有关的最值问题》复习课教学设计

《与三角函数有关的最值问题》复习课教学设计 湖南师大第二附属中学刘海军 一.教学分析 三角函数的最值与值域问题,是历年高考重点考查的知识点之一,是对三角函数的概念、图象、性质以及诱导公式、同角三角函数间的关系、两角和与差公式的综合考查,是函数最值的一个重要组成部分.三角函数的最值与值域问题不仅与三角自身的所有基础知识密切相关,而且与前面复习过的函数、不等式、联系密切,综合性强,解法灵活,能力要求高,在复习完三角公式后,把三角函数的最值与值域作为专题复习,不仅可以帮助学生灵活运用三角公式,而且可以帮助学生掌握求最值和值域的方法,综合能力得到增强。 二.教学目标 1.知识与技能:正确理解三角函数的有关概念,掌握三角函数的基本概念、公式、图象及性质,并能综合运用这些概念,公式及性质解决实际问题. 2.过程与方法:在教学过程中,让学生学会运用数形结合思想、函数和方程的数学思想 来分析解决数学问题;培养学生的观察能力、动手能力、创新能力和归纳能力. 3.情感态度与价值观:通过例题的分析,方法的归纳,激发学生主动参与、主动探索的意识,使学生始终在动态过程中去感受知识、巩固知识、运用知识,提高45分钟的效率. 三.教学重点、难点 教学重点:求三角函数的最大、最小值. 教学难点:针对各题,会观察题中特点,正确运用相应方法求三角函数最值. 四.课型及课时安排 高三复习课,2课时:第1课时. 五.教学方法设计 综合启发教学,边教边让学生参与,学会对知识的归纳;强调教师为主导、学生为主体的互动原则,充分调动学生的积极性,发挥学生的主动性和创造性. 六.学情分析 高三学生对三角函数这部分知识比较熟悉.但学生对知识的前后联系,有效方法的选择,分析问题的内涵,综合运用知识的能力还很薄弱.学生对知识的归纳整理能力比较欠缺,所以对三角函数最值的几个基本类型需要进行归纳和整理,以便学生能够更好的掌握.

函数的值域和最值教案

函数的值域和最值教案 【教学目标】1.让学生了解求函数值域(最值)常用的方法; 2.让学生了解各种方法的适用题型,并能灵活运用各种方法解函数的值域. 【教学重点】直接法、利用函数单调性求值域(最值)、数形结合法 【教学难点】判别式法和数形结合方法的使用 【例题设置】例1(强调定义域的重要性),其它例题主要指出各种方法适用的题型及 注意点. 【教学过程】 第一课时 〖例1〗已知函数3()2log f x x =+(19x ≤≤),求函数22()[()]()g x f x f x =+的最值. 错解:令3log [0,2]t x =∈,则 22222233()[()]()(2log )(2log )(2)22(3)3g x f x f x x x t t t =+=+++=+++=+- ∴当0t =时,min ()6g x =;当2t =时,max 2()()|22t g x g x ===. 错因分析:当2t =时,9x =,2(9)[(9)](81)g f f =+无意义.产生错误的原因主要是忽略了定义域这个前提条件. 正解:由2 1919 x x ≤≤??≤≤?,得()g x 的定义域为[1,3],3log [0,1]t x =∈,则 22222233()[()]()(2log )(2log )(2)22(3)3g x f x f x x x t t t =+=+++=+++=+- ∴当0t =时,min ()6g x =;当1t =时,max 2()()|13t g x g x ===. ★点评:1.求函数的值域(最值)同样得在定义域上进行; 2.运用换元法解题时,一定要注意元的取值范围,这步较容易被忽略; 3.配方法是求“二次函数类”值域的基本方法,形如2()()()F x af x bf x c =++的函数的值域问题,均可用此法解决.该法常与换元法结合使用. 〖例2〗 求下列函数的值域: ⑴ 121 21 x x y ++=+; 法一:(直接法)1212(21)11 2212121 x x x x x y +++-===-+++ 由20x >,211x +>,1 0121 x < <+,故12y <<,即原函数的值域为(1,2)

《函数的单调性和最大(小)值》教学设计【高中数学人教A版必修1(新课标)】

《函数的单调性与最大(小)值》教学设计 第一课时函数的单调性 通过观察一些函数图像的特征,形成增(减)函数的直观认识。再通过具体函数值的大小比较,认识函数值随自变量的增大(减小)的规律,由此得出增(减)函数单调性的定义。掌握用定义证明函数单调性的步骤。函数单调性的研究经历了从直观到抽象,以图识数的过程,在这个过程中,让学生通过自主探究活动,体验数学概念的形成过程的真谛。 【知识与能力目标】 1、结合具体函数,了解函数的单调性及其几何意义; 2、学会运用函数图像理解和研究函数的性质; 3、能够应用定义判断函数在某区间上的单调性。 【过程与方法目标】 借助二次函数体验单调性概念的形成过程,领会数形结合的思想,运用定义进行判断推理,养成细心观察,严谨论证的良好的思维习惯。 【情感态度价值观目标】 通过直观的图像体会抽象的概念,通过交流合作培养学生善于思考的习惯。 【教学重点】 函数单调性的概念。 【教学难点】 判断、证明函数单调性。 从观察具体函数图像引入,直观认识增减函数,利用这定义证明函数单调性。通过练习、交流反馈,巩固从而完成本节课的教学目标。

(一)创设情景,揭示课题 德国有一位著名的心理学家艾宾浩斯,对人类的记忆牢固程度进行了有关研究。他经过测试,得到了以下一些数据: 以上数据表明,记忆量y 是时间间隔t 的函数。艾宾浩斯根据这些数据描绘出了著名的“艾宾浩斯遗忘曲线”, 如图: 思考1:当时间间隔t 逐渐增大你能看出对应的函数值y 有什么变化趋势?通过这个 试验,你打算以后如何对待刚学过的知识? 思考2:“艾宾浩斯遗忘曲线”从左至右是逐渐下降的,对此,我们如何用数学观点进行解释? (二)研探新知 观察下列各个函数的图像,并说说它们分别反映了相应函数的哪些变化规律:

函数的最值问题教案

知识点单调性的应用,最值问题 使学生理解函数的最值是在整个定义域上来研究的,是函数单调性的应用. 教学目标 通过渗透数形结合的思想方法,掌握求函数最值的方法. I ■ ■ 教学重点函数最大(小)值的定义和求法. 教学难点如何求一个具体函数的最值. 函数的最大(小)值的定义,是借助于二次函数及其图像引出的,概念的出现仍然是遵循特殊到一般的原则?鉴于学生对于二次函数已经有了一个初步的了解,因此本节课多从学生接触过的二次函数入手,这样能使学生容易找到最高点和最低点?但这只是感性上的认识,要培养学生能用数学语言描述函数最值的概念,通过对概念的辨析,真正让学生理解最值概念的内涵,同时,在做题时多培养学生画图的能力,体会到数形结合的魅力 【知识导图】 教学过程 「、导入 【教学建议】 导入是一节课必备的一个环节,是为了激发学生的学习兴趣,帮助学生尽快进入学习状^态。 导入的方法很多,仅举两种方法: ①情境导入,比如讲一个和本讲内容有关的生活现象; ②温故知新,在知识体系中,从学生已有知识入手,揭示本节知识与旧知识的关系,帮学 生建立知识网络。 提供一个教学设计供讲师参考: ⑴由于某种原因,2019年北京奥运会开幕式时间由原定的7月25日推迟到8月8 日, 请查阅资料说明做出这个决定的主要原因

⑵通过查阅历史资料研究北京奥运会开幕式当天气温变化情况. 课上通过交流,可以了解到开幕式推迟主要是天气的原因, 北京的天气到8月中旬,平 均气温、平均降雨量和平均降雨天数等均开始下降, 比较适宜举办大型国际体育赛事. 下图 是北京市某年8月8日一天24小时内气温随时间变化的曲线图. 问题:观察图形,能 息? 预案:(1)当天最高温 多少以及何时达到; (2) 在某时刻 (3) 某些时段 时 段温度降低. 在生活中,我们关心很多数据的变化规律, 了解这些数据的变化规律, 对我们的生活是 很有帮助的. 问题:还能举出生活中其他的数据变化情况吗? 预案:水位高低、燃油价格、股票价格等. 设计意图:用函数观点看,其实就是随着自变量的变化,函数值是变大还是变小?从而引入 最大值、最小值的概念. 二、知识讲解 【教学建议】通过前面的引导,得到函数最值的定义,建议老师在引导学生得到最大值的定 义以后,可以让学生来类比写出最小值的定义: 前提 设函数y = f (x)的定义域为1,如果存在实数 M 满足 条件 ① 对于任意X",都有f (x)兰M ; ② 存在x^ I ,使得f (x 0) = M ① 对于任意x",都有f (X) A M ; ② 存在x ^e I ,使得f(xj = M 结论 M 为最大值 M 为最小值 考点数图I 数的意点大值P 的坐标 (x,y)的意义:横坐标x 是自变量的取值,纵坐标y 是自变 量为x 时对应的函数值的大小. (1)图象上最高点的纵坐标是所有函数值中的最大值,即函数的最大值. 得到什么信 度、最低温度是 的温度; 温度升高,某些

最大值与最小值教案

班级:高二( )班 姓名:____________ 教学目标: 1.使学生理解函数的最大值和最小值的概念,掌握可导函数f (x )在闭区间上所有点(包括端点a ,b )处的函数中的最大(或最小)值必有的充分条件; 2.使学生掌握用导数求函数的极值及最值的方法和步骤. 教学重点: 利用导数求函数的最大值和最小值的方法. 教学过程: 一、问题情境 1.问题情境.函数极值的定义是什么? 2.探究活动.求函数f (x )的极值的步骤. 二、建构数学 1.函数的最大值和最小值. 观察图中一个定义在闭区间[]b a ,上的函数)(x f 的图象. 图中)(1x f ,35(),()f x f x 是极小值,24(),()f x f x 是极大值. 函数)(x f 在[]b a ,上的最大值是)(b f ,最小值是3()f x . 一般地,在闭区间[]b a ,上连续的函数)(x f 在[]b a ,上必有最大值与最小值. 说明: (1)在开区间(,)a b 内连续的函数)(x f 不一定有最大值与最小值. 如函数x x f 1)(=在),0(+∞内连续,但没有最大值与最小值; (2)函数的最值是比较整个定义域内的函数值得出的;函数的极值是比较极值点附近函数值得出的; (3)函数在其定义区间上的最大值、最小值最多各有一个,而函数的极值可能不止一个,也可能没有一个. 2.利用导数求函数的最值步骤: 由上面函数)(x f 的图象可以看出,只要把连续函数所有的极值与定义区间端点的函数值进行比较,就可以得出函数的最值了. 设函数)(x f 在[]b a ,上连续,在(,)a b 内可导,则求)(x f 在[]b a ,上的最大值与最小值的步骤如下:

函数的最大值和最小值教学设计——范永祥

函数的最大值和最小值教学设计——范永祥

函数的最大(小)值 韶关市田家炳中学范永祥 一、教材分析 本课是人教版教材《数学1》第一章1.3节内容。本课时主要学习函数的最大(小)值的概念,探索函数最大(小)值求解方法。本节课是在学生学习了函数概念、单调性的基础上所研究的函数的一个重要性质。函数最大(小)值的概念是研究具体函数值域的依据,对于学生进一步研究函数图像性质,以及将来研究不等式问题有重要作用。函数最大(小)值的研究方法也具有典型意义,对加强“数”与“形”的结合,由直观到抽象;由特殊到一般的研究方法有很大帮助。掌握本节内容不仅为今后的函数学习打下理论基础,还有利于培养学生的抽象思维能力,及分析问题和解决问题的能力。本课题分两课时,本节是第一课时。 二、学情分析 本节课的教学以函数的最大(小)值的概念为主线,它始终贯穿于整个课堂教学过程。按现行教材结构体系,学生只学过一次函数、二次函数、正、反比例函数,学生的现有认知结构中知道“函数最大(小)值就是函数值中最大(小)的一个”的常识,并未接触“最大(小)值”一概念,对最大(小)值的理解缺乏数学严谨性,所以在教学中要充分利用好函数图象的直观性、发挥好多媒体教学的优势。三、教学目标: 1.知识与技能: 理解函数的最大(小)值及其几何意义.学会运用函数图象理解和研究函数的性质. 2.过程与方法:

通过实例,使学生体会到函数的最大(小)值,实际上是函数图象的最高(低)点的纵坐标,因而借助函数图象的直观性可得出函数的最值,有利于培养以形识数的解题意识. 3.情态与价值 学习过程中,培养学生积极情绪,树立学习信心,形成科学严谨治学态度,同时培养学生坚强意志以及创新精神,利用函数的单调性和图象求函数的最大(小)值,解决日常生活中的实际问题,激发学生学习的好奇心积极性. 四、教学重点:函数的最大(小)值及其几何意义。 五、教学难点:利用函数的单调性求函数的最大(小)值. 六、教学用具:多媒体. 七、教学方法:学生通过画图、观察、思考、讨论,从而归纳出求函数的最大(小)值的方法和步骤. 八、教学过程: (一)创设情景,揭示课题. 问题一:什么是函数的最大(小)值? 考察:画出下列函数的图象,指出图象的最高点或最低点,并说明它能体现函数的什么特征? ①②③④存在问题: ① 不会用描点法作图,二次函数的图像性质陌生; ②画图忽视定义域,忽视端点的实与虚;求最值环节出错(求导、判号、导函数的值正负与原函数单调关系、计算) ③说不出图像最高点的特征。 R x x x f ∈+-=,3)(]2,1[,3)(-∈+-=x x x f R x x x x f ∈++-=,32)(2] 2,1[,32)(2-∈++-=x x x x f

《函数的最大(小)值与导数》教案

《函数的最大(小)值与导数》教案 【教学目标】 1.使学生理解函数的最大值和最小值的概念,掌握可导函数)(x f 在闭区间[]b a ,上所有点(包括端点b a ,)处的函数中的最大(或最小)值必有的充分条件; 2.使学生掌握用导数求函数的极值及最值的方法和步骤. 【教学重点】利用导数求函数的最大值和最小值的方法. 【教学难点】函数的最大值、最小值与函数的极大值和极小值的区别与联系. 【教学过程】 一、复习回顾: 1.极值的概念: 极大值: 一般地,设函数f (x )在点x 0附近有定义,如果对x 0附近的所有的点,都有f (x )<f (x 0),就说f (x 0)是函数f (x )的一个极大值,记作y 极大值=f (x 0),x 0是极大值点. 极小值:一般地,设函数f (x )在x 0附近有定义,如果对x 0附近的所有的点,都有f (x )>f (x 0).就说f (x 0)是函数f (x )的一个极小值,记作y 极小值=f (x 0),x 0是极小值点. 2. 判断函数)(x f y =的极值的方法: 解方程0)(='x f .当0)(0='x f 时: (1)如果在0x 附近的左侧0)(>'x f ,右侧0)(<'x f ,那么)(0x f 是极大值; (2)如果在0x 附近的左侧0)(<'x f ,右侧0)(>'x f ,那么)(0x f 是极小值. 3. 求可导函数f (x )的极值的步骤: (1)确定函数的定义区间,求导数f ′(x ); (2)求方程f ′(x )=0的根; (3)用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列成表格.检查f ′(x )在方程根左右的值的符号,如果左正右负,那么f (x )在这个根处取得极大值;如果左负右正,那么f (x )在这个根处取得极小值;如果左右不

函数的最大值和最小值教案

函数的最大值和最小值教案 1.本节教材的地位与作用 本节主要研究闭区间上的持续函数最大值和最小值的求法和实际应用,分两课时,这里是第一课时,它是在学生已经会求某些函数的最值,并且已经掌握了性质:“如果f是闭区间[a,b]上的持续函数,那么f在闭区间[a,b]上有最大值和最小值”,以及会求可导函数的极值之后进行学习的,学好这一节,学生将会求更多的函数的最值,运用本节知识可以解决科技、经济、社会中的一些如何使成本最低、产量最高、效益最大等实际问题.这节课集中体现了数形结合、理论联系实际等严重的数学思想方法,学好本节,对于进一步完善学生的知识结构,培养学生用数学的意识都具有极为严重的意义. 2.教学重点 会求闭区间上持续开区间上可导的函数的最值. 3.教学难点 高三年级学生虽然已经具有一定的知识基础,但由于对求函数极值还不烂熟,特别是对优化解题过程依据的理解会有较大的困难,所以这节课的难点是理解确定函数最值的方法. 4.教学关键 本节课突破难点的关键是:理解方程f′=0的解,包含有指定区间内全部可能的极值点. 【教学目标】 根据本节教材在高中数学知识体系中的地位和作用,结合学生已有的认知水平,制定本节如下的教学目标: .知识和技能目标 理解函数的最值与极值的区别和联系.

进一步明确闭区间[a,b]上的持续函数f,在[a,b]上必有最大、最小值. 掌握用导数法求上述函数的最大值与最小值的方法和步骤. 2.过程和方法目标 了解开区间内的持续函数或闭区间上的不持续函数不一定有最大、最小值. 理解闭区间上的持续函数最值存在的可能位置:极值点处或区间端点处. 会求闭区间上持续,开区间内可导的函数的最大、最小值. 3.情感和价值目标 认识事物之间的的区别和联系. 培养学生观察事物的能力,能够自己发现问题,分析问题并最终解决问题. 提高学生的数学能力,培养学生的创新精神、实践能力和理性精神. 【教法选择】 根据皮亚杰的建构主义认识论,知识是个体在与环境相互作用的过程中逐渐建构的结果,而认识则是起源于主客体之间的相互作用. 本节课在帮助学生回顾肯定了闭区间上的持续函数一定存在最大值和最小值之后,引导学生通过观察闭区间内的持续函数的几个图象,自己归纳、总结出函数最大值、最小值存在的可能位置,进而探索出函数最大值、最小值求解的方法与步骤,并优化解题过程,让学生主动地获得知识,老师只是进行合适的引导,而不进行全部的灌输.为突出重点,突破难点,这节课主要选择以合作探究式教学法组织教学. 【学法指导】 对于求函数的最值,高三学生已经具备了优良的知识基础,剩下的问题就是有没有一种更大凡的方法,能运用于更多更繁复函数的求最值问题?教学设计中注意激发起学生剧烈的求知欲望,使得他们能积极主动地观察、分析、归纳,以形成认识,参与到课堂活动中,充分发挥他们作为认知主体的作用.

二次函数与实际问题(面积最值问题)教学设计解读

[教学设计 ] 二次数学的实际运用 ——图形面积的最值问题 【知识与技能】 :通过复习让学生系统性地掌握并认识如何用函数的思想解决几何问题中面积最值问题, 培养其整体性思想。 【过程与方法】 :能通过设置的三个问题, 概括出二次函数解决这类问题的基本思路和基本方法, 并学会用数学问题的结论,分析是否是实际问题的解,掌握类比的数学思想方法。 【情感态度与价值观】 :体会函数建模思想的同时, 体会数学与现实生活的紧密联系, 培养学生认真观察, 不断反思,主动纠错的能力和乐于思考,认真严谨、细心的好习惯。感受多媒体的直观性和愉悦感。 【重点】 :如何利用二次函数的性质解决实际问题——图形面积的最值问题 【难点】 :如何探究在自变量取值范围内求出实际问题的解 【教学过程】 【活动 1】 :导入引言: 二次函数在实际问题中的应用常见类型有抛物线形问题和最值问题。而最值问题考试类型有两类 (1利润最大问题; (2几何图形中的最值问题:面积的最值,用料的最佳方案等,本节课,我们学习如何用二次函数解决实际问题中图形面积的最值问题。 【活动 2】 :师生互动,合作学习 我们来看一道简单的例题

例 1:李大爷要借助院墙围成一个矩形菜园 ABCD ,用篱笆围成的另外三边总长为 24米,则矩形的长宽分别为多少时,围成的矩形面积最大? 师(让学生思考 :题目中已知量是什么? 未知量是什么?如何理解“矩形面积最大”问题?是什么影响了矩形面积的变化呢?我们一起来看下面的动画演示(通过动画演示,让学生感受量的变化 师:在演示中你们看到了什么?想到了什么?你能列出函数解析式吗? 学生解决:若设矩形一边长为 X ,当 X 在变长时,另一边变短,当 X 变短时,另一边变长,则面积 S 也随之发生了变化;设宽 AB 为 X 米,则长为 24-2X (m 所以面积 S=X(24-2X=-2X2+24X=-2(X-122 +288 师:分析归纳解函数问题的一般步骤是什么? (板书 : 第一步,正确理解题意 , 分析问题中的常量和重量; 第二步,巧设未知数,用未知数表示已知量和未知量,列二次函数解析式表示它们的关系; 第三步,计算,将一般式转化为顶点式,求出数学问题的最值。 师:请问这时解出的数学问题的解是不是实际问题的解,如何检验呢?(在师生共同研讨的过程中找出计算中学生容易犯的错误,分析解答是否符合实际问题 小结:求解完答案后,我们要善于检查,分析,反思数学问题的解是否是实际问题的解。 活动 3:变式训练,巩固应用。

示范教案(单调性与最大(小)值第课时)

示范教案(1.3.1 单调性与最大(小)值 第2课时) 导入新课 思路1.某工厂为了扩大生产规模,计划重新建造一个面积为10 000 m 2的矩形新厂址,新厂址的长为x m ,则宽为x 10000m ,所建围墙ym ,假如你是这个工厂的厂长,你会选择一个长和宽各为多少米的矩形土地,使得新厂址的围墙y 最短? 学生先思考或讨论,教师指出此题意在求函数y=2(x+ x 10000),x>0的最小值.引出本节课题:在生产和生活中,我们非常关心花费最少、用料最省、用时最省等最值问题,这些最值对我们的生产和生活是很有帮助的.那么什么是函数的最值呢?这就是我们今天学习的课题.用函数知识解决实际问题,将实际问题转化为求函数的最值,这就是函数的思想,用函数解决问题. 思路 2.画出下列函数的图象,指出图象的最高点或最低点,并说明它能体现函数的什么特征? ①f(x)=-x+3;②f(x)=-x+3,x ∈[-1,2]; ③f(x)=x 2+2x+1;④f(x)=x 2+2x+1,x ∈[-2,2]. 学生回答后,教师引出课题:函数的最值. 推进新课 新知探究 提出问题 ①如图1-3-1-11所示,是函数y=-x 2-2x 、y=-2x+1,x ∈[-1,+∞)、y=f(x)的图象.观察这三个图象的共同特征. 图1-3-1-11 ②函数图象上任意点P(x,y)的坐标与函数有什么关系? ③你是怎样理解函数图象最高点的? ④问题1中,在函数y=f(x)的图象上任取一点A(x,y),如图1-3-1-12所示,设点C 的坐标为(x 0,y 0),谁能用数学符号解释:函数y=f(x)的图象有最高点C ? 图1-3-1-12 ⑤在数学中,形如问题1中函数y=f(x)的图象上最高点C 的纵坐标就称为函数y=f(x)的最大值.谁能给出函数最大值的定义? ⑥函数最大值的定义中f(x)≤M 即f(x)≤f(x 0),这个不等式反映了函数y=f(x)的函数值具有什么特点?其图象又具有什么特征? ⑦函数最大值的几何意义是什么?

3.3.3函数的最大(小)值与导数教学设计

§1.3.3 函数的最大(小)值与导数 宜宾市四中李斌 一、教学内容分析 1.在教材中的位置: 本节内容安排在《普通高中课程标准实验教科书数学选修1-1》人教A版,第三章、第三节“导数在研究函数中的应用” 2.学习的主要工具: 基本初等函数的识图能力与函数的极值与导数知识。 3.学习本节课的主要目的: 本节内容是在学生学习完导数基本概念与基本初等函数求导公式后的应用性知识,强调在应用中进一步理解导数,并为以后“生活中的优化问题”打好基础。 4.本节课在教材中的地位: 函数的最值是基本初等函数的重要性质,是历年高考的热点问题,也是解决实际问题,如成本最低,产量最高,效益最大等的重要工具。学好本节内容对学生的可持续发展具有重要意义,可进一步完善学生知识结构,培养学生应用数学的意识。 二、学情分析 学生已经在高一阶段必修一的学习中,学习了函数基础知识,并初步具备应用函数单调性求最值的基础,但是对于运用刚刚学习的导数工具研究函数性质,还不熟练,应用导数在思维上有很大的局限性。 三、课堂设计思想 培养学生学会学习、学会探究、学会合作是全面发展学生能力的重要前提,是高中新课程改革的主要任务。而问题驱动,问题引导,主动观察,主动发现又是帮助学生学会学习的重要好手段。本节教学,将遵循这个原则而进行设计,让学生领会到知识的产生过程。

四、教学目标 1.知识和技能目标 (1)弄清函数最大值、最小值与极大值、极小值的区别与联系,理解和熟悉函数)(x f 必有最大值和最小值的充分条件。 (2)掌握求在闭区间],[b a 上连续的函数)(x f 的最大值和最小值的方法 和步骤。 2.过程和方法目标 (1)问题驱动,自主探究,合作交流。 (2)培养学生在生活中学习数学的方法。 3.情感和价值目标 (1)通过观察认识到事物的表象与本质的区别与联系. (2)培养学生观察事物的能力,能够自己发现问题,分析问题并最终解决问题. (3)提高学生的数学能力,培养学生的创新精神、实践能力和理性精神. (4)通过学生的参与,激发学生学习数学的兴趣。 五、教学重点与难点 重点:求闭区间上连续可导的函数的最值的求解,理解确定函数最值的方法,并联系函数单调性的应用。 难点:求函数的最值的方法的提炼,同时让有余力的学生了解函数的最值与极值的区别与联系 六、教学方法 发现探究式、启发探究式 本节课教学基本流程: 复习检查→情境导入、展示目标→合作探究、精讲点拨→反思总结、课后升华、当堂检测→布置作业 七、教学过程设计

高一数学《函数的最值》教学设计

1.3.1.2函数的最值 【内容与解析】 本节课要学的内容有函数的最值指的是函数值的最大值和最小值,理解它关键就是把握好最值的定义。学生已经学过了函数的相关知识,本节课的内容函数的最值就是在此基础上的发展的。由于它还与函数的单调性、值域等内容有必要的联系,所以在本学科有着很重要的地位,是学习后面知识的基础,是本学科的核心内容。教学的重点是最值的定义,所以解决重点的关键是通过大量实例,归纳出最值的定义。 【教学目标与解析】 1.教学目标 (1)理解函数最值的含义及其几何意义; (2)初步掌握用定义及函数的单调性求最值的方法; 2.目标解析 (1)理解函数最值的含义及其几何意义指的是能叙述函数最大值、最小值的概念,理解函数的最大值与图像最高点纵坐标的对应,最小值与图像最低点纵坐标的对应; (2)初步掌握用定义求最值的方法指的是能够利用定义证明或者求解一些简单函数的最值;【问题诊断分析】 在本节课的教学中,学生可能遇到的问题是最值的定义难以归纳出来,产生这一问题的原因是:最值中的“最”不是“大于其它”或者“小于其它”,而是“不小于”与“不大于”。要解决这一问题,就要在教学中通过具体函数的图像,让学生去说,其中关键是选例精当,引导到位。 【教学过程】 问题1:我们已经学习过函数的图像,并利用图像研究了函数的单调性,下面,请看几张幻灯片: 1.1 这些函数图像是否具备单调性? 1.2 请观察图像的特殊点,你有什么发现? 1.3 对于最高点和最低点,你有什么发现? 设计意图:通过以上问题,让学生通过函数图像,对最值有一个直观的认识。 问题2:图像仅仅是函数的表示法之一,对于一般的函数,不一定用图像来表达,那么,相应于刚才我们研究的结论,如何将其一般化? 2.1 图像的最高点、最低点可能有很多,对应到一般的函数,就对到什么? 2.2 图像的最高点、最低点也可能很多,也可能没有,在叙述中要注意什么? 2.3 最高点或最低点对应的函数值应在值域中,这点如何表达? 2.4 如果我们把最高点的纵坐标叫做相应函数的最大值,请你说出最大值的含义。

高等数学(上册)教案15 函数的极值与最值

第3章 导数的应用 函数的极值与最值 【教学目的】: 1. 理解函数的极值的概念; 2. 掌握求函数的极值的方法; 3. 了解最大值和最小值的定义; 4. 掌握求函数的最值的方法; 5. 会求简单实际问题中的最值。 【教学重点】: 1. 函数极值的第一充分条件,第二充分条件; 2. 导数不存在情况下极值的判定; 3. 函数最值的求解方法; 4. 函数的最值的应用。 【教学难点】: 1. 导数不存在情况下极值的判定; 2. 区分函数的驻点、拐点、极值点以及最值点; 3. 区分极值点与极值,最值点与最值; 4. 函数的最值的应用。 【教学时数】:2学时 【教学过程】: 3.3.1函数的极值 从图3-7可以看出,函数)(x f y =在点2x 、5x 处的函数值2y 、5y 比它们近旁各点的函数值都大;在点1x 、4x 、6x 处的函数值1y 、4y 、6y 比它们近旁各点的函数值都小,因此,给出函数极值的如下定义: 一般地, 设函数)(x f y =在0x 的某邻域内有定义,若对 于0x 邻域内不同于0x 的所有x ,均有)()(0x f x f <,则称)(0x f 是函数)(x f y =的一个极大值,0x 称为极大值点;若对于0x 邻域内不同于0x 的所有x ,均有 )()(0x f x f >,则称)(0x f 是函数)(x f y =的一个极小值,0x 称为极小值点. 函数的极大值与极小值统称为极值,极大值点和极小值点统称为极值点. 注意 可导函数的极值点必是它的驻点,但反过来是不成立的,即可导函数的驻点不一定是它的极值点. 极值的第一充分条件 设函数)(x f y =在点0x 的邻域内可导且0)(0='x f ,则 (1)如果当x 取0x 左侧邻近的值时,0)(0>'x f ;当x 取0x 右侧邻近的值时, 图3-7 y O x a 1 x 2 x 3x 4x 5 x b

总复习教案:函数的单调性与最值(教师版)

第三节 函数的单调性与最值 [知识能否忆起] 一、函数的单调性 1.单调函数的定义 增函数 减函数 定义 设函数f (x )的定义域为I .如果对于定义域I 内某个区间D 上的任意两个自变量的值x 1, x 2 当x 1f (x 2) ,那么就说函 数f (x )在区间D 上是减函数 图象描述 自左向右看图象逐渐上升 自左向右看图象逐渐下降 2.单调区间的定义 若函数y =f (x )在区间D 上是增函数或减函数,则称函数y =f (x )在这一区间上具有(严格的)单调性,区间D 叫做y =f (x )的单调区间. 二、函数的最值 前提 设函数y =f (x )的定义域为I ,如果存在实数M 满足 条件 ①对于任意x ∈I ,都有f (x )≤M ; ②存在x 0∈I ,使得f (x 0)=M ①对于任意x ∈I ,都有f (x )≥M ; ②存在x 0∈I ,使得f (x 0)=M 结论 M 为最大值 M 为最小值 [小题能否全取] 1.(2012·陕西高考)下列函数中,既是奇函数又是增函数的为( ) A .y =x +1 B .y =-x 3 C .y =1x D .y =x |x | 解析:选D 由函数的奇偶性排除A ,由函数的单调性排除B 、C ,由y =x |x |的图象可知此函数为增函数,又该函数为奇函数,故选D. 2.函数y =(2k +1)x +b 在(-∞,+∞)上是减函数,则( ) A .k >12 B .k <12

二次函数最值问题 优秀教学设计(教案)

二次函数最值重难点设计 尊敬的各位评委老师大家好: 本题出自人教版数学九年级上册第二十二章二次函数中的实际问题与二次函数习题第6题,我将从原题再现,数学地位,目标理念,分析指导,拓展延伸,教学反思这几个流程来完成说题。 首先我们来看下原题:..... 数学地位: 函数与几何综合题能有效的考查学生对学习数学知识的掌握和灵活运用的程度。在各地的中考数学试题中,有关函数与几何构成的综合题占据相当的比例,分值也很大;进入高中后,二次函数的应用更加广泛,更加灵活,更加突出了其重要性。这类题型设计优美,新颖独特,活不超纲,充分体现了考查能力和提高素质教育的思想和要求。 目标理念:主要是从考试大纲分析 本题重要考点是相似三角形的应用及二次函数的应用。直角三角形中30°的角所对的边等于斜边的一半及勾股定理是学生熟悉的,相对较易掌握,对于单独求二次函数的最值问题学生大部分也能掌握,有待提高的是知识点之间的联系和从几何问题中整理出二次函数的模型并利用二次函数的知识求最值,以上是学生现有的能力表现。通过这道题目的讲解,让学生能分析出题目要考查的知识点以及知识点之间的联系,掌握建模思想,并能将这种思想运用到新的题目当中,以实现解题目标。 分析指导:(两种方法) 方法一分析: 首先在Rt △ABC 中利用∠A =30°、AB =12,求得BC =6、AC 的长,然后根据四边形CDEF 是矩形得到EF ∥AC 从而得到△BEF ∽△BAC ,设AE =x ,则BE =12-x .利用相似三角形成比例表示出EF 、DE ,然后表示出有关x 的二次函数,然后求二次函数的最值即可. 解:在Rt △ABC 中,∠A =30°,AB =12, ∴BC =6,AC =AB ?cos30°=12× 23=63. ∵四边形CDEF 是矩形, ∴EF ∥AC . ∴△BEF ∽△BAC . ∴EF:AC =BE:BA . 设AE =x ,则BE =12-x . EF =2 3(12-x ) 在Rt △ADE 中,DE =21AE =2 1x . 矩形CDEF 的面积S =DE ?EF = 21x ?23(12?x)=?43x 2+33x (0<x <12). 当x =6时,S 有最大值. ∴点E 应选在AB 的中点处.

高一数学《函数的单调性与最值》第二课时教案

1 函数的单调性与最值 学习目标: 1. 使学生理解函数的最值是在整个定义域上来研究的,它是函数单调性的应用。 2. 会用单调性求最值。 3. 掌握基本函数的单调性及最值。 知识重现 1、一般地,设函数f(x)的定义域为I ,如果存在实数M 满足: (1) 对于任意的x ∈I ,都有f(x)≤M ; (2) 存在x 0∈I,使得f(x 0)=M. 那么,我们称M 是函数y=f(x)的最大值(maximum value ) 2、一般地,设函数f(x)的定义域为I ,如果存在实数M 满足: (3) 对于任意的x ∈I ,都有f(x)≥ M ; (4) 存在x 0∈I,使得f(x 0)=M. 那么,我们称M 是函数y=f(x)的最小值(minimum value ) 理论迁移 例1 “菊花”烟花是最壮观的烟花之一,制造时一般是期望在它达到最高点时爆裂。如果烟花距地面的高度h 米与时间t 秒之间的关系为h(t )=-4.9t 2+14.7t+18,那么烟花冲出后什么时候是它爆裂的最佳时刻?这时距地面的高度是多少(精确到1米)? 例2 已知函数f(x)= 1 x 2-(x ∈[2,6]),求函数的最大值和最小值。 归纳基本初等函数的单调性及最值 1. 正比例函数:f(x)=kx(k ≠0),当k 0时,f(x)在定义域R 上为增函数;当k 0时,f(x)在 定义域R 上为减函数,在定义域R 上不存在最值,在闭区间[a,b ]上存在最值,当k 0时函数f(x)的最大值为f(b)=kb,最小值为f(a)=ka, 当k 0时, ,最大值为f(a)=ka ,函数f(x)的最小值为f(b)=kb 。 2. 反比例函数:f(x)=x k (k ≠0),在定义域(-∞,0) (0,+∞)上无单调性,也不存在最值。当k 0时,在(-∞,0),(0,+∞)为减函数;当k 0时,在(-∞,0),(0,+∞)

函数的最大值与最小值 说课稿 教案 教学设计

函数的最大值与最小值 一、教学目标:理解并掌握函数最大值与最小值的意义及其求法.弄请函数极值与最值的区别 与联系.养成“整体思维”的习惯,提高应用知识解决实际问题的能力. 二、教学重点:求函数的最值及求实际问题的最值. 教学难点:求实际问题的最值.掌握求最值的方法关键是严格套用求最值的步骤,突破难 点要把实际问题“数学化”,即建立数学模型. 三、教学过程: (一)复习引入 1、问题1:观察函数f (x )在区间[a ,b ] 的极大值、极小值和最大值、最小值. 2、问题2:观察函数f (x )在区间 [a ,b ]的极大值、极小值和最大值、最小值. (见教材P30面图1.3-14与1.3-15) 3、思考:⑴ 极值与最值有何关系? ⑵ 最大值与最小值可能在何处取得? ⑶ 怎样求最大值与最小值? 4、求函数y = 44313+-x x 在区间[0, 3]上的最大值与最小值. (二)讲授新课 1、函数的最大值与最小值 一般地,设y =f (x )是定义在[a ,b ]上的函数,在[a ,b ]上y =f (x )的图象是一条连续不断的曲线,那么它必有最大值与最小值。 函数的极值是从局部考察的,函数的最大值与最小值是从整体考察的。 2、求y =f (x )在[a ,b ]上的最大值与最小值,可分为两步进行: ⑴ 求y =f (x )在(a ,b )内的极值; ⑵ 将y =f (x )的各极值与f (a ),f (b )比较,其中最大的一个为最大值,最小的一个为最小值. 例1.求函数y =x 4-2x 2+5在区间[-2, 2]上的最大值与最小值. 解: y'=4x 3-4x =4x (x +1)(x -1)令y'=0,即 4x (x +1)(x -1)=0, 解得x =-1,0,1.当x 变化时,y',y 的变化情况如下表: 故 当x =±2时,函数有最大值13,当x =±1时,函数有最小值4. 练习 例2.求函数y =5363423+-+x x x 在区间[-2, ∞+]上的最大值与最小值. 例3. 求函数]4,0[,2)(∈+=x x x x f 的最大值和最小值.

函数的最大值和最小值(教案与课后反思)

3.8函数的最大值和最小值(第1课时) 嵊州市马寅初中学袁利江 【教学目标】 根据本节教材在高中数学知识体系中的地位和作用,结合学生已有的认知水平,制定本节如下的教学目标: 1.知识和技能目标 (1)理解函数的最值与极值的区别和联系. (2)进一步明确闭区间[a,b]上的连续函数f(x),在[a,b]上必有最大、最小值. (3)掌握用导数法求上述函数的最大值与最小值的方法和步骤. 2.过程和方法目标 (1)了解开区间内的连续函数或闭区间上的不连续函数不一定有最大、最小值. (2)理解闭区间上的连续函数最值存在的可能位置:极值点处或区间端点处. (3)会求闭区间上连续,开区间内可导的函数的最大、最小值. 3.情感和价值目标 (1)认识事物之间的的区别和联系. (2)培养学生观察事物的能力,能够自己发现问题,分析问题并最终解决问题. (3)提高学生的数学能力,培养学生的创新精神、实践能力和理性精神. 【教学重点】 会求闭区间上连续开区间上可导的函数的最值. 【教学难点】 高三年级学生虽然已经具有一定的知识基础,但由于对求函数极值还不熟练,特别是对优化解题过程依据的理解会有较大的困难,所以这节课的难点是理解确定函数最值的方法.【难点突破】 本节课突破难点的关键是:理解方程f′(x)=0的解,包含有指定区间内全部可能的极值点.【教法选择】 根据皮亚杰的建构主义认识论,知识是个体在与环境相互作用的过程中逐渐建构的结果,而认识则是起源于主客体之间的相互作用. 本节课在帮助学生回顾肯定了闭区间上的连续函数一定存在最大值和最小值之后,引导学生通过观察闭区间内的连续函数的几个图象,自己归纳、总结出函数最大值、最小值存在的可能位置,进而探索出函数最大值、最小值求解的方法与步骤,并优化解题过程,让学生主动地获得知识,老师只是进行适当的引导,而不进行全部的灌输.为突出重点,突破难点,这节课主要选择以合作探究式教学法组织教学. 【学法指导】 对于求函数的最值,高三学生已经具备了良好的知识基础,剩下的问题就是有没有一种更一般的方法,能运用于更多更复杂函数的求最值问题?教学设计中注意激发起学生强烈的求知欲望,使得他们能积极主动地观察、分析、归纳,以形成认识,参与到课堂活动中,充分发挥他们作为认知主体的作用.

函数最值教案

函数最值教案 教学目标 理解函数最大(小)值的定义,强调最值是函数的整体性质; 掌握简单的求函数最值的方法(图象法、配方法、单调性法); 会利用求函数最值的方法解决一些简单的实际问题,如:用料最省、利润最大、效率最高等最值问题. 教学重难点 教学重点: 函数最大值、最小值定义的理解; 掌握求函数最值的三种基本方法:图象法、配方法、单调性法; 会利用求函数最值的方法解决一些简单的实际问题. 教学难点: 利用单调性法求函数的最值; 利用求函数最值的方法解决现实生活中的最值问题. 教学过程 (一)观察图象,导入新课 让学生自己动手画出函数2 y x =-和函数||y x =-的图象,引导学生观察两个函数图象的共同点,引导启发学生发现这两个函数的图象都有一个最高点(0,0),并告诉学生在数学上将这个最高点称为函数在定义域上的最大值.进一步提出问题:根据你对图象的观察,能否试着归纳出函数最大值的定义. 根据学生对函数最大值定义的归纳情况,给出函数最大值的准确定义. 一般地,设函数()y f x =的定义域为I ,如果存在实数M 满足: (1)对于任意的x I ∈,都有()f x M ≤; (2)存在0x I ∈,使得0()f x M =. 那么,就称M 是函数()y f x =的最大值. (二)列举实例,理解内涵 问题一:

2是函数的最大值吗?为什么? [设计意图]强调概念中的“任意”二字. 问题二:4是问题一中函数的最大值吗?为什么? [设计意图]强调最大值必须能取到. 问题三:常值函数1y =有没有最大值?如果有最大值是多少? [设计意图]强调函数的最大值虽然是唯一的,但与最大值对应的自变量的值并不一定是唯一的. 引导学生归纳出函数的最大值就是函数图象最高点所对应的纵坐标. (三) 自己动手,类比研究 让学生根据研究函数最大值的方法、手段、过程,给出函数最小值的概念及对概念内涵的理解. (四)实际应用,巩固提高 讲解课本30页例3(图象法,配方法) 题后小结: (1)函数最值的图形特征:函数的最大(小)值是函数图像上最高(低)点的纵坐标; (2)二次函数2(0)y ax bx c a =++≠的最值: ①0a <,当2b x a =-时,2 max 44ac b y a -=. ②0a >,当2b x a =-时,2 max 44ac b y a -=. (3)若()f x 在[,]a b 上为增函数,则min max ()(),()()f x f a f x f b ==; 若()f x 在[,]a b 上为减函数,则min max ()(),()()f x f b f x f a ==. (4)若()f x 值域为[,]a b ,则min max (),()f x a f x b ==. 31页例4(图象法,单调性法,其中详细讲解单调性法的推理过程及解题步骤). 课堂练习:课本32页第5题,39页第5题 小结 学生自己作小结,教师归纳: 函数最大(小)值定义的理解;求函数最值的三种方法 作业 1.39P B 组1 已知函数22 ()2,()2([2,4])f x x x g x x x x =-=-∈. (1)求(),()f x g x 的单调区间; (2)求(),()f x g x 的最小值. 2.39P B 组2 如图所示,动物园要建造一面靠墙的2间面积相同的矩形熊猫居室,如果可供建

相关文档
最新文档