大学物理 第9-10章习题解答

大学物理 第9-10章习题解答
大学物理 第9-10章习题解答

第九章 电磁感应

§9-1 电源 电动势 §9-2 电磁感应定律 §9-3 动生电动势

§9-4 感生电动势和感生电场 §9-5 自感和互感 §9-6 磁场的能量

§9-7 位移电流 麦克斯韦方程组

9.1 法拉第电磁感应定律指出:通过回路所圈围的面积的磁通量发生变化时,回路中就产生感应电动势。哪些物理量的改变会引起磁通量的变化?

9.2 若感应电流的方向与楞次定律所确定的方向相反,或者说,法拉第定律公式中的负号换成正号,会导致什么结果?

9.3 有人说,楞次定律告诉我们“感应电流的磁通总是原磁通相反的”,你认为对吗?为什么?

解答:不对,阻碍并不是相反。

9.4 L 值是否有负值?M 值是否有负值?怎样理解负值的物理意义? 9.5 有两个相隔距离不太远的线圈,如何放置才能使其互感系数为零? 9.6 存在位移电流,是否必存在位移电流的磁场?

9.7 半径为a 的圆线圈置于磁感强度为B 的均匀磁场中,线圈平面与磁场方向垂直,线圈电阻为R ;当把线圈转动使其法向与B 的夹角0

60=θ时,线圈中通过的电荷与线圈面积及转动所用的时间的关系是( ) A 、与线圈面积成正比,与时间无关; B 、与线圈面积成正比,与时间成正比; C 、与线圈面积成反比,与时间成正比; D 、与线圈面积成反比,与时间无关。 答案:A

9.8 如图9-8所示,长度为的直导线ab 在均匀磁场B 中以速度υ移动,直导线ab 中的电动势为

A 、B

υ B 、sin B υα C 、cos B υα D 、0

答案:D

9.9 在感生电场中,电磁感应定律可写成i k d d dt

εΦ

=?=

?

E l ,式中k E 为感生电场的电场强度;此式表明( ) A 、闭合回路上的k E 处处相等; B 、感生电场是保守场;

C 、感生电场的电场线不是闭合曲线;

D 、感生电场是涡旋藏。 答案:D

9.10 若尺寸相同的铁环与铜环所包围的面积中穿过磁通量的变化率相同,则在这两个环中( )

A 、感应电动势不同,感应电流相同;

B 、感应电动势和感应电流都相同;

C 、感应电动势和感应电流都不同;

D 、感应电动势相同,感应电流不同。 答案:D

9.11 某空间中,既有静止电荷激发的电场0E 又有变化磁场激发的电场k E ,选一闭合回路,则( ) A 、一定有00d ?=?E l ,且0k d ?≠?E l ; A 、一定有00d ?≠?E l ,且0k d ?=?E l ; A 、可能有00d ?≠?E l ,一定有0k d ?≠?E l ; A 、一定有00d ?=?

E l ,可能有0k d ?=?E l ;

答案:D

9.12圆铜盘水平放置在均匀磁场中,B

的方向垂直盘面向上.当铜盘绕通过中心垂直于盘

面的轴沿如图9-12所示方向转动时( )

A 、铜盘上有感应电流产生,沿着铜盘转动的相反方向流动;

B 、铜盘上有感应电流产生,沿着铜盘转动的方向流动;

C 、铜盘上产生涡流;

D 、铜盘上有感应电动势产生,铜盘边缘处电势最高;

E 、铜盘上有感应电动势产生,铜盘中心处电势最高。

答案:D

9.13 一长度确定的长直螺线管,原来用细导线单层密绕而成,现换成直径为原来两倍的导线单层密绕,则螺线管的自感系数( )

A 、增加到原来的2倍;

B 、增加到原来的4倍;

C 、减小到原来的1/2;

D 、减小到原来的1/4。 答案:D

9.14载有电流10I A =的圆线圈,放在磁感应强度为0.015T 的匀强磁场中,处于平衡位置,线圈的直径为12cm 。先将线圈以它的直径为轴转过2π角度时,外力所作的功为( ) A 、3

1.710J -? B 、3

1.010J -? C 、3

1.610J -? D 、0 答案:A

9.15有两个长直密绕螺线管,长度及线圈匝数均相同,半径分别为1r 和2r .管内充满均匀介质,其磁导率分别为1μ和2μ.设12:1:2r r =,1:2:21=μμ,当将两只螺线管串联在电路中通电稳定后,其自感系数之比12:L L 与磁能之比12:m m W W 分别为( ) A 、L 1∶L 2=1∶1,W m 1∶W m 2 =1∶1; B 、L 1∶L 2=1∶2,W m 1∶W m 2 =1∶1; C 、L 1∶L 2=1∶2,W m 1∶W m 2 =1∶2; D 、L 1∶L 2=2∶1,W m 1∶W m 2 =2∶1。 答案:C

9.16下列哪种情况的位移电流为零?( ) A 、电场不随时间而变化; B 、电场随时间而变化; C 、交流电路; D 、在接通直流电路的瞬时。 答案:A

9.17 如图9-17所示,平板电容器(忽略边缘效应)充电时,沿环路1L 的磁场强度H 的环流与沿环路2L 的磁场强度H 的环流两者,必有( ) A 、1

2

d d L L ''>????H l H l B 、12

d d L L ''=

??

??

H l H l .

C 、

12

d d L L ''<

???

?

H l H l D 、1

d 0L '=??H l

答案:C

9.18 对位移电流,有下述四种说法,正确的是( ) A 、位移电流是指变化电场;

图9-17

B 、位移电流是由线性变化磁场产生的;

C 、位移电流的热效应服从焦耳─楞次定律;

D 、位移电流的磁效应不服从安培环路定理。 答案:A

9.19 如图9-19所示,一长直流载有电流为I ,旁边有一个两条对边与它平行并与它共面的矩形线圈,以速度υ沿垂直于导线的方向离开导线。求 : (1)在任意时刻t 通过矩形线圈的磁通量Φ;

(2)在任意时刻线圈中的感应电动势ε的大小和方向。

解:(1) 0()d 2s

I

t B ds

l r r

μ=

?=π???

Φ?+

π=

t a r r l

I v d 20μt a t b l I v v ++π=ln 20μ (2) 依据法拉第电磁感应定律得0112lI dt

a t

b t με?

?

=-=

- ?π++??

v v v

方向:顺时针。

9.20 如图9-20所示,一长直导线载有电流I ,有一长为的金属AB 放置在包含导线的平面内,以恒定的速度υ沿水平方向移动,金属棒与速度υ呈θ角,0t =时,棒的A 端到导线的距离为a ,求任何时刻金属棒中的动生电动势。 解:()v tan d d B dx εθ=??B l =υ 对上式积分,

00tan tan tan ln 22B B

A

A

x x B

x x A

Iv I x vB dx dx x x μθμυθεθππ=??

==

已知t 时刻,cos B x a t θυ=++,A x a t υ=+ 所以

0tan cos ln 2I a t a t

μυθθυεπυ++=

+

由于积分值为正,故动生电动势的方向为A B →。

υ

O

9.21 将一根导线完成三段半径均为r 的圆弧,如图9-21所示。每一段圆弧为圆周的四分之一,ab 位于xoy 平面,bc 位于yoz 平面,ca 位于zox 平面。空间有均匀磁场B 指向x 轴正方向,且随时间变化B kt =(k 为正常数)

解:由于均匀磁场B 指向x 轴,所以穿过回路的磁通与穿过obc 因而有

21

4

m obc S B r B

πΦ=

=

弧形回路中的感应电动势为

221144

m d dB r r k dt dt εππΦ=-=-=-

方向:acba 。

9.22一长直导线载有电流0sin I I t ω=,旁边有一个两条对边与它平行并与它共面的矩形线圈,如图9-22所示。线圈共有N 匝,设线圈不动,求线圈中的感应电动势。 解:回路中的磁通量为

11

012()2()d b

d s

I

I

t B ds adx x x d d μ+??=?=+??π--??

???

Φ 01212()()ln 2a

d b d b d d μ??

++=??π??

感应电动势

001212()()ln cos 2I a d b d b N

N

t dt

d d μω

εω??

++Φ

=-=-??π

??

d

9.23 如图9-23所示,以面积为510cm cm ?的线框,在与一均匀磁场0.1B T =相垂直的平面中运动匀速运动,速度2/cm s υ=。已知线框的电阻1r =Ω。若取线框前沿与磁场接触时刻为0t =,试求: (1)通过线框的磁通量; (2)线框中的感应电动势; (3)线框中的感应电流。

解:时间间隔0-5s 内,线框中的磁通为

410()BS B t t Wb υ-Φ===

410()d V dt

ε-Φ

=-

=-

410()I A R

ε

-=

=-

时间间隔5-10s 内,线框中的磁通为

40510()BS B t Wb υ-Φ===?

0ε=;0I =

时间间隔10-15s 内,线框中的磁通为

44051010()BS B t t t Wb υ--Φ=-=?-

410()d V dt ε-Φ=-

=,410()I A R

ε

-==

9.24 如图9-24所示,有一弯成θ

角的金属架COD 放在磁场中,磁感强度B 的方向垂直

于金属架COD 所在平面.一导体杆MN 垂直于OD 边,并在金属架上以恒定速度v

向右滑

动,υ与MN 垂直.设t =0时,x = 0.求下列两情形,框架内的感应电动势i ε。 (1) 磁场分布均匀,且B 不随时间改变;

(1) 非均匀的时变磁场t Kx B ωcos =。

解:(1) 如题图18(a ),因为

x y xy

B θΦtg 2

1

== t x v =

所以,由法拉第电磁感应定律可得

2d 1d /d (tg )d 2t B x t εΦθ=-=-

t B t x x B 2tg /d d 2tg 2

1

v θθ=-= 在导体MN 内ε的方向由M 向N .

(2) 对于非均匀时变磁场t Kx B ωcos =。如题图18(b ),取回路绕行的正向为O →N →M →O ,则

ξηd d d B S B ==Φ, θξηtg = ξθωξξθξΦd tg cos d tg d 2t K B ==

ξθωξΦΦd tg cos d 0

2t K x

??==θωtg cos 3

13t Kx =

ε=t d d Φ-

θωθωωtg cos tg sin 3

1

23t Kx t x K v -= )cos sin 3

1

(tg 233t t t t K ωωωθ-=v

0ε>,则ε方向与所设绕行正向一致;0ε<,则ε方向与所设绕行正向相反。

9.25 一半径为R 的长直螺线管内,磁场以dB

dt

的变化率增加,磁场的方向平行于螺线管的轴线。试求:

(1)螺线管内有一个与螺线管轴垂直、圆心在轴上的、半径为1r 的圆,穿过此圆的磁通量变化率;

(2)螺线管内离轴1r 处的感应电场; (3)螺线管外离轴2r 处的感应电场;

解:(1)穿过半径为1r 的圆面上磁通量的变化率为

2

1d dB

r dt dt

πΦ= (2)由感应电场与磁通量的关系

d d dt

Φ

?=-

?

E l 及场分布的对称性,可得

12d E r dt

πΦ

?=

螺线管内离轴1r 的感应电场为

11122r d dB

E r dt dt

πΦ=

=

方向为逆时针。

9.26 一长直导线载有电流0sin I I t ω=,紧靠直导线有一矩形线框,线框与直导线处在同一平面内,如题9-26所示,试求: (1)直导线与线框的互感系数; (2)线框的互感电动势。

解:取导线右侧磁通量为正,左侧的磁通量为负,

则通过矩形线框的磁通为

32

002

ln 322a a I I

adr a r μμππ

Φ==?

直导线与线框的互感系数为

ln 32M I μπ

Φ=

= (2) 00(ln 3)cos 2a d dI

M I t dt dt μεωωπ

Φ=-=-=-

9.27 一无限长直导线通有电流t

I I 30e -=。一矩形线圈与长直导线共面放置,其长边与导线

平行,位置如图9-27所示.求:

(1)矩形线圈中感应电动势的大小及感应电流的方向; (2)导线与线圈的互感系数.

解:(1)如图建立坐标系,在坐标r r dr →+间取面元ds bdr =。取矩形线圈的饶行方向为顺时针,则面元的正法矢量方向垂直纸面向里,于是该面元上的磁通量为

r Bl S B d d d ==?

Φ ,其中 )2/(0r I B π=μ

穿过矩形线框的磁通量为:

a

b l

I r l r

I

b

a

ln

2d 200π

=

π=?

μμΦ 根据法拉第电磁感应定律得:

0d d (ln )d 2d l b I t a t μεΦ=-

=-π3003ln e 2t lI b a

μ-=?π 由于感应电动势0ε>,所以此时感应电流方向为顺时针方向. (2)根据互感系数的计算式可得:

a

b

l I M ln 20π=Φ=

μ 9.28给电容为C 的平行板电容器充电,电流为0.2t

i e -=?(SI ),设0t =时电容器极板上无电荷。求:

(1)极板间电压U 随时间t 而变化的关系;

(2)t 时刻极板间总的位移电流d I (忽略边缘效应)。 解:(1) 011

(1)t t q U idt e C C C

-=

==-? (2)设极板面积为S ,在任意时刻t ,极板上电荷面密度为σ,对平行板电容器所产生的电场是均匀电场,其电位移矢量D 为常量,因此电通量为

根据位移电流表达式有

9.29 一平行板电容器,两极板为圆形导体片,其半径,充电时,其中电场强度的变化率为,试求:

(1)两极板间的位移电流; (2)极板边缘处的磁感应强度。 解:(1)两极板间的位移电流为

00.28e d d d dE

I d S A dt dt dt

εΦ=

=?==??D S (2)在电容器内,沿圆片边缘作安培环路,因其中无传到电流,又无介质,由安培环路定理,

22d B

d H R R I ππμ?=?=

?=?

H l

70 5.6102d

I B T R

μπ-=

=? 9-30 如图9.30所示,由圆形板构成的平板电容器,两极板之间的距离为d ,其中的介质为非理想绝缘的、具有电导率为λ、介电常数为ε

、磁导率为μ

的非铁磁性、各向同性

均匀介质,两极板间加电压t U U ωsin 0=。忽略边缘效应,试求:

(1)两板间的电场强度E 、传导电流密度c J 、位移电流密度d J 等三矢量大小各自随时间的变化规律;

(2)电容器两板间任一点的磁感强度B 。

解:(1)、两板间具有均匀电场,电场强度为

t d U d U E ωsin )/(/0==

介质中的传导电流密度为

t d

U E J c ωγγsin 0

=

=

位移电流密度为

t d

U t E t D J d ωεωεcos d d d d 0

===

(2)从对称性分析可知,在两极板间半径为r 的圆周上各点H

沿切线方向,而且大小

都相等(如题图15.4).根据关于H

的全电流定律

?

???+=S

d c L

S J J l H d )(d 2)(r J J d c π+= 即

r H π22)(r J J d c π+=

)(21

d c J J r H +=

又因为在各向同性介质中 H B

μ=, 故得 :

)(2

1

d c J J r B +=

μ)cos sin (20t t d rU ωεωωγμ+=

第十章 电磁振荡和电磁波

§10-1 电磁振荡 §10-2 电磁波的产生 §10-3 电磁波的性质 §10-4 电磁波及其应用

10.1 如何理解电磁场的物质性和电磁场量的相对性。 10.2 振荡电路LC 中,当电场和磁场的能量相等时, (1)用电容器上的电荷振幅表示这时电容器上的电荷大小; (2)用电感器上的电流振幅表示这时电容器上的电流大小。

解:(1)设电容器上的电荷为q ,电容器上的电流为I ,则由

0cos()q Q t ω?=+

00sin()sin()I Q t I t ωω?ω?=-+=-+

可得

22

201cos ()22e q W Q t C C

ω?==+

222

01sin ()22

m L W LI I t ω?=

=+

根据题意有e m W W =,注意ω=,则有

22cos ()sin ()t t ω?ω?+=+

又因

202T e m Q W W W C

=+=

在e m W W =时,得 2

1cos ()2

t ω?+=

所以 02

q = (2)如前,取值,有

02

I I =

10.3 一LC 振荡电路,400L H μ=,100C pF =。设开始振荡时,电容器两极板间的电势差为1V ,且电路中的电流为零。试求: (1)电路的振荡频率; (2)电路中的最大电流;

(3)电容器中电场的最大能量及线圈中磁场的最大能量。 解:(1)由 2

ωπν==可得

57.9610

Hz ν=

=? (2)据题意有

0cos()q Q t ω?=+

当0t =,有0cos q Q ?=,而C q V =?

所以 0cos Q C V ?=? 又由 0sin()I Q t ωω?=-+ 知,当0t =时,0I =,得

sin 0?=

所以0?=,则

4max 0510I Q C V V V A ωω-==??=

?==?

(3) 22211max max 011()510222

e m C

W W Q C V V J C C ===?=?=?

10.4 如图10-3所示,将开关K 扳下后,电容器即由电池充电,放手后,电容器即经由线圈L 放电,

(1)若0.01L H =, 1.0C F μ=, 1.4V ε=,求L 中的最大电流(电阻极小,可略); (2)当分布在电容和电感间的能量相等时,电容器上的电荷为多少? (3)从放电开始到电荷第一次为上述数值时,经过了多少时间? 解:0cos()q Q t ω?=+

固有频率ω=

设0t =时,00q Q =,00

0t dq

i dt ==

=,即电容器充电至最大值 为记时起点,则初相位0?=,振幅0Q C ε=,所以

00cos()q Q t Q C ω?ε=+== (1)L 中的电流为

2dq i dt π?=

=-=+?? 最大电流即

00.014m i I A === (2

)709.9102

q C -=±

=? (3

)57.851048T t s πω-====?

10.5 LC 振荡电路中,3L mH =, 2.7C F μ=。当0t =时,电荷0q =,电流2i A =。试求:

(1)在上述初始条件下,对电容器充电,电容器上出现的最大电量; (2)从0t =开始充电,电容器上任一时刻的电能表达式; (3)电能随时间变化的变化率及其最大值。 解:(1)0cos()q Q t ω?=+

当0t =时,0cos 0q Q ?==,有,2

π

?=±

又由0sin()i Q t ωω?=-+,在0t =时

0sin 2.0Q ω?-=

所以 2

π

?=-

(1)40 2.0

1.810Q ω

-=

==?

(2)222

011sin 22q W Q t C C ω=

= (3)20sin 22Q dW t dt C ω

ω= 最大值20672Q W C

ω

=

10.6 一氩离子激光器发射波长514.5nm 的激光,当它以3.8kW 的功率向月球发射光束时,光束的全发散角为0.880rad μ。如月地距离按5

3.8210km ?计,试求: (1)该光束在月球表面覆盖的圆面积的半径; (2)该光束到达月球表面时的强度。

解:(1)设光束的全发散角为θ,地月距离为D ,则

1582

r D m θ

=?

=

(2) 22

0.043/P

I W m r

π==

10.7 真空中,一平面电磁波的电场由下式给出:

0=x E ,)](102cos[106082c

x

t E y -??=-π1-?m V ,0=z E

式中m c 8

103?=。试求: (1)波长和频率; (2)传播方向;

(3)磁场B 的大小和方向。

解:(1)、采用系数比较法,由)](102cos[10

6082

c

x

t E y -??=-π与波动方程

cos ()x

y A t u

ω=-比较,可求出电磁波的频率v 和波长λ:

888210221010v v Hz ωπππ---=??=??=

3u v c v c v m λλλ=?=?==

(2)、坡印亭矢量S E H =?的方向即为电磁波的传播方向。如下图,平面电磁波沿x 轴正方向传播。

(3)=,结合上图可得

y z z y H =?=

0,0x y H H ==

为此可求得磁感应强度为

280986010cos[210()]

210cos[210()]

y

z z y E x

B H t c c c x

t c

μππ--?====?-=??-

o

S

H

E

大学物理习题答案--第一章

第一章作业解 1-7液滴法是测定液体表面张力系数的一种简易方法。将质量为m 的待测液体吸入移液管,然后让液体缓缓从移液管下端滴出。可以证明 d n mg πγ= 其中,n 为移液管中液体全部滴尽时的总滴数,d 为液滴从管口落下时断口的直径。请证明这个关系。 证:当液滴即将滴下的一刻,其受到的重力与其颈部上方液体给予的张力平衡 F g m =' d r L F πγπγγ===2 n m m = ', d n m πγ= 得证:d n mg πγ= 1-8 在20 km 2的湖面上下了一场50 mm 的大雨,雨滴半径为1.0 mm 。设温度不变,雨水在此温度下的表面张力系数为7.3?10-2N ?m -1。求释放的能量。 解:由 S E ?=?γ 雨滴落在湖面上形成厚为50 mm 的水层,表面积就为湖面面积,比所有落下雨滴的表面积和小,则释放的表面能为: )4(2 S r n E -?=?πγ 其中,3 43 r Sh n π= 为落下的雨滴数,r 为雨滴半径 J r h S E 8 3 3 6 2 1018.2)110 0.110503( 102010 3.7)13( ?=-???????=-=?---γ 1-9假定树木的木质部导管为均匀的圆柱形导管,树液完全依靠毛细现象在导管内上升,接触角为45°,树液的表面张力系数1 2 10 0.5--??=m N γ。问要使树液到达树木的顶部,高 为20 m 的树木所需木质部导管的最大半径为多少? 解:由朱伦公式:gr h ρθ γcos 2= 则:cm gh r 5 3 2 10 6.320 8.91012 /210 0.52cos 2--?=??????= = ρθ γ 1-10图1-62是应用虹吸现象从水库引水的示意图。已知虹吸管粗细均匀,其最高点B 比水库水面高出m h 0.31=,管口C又比水库水面低m h 0.52=,求虹吸管内的流速及B点处的

大学物理第二十章题解

第二十章 稳恒电流的磁场 20-1.如图所示,将一条无限长载流直导线在某处折成直角,P 点在折线的延长线上,到折线的距离为a .(1)设导线所载电流为I ,求P 点的B .(2)当20A I =,0.05m a =,求B . 解 (1)根据毕-萨定律,AB 段直导线电流在P 点产生的磁场0B =;BC 段是“半无限长”直导线电流,它在P 点产生的磁场为001224I I B a a μμππ= =, 方向垂直纸面向里.根据叠加原理,P 点的磁感应强度 001224I I B a a μμππ= = 方向垂直纸面向里. (2)当20A I =,0.05m a =时 75141020410(T)22005 B .ππ--??=?=?? 20-2.如图所示,将一条无限长直导线在某处弯成半径为R 的半圆形,已知导线中的电流为I ,求圆心处的磁感应强度B . 解 根据毕-萨定律,两直线段导线的电流在O 点产生的磁感应强度0B =,半圆环形导线的电流在O 点产生的磁感应强度0122I B R μ= .由叠加原理,圆心O 处的磁感应强度 04I B R μ= 方向垂直纸面向里. 20-3.电流I 若沿图中所示的三种形状的导线流过(图中直线部分伸向无限远), 试求 各O 点的磁感应强度B . 解 (a )根据毕-萨定律和叠加原理,O 点的磁感应强度等于两条半无限长直线电流

的磁感应强度和14个圆环形导线的电流的磁感应强度的叠加 0000111(1)22224224 I I I I B R R R R μμμμπ πππ= ++=+ ,方向垂直纸面向外. (b )根据毕-萨定律和叠加原理,O 点的磁感应强度等于下面一条半无限长直线电流的磁感应强度和34个圆环形导线的电流的磁感应强度的叠加 000133 (1)224242 I I I B R R R μμμπππ= +=+ ,方向垂直纸面向里. (c )根据毕-萨定律和叠加原理,O 点的磁感应强度等于两条半无限长直线电流的磁感应强度和12个圆环形导线的电流的磁感应强度的叠加 000111222222I I I B R R R μμμππ= ++()024I R μππ=+ ,方向垂直纸面向里. *20-4.如图所示,电流I 均匀地流过宽为a 2的无限长平面导体薄板.P 点到薄板的 垂足O 点正好在板的中线上,设距离x PO =,求证P 点的磁感应强度B 的大小为 x a a I B arctan 20πμ= 解 把薄板等分成无限多条宽为d y 的细长条,每根细长条的电流d d 2I I y a = ,可视为线电流;无限长载流薄板可看成由无限多条无限长载流直导线构成. y 处的细长条在P 点产生的磁感应强度为d B +,y -处的细长条在P 点产生的磁感应强 度为d B -,二者叠加为沿Oy 方向的d B .所以P 点的磁感应强度B 沿Oy 方向,B 的大小 02 2 2 cos 2a B x y θπ= +? 022 2 2 022a a x y x y π=? ?++? 0220d 2a Ix y a x y μπ=+?001arctan 2a Ix y a x x μπ=0arctan 2I a a x μπ = *20-5.如图所示,半径为R 的木球上绕有密集的细导线,线圈平面彼此平行,且以单 层线圈盖住半个球面.设线圈的总匝数为N ,通过线圈的电流为I ,求球心O 处的B . 解 在14圆周的圆弧ab 上,单位长度弧长的线圈匝数为 224N N R R ππ=

大学物理试题库及答案详解【考试必备】

第一章 质点运动学 1 -1 质点作曲线运动,在时刻t 质点的位矢为r ,速度为v ,速率为v,t 至(t +Δt )时间内的位移为Δr , 路程为Δs , 位矢大小的变化量为Δr ( 或称Δ|r |),平均速度为v ,平均速率为v . (1) 根据上述情况,则必有( ) (A) |Δr |= Δs = Δr (B) |Δr |≠ Δs ≠ Δr ,当Δt →0 时有|d r |= d s ≠ d r (C) |Δr |≠ Δr ≠ Δs ,当Δt →0 时有|d r |= d r ≠ d s (D) |Δr |≠ Δs ≠ Δr ,当Δt →0 时有|d r |= d r = d s (2) 根据上述情况,则必有( ) (A) |v |= v ,|v |= v (B) |v |≠v ,|v |≠ v (C) |v |= v ,|v |≠ v (D) |v |≠v ,|v |= v 分析与解 (1) 质点在t 至(t +Δt )时间内沿曲线从P 点运动到P′点,各量关系如图所示, 其中路程Δs =PP′, 位移大小|Δr |=PP ′,而Δr =|r |-|r |表示质点位矢大小的变化量,三个量的物理含义不同,在曲线运动中大小也不相等(注:在直线运动中有相等的可能).但当Δt →0 时,点P ′无限趋近P 点,则有|d r |=d s ,但却不等于d r .故选(B). (2) 由于|Δr |≠Δs ,故t s t ΔΔΔΔ≠r ,即|v |≠v . 但由于|d r |=d s ,故t s t d d d d =r ,即|v |=v .由此可见,应选(C). 1 -2 一运动质点在某瞬时位于位矢r (x,y )的端点处,对其速度的大小有四种意见,即 (1)t r d d ; (2)t d d r ; (3)t s d d ; (4)2 2d d d d ?? ? ??+??? ??t y t x . 下述判断正确的是( ) (A) 只有(1)(2)正确 (B) 只有(2)正确

大学物理第六章题解

第六章 经典质点系动力学 6-1.如图,半圆柱立在光滑水平面上从静止开始到下,试判断 质心C 的运动方向. 解 建立如图x 轴,由于水平方向外力分量之和为零 0ix F =∑, 所以水平方向动量守恒x P C =.因初始时静止,故 0x Cx P mv == 由d 0d C Cx x v t ==,可知C x =常量,质心C 竖直向下运动. 6-2.如图,船的质量为5000kg ,当质量为1000kg 的汽车相对船静止时,船尾螺旋桨的转动可使船以加速度20.2m s 前进.在船行进中,汽车相对于船以加速度20.5m s 沿船前进的相反方向加速运动,求此时船的加速度的大小. 解 将船与汽车作为质点系.当汽车相对于船静止时,船的 加速度即为质点系质心的加速度,根据质心运动定理可知船尾螺 旋桨转动时的推力 ()=(50001000)021200(N)e C F ma .=+?= 在船的行进过程中,以船的行进方向为x 、x '轴正方向.设船相对于岸的速度、加速度用x 、x 表示,汽车相对于船的速度、加速度用x '、x '表示,则汽车相对于岸的速度、加速度为x x '+、x x '+.根据质点系的动量定理 ()d [()]d e m x m x x F t '++=船车 即 ()()]e m x m x x F '++=船车 500010001000051200x x .+-?= 可求出此时船的加速度的大小2028m s x .=. 6-3.三只质量均为0m 的小船鱼贯而行,速率都是v ,中间一船同时以相对本船的速率u 沿水平方向把两个质量均为m 的物体抛到前后两只船上,求两物体落入船后三只船的速率(忽略水对船的阻力). 解 以船行方向为速度正方向,设两物体落入船后三只船的速率为1v 、2v 、3v . 以中间船及两物体为质点系,因为在抛出物体的过程中水平方向不受外力,所以质点系水平方向动量守恒 00222(2)()()m m v m v m v u m v u +=+++- 所以 2v v = 以前船与抛入物体为质点系,因为在抛入物体的过程中水平方向不受外力,所以质点系水平方向动量守恒 001()()m v m v u m m v ++=+ 所以 10mu v v m m =++ 以后船与抛入物体为质点系,同样,根据质点系水平方向动量守恒 003()()m v m v u m m v +-=+ 30mu v v m m =- +

大学物理期末考试题库

1某质点的运动学方程x=6+3t-5t 3,则该质点作 ( D ) (A )匀加速直线运动,加速度为正值 (B )匀加速直线运动,加速度为负值 (C )变加速直线运动,加速度为正值 (D )变加速直线运动,加速度为负值 2一作直线运动的物体,其速度x v 与时间t 的关系曲线如图示。设21t t →时间内合力作功 为A 1,32t t →时间内合力作功为A 2,43t t → (C ) (A )01?A ,02?A ,03?A (B )01?A ,02?A , 03?A (C )01=A ,02?A ,03?A (D )01=A ,02?A ,03?A 3 关于静摩擦力作功,指出下述正确者( C ) (A )物体相互作用时,在任何情况下,每个静摩擦力都不作功。 (B )受静摩擦力作用的物体必定静止。 (C )彼此以静摩擦力作用的两个物体处于相对静止状态,所以两个静摩擦力作功之和等于 零。 4 质点沿半径为R 的圆周作匀速率运动,经过时间T 转动一圈,那么在2T 的时间内,其平 均速度的大小和平均速率分别为(B ) (A ) , (B ) 0, (C )0, 0 (D )T R π2, 0 5、质点在恒力F ρ作用下由静止开始作直线运动。已知在时间1t ?内,速率由0增加到υ; 在2t ?内,由υ增加到υ2。设该力在1t ?内,冲量大小为1I ,所作的功为1A ;在2t ?内, 冲量大小为2I ,所作的功为2A ,则( D ) A .2121;I I A A <= B. 2121;I I A A >= C. 2121;I I A A => D. 2121;I I A A =< 6如图示两个质量分别为B A m m 和的物体A 和B 一起在水平面上沿x 轴正向作匀减速直 线运动,加速度大小为a ,A 与B 间的最大静摩擦系数为μ,则A 作用于B 的静摩擦力 F 的大小和方向分别为(D ) 轴正向相反与、轴正向相同 与、轴正向相同 与、轴正向相反 与、x a m D x a m x g m x g m B B B B ,,C ,B ,A μμT R π2T R π2T R π2t

大学物理第二章习题及答案知识讲解

第二章 牛顿运动定律 一、选择题 1.下列说法中哪一个是正确的?( ) (A )合力一定大于分力 (B )物体速率不变,所受合外力为零 (C )速率很大的物体,运动状态不易改变 (D )质量越大的物体,运动状态越不易改变 2.用细绳系一小球,使之在竖直平面内作圆周运动,当小球运动到最高点时( ) (A )将受到重力,绳的拉力和向心力的作用 (B )将受到重力,绳的拉力和离心力的作用 (C )绳子的拉力可能为零 (D )小球可能处于受力平衡状态 3.水平的公路转弯处的轨道半径为R ,汽车轮胎与路面间的摩擦因数为μ,要使汽车不致于发生侧向打滑,汽车在该处的行驶速率( ) (A )不得小于gR μ (B )不得大于gR μ (C )必须等于 gR μ2 (D )必须大于 gR μ3 4.一个沿x 轴正方向运动的质点,速率为51 s m -?,在0=x 到m 10=x 间受到一个如图所示的y 方向的力的作用,设物体的质量为1. 0kg ,则它到达m 10=x 处的速率为( ) (A )551s m -? (B )1751 s m -? (C )251s m -? (D )751 s m -? 5.质量为m 的物体放在升降机底板上,物体与底板的摩擦因数为μ,当升降机以加速度a 上升时,欲拉动m 的水平力至少为多大( ) (A )mg (B )mg μ(C ))(a g m +μ (D ))(a g m -μ 6 物体质量为m ,水平面的滑动摩擦因数为μ,今在力F 作用下物体向右方运动,如下图所示,欲使物体具有最大的加速度值,则力F 与水平方向的夹角θ应满足( ) (A )1cos =θ (B )1sin =θ

大学物理答案第17章

大学物理答案第17章

17-3 有一单缝,缝宽为0.1mm ,在缝后放一焦距为50cm 的汇聚透镜,用波长为546.1nm 的平行光垂直照射单缝,试求位于透镜焦平面处屏上中央明纹的宽度。 解:单缝衍射中央明条纹的宽度为 a f x λ 2=? 代入数据得 mm x 461.510 1.0101.54610 5023 9 2 =????=?--- 17-4 用波长为632.8nm 的激光垂直照射单缝时,其夫琅禾费衍射图样第一极小与单缝法线的夹角为50,试求该缝宽。 解:单缝衍射极小的条件 λθk a =sin 依题意有 m a μλ 26.70872 .0108.6325sin 9 =?==- 17-5 波长为20m 的海面波垂直进入宽50m 的港口。在港内海面上衍射波的中央波束的角宽是多少? 解:单缝衍射极小条件为 λθk a =sin

依题意有 011 5.234.0sin 5 2 sin 20sin 50===→=--θθ 中央波束的角宽为0 475 .2322=?=θ 17-6 一单色平行光垂直入射一单缝,其衍射第3级明纹位置恰与波长为600nm 的单色光垂直入射该缝时衍射的第2级明纹位置重合,试求该单色光的波长。 解:单缝衍射明纹条件为 2 ) 12(sin λ θ+=k a 依题意有 2)122(2)132(2 1λλ+?=+? 代入数据得 nm 6.4287 60057521=?== λλ 17-7 用肉眼观察星体时,星光通过瞳孔的衍射在视网膜上形成一个亮斑。 (1)瞳孔最大直径为7.0mm ,入射光波长为550nm 。星体在视网膜上像的角宽度多大? (2)瞳孔到视网膜的距离为23mm 。视网膜上星体的像的直径多大? (3)视网膜中央小凹(直径0.25mm )中的柱状感光细胞每平方毫米约1.5×105个。星体的像照亮了几个这样的细胞?

大学物理考试题库-大学物理考试题

马文蔚( 112 学时) 1-9 章自测题 第 1 部分:选择题 习题 1 1-1 质点作曲线运动,在时刻t质点的位矢为r ,速度为 v ,t 至 t t 时间内的位移为r ,路程为s,位矢大小的变化量为r (或称r ),平均速度为v ,平均速率为v 。 (1)根据上述情况,则必有() (A )r s r (B )(C)(D )r s r ,当t0 时有 dr ds dr r r s ,当t0 时有 dr dr ds r s r ,当t0 时有 dr dr ds (2)根据上述情况,则必有() (A )(C)v v, v v( B)v v, v v v v, v v(D )v v, v v 1-2 一运动质点在某瞬间位于位矢r ( x, y) 的端点处,对其速度的大小有四种意见,即 (1)dr ;( 2) dr ;(3) ds ;(4)( dx )2( dy )2 dt dt dt dt dt 下列判断正确的是: (A )只有( 1)(2)正确(B )只有( 2)正确 (C)只有( 2)(3)正确(D )只有( 3)( 4)正确 1-3 质点作曲线运动,r 表示位置矢量,v 表示速度, a 表示加速度,s表示路程,a t表示切向加速度。对下列表达式,即 (1)dv dt a ;(2) dr dt v ;(3) ds dt v ;(4)dv dt a t。 下述判断正确的是() (A )只有( 1)、( 4)是对的(B )只有( 2)、(4)是对的 (C)只有( 2)是对的( D)只有( 3)是对的 1-4 一个质点在做圆周运动时,则有() (A )切向加速度一定改变,法向加速度也改变 (B )切向加速度可能不变,法向加速度一定改变 (C)切向加速度可能不变,法向加速度不变 (D )切向加速度一定改变,法向加速度不变 1-5 如图所示,湖中有一小船,有人用绳绕过岸上一定高度处的定滑轮拉湖中的船向岸边

大学物理1章习题解答03

1-3.一粒子按规律32395x =t -t -t +沿x 轴运动,试分别求出该粒子沿x 轴正向运动;沿x 轴负向运动;加速运动;减速运动的时间间隔。 [解] 由运动方程59323+--=t t t x 可得质点的速度 ()()133963d d 2x +-=--== t t t t t x v (1) 粒子的加速度 ()16d d -==t t v a (2) 由式(1)可看出 当t >3s 时,v >0,粒子沿x 轴正向运动; 当t <3s 时,v <0,粒子沿x 轴负向运动。 由式(2)可看出 当t >1s 时,a >0,粒子的加速度沿x 轴正方向; 当t <1s 时,a <0,粒子的加速度沿x 轴负方向。 因为粒子的加速度与速度同方向时,粒子加速运动,反向时,减速运动,所以,当t >3s 或0

大学物理答案第10章

第十章 静电场中的导体与电介质 10-1 将一个带正电的带电体A 从远处移到一个不带电的导体B 附近,则导体B 的电势将( ) (A ) 升高 (B ) 降低 (C ) 不会发生变化 (D ) 无法确定 分析与解 不带电的导体B 相对无穷远处为零电势.由于带正电的带电体A 移到不带电的导体B 附近时,在导体B 的近端感应负电荷;在远端感应正电荷,不带电导体的电势将高于无穷远处,因而正确答案为(A ). 10-2 将一带负电的物体M 靠近一不带电的导体N ,在N 的左端感应出正电荷,右端感应出负电荷.若将导体N 的左端接地(如图所示),则( ) (A ) N 上的负电荷入地 (B )N 上的正电荷入地 (C ) N 上的所有电荷入地 (D )N 上所有的感应电荷入地 题 10-2 图 分析与解 导体N 接地表明导体N 为零电势,即与无穷远处等电势,这与导体N 在哪一端接地无关.因而正确答案为(A ). 10-3 如图所示将一个电量为q 的点电荷放在一个半径为R 的不带电的导体球附近,点电荷距导体球球心为d ,参见附图.设无穷远处为零电势,则在导体球球心O 点有( ) (A )d εq V E 0π4,0= = (B )d εq V d εq E 02 0π4,π4== (C )0,0==V E (D )R εq V d εq E 020π4,π4= = 题 10-3 图

分析与解 达到静电平衡时导体内处处各点电场强度为零.点电荷q 在导 体球表面感应等量异号的感应电荷±q′,导体球表面的感应电荷±q′在球心O 点激发的电势为零,O 点的电势等于点电荷q 在该处激发的电势.因而正确答案为(A ). 10-4 根据电介质中的高斯定理,在电介质中电位移矢量沿任意一个闭合曲面的积分等于这个曲面所包围自由电荷的代数和.下列推论正确的是( ) (A ) 若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内一定没有自由电荷 (B ) 若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内电荷的代数和一定等于零 (C ) 若电位移矢量沿任意一个闭合曲面的积分不等于零,曲面内一定有极化电荷 (D ) 介质中的高斯定律表明电位移矢量仅仅与自由电荷的分布有关 (E ) 介质中的电位移矢量与自由电荷和极化电荷的分布有关 分析与解 电位移矢量沿任意一个闭合曲面的通量积分等于零,表明曲面 内自由电荷的代数和等于零;由于电介质会改变自由电荷的空间分布,介质中的电位移矢量与自由电荷与位移电荷的分布有关.因而正确答案为(E ). 10-5 对于各向同性的均匀电介质,下列概念正确的是( ) (A ) 电介质充满整个电场并且自由电荷的分布不发生变化时,电介质中的电场强度一定等于没有电介质时该点电场强度的1/εr倍 (B ) 电介质中的电场强度一定等于没有介质时该点电场强度的1/εr倍 (C ) 在电介质充满整个电场时,电介质中的电场强度一定等于没有电介质时该点电场强度的1/εr倍 (D ) 电介质中的电场强度一定等于没有介质时该点电场强度的εr倍 分析与解 电介质中的电场由自由电荷激发的电场与极化电荷激发的电场迭加而成,由于极化电荷可能会改变电场中导体表面自由电荷的分布,由电介质中的高斯定理,仅当电介质充满整个电场并且自由电荷的分布不发生变化时,在电介质中任意高斯面S 有 ()∑??=?=?+i i S S ε χq 0 1 d d 1S E S E 即E =E 0/εr,因而正确答案为(A ). 10-6 不带电的导体球A 含有两个球形空腔,两空腔中心分别有一点电荷q b 、q c ,导体球外距导体球较远的r 处还有一个点电荷q d (如图所示).试求点电荷q b 、q c 、q d 各受多大的电场力.

大学物理习题详解—近代物理部分.doc

狭义相对论基本假设、洛伦兹变换、狭义相对论时空观 17. 2两火箭A 、B 沿同一直线相向运动,测得两者相对地球的速度大小分别是 = 0.9c, v B = 0.8c.则两者互测的相对运动速度大小为: (A) 1.7c ; (B) 0.988c ; (C) 0.95c ; (D) 0.975c. 答:B . 分析:以 A 为 S ,系,则 w=0.9c, V v =-0.8c, 由相对论速度变换关系可知: S A S' 爪 VB -0.8c-0.9c ?0& ??。.9疽一 第十七章相对论 17. 1在狭义相对论中,下列说法哪些正确? (1) 一切运动物体相对于观察者的速度都不能大于真空中的光速, (2) 质量、长度、时间的测量结果都是随物体与观察者的运动状态而改变的, (3) 在一惯性系中发生于同一时刻,不同地点的两个事件在其它一切惯性系中 也 是同时发生的, (4) 惯性系中观察者观察一个与他作匀速相对运动的时钟时,会看到这时钟比 与 他相对静止的相同时钟走得慢些. (A) (1) (3) (4) ; (B) (1) (2) (4); (C) (2) (3) (4) ; (D) (1) (2) (3). [ ] 答:B. 分析: (1) 根据洛仑兹变换和速度变换关系,光速是速度的极限,所以(1)正确; (2) 由长度收缩和时间碰撞(钟慢尺缩)公式,长度、时间的测量结果都是随 物体 与观察者的运动状态而改变的;同时在相对论情况下,质量不再是守恒量,也 会随速度大小而变化,所以(2)是正确的; (3) 由同时的相对性,在S'系中同时但不同地发生的两个事件,在S 系中观察不 是同时的。只有同时、同地发生的事件,在另一惯性系中才会是同时发生的,故排 除⑶; (4) 由于相对论效应使得动钟变慢,故(4)也是正确的。 所以该题答案选(B) 所以选(B)

大学物理期末考试题库

1某质点的运动学方程x=6+3t-5t 3 ,则该质点作 ( D ) (A )匀加速直线运动,加速度为正值 (B )匀加速直线运动,加速度为负值 (C )变加速直线运动,加速度为正值 (D )变加速直线运动,加速度为负值 2一作直线运动的物体,其速度x v 与时间t 的关系曲线如图示。设21t t →时间合力作功为 A 1,32t t →时间合力作功为A 2,43t t → 3 C ) (A )01?A ,02?A ,03?A (B )01?A ,02?A , 03?A (C )01=A ,02?A ,03?A (D )01=A ,02?A ,03?A 3 关于静摩擦力作功,指出下述正确者( C ) (A )物体相互作用时,在任何情况下,每个静摩擦力都不作功。 (B )受静摩擦力作用的物体必定静止。 (C )彼此以静摩擦力作用的两个物体处于相对静止状态,所以两个静摩擦力作功之和等于 零。 4 质点沿半径为R 的圆周作匀速率运动,经过时间T 转动一圈,那么在2T 的时间,其平均 速度的大小和平均速率分别为(B ) (A ) , (B ) 0, (C )0, 0 (D ) T R π2, 0 5、质点在恒力F 作用下由静止开始作直线运动。已知在时间1t ?,速率由0增加到υ;在2t ?, 由υ增加到υ2。设该力在1t ?,冲量大小为1I ,所作的功为1A ;在2t ?,冲量大小为2I , 所作的功为2A ,则( D ) A .2121;I I A A <= B. 2121;I I A A >= C. 2121;I I A A => D. 2121;I I A A =< 6如图示两个质量分别为B A m m 和的物体A 和B 一起在水平面上沿x 轴正向作匀减速直线 运动,加速度大小为a ,A 与B 间的最大静摩擦系数为μ,则A 作用于B 的静摩擦力F 的 大小和方向分别为(D ) 轴正向相反与、轴正向相同 与、轴正向相同 与、轴正向相反 与、x a m D x a m x g m x g m B B B B ,,C ,B ,A μμT R π2T R π2T R π2t

大学物理上海交通大学20章课后习题答案

习题20 20-1.从某湖水表面反射来的日光正好是完全偏振光,己知湖水的折射率为33.1。推算太阳在地平线上的仰角,并说明反射光中光矢量的振动方向。 解:由布儒斯特定律:tan n i =,有入射角:arctan1.3353i ==o , ∴仰角9037i θ=-=o o 。 光是横波,光矢量的振动方向垂直于入射光线、折射光线和法线在所在的平面。 20-2.自然光投射到叠在一起的两块偏振片上,则两偏振片的偏振化方向夹角为多大才能使: (1)透射光强为入射光强的3/1; (2)透射光强为最大透射光强的3/1。(均不计吸收) 解:设两偏振片的偏振化方向夹角为α,自然光光强为0I 。 则自然光通过第一块偏振片之后,透射光强012I ,通过第二块偏振片之后:α 20cos 21 I I =, (1)由已知条件,透射光强为入射光强的13,得:200 11 cos 2 3I I α=,有: (2)同样由题意当透射光强为最大透射光强的3/1时,得:200111cos () 232I I α=,有: arccos 54.733α==o 。 20-3.设一部分偏振光由一自然光和一线偏振光混合构成。现通过偏振片观察到这部分偏振光在偏振片由对应最大透射光强位置转过ο 60时,透射光强减为一半,试求部分偏振光中自 然光和线偏振光两光强各占的比例。 解:由题意知: max 012max 011211cos 6022I I I I I I =?????+=+??o ?max 01max 0112111224I I I I I I ????=+=+????01I I =, ∴即得0111I I =::。 20-4.由钠灯射出的波长为589.0nm 的平行光束以ο 50角入射到方解石制成的晶片上,晶 片光轴垂直于入射面且平行于晶片表面,已知折射率 1.65o n =, 1.486e n =,求: (1)在晶片内o 光与e 光的波长; (2)o 光与e 光两光束间的夹角。 解:(1)由c n v =,而c λν=,有:c o o n λλ=,c e e n λ λ= ∴589.0356.971.65c o o nm n λλ===,589.0396.371.486 c e e nm n λλ===; (2)又∵sin sin i n γ= ,有:sin 50arcsin 27.66o o n γ==o o ,sin 50arcsin 31.03e e n γ==o o , ∴o 光与e 光两光束间的夹角为: 3.37e o γγγ?=-=o 。 20-5.在偏振化方向正交的两偏振片1 P , 2 P 之间,插入一晶片,其光轴平行于表面且与起 偏器的偏振化方向成ο 35,求:

大学物理下17章习题参考答案中国石油大学

17章习题参考答案 17-3 如图所示,通过回路的磁场与线圈平面垂直且指出纸里,磁通量按如下规律变化 () Wb 1017632-?++=Φt t 式中t 的单位为s 。问s 0.2=t 时,回路中感应电动势的大小是多少? R 上的电流方向如何? [解] ()310712d d -?+=Φ - =t t ε ()23101.3107212--?=?+?=V 根据楞次定律,R 上的电流从左向右。 17-4如图所示,两个半径分别为R 和r 的同轴圆形线圈,相距x ,且,R >>r ,x >>R 。若大线圈有电流I 而小线圈沿x 轴方向以速度v 运动。试求x =NR 时(N >0),小线圈中产生的感应电动势的大小。 [解] 因R>>r 可将通过小线圈的B 视为相等,等于在轴线上的B ( ) 2 322 2 02x R IR B += μ 由于x >>R ,有 3 2 02x IR B μ= 所以 t x x IS R t d d 32d d 420μ=Φ-=ε 而 v t x =d d 因此 x =NR 时, 2 42023R N v r I πμ= ε 17-5 如图所示,半径为R 的导体圆盘,它的轴线与外磁场平行,并以角速度ω转动(称为法拉第发电机)。求盘边缘与中心之间的电势差,何处电势高?当R =0.15m ,B =0.60T , rad 30=ω时,U 等于多大? [解] 圆盘可看成无数由中心向外的导线构成的,每个导线切割磁力线运动且并联,因此有 202 1 d d )(BR r rB R L ωω==??=??l B v 感ε 因电动势大于零,且积分方向由圆心至边缘,所以边缘处电位 高(或由右手定则判断) 代入数据得 2015060302 1 2...=???= =εU V 17-6 一长直导线载有电流强度I =5.0A 的直流电,在近旁有一与它共面的矩形线圈,

大学物理考试试题

一、选择题 (每小题2分,共20分) 1. 关于瞬时速率的表达式,正确的是 ( B ) (A) dt dr =υ; (B) dt r d = υ; (C) r d =υ; (D) dr dt υ= r 2. 在一孤立系统内,若系统经过一不可逆过程,其熵变为S ?,则下列正确的是 ( A ) (A) 0S ?>; (B) 0S ?< ; (C) 0S ?= ; (D) 0S ?≥ 3. 均匀磁场的磁感应强度B 垂直于半径为r 的圆面,今以该圆面为边界,作以半球面S ,则通过S 面的磁通量的大小为 ( B ) (A )2πr 2B; (B) πr 2B; (C )0; (D )无法确定 4. 关于位移电流,有下面四种说法,正确的是 ( A ) (A )位移电流是由变化的电场产生的; (B )位移电流是由变化的磁场产生的; (C )位移电流的热效应服从焦耳—楞次定律; (D )位移电流的磁效应不服从安培环路定律。 5. 当光从折射率为1n 的介质入射到折射率为2n 的介质时,对应的布儒斯特角b i 为 ( A ) 2 1 1 2 (A)( );(B)( );(C) ;(D)02 n n arctg arctg n n π 6. 关于电容器的电容,下列说法正确..的是 ( C ) (A) 电容器的电容与板上所带电量成正比 ; (B) 电容器的电容与板间电压成反比; (C)平行板电容器的电容与两板正对面积成正比 ;(D) 平行板电容器的电容与两板间距离成正比 7. 一个人站在有光滑转轴的转动平台上,双臂水平地举二哑铃。在该人把二哑铃水平收缩到胸前的过程中,人、哑铃与转动平台组成的系统 ( C ) (A )机械能守恒,角动量不守恒; (B )机械能守恒,角动量守恒; (C )机械能不守恒,角动量守恒; (D )机械能不守恒,角动量也不守恒; 8. 某气体的速率分布曲线如图所示,则气体分子的最可几速率v p 为 ( A ) (A) 1000 m ·s -1 ; (B )1225 m ·s -1 ; (C) 1130 m ·s -1 ; (D) 1730 m ·s -1 得分

大学物理17章答案.docx

第17章量子物理基础 17.1根据玻尔理论,计算氢原子在斤=5的轨道上的动量矩与其在第一激发态轨道上的动量矩之比. [解答]玻尔的轨道角动量量子化假设认为电子绕核动转的轨道角动量为 L =mvr =n — N2TC , 对于第一激发态,n = 2,所以 厶仏2 = 5/2? 17.2设有原子核外的3p态电子,试列出其可能性的四个量子数. [解答]对于3p态电子,主量子数为n = 3, 角量子数为/=1, 磁量子数为mi = - 1), I -1, 自旋量子数为m s = ±1/2. 3p态电子的四个可能的量子数(斤丿,叫叫)为 (3,1 丄1/2), (3,1,1,? 1/2), (3丄0,1/2), (3,1,0,-1/2),(3,1,?1,1/2), (3,1,-1,-1 ⑵. 17.3实验表明,黑体辐射实验曲线的峰值波长九和黑体温度的乘积为一常数,即入』=b = 2.897xl(y3m?K?实验测得太阳辐射波谱的峰 值波长九= 510nm,设太阳可近似看作黑体,试估算太阳表面的温度.

[解答]太阳表面的温度大约为 T_ b _ 2.897X10-3 ~ 510x10—9 =5680(K)? 17.4实验表明,黑体辐射曲线和水平坐标轴所围成的面积M (即单位时间内从黑体单位表面上辐射出去的电磁波总能量,称总辐射度) 与温度的4次方成正比,即必=〃,其中^=5.67xl0-8W m_2 K-4.试由此估算太阳单位表面积的辐射功率(太阳表面温度可参见上题). [解答]太阳单位表面积的辐射功率大约为 A/=5.67xl0-8x(5680)4 = 5.9xl07(W-m-2)? 17.5宇宙大爆炸遗留在宇宙空间的均匀背景辐射相当于3K黑体辐射.求: (1)此辐射的单色辐射强度在什么波长下有极大值? (2)地球表面接收此辐射的功率是多少? [解答](1)根据公式UT=b,可得辐射的极值波长为 九=b/T= 2.897X10_3/3 = 9.66x104(m). (2)地球的半径约为7? = 6.371x10%, 表面积为 5 = 47T T?2. 根据公式:黑体表面在单位时间,单位面积上辐射的能量为M = al4, 因此地球表面接收此辐射的功率是 P = MS= 5.67x 1 (T8x34x4 兀(6.371 x 106)2

大学物理答案第17章

17-2一单缝用波长为λ1和λ2的光照明,若λ1的第一级衍射极小与λ2的第二级衍射极小重合。问 (1)这两种波长的关系如何? (2)所形成的衍射图样中是否还有其它极小重合? 解:(1)单缝衍射极小条件为 λθk a =sin 依题意有 212λλ= (2)依题意有 11sin λθk a = 22sin λθk a = 因为212λλ=,所以得所形成的衍射图样中还有其它极小重合的条件为 212k k = 17-3 有一单缝,缝宽为0.1mm ,在缝后放一焦距为50cm 的汇聚透镜,用波长为546.1nm 的平行光垂直照射单缝,试求位于透镜焦平面处屏上中央明纹的宽度。 解:单缝衍射中央明条纹的宽度为 a f x λ 2=? 代入数据得 mm x 461.510 1.0101.54610 5023 9 2 =????=?--- 17-4 用波长为632.8nm 的激光垂直照射单缝时,其夫琅禾费衍射图样第一极小与单缝法线的夹角为50,试求该缝宽。 解:单缝衍射极小的条件 λθk a =sin 依题意有 m a μλ 26.70872 .0108.6325sin 9 0=?==- 17-5 波长为20m 的海面波垂直进入宽50m 的港口。在港内海面上衍射波的中央波束的角 宽是多少? 解:单缝衍射极小条件为 λθk a =sin 依题意有 011 5.234.0sin 5 2 sin 20sin 50===→=--θθ 中央波束的角宽为0 475.2322=?=θ

17-6 一单色平行光垂直入射一单缝,其衍射第3级明纹位置恰与波长为600nm 的单色光垂直入射该缝时衍射的第2级明纹位置重合,试求该单色光的波长。 解:单缝衍射明纹条件为 2 ) 12(sin λ θ+=k a 依题意有 2)122(2)132(2 1λλ+?=+? 代入数据得 nm 6.4287 60057521=?== λλ 17-7 用肉眼观察星体时,星光通过瞳孔的衍射在视网膜上形成一个亮斑。 (1)瞳孔最大直径为7.0mm ,入射光波长为550nm 。星体在视网膜上像的角宽度多大? (2)瞳孔到视网膜的距离为23mm 。视网膜上星体的像的直径多大? (3)视网膜中央小凹(直径0.25mm )中的柱状感光细胞每平方毫米约1.5×105个。星体的像照亮了几个这样的细胞? 解:(1)据爱里斑角宽公式,星体在视网膜上像的角宽度为 rad d 4 3 9109.110 0.71055044.244.22---?=??==λ θ (2)视网膜上星体的像的直径为 mm l d 34104.423109.1 2--?=??==θ (3)细胞数目应为3.2105.14 )104.4(52 3=????= -πn 个 17-8 在迎面驶来的汽车上,两盏前灯相距120cm 。试问汽车离人多远的地方,眼睛恰能分 辨这两盏前灯?设夜间人眼瞳孔直径为5.0mm ,入射光波长为550nm.。 解: 38.9101.22l L l L l D L m λδθλ ????==?设两灯距为,人车距为。人眼最小分辨角为, =1.22=D 17-9 据说间谍卫星上的照相机能清楚识别地面上汽车的牌照号码。(1)若被识别的牌照上的字划间的距离为5cm ,在160km 高空的卫星上的照相机的角分辨率应多大? (2)此照相机的孔径需多大?光的波长按500nm 计算。 解:装置的光路如图所示。 S 15cm S 2 160km D

大学物理考试题库完整

普通物理Ⅲ 试卷( A 卷) 一、单项选择题 1、运动质点在某瞬时位于位矢r 的端点处,对其速度的大小有四种意见,即 (1)t r d d ; (2)dt r d ; (3)t s d d ; (4)22d d d d ?? ? ??+??? ??t y t x . 下述判断正确的是( ) (A) 只有(1)(2)正确 (B) 只有(2)正确 (C) 只有(2)(3)正确 (D) 只有(3)(4)正确 2、一个质点在做圆周运动时,则有( ) (A) 切向加速度一定改变,法向加速度也改变 (B) 切向加速度可能不变,法向加速度一定改变 (C) 切向加速度可能不变,法向加速度不变 (D) 切向加速度一定改变,法向加速度不变 3、如图所示,质量为m 的物体用平行于斜面的细线联结置于光滑的斜面上,若斜面向左方作加速运动,当物体刚脱离斜面时,它的加速度的大小为( ) (A) g sin θ (B) g cos θ (C) g tan θ (D) g cot θ 4、对质点组有以下几种说法: (1) 质点组总动量的改变与内力无关; (2) 质点组总动能的改变与内力无关; (3) 质点组机械能的改变与保守内力无关. 下列对上述说法判断正确的是( ) (A) 只有(1)是正确的 (B) (1) (2)是正确的 (C) (1) (3)是正确的 (D) (2) (3)是正确的 5、静电场中高斯面上各点的电场强度是由:( ) (A) 高斯面内的电荷决定的 (B) 高斯面外的电荷决定的 (C) 空间所有电荷决定的 (D) 高斯面内的电荷的代数和决定的 6、一带电粒子垂直射入均匀磁场中,如果粒子的质量增加为原来的2倍,入射速度也增加为原来的2倍,而磁场的磁感应强度增大为原来的4倍,则通过粒子运动轨道所围面积的磁通量增大为原来的:( ) (A) 2倍 (B) 4倍 (C) 0.5倍 (D) 1倍 7、一个电流元Idl 位于直角坐标系原点 ,电流沿z 轴方向,点P (x ,y ,z )的磁感强度沿 x 轴的分量 是: ( )

大学物理习题答案第一章

[习题解答] 1-3 如题1-3图所示,汽车从A地出发,向北行驶60km到达B地,然后向东行驶60km到达C 地,最后向东北行驶50km到达D地。求汽车行驶的总路程和总位移。 解汽车行驶的总路程为 ; 汽车的总位移的大小为 r = 位移的方向沿东北方向,与方向一致。 1-4 现有一矢量R是时间t的函数,问与在一般情况下是否相等为什么 解与在一般情况下是不相等的。因为前者是对矢量R的绝对值(大小或长度)求导,表示矢量R的大小随时间的变化率;而后者是对矢量R的大小和方向两者同时求导,再取绝对值,表示矢量R大小随时间的变化和矢量R方向随时间的变化两部分的绝对值。如果矢量R方向不变只是大小变化,那么这两个表示式是相等的。 1-5 一质点沿直线L运动,其位置与时间的关系为r = 6t 2 2t 3 ,r和t的单位分别是m 和s。求: (1)第二秒内的平均速度; (2)第三秒末和第四秒末的速度; (3)第三秒末和第四秒末的加速度。

解取直线L的正方向为x轴,以下所求得的速度和加速度,若为正值,表示该速度或加速度沿x轴的正方向,若为负值表示,该速度或加速度沿x轴的反方向。 (1)第二秒内的平均速度 m s1; (2)第三秒末的速度 因为,将t = 3 s 代入,就求得第三秒末的速度,为 v3 = 18 m s1; 用同样的方法可以求得第四秒末的速度,为 v4 = 48 m s1; (3)第三秒末的加速度 因为,将t = 3 s 代入,就求得第三秒末的加速度,为 a3 = 24 m s2; 用同样的方法可以求得第四秒末的加速度,为 v4 = 36 m s2 . 1-6 一质点作直线运动,速度和加速度的大小分别为和,试证明: (1) v d v = a d s; (2)当a为常量时,式v 2 = v02 + 2a (s s0 )成立。

相关文档
最新文档