函数最值问题教案

函数最值问题教案
函数最值问题教案

教学过程

'、导入

(1)由于某种原因,2019年北京奥运会开幕式时间由原定的7月25日推迟到8月8日,

请查阅资料说明做出这个决定的主要原因?

⑵通过查阅历史资料研究北京奥运会开幕式当天气温变化情况.

课上通过交流,可以了解到开幕式推迟主要是天气的原因,北京的天气到8月中旬,平

均气温、平均降雨量和平均降雨天数等均开始下降,比较适宜举办大型国际体育赛事. 下图

是北京市某年8月8日一天24小时内气温随时间变化的曲线图.

问题:观察图形,能得到什么信息?

预案:(1)当天最高温度、最低温度以及何时达到;

(2)在某时刻的温度;

⑶某些时段温度升高,某些时段温度降低.

在生活中,我们关心很多数据的变化规律,了解这些数据的变化规律,对我们的生活是

很有帮助的.

问题:还能举出生活中其他的数据变化情况吗?

预案:水位高低、燃油价格、股票价格等.

归纳:用函数观点看,其实就是随着自变量的变化,函数值是变大还是变小.

二、知识讲解

函考点象上任函数的p最大坐标(x, y)的意义:横坐标x是自变量的取值,纵坐标y是自变量为x时对应的函数值的大小.

(3) 图象上最高点的纵坐标是所有函数值中的最大值,即函数的最大值.

⑷由于点C是函数y= f(x)图象上的最高点,则点A在点C的下方,即对定义域内任意

x,都有y W y o,即f(x)w f(x°),也就是对函数y= f(x)的定义域内任意x,均有f(x)w f(x o)成立.

(5) —般地,设函数y= f(x)的定义域为I,如果存在实数M满足:

①对于任意的x€ I,都有f(x) WM;

②存在X o € I,使得f(x o)= M.

那么,称M是函数y= f(x)的最大值..

(6) f(x)W M反映了函数y= f(x)的所有函数值不大于实数M;这个函数的特征是图象有最

高点,并且最高点的纵坐标是M.

⑺函数图象上最高点的纵坐标.

(8) 函数y=—2x+ 1, x€ (- 1,+s)没有最大值,因为函数y=—2x + 1, x€ (—1,+

a)的图象没有最高点.

(9) 不是,因为该函数的定义域中没有一 1.

(10) 讨论函数的最大值,要坚持定义域优先的原则;函数图象上有最高点时,这个函数

才存在最大值,最高点必须是函数图象上的点.

考点2函数的最小值

(1)函数最小值的定义是:

一般地,设函数y= f(x)的定义域为I,如果存在实数M满足:

①对于任意的x € I,都有f(x) >M ;

②存在x o € I,使得f(x o) = M.

那么,称M是函数y = f(x)的最小值。

函数最小值的几何意义:函数图象上最低点的纵坐标.

(2)讨论函数的最小值,也要坚持定义域优先的原则;函数图象上有最低点时,这个函数才存在最小值,最低点必须是函数图象上的点.

的求法

例题1 2

画出函数y= —x2+ 2|x|+ 3的图象,指出函数的单调区间和最大值.

【解析】:函数图象如图所示.

由图象得,函数的图象在区间(一8,—1)和[0,1]上是上升的,在[一1,0]和(1, )上是下

降的,最高点是(土1,4),

故函数在(—a, —1), [0,1]上是增函数;函数在[—1,0], (1 ,+^ )上是减函数,最大值是

4.

【总结与反思】本题主要考查函数的单调性和最值,以及最值的求法?求函数的最值时,

先画函数的图象,确定函数的单调区间,再用定义法证明,最后借助单调性写出最值,这种

方法适用于做解答题.

类型二单调法求函数最值

例题1

2 求函数y = x—1在区间[2,6]上的最大值和最小值.

【解析】设2< X1< X2W 6,则有f(x”—f(x2) =

2 2 _ 2 \X r i x2 -1 2 x2

为-1 x2 -1 x1 T x2 T x1 -1 x2 T

2 w X1 v X2W 6, —X2 —X[>0,(X1 —1)(x2 —1) >0.

2

f(X1)> f(x2),即函数y = 在区间[2,6]上是减函数.

x T

2

???当x= 2时,函数y= 在区间[2,6]上取得最大值f(2) = 2;

x -1

2 2

当x= 6时,函数y= 在区间[2,6]上取得最小值f(6) = 5.

x—1

【总结与反思】

单调法求函数最值:先判断函数的单调性,再利用其单调性求最值;常用到下面的结论:①

如果函数y = f(x)在区间(a, b]上单调递增,在区间[b, c)上单调递减,则函数y= f(x)在x= b 处有最大值f(b);②如果函数y= f(x)在区间(a, b]上单调递减,在区间[b, c)上单调递增,则函数y= f(x)在x= b处有最小值f(b).

类型三函数最值的应用

例题1

“菊花”烟花是最壮观的烟花之一.制造时一般是期望在它达到最高点时爆裂. 如果烟花距

地面的高度hm与时间ts之间的关系为h(t) = — 4.9t2+ 14.7t + 18,那么烟花冲出后什么时候是它爆裂的最佳时刻?这时距地面的高度是多少?(精确到1m)

【解析】:作出函数h(t) = — 4.9t2+ 14.7t + 18的图象,如图所示,

显然,函数图象的顶点就是烟花上升的最高点,顶点的横坐标就是烟花爆裂的最佳时刻,纵

坐标就是这时距地面的高度.

由二次函数的知识,对于函数h(t)=— 4.9t2+ 14.7t + 18,我们有:

14.7 4.9: 18-14.72

当t = _ ------- =1 5时,函数有最大值h=--------------------------- &29 .

-4.9 -4.9

即烟花冲出后1.5s是它爆裂的最佳时刻,这时距地面的高度约是29m.

【总结与反思】

本题主要考查二次函数的最值问题,以及应用二次函数解决实际问题的能力. 解应用题的步

骤是:①审清题意读懂题;②将实际问题转化为数学问题来解决;③归纳结论.

注意:要坚持定义域优先的原则;求二次函数的最值要借助于图象即数形结合.

四、课堂运用

a的取值范围是

1 .若基础数f(x) = x2+ 2(a —1)x+ 2在区间(一a, 4)上是减函数,则实数

2?已知函数y= x+(2x T,下列说法正确的是 ______________ .(填序号)

①有最小值丄,无最大值;

2

②有最大值—,无最小值;

2

③有最小值1,最大值2;

2

④无最大值,也无最小值.

3.已知函数y= x2—2x+ 3在区间[0,m]上有最大值3,最小值2,则m的取值范围是__________ .

答案与解析

1?【答案】(— 3—3]

【解析】由二次函数的性质,可知4W —(a—1),

解得a w — 3.

2?【答案】①

1

【解析】T y = x,、、2x-1在定义域[-,;)上是增函数,

2

1 1 1

y _ f () ,即函数最小值为,无最大值.

3?【答案】[1,2]

【解析】由y= x2—2x+ 3= (x —1)2+ 2 知,

当x = 1时,y的最小值为2,

当y = 3 时,x2—2x+ 3= 3,解得x = 0 或x= 2.

由y= x2—2x+ 3的图象知,当m € [1,2]时,能保证y的最大值为3,最小值为2.

1. ________________________________ 巩固y卜丄x2十1的值域是.

2. 函数y=—x2+ 6x + 9在区间[a, b](a

2

3?若y=——,x^[-4,_1],则函数y的最大值为__________ .

x

答案与解析

1. 【答案】(0,2]

【解析】观察可知y>0,当|x|取最小值时,y有最大值,所以当x= 0时,y的最大值为2,即O

2. 【答案】—2 0

【解析】y=—(x—3)2+ 18, ?/ a

?函数y在区间[a , b]上单调递增,即—b2+ 6b+ 9 = 9, 得b = 0(b= 6不合题意,舍去)

—a + 6a + 9 = —7,得 a = —2(a= 8 不合题意,舍去).

3. 【答案】2

2

【解析】函数y 在[-4, -1]上是单调递增函数,

x

2

故『max 訂2.

拔高. 2

1. 已知函数f(x)= x2—2x +

2.

(1)求f(x)在区间上的最大值和最小值;

12

⑵若g(x) = f(x)—mx在[2,4]上是单调函数,求m的取值范围.

2. 若二次函数满足f(x+ 1) —f(x)= 2x 且f(0) = 1.

⑴求f(x)的解析式;

⑵若在区间[—1,1]上不等式f(x)>2x+ m恒成立,求实数m的取值范围. 答案与解析

1. 【答案】同解析

【解析】(1)T f(x) = x2—2x+ 2= (x—1)2+ 1,x [-,3],

2

??? f(x)的最小值是f(1) = 1,

又f(2)弓f(3) = 5,

所以,f(x)的最大值是f(3) = 5,

1

即f(x)在区间[丄,3]上的最大值是5,最小值是1.

2

2

(2) ■/ g(x) = f(x) —mx= x —(m + 2)x+ 2,

? m―2 _2 或m_ 亠4,即m W 2 或m>6.

2 2

故m的取值范围是(一a, 2]U[6 ,+s ).

2. 【答案】同解析

【解析】(1)设f(x)= ax2+ bx+ c(a 丰 0),由f(0) = 1,

? f(x) = ax2+ bx+ 1.

?/ f(x+ 1) —f(x) = 2x,

? 2ax+ a+ b = 2x,

2a =2 a=1 a b =0

b - -1

? f(x)= x2—x+

1.

⑵由题意:x2—x+ 1>2x+ m在[—1,1]上恒成立,

即x2—3x+ 1 —m>0在[—1,1]上恒成立.

2 3 2 5

令g(x) = x - 3x 1 - m = (x ) - m,

3 其对称轴为x =—,

2

? g(x)在区间[—1,1]上是减函数,

? g(x)min = g(1) = 1 —3+ 1 —m>0,

? m< — 1.

利用五调性求函数的最大(小)值:

(1)定义最大值:设函数的定义域为I,如果存在实数M满足:对于任意的x € I,都有:X;WM ;存在x°€ I,使得■ 1= M. 那么,称M是函数y=妙的最大值(MaximumValue ).

仿照最大值定义,可以给岀最小值( MinimumValue )的定义

(2 )配方法:研究二次函数| 「- 的最大(小)值,先配方成

? c= 1,

后,当J一'I

时,

函数取最小值为当t-时,函数取最大

《函数的最大(小)值与导数》教案完美版

《函数的最大(小)值与导数》教案 §1.3.3 函数的最大(小)值与导数(1) 【教学目标】 1.使学生理解函数的最大值和最小值的概念,掌握可导函数)(x f 在闭区间[]b a ,上所有点(包括端点b a ,)处的函数中的最大(或最小)值必有的充分条件; 2.使学生掌握用导数求函数的极值及最值的方法和步骤. 【教学重点】利用导数求函数的最大值和最小值的方法. 【教学难点】函数的最大值、最小值与函数的极大值和极小值的区别与联系. 【教学过程】 一、复习引入: 1.极大值: 一般地,设函数f (x )在点x 0附近有定义,如果对x 0附近的所有的点,都有f (x )<f (x 0),就说f (x 0)是函数f (x )的一个极大值,记作y 极大值=f (x 0),x 0是极大值点. 2.极小值:一般地,设函数f (x )在x 0附近有定义,如果对x 0附近的所有的点,都有f (x )>f (x 0).就说f (x 0)是函数f (x )的一个极小值,记作y 极小值=f (x 0),x 0是极小值点. 3.极大值与极小值统称为极值 注意以下几点: (ⅰ)极值是一个局部概念.由定义,极值只是某个点的函数值与它附近点的函数值比较是最大或最小.并不意味着它在函数的整个的定义域内最大或最小. (ⅱ)函数的极值不是唯一的即一个函数在某区间上或定义域内极大值或极小值可以不止一个. (ⅲ)极大值与极小值之间无确定的大小关系.即一个函数的极大值未必大于极小值,如下图所示,1x 是极大值点,4x 是极小值点,而)(4x f >)(1x f . (ⅳ)函数的极值点一定出现在区间的内部,区间的端点不能成为极值点. 而使函数取得最大值、最小值的点可能在区间的内部,也可能在区间的端点. 4. 判别f (x 0)是极大、极小值的方法: 若0x 满足0)(0='x f ,且在0x 的两侧)(x f 的导数异号,则0x 是)(x f 的极值点,)(0x f 是极值,并且如果)(x f '在0x 两侧满足“左正右负”,则0x 是)(x f 的极大值点,)(0x f 是极大值;如果)(x f '在0x 两侧满足“左负右正”,则0x 是)(x f 的极小值点,)(0x f 是极小值. 5. 求可导函数f (x )的极值的步骤: (1)确定函数的定义区间,求导数f ′(x ); (2)求方程f ′(x )=0的根; (3)用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列成表格.检查f ′(x )在方程根左右的值的符号,如果左正右负,那么f (x )在这个根处取得极大值;如果左负右正,那么f (x )在这个根处取得极小值;如果左右不改变符号即都为正或都为负,那么f (x ) 在这个根处无极值. 二、讲解新课: 1.函数的最大值和最小值

函数的值域和最值教案

函数的值域和最值教案 【教学目标】1.让学生了解求函数值域(最值)常用的方法; 2.让学生了解各种方法的适用题型,并能灵活运用各种方法解函数的值域. 【教学重点】直接法、利用函数单调性求值域(最值)、数形结合法 【教学难点】判别式法和数形结合方法的使用 【例题设置】例1(强调定义域的重要性),其它例题主要指出各种方法适用的题型及 注意点. 【教学过程】 第一课时 〖例1〗已知函数3()2log f x x =+(19x ≤≤),求函数22()[()]()g x f x f x =+的最值. 错解:令3log [0,2]t x =∈,则 22222233()[()]()(2log )(2log )(2)22(3)3g x f x f x x x t t t =+=+++=+++=+- ∴当0t =时,min ()6g x =;当2t =时,max 2()()|22t g x g x ===. 错因分析:当2t =时,9x =,2(9)[(9)](81)g f f =+无意义.产生错误的原因主要是忽略了定义域这个前提条件. 正解:由2 1919 x x ≤≤??≤≤?,得()g x 的定义域为[1,3],3log [0,1]t x =∈,则 22222233()[()]()(2log )(2log )(2)22(3)3g x f x f x x x t t t =+=+++=+++=+- ∴当0t =时,min ()6g x =;当1t =时,max 2()()|13t g x g x ===. ★点评:1.求函数的值域(最值)同样得在定义域上进行; 2.运用换元法解题时,一定要注意元的取值范围,这步较容易被忽略; 3.配方法是求“二次函数类”值域的基本方法,形如2()()()F x af x bf x c =++的函数的值域问题,均可用此法解决.该法常与换元法结合使用. 〖例2〗 求下列函数的值域: ⑴ 121 21 x x y ++=+; 法一:(直接法)1212(21)11 2212121 x x x x x y +++-===-+++ 由20x >,211x +>,1 0121 x < <+,故12y <<,即原函数的值域为(1,2)

《函数的单调性和最大(小)值》教学设计【高中数学人教A版必修1(新课标)】

《函数的单调性与最大(小)值》教学设计 第一课时函数的单调性 通过观察一些函数图像的特征,形成增(减)函数的直观认识。再通过具体函数值的大小比较,认识函数值随自变量的增大(减小)的规律,由此得出增(减)函数单调性的定义。掌握用定义证明函数单调性的步骤。函数单调性的研究经历了从直观到抽象,以图识数的过程,在这个过程中,让学生通过自主探究活动,体验数学概念的形成过程的真谛。 【知识与能力目标】 1、结合具体函数,了解函数的单调性及其几何意义; 2、学会运用函数图像理解和研究函数的性质; 3、能够应用定义判断函数在某区间上的单调性。 【过程与方法目标】 借助二次函数体验单调性概念的形成过程,领会数形结合的思想,运用定义进行判断推理,养成细心观察,严谨论证的良好的思维习惯。 【情感态度价值观目标】 通过直观的图像体会抽象的概念,通过交流合作培养学生善于思考的习惯。 【教学重点】 函数单调性的概念。 【教学难点】 判断、证明函数单调性。 从观察具体函数图像引入,直观认识增减函数,利用这定义证明函数单调性。通过练习、交流反馈,巩固从而完成本节课的教学目标。

(一)创设情景,揭示课题 德国有一位著名的心理学家艾宾浩斯,对人类的记忆牢固程度进行了有关研究。他经过测试,得到了以下一些数据: 以上数据表明,记忆量y 是时间间隔t 的函数。艾宾浩斯根据这些数据描绘出了著名的“艾宾浩斯遗忘曲线”, 如图: 思考1:当时间间隔t 逐渐增大你能看出对应的函数值y 有什么变化趋势?通过这个 试验,你打算以后如何对待刚学过的知识? 思考2:“艾宾浩斯遗忘曲线”从左至右是逐渐下降的,对此,我们如何用数学观点进行解释? (二)研探新知 观察下列各个函数的图像,并说说它们分别反映了相应函数的哪些变化规律:

函数的最值问题教案

知识点单调性的应用,最值问题 使学生理解函数的最值是在整个定义域上来研究的,是函数单调性的应用. 教学目标 通过渗透数形结合的思想方法,掌握求函数最值的方法. I ■ ■ 教学重点函数最大(小)值的定义和求法. 教学难点如何求一个具体函数的最值. 函数的最大(小)值的定义,是借助于二次函数及其图像引出的,概念的出现仍然是遵循特殊到一般的原则?鉴于学生对于二次函数已经有了一个初步的了解,因此本节课多从学生接触过的二次函数入手,这样能使学生容易找到最高点和最低点?但这只是感性上的认识,要培养学生能用数学语言描述函数最值的概念,通过对概念的辨析,真正让学生理解最值概念的内涵,同时,在做题时多培养学生画图的能力,体会到数形结合的魅力 【知识导图】 教学过程 「、导入 【教学建议】 导入是一节课必备的一个环节,是为了激发学生的学习兴趣,帮助学生尽快进入学习状^态。 导入的方法很多,仅举两种方法: ①情境导入,比如讲一个和本讲内容有关的生活现象; ②温故知新,在知识体系中,从学生已有知识入手,揭示本节知识与旧知识的关系,帮学 生建立知识网络。 提供一个教学设计供讲师参考: ⑴由于某种原因,2019年北京奥运会开幕式时间由原定的7月25日推迟到8月8 日, 请查阅资料说明做出这个决定的主要原因

⑵通过查阅历史资料研究北京奥运会开幕式当天气温变化情况. 课上通过交流,可以了解到开幕式推迟主要是天气的原因, 北京的天气到8月中旬,平 均气温、平均降雨量和平均降雨天数等均开始下降, 比较适宜举办大型国际体育赛事. 下图 是北京市某年8月8日一天24小时内气温随时间变化的曲线图. 问题:观察图形,能 息? 预案:(1)当天最高温 多少以及何时达到; (2) 在某时刻 (3) 某些时段 时 段温度降低. 在生活中,我们关心很多数据的变化规律, 了解这些数据的变化规律, 对我们的生活是 很有帮助的. 问题:还能举出生活中其他的数据变化情况吗? 预案:水位高低、燃油价格、股票价格等. 设计意图:用函数观点看,其实就是随着自变量的变化,函数值是变大还是变小?从而引入 最大值、最小值的概念. 二、知识讲解 【教学建议】通过前面的引导,得到函数最值的定义,建议老师在引导学生得到最大值的定 义以后,可以让学生来类比写出最小值的定义: 前提 设函数y = f (x)的定义域为1,如果存在实数 M 满足 条件 ① 对于任意X",都有f (x)兰M ; ② 存在x^ I ,使得f (x 0) = M ① 对于任意x",都有f (X) A M ; ② 存在x ^e I ,使得f(xj = M 结论 M 为最大值 M 为最小值 考点数图I 数的意点大值P 的坐标 (x,y)的意义:横坐标x 是自变量的取值,纵坐标y 是自变 量为x 时对应的函数值的大小. (1)图象上最高点的纵坐标是所有函数值中的最大值,即函数的最大值. 得到什么信 度、最低温度是 的温度; 温度升高,某些

最大值与最小值教案

班级:高二( )班 姓名:____________ 教学目标: 1.使学生理解函数的最大值和最小值的概念,掌握可导函数f (x )在闭区间上所有点(包括端点a ,b )处的函数中的最大(或最小)值必有的充分条件; 2.使学生掌握用导数求函数的极值及最值的方法和步骤. 教学重点: 利用导数求函数的最大值和最小值的方法. 教学过程: 一、问题情境 1.问题情境.函数极值的定义是什么? 2.探究活动.求函数f (x )的极值的步骤. 二、建构数学 1.函数的最大值和最小值. 观察图中一个定义在闭区间[]b a ,上的函数)(x f 的图象. 图中)(1x f ,35(),()f x f x 是极小值,24(),()f x f x 是极大值. 函数)(x f 在[]b a ,上的最大值是)(b f ,最小值是3()f x . 一般地,在闭区间[]b a ,上连续的函数)(x f 在[]b a ,上必有最大值与最小值. 说明: (1)在开区间(,)a b 内连续的函数)(x f 不一定有最大值与最小值. 如函数x x f 1)(=在),0(+∞内连续,但没有最大值与最小值; (2)函数的最值是比较整个定义域内的函数值得出的;函数的极值是比较极值点附近函数值得出的; (3)函数在其定义区间上的最大值、最小值最多各有一个,而函数的极值可能不止一个,也可能没有一个. 2.利用导数求函数的最值步骤: 由上面函数)(x f 的图象可以看出,只要把连续函数所有的极值与定义区间端点的函数值进行比较,就可以得出函数的最值了. 设函数)(x f 在[]b a ,上连续,在(,)a b 内可导,则求)(x f 在[]b a ,上的最大值与最小值的步骤如下:

《函数的最大(小)值与导数》教案

《函数的最大(小)值与导数》教案 【教学目标】 1.使学生理解函数的最大值和最小值的概念,掌握可导函数)(x f 在闭区间[]b a ,上所有点(包括端点b a ,)处的函数中的最大(或最小)值必有的充分条件; 2.使学生掌握用导数求函数的极值及最值的方法和步骤. 【教学重点】利用导数求函数的最大值和最小值的方法. 【教学难点】函数的最大值、最小值与函数的极大值和极小值的区别与联系. 【教学过程】 一、复习回顾: 1.极值的概念: 极大值: 一般地,设函数f (x )在点x 0附近有定义,如果对x 0附近的所有的点,都有f (x )<f (x 0),就说f (x 0)是函数f (x )的一个极大值,记作y 极大值=f (x 0),x 0是极大值点. 极小值:一般地,设函数f (x )在x 0附近有定义,如果对x 0附近的所有的点,都有f (x )>f (x 0).就说f (x 0)是函数f (x )的一个极小值,记作y 极小值=f (x 0),x 0是极小值点. 2. 判断函数)(x f y =的极值的方法: 解方程0)(='x f .当0)(0='x f 时: (1)如果在0x 附近的左侧0)(>'x f ,右侧0)(<'x f ,那么)(0x f 是极大值; (2)如果在0x 附近的左侧0)(<'x f ,右侧0)(>'x f ,那么)(0x f 是极小值. 3. 求可导函数f (x )的极值的步骤: (1)确定函数的定义区间,求导数f ′(x ); (2)求方程f ′(x )=0的根; (3)用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列成表格.检查f ′(x )在方程根左右的值的符号,如果左正右负,那么f (x )在这个根处取得极大值;如果左负右正,那么f (x )在这个根处取得极小值;如果左右不

函数的最大值和最小值教案

函数的最大值和最小值教案 1.本节教材的地位与作用 本节主要研究闭区间上的持续函数最大值和最小值的求法和实际应用,分两课时,这里是第一课时,它是在学生已经会求某些函数的最值,并且已经掌握了性质:“如果f是闭区间[a,b]上的持续函数,那么f在闭区间[a,b]上有最大值和最小值”,以及会求可导函数的极值之后进行学习的,学好这一节,学生将会求更多的函数的最值,运用本节知识可以解决科技、经济、社会中的一些如何使成本最低、产量最高、效益最大等实际问题.这节课集中体现了数形结合、理论联系实际等严重的数学思想方法,学好本节,对于进一步完善学生的知识结构,培养学生用数学的意识都具有极为严重的意义. 2.教学重点 会求闭区间上持续开区间上可导的函数的最值. 3.教学难点 高三年级学生虽然已经具有一定的知识基础,但由于对求函数极值还不烂熟,特别是对优化解题过程依据的理解会有较大的困难,所以这节课的难点是理解确定函数最值的方法. 4.教学关键 本节课突破难点的关键是:理解方程f′=0的解,包含有指定区间内全部可能的极值点. 【教学目标】 根据本节教材在高中数学知识体系中的地位和作用,结合学生已有的认知水平,制定本节如下的教学目标: .知识和技能目标 理解函数的最值与极值的区别和联系.

进一步明确闭区间[a,b]上的持续函数f,在[a,b]上必有最大、最小值. 掌握用导数法求上述函数的最大值与最小值的方法和步骤. 2.过程和方法目标 了解开区间内的持续函数或闭区间上的不持续函数不一定有最大、最小值. 理解闭区间上的持续函数最值存在的可能位置:极值点处或区间端点处. 会求闭区间上持续,开区间内可导的函数的最大、最小值. 3.情感和价值目标 认识事物之间的的区别和联系. 培养学生观察事物的能力,能够自己发现问题,分析问题并最终解决问题. 提高学生的数学能力,培养学生的创新精神、实践能力和理性精神. 【教法选择】 根据皮亚杰的建构主义认识论,知识是个体在与环境相互作用的过程中逐渐建构的结果,而认识则是起源于主客体之间的相互作用. 本节课在帮助学生回顾肯定了闭区间上的持续函数一定存在最大值和最小值之后,引导学生通过观察闭区间内的持续函数的几个图象,自己归纳、总结出函数最大值、最小值存在的可能位置,进而探索出函数最大值、最小值求解的方法与步骤,并优化解题过程,让学生主动地获得知识,老师只是进行合适的引导,而不进行全部的灌输.为突出重点,突破难点,这节课主要选择以合作探究式教学法组织教学. 【学法指导】 对于求函数的最值,高三学生已经具备了优良的知识基础,剩下的问题就是有没有一种更大凡的方法,能运用于更多更繁复函数的求最值问题?教学设计中注意激发起学生剧烈的求知欲望,使得他们能积极主动地观察、分析、归纳,以形成认识,参与到课堂活动中,充分发挥他们作为认知主体的作用.

示范教案(单调性与最大(小)值第课时)

示范教案(1.3.1 单调性与最大(小)值 第2课时) 导入新课 思路1.某工厂为了扩大生产规模,计划重新建造一个面积为10 000 m 2的矩形新厂址,新厂址的长为x m ,则宽为x 10000m ,所建围墙ym ,假如你是这个工厂的厂长,你会选择一个长和宽各为多少米的矩形土地,使得新厂址的围墙y 最短? 学生先思考或讨论,教师指出此题意在求函数y=2(x+ x 10000),x>0的最小值.引出本节课题:在生产和生活中,我们非常关心花费最少、用料最省、用时最省等最值问题,这些最值对我们的生产和生活是很有帮助的.那么什么是函数的最值呢?这就是我们今天学习的课题.用函数知识解决实际问题,将实际问题转化为求函数的最值,这就是函数的思想,用函数解决问题. 思路 2.画出下列函数的图象,指出图象的最高点或最低点,并说明它能体现函数的什么特征? ①f(x)=-x+3;②f(x)=-x+3,x ∈[-1,2]; ③f(x)=x 2+2x+1;④f(x)=x 2+2x+1,x ∈[-2,2]. 学生回答后,教师引出课题:函数的最值. 推进新课 新知探究 提出问题 ①如图1-3-1-11所示,是函数y=-x 2-2x 、y=-2x+1,x ∈[-1,+∞)、y=f(x)的图象.观察这三个图象的共同特征. 图1-3-1-11 ②函数图象上任意点P(x,y)的坐标与函数有什么关系? ③你是怎样理解函数图象最高点的? ④问题1中,在函数y=f(x)的图象上任取一点A(x,y),如图1-3-1-12所示,设点C 的坐标为(x 0,y 0),谁能用数学符号解释:函数y=f(x)的图象有最高点C ? 图1-3-1-12 ⑤在数学中,形如问题1中函数y=f(x)的图象上最高点C 的纵坐标就称为函数y=f(x)的最大值.谁能给出函数最大值的定义? ⑥函数最大值的定义中f(x)≤M 即f(x)≤f(x 0),这个不等式反映了函数y=f(x)的函数值具有什么特点?其图象又具有什么特征? ⑦函数最大值的几何意义是什么?

高等数学(上册)教案15 函数的极值与最值

第3章 导数的应用 函数的极值与最值 【教学目的】: 1. 理解函数的极值的概念; 2. 掌握求函数的极值的方法; 3. 了解最大值和最小值的定义; 4. 掌握求函数的最值的方法; 5. 会求简单实际问题中的最值。 【教学重点】: 1. 函数极值的第一充分条件,第二充分条件; 2. 导数不存在情况下极值的判定; 3. 函数最值的求解方法; 4. 函数的最值的应用。 【教学难点】: 1. 导数不存在情况下极值的判定; 2. 区分函数的驻点、拐点、极值点以及最值点; 3. 区分极值点与极值,最值点与最值; 4. 函数的最值的应用。 【教学时数】:2学时 【教学过程】: 3.3.1函数的极值 从图3-7可以看出,函数)(x f y =在点2x 、5x 处的函数值2y 、5y 比它们近旁各点的函数值都大;在点1x 、4x 、6x 处的函数值1y 、4y 、6y 比它们近旁各点的函数值都小,因此,给出函数极值的如下定义: 一般地, 设函数)(x f y =在0x 的某邻域内有定义,若对 于0x 邻域内不同于0x 的所有x ,均有)()(0x f x f <,则称)(0x f 是函数)(x f y =的一个极大值,0x 称为极大值点;若对于0x 邻域内不同于0x 的所有x ,均有 )()(0x f x f >,则称)(0x f 是函数)(x f y =的一个极小值,0x 称为极小值点. 函数的极大值与极小值统称为极值,极大值点和极小值点统称为极值点. 注意 可导函数的极值点必是它的驻点,但反过来是不成立的,即可导函数的驻点不一定是它的极值点. 极值的第一充分条件 设函数)(x f y =在点0x 的邻域内可导且0)(0='x f ,则 (1)如果当x 取0x 左侧邻近的值时,0)(0>'x f ;当x 取0x 右侧邻近的值时, 图3-7 y O x a 1 x 2 x 3x 4x 5 x b

总复习教案:函数的单调性与最值(教师版)

第三节 函数的单调性与最值 [知识能否忆起] 一、函数的单调性 1.单调函数的定义 增函数 减函数 定义 设函数f (x )的定义域为I .如果对于定义域I 内某个区间D 上的任意两个自变量的值x 1, x 2 当x 1f (x 2) ,那么就说函 数f (x )在区间D 上是减函数 图象描述 自左向右看图象逐渐上升 自左向右看图象逐渐下降 2.单调区间的定义 若函数y =f (x )在区间D 上是增函数或减函数,则称函数y =f (x )在这一区间上具有(严格的)单调性,区间D 叫做y =f (x )的单调区间. 二、函数的最值 前提 设函数y =f (x )的定义域为I ,如果存在实数M 满足 条件 ①对于任意x ∈I ,都有f (x )≤M ; ②存在x 0∈I ,使得f (x 0)=M ①对于任意x ∈I ,都有f (x )≥M ; ②存在x 0∈I ,使得f (x 0)=M 结论 M 为最大值 M 为最小值 [小题能否全取] 1.(2012·陕西高考)下列函数中,既是奇函数又是增函数的为( ) A .y =x +1 B .y =-x 3 C .y =1x D .y =x |x | 解析:选D 由函数的奇偶性排除A ,由函数的单调性排除B 、C ,由y =x |x |的图象可知此函数为增函数,又该函数为奇函数,故选D. 2.函数y =(2k +1)x +b 在(-∞,+∞)上是减函数,则( ) A .k >12 B .k <12

高一数学《函数的单调性与最值》第二课时教案

1 函数的单调性与最值 学习目标: 1. 使学生理解函数的最值是在整个定义域上来研究的,它是函数单调性的应用。 2. 会用单调性求最值。 3. 掌握基本函数的单调性及最值。 知识重现 1、一般地,设函数f(x)的定义域为I ,如果存在实数M 满足: (1) 对于任意的x ∈I ,都有f(x)≤M ; (2) 存在x 0∈I,使得f(x 0)=M. 那么,我们称M 是函数y=f(x)的最大值(maximum value ) 2、一般地,设函数f(x)的定义域为I ,如果存在实数M 满足: (3) 对于任意的x ∈I ,都有f(x)≥ M ; (4) 存在x 0∈I,使得f(x 0)=M. 那么,我们称M 是函数y=f(x)的最小值(minimum value ) 理论迁移 例1 “菊花”烟花是最壮观的烟花之一,制造时一般是期望在它达到最高点时爆裂。如果烟花距地面的高度h 米与时间t 秒之间的关系为h(t )=-4.9t 2+14.7t+18,那么烟花冲出后什么时候是它爆裂的最佳时刻?这时距地面的高度是多少(精确到1米)? 例2 已知函数f(x)= 1 x 2-(x ∈[2,6]),求函数的最大值和最小值。 归纳基本初等函数的单调性及最值 1. 正比例函数:f(x)=kx(k ≠0),当k 0时,f(x)在定义域R 上为增函数;当k 0时,f(x)在 定义域R 上为减函数,在定义域R 上不存在最值,在闭区间[a,b ]上存在最值,当k 0时函数f(x)的最大值为f(b)=kb,最小值为f(a)=ka, 当k 0时, ,最大值为f(a)=ka ,函数f(x)的最小值为f(b)=kb 。 2. 反比例函数:f(x)=x k (k ≠0),在定义域(-∞,0) (0,+∞)上无单调性,也不存在最值。当k 0时,在(-∞,0),(0,+∞)为减函数;当k 0时,在(-∞,0),(0,+∞)

函数的最大值与最小值 说课稿 教案 教学设计

函数的最大值与最小值 一、教学目标:理解并掌握函数最大值与最小值的意义及其求法.弄请函数极值与最值的区别 与联系.养成“整体思维”的习惯,提高应用知识解决实际问题的能力. 二、教学重点:求函数的最值及求实际问题的最值. 教学难点:求实际问题的最值.掌握求最值的方法关键是严格套用求最值的步骤,突破难 点要把实际问题“数学化”,即建立数学模型. 三、教学过程: (一)复习引入 1、问题1:观察函数f (x )在区间[a ,b ] 的极大值、极小值和最大值、最小值. 2、问题2:观察函数f (x )在区间 [a ,b ]的极大值、极小值和最大值、最小值. (见教材P30面图1.3-14与1.3-15) 3、思考:⑴ 极值与最值有何关系? ⑵ 最大值与最小值可能在何处取得? ⑶ 怎样求最大值与最小值? 4、求函数y = 44313+-x x 在区间[0, 3]上的最大值与最小值. (二)讲授新课 1、函数的最大值与最小值 一般地,设y =f (x )是定义在[a ,b ]上的函数,在[a ,b ]上y =f (x )的图象是一条连续不断的曲线,那么它必有最大值与最小值。 函数的极值是从局部考察的,函数的最大值与最小值是从整体考察的。 2、求y =f (x )在[a ,b ]上的最大值与最小值,可分为两步进行: ⑴ 求y =f (x )在(a ,b )内的极值; ⑵ 将y =f (x )的各极值与f (a ),f (b )比较,其中最大的一个为最大值,最小的一个为最小值. 例1.求函数y =x 4-2x 2+5在区间[-2, 2]上的最大值与最小值. 解: y'=4x 3-4x =4x (x +1)(x -1)令y'=0,即 4x (x +1)(x -1)=0, 解得x =-1,0,1.当x 变化时,y',y 的变化情况如下表: 故 当x =±2时,函数有最大值13,当x =±1时,函数有最小值4. 练习 例2.求函数y =5363423+-+x x x 在区间[-2, ∞+]上的最大值与最小值. 例3. 求函数]4,0[,2)(∈+=x x x x f 的最大值和最小值.

函数最值教案

函数最值教案 教学目标 理解函数最大(小)值的定义,强调最值是函数的整体性质; 掌握简单的求函数最值的方法(图象法、配方法、单调性法); 会利用求函数最值的方法解决一些简单的实际问题,如:用料最省、利润最大、效率最高等最值问题. 教学重难点 教学重点: 函数最大值、最小值定义的理解; 掌握求函数最值的三种基本方法:图象法、配方法、单调性法; 会利用求函数最值的方法解决一些简单的实际问题. 教学难点: 利用单调性法求函数的最值; 利用求函数最值的方法解决现实生活中的最值问题. 教学过程 (一)观察图象,导入新课 让学生自己动手画出函数2 y x =-和函数||y x =-的图象,引导学生观察两个函数图象的共同点,引导启发学生发现这两个函数的图象都有一个最高点(0,0),并告诉学生在数学上将这个最高点称为函数在定义域上的最大值.进一步提出问题:根据你对图象的观察,能否试着归纳出函数最大值的定义. 根据学生对函数最大值定义的归纳情况,给出函数最大值的准确定义. 一般地,设函数()y f x =的定义域为I ,如果存在实数M 满足: (1)对于任意的x I ∈,都有()f x M ≤; (2)存在0x I ∈,使得0()f x M =. 那么,就称M 是函数()y f x =的最大值. (二)列举实例,理解内涵 问题一:

2是函数的最大值吗?为什么? [设计意图]强调概念中的“任意”二字. 问题二:4是问题一中函数的最大值吗?为什么? [设计意图]强调最大值必须能取到. 问题三:常值函数1y =有没有最大值?如果有最大值是多少? [设计意图]强调函数的最大值虽然是唯一的,但与最大值对应的自变量的值并不一定是唯一的. 引导学生归纳出函数的最大值就是函数图象最高点所对应的纵坐标. (三) 自己动手,类比研究 让学生根据研究函数最大值的方法、手段、过程,给出函数最小值的概念及对概念内涵的理解. (四)实际应用,巩固提高 讲解课本30页例3(图象法,配方法) 题后小结: (1)函数最值的图形特征:函数的最大(小)值是函数图像上最高(低)点的纵坐标; (2)二次函数2(0)y ax bx c a =++≠的最值: ①0a <,当2b x a =-时,2 max 44ac b y a -=. ②0a >,当2b x a =-时,2 max 44ac b y a -=. (3)若()f x 在[,]a b 上为增函数,则min max ()(),()()f x f a f x f b ==; 若()f x 在[,]a b 上为减函数,则min max ()(),()()f x f b f x f a ==. (4)若()f x 值域为[,]a b ,则min max (),()f x a f x b ==. 31页例4(图象法,单调性法,其中详细讲解单调性法的推理过程及解题步骤). 课堂练习:课本32页第5题,39页第5题 小结 学生自己作小结,教师归纳: 函数最大(小)值定义的理解;求函数最值的三种方法 作业 1.39P B 组1 已知函数22 ()2,()2([2,4])f x x x g x x x x =-=-∈. (1)求(),()f x g x 的单调区间; (2)求(),()f x g x 的最小值. 2.39P B 组2 如图所示,动物园要建造一面靠墙的2间面积相同的矩形熊猫居室,如果可供建

高三数学教案函数的最大值和最小值(第1课时

2006年江西省高中青年教师优质课比赛参赛教案§3.8 函数的最大值和最小值(第1课时)江西省临川第一中学游建龙(344100) 二OO六年九月十三日 E-mail:lcyz_yjl@https://www.360docs.net/doc/7f11049445.html,

§3.8 函数的最大值和最小值 【教材分析】 1.本节教材的地位与作用 本节是在学生已经会求某些函数的最值,并且已经掌握了性质:“如果f(x)是闭区间[a,b]上的连续函数,那么f(x)在闭区间[a,b]上有最大值和最小值”,以及会求可导函数的极值之后进行学习的,学好这一节,学生将会求更多的函数的最值,运用本节知识可以解决科技、经济、社会中的一些如何使用料最省、效益最大等实际问题.这节课集中体现了数形结合、理论联系实际等重要的数学思想方法,对于完善学生的知识结构,培养学生用数学的意识都具有极为重要的意义. 2.教学重点 会求闭区间上连续开区间上可导的函数的最值. 3.教学难点 确定函数最值的方法,并会求函数的最值. 【教学目标】 根据本节教材在高中数学知识体系中的地位和作用,结合学生已有的认知水平,制定本节如下的教学目标: 1.知识和技能目标 (1)理解函数的最值与极值的区别和联系. (2)进一步明确闭区间[a,b]上的连续函数f(x),在[a,b]上必有最大、最小值. (3)掌握用导数法求上述函数的最大值与最小值的方法和步骤. 2.过程和方法目标 (1)了解开区间内的连续函数不一定有最大、最小值. (2)会求闭区间上连续,开区间内可导的函数的最大、最小值. 3.情感和价值目标 (1)认识事物之间的的区别和联系. (2)培养学生观察事物的能力,能够自己发现问题,分析问题并最终解决问题. 【教法选择】 根据皮亚杰的建构主义认识论,知识是个体在与环境相互作用的过程中逐渐建构的结果,而认识则是起源于主客体之间的相互作用. 本节课引导学生自己通过观察函数的图象,归纳、总结出最大值、最小值求解的方法与步骤,让学生自己主动地获得知识,老师只是进行适当的引导,而不是进行全部的灌输.【学法指导】 对于求函数的最值,高三学生已经具备了良好的知识基础,剩下问题是有没有一种更一般的方法,能运用于更多更复杂的函数求最值问题?教学设计中注意激发起学生强烈的求知欲望,使得他们能积极主动地观察、分析、归纳,以形成认识,参与到课堂活动中,充分发

函数的最大(小)值优秀教案 新人教A版必修1

§1.3.1函数的最大(小)值 一.教学目标 1.知识与技能: 理解函数的最大(小)值及其几何意义. 学会运用函数图象理解和研究函数的性质. 2.过程与方法: 通过实例,使学生体会到函数的最大(小)值,实际上是函数图象的最高(低)点的纵坐标,因而借助函数图象的直观性可得出函数的最值,有利于培养以形识数的解题意识. 3.情态与价值 利用函数的单调性和图象求函数的最大(小)值,解决日常生活中的实际问题,激发学生学习的积极性. 二.教学重点和难点 教学重点:函数的最大(小)值及其几何意义 教学难点:利用函数的单调性求函数的最大(小)值. 三.学法与教学用具 1.学法:学生通过画图、观察、思考、讨论,从而归纳出求函数的最大(小)值的方法和步骤. 2.教学用具:多媒体手段 四.教学思路 (一)创设情景,揭示课题. 画出下列函数的图象,指出图象的最高点或最低点,并说明它能体现函数的什么特征? ①()3f x x =-+ ②()3 [1,2]f x x x =-+∈- ③2 ()21f x x x =++ ④2 ()21[2,2]f x x x x =++∈- (二)研探新知 1.函数最大(小)值定义 最大值:一般地,设函数()y f x =的定义域为I ,如果存在实数M 满足: (1)对于任意的x I ∈,都有()f x M ≤; (2)存在0x I ∈,使得0()f x M =. 那么,称M 是函数()y f x =的最大值. 思考:依照函数最大值的定义,结出函数()y f x =的最小值的定义. 注意: ①函数最大(小)首先应该是某一个函数值,即存在0x I ∈,使得0()f x M =; ②函数最大(小)应该是所有函数值中最大(小)的,即对于任意的x I ∈,都有()(())f x M f x m ≤≥.

《函数的最大与最小值》教案(优质课)

《函数的最大与最小值》教案 【教学目标】: 1、使学生掌握可导函数)(x f 在闭区间[]b a ,上所有点(包括端点b a ,)处的函数中的最大(或最小)值; 2、使学生掌握用导数求函数的极值及最值的方法 【教学重点】:掌握用导数求函数的极值及最值的方法 【教学难点】:提高“用导数求函数的极值及最值”的应用能力 【教学过程】 一、复习: 1、() ___________/ =n x ;2、[]_____________)()(/ =±?x g x f C 3、求y=x 3—27x 的 极值。 二、新课 在某些问题中,往往关心的是函数在一个定义区间上,哪个值最大,哪个值最小 观察下面一个定义在区间[]b a ,上的函数)(x f y =的图象 发现图中____________是极小值,_________是极大值,在区间[]b a ,上的函数 )(x f y =的最大值是______,最小值是 _______ x

在区间 []b a ,上求函数 )(x f y =的最大值与最小值 的步骤: 1、函数 )(x f y =在),(b a 内有导数... ;. 2、求函数 )(x f y =在),(b a 内的极值 3、将.函数)(x f y =在),(b a 内的极值与)(),(b f a f 比较,其中最大的一个为最大值 ,最小的一个为最小值 三、例题 例1、求函数5224+-=x x y 在区间[]2,2-上的最大值与最小值。 解:先求导数,得x x y 443/-= 令/y =0即0443=-x x 解得1,0,1321==-=x x x 导数/y 的正负以及)2(-f ,)2(f 如下表 从上表知,当2±=x 时,函数有最大值13,当1±=x 时,函数有最小值4 在日常生活中,常常会遇到什么条件下可以使材料最省,时间最少,效率最高等问题,这往往可以归结为求函数的最大值或最小值问题。 例2 用边长为60CM 的正方形铁皮做一个无盖的水箱,先在四个角分别截去一个小正方形,然后把四边翻转90°角,再焊接而成,问水箱底边的长取多少时,水箱容积最大,最大容积是多少?

函数的最大值和最小值教案(2)

浙江汽车职业技术学院高等数学课教案NO11

解:设方盒底边边长为x ,体积为 = 箱子容积为:V=x2 h .引出课题:分析函数关系可以看出,以前学过的方法在这个问题中较难凑效,这节课我们将学习一种很重要的方法,来求某些函数的最值.

2.如图为连续函数f(x)的图象: 在闭区间[a,b]上连续函数f(x)的最大值、最小值分别

【教学设计说明】 本节课旨在加强学生运用导数的基本思想去分析和解决问题的意识和能力,即利用导数知识求闭区间上可导的连续函数的最值,这是导数作为数学工具的一个具体体现,整堂课对闭区间上的连续函数的最大值和最小值以“是否存在?存在于哪里?怎么求?”为线索展开.

1.由于学生对极限和导数的知识学习还谈不上深入熟练,因此教学中从直观性和新旧知识的矛盾冲突中激发学生的探究热情,充分利用学生已有的知识体验和生活经验,遵循学生认知的心理规律,努力实现课程改革中以“学生的发展为本”的基本理念.2.关于教学过程,对于本节课的重点:求闭区间上连续,开区间上可导的函数的最值的方法和一般步骤,必须让学生在课堂上就能掌握.对于难点:求最值问题的优化方法及相关问题,层层递进逐步提出,让学生带着问题走进课堂,师生共同探究解决,知识的建构过程充分调动学生的主观能动性. 3.为充分调动学生的学习积极性,让学生能够主动愉快地学习,本节课始终贯彻“教师为主导、学生为主体、探究为主线、思维为核心”的数学教学思想,引导学生主动参与到课堂教学全过程中. 4.在教学手段上,制作多媒体课件辅助教学,使得数学知识让学生更易于理解和接受;课堂教学与现代教育技术的有机整合,大大提高了课堂教学效率.

专题04 函数的最大、最小值(教案)

1 https://www.360docs.net/doc/7f11049445.html, 哈佛北大精英创立 1 专题4 函数的最大、最小值(教案) 前言: 一般地,设函数()y f x =在0x 处的函数值是0()f x ,如果对于定义域内任意x ,不等式0()()f x f x ≥都成立,那么0()f x 叫做函数()y f x =的最小值,记作min 0()y f x =;如果对于定义域内任意x ,不等式0()()f x f x ≤都成立,那么0()f x 叫做函数()y f x =的最大值,记作max 0()y f x =。 一、专题知识 1. 基本公式 (1)二次函数2 (0)y ax bx c a =++≠ 当0a >时,当2b x a =-时,2 min 44ac b y a -=; 当0a <时,当2b x a =-时,2 max 44ac b y a -=。 (2)若0,0a b >>,则2 a b ab +≥(当且仅当a b =时,等号成立) 当a b +为定值时,2max ()2a b ab +??= ??? ; 当ab 为定值时,min ()2a b ab +=。 2. 基本结论 一次函数12()(0)()f x kx b k x x x =+≠≤≤ 当0k >时,min 1max 2()(),()()f x f x f x f x ==; 当0k <时,min 2max 1()(),()()f x f x f x f x ==。 二、例题分析 例题1 若0x >,求函数21y x x x =-+ 的最小值。 【解】将21y x x x =-+配方得, 2221(1)11(1)1y x x x x x x ??=-++- ?? ???=-+-+ ??? 由于2(1)0x -≥(当且仅当1x =时,等号成立),

函数最值问题教案

教学过程 '、导入 (1)由于某种原因,2019年北京奥运会开幕式时间由原定的7月25日推迟到8月8日, 请查阅资料说明做出这个决定的主要原因? ⑵通过查阅历史资料研究北京奥运会开幕式当天气温变化情况. 课上通过交流,可以了解到开幕式推迟主要是天气的原因,北京的天气到8月中旬,平 均气温、平均降雨量和平均降雨天数等均开始下降,比较适宜举办大型国际体育赛事. 下图 是北京市某年8月8日一天24小时内气温随时间变化的曲线图. 问题:观察图形,能得到什么信息? 预案:(1)当天最高温度、最低温度以及何时达到; (2)在某时刻的温度; ⑶某些时段温度升高,某些时段温度降低. 在生活中,我们关心很多数据的变化规律,了解这些数据的变化规律,对我们的生活是 很有帮助的.

问题:还能举出生活中其他的数据变化情况吗? 预案:水位高低、燃油价格、股票价格等. 归纳:用函数观点看,其实就是随着自变量的变化,函数值是变大还是变小. 二、知识讲解 函考点象上任函数的p最大坐标(x, y)的意义:横坐标x是自变量的取值,纵坐标y是自变量为x时对应的函数值的大小. (3) 图象上最高点的纵坐标是所有函数值中的最大值,即函数的最大值. ⑷由于点C是函数y= f(x)图象上的最高点,则点A在点C的下方,即对定义域内任意 x,都有y W y o,即f(x)w f(x°),也就是对函数y= f(x)的定义域内任意x,均有f(x)w f(x o)成立. (5) —般地,设函数y= f(x)的定义域为I,如果存在实数M满足: ①对于任意的x€ I,都有f(x) WM; ②存在X o € I,使得f(x o)= M. 那么,称M是函数y= f(x)的最大值.. (6) f(x)W M反映了函数y= f(x)的所有函数值不大于实数M;这个函数的特征是图象有最 高点,并且最高点的纵坐标是M. ⑺函数图象上最高点的纵坐标. (8) 函数y=—2x+ 1, x€ (- 1,+s)没有最大值,因为函数y=—2x + 1, x€ (—1,+ a)的图象没有最高点. (9) 不是,因为该函数的定义域中没有一 1. (10) 讨论函数的最大值,要坚持定义域优先的原则;函数图象上有最高点时,这个函数

1.3.3函数的最大(小)值与导数教案

§1.3.3 函数的最大(小)值与导数 一、教学内容分析 1.在教材中的位置: 本节内容安排在《普通高中课程标准实验教科书数学选修2-2》人教A版,第一章。第三节“导数在研究函数中的应用” 2.学习的主要工具: 基本初等函数的识图能力与函数的极值与导数知识。 3.学习本节课的主要目的: 本节内容是在学生学习完导数基本概念与基本初等函数求导公式后的应用性知识,强调在应用中进一步理解导数,并为以后内容“生活中的优化问题”打好基础。 4.本节课在教材中的地位: 函数的最值是基本初等函数的重要性质,是历年高考的热点问题,也是解决实际问题,如成本最低,产量最高,效益最大等的重要工具。学好本节内容对学生的可持续发展具有重要意义,可进一步完善学生知识结构,培养学生应用数学的意识。 二、学情分析 学生已经在高一阶段必修一的学习中,学习了函数基础知识,并初步具备应用函数单调性求最值的基础,但是对于运用刚刚学习的导数工具研究函数性质,还不熟练,应用导数在思维上有很大的局限性。

三、课堂设计思想 培养学生学会学习、学会探究是全面发展学生能力的重要前提,是高中新课程改革的主要任务。而问题驱动,问题引导,主动观察,主动发现又是帮助学生学会学习的重要好手段。本节教学,将遵循这个原则而进行设计,让学生领会到知识的产生过程。 四、教学目标 1.知识和技能目标 (1)弄清函数最大值、最小值与极大值、极小值的区别与联系,理解和熟悉函数)(x f 必有最大值和最小值的充分条件。 (2)掌握求在闭区间],[b a 上连续的函数)(x f 的最大值和最小值的方法 和步骤。 (3)复习巩固求函数最值的其他方法,例如单调性,基本不等式等。 2.过程和方法目标 (1)问题驱动,自主探究,合作交流。 (2)培养学生在生活中学习数学的方法。 3.情感和价值目标 (1)通过观察认识到事物的表象与本质的区别与联系. (2)培养学生观察事物的能力,能够自己发现问题,分析问题并最终解决问题. (3)提高学生的数学能力,培养学生的创新精神、实践能力和理性精神. (4)通过学生的参与,激发学生学习数学的兴趣。 五、教学重点与难点 重点:求闭区间上连续可导的函数的最值的求解,理解确定函数最值的方法,并联系函数单调性的应用。 难点:求函数的最值的方法的提炼,同时让有余力的学生了解函数的最值与极值的区别与联系

相关文档
最新文档