中级计量经济学讲义_第六章带有线性约束的多元线性回归模型及其假设检验

中级计量经济学讲义_第六章带有线性约束的多元线性回归模型及其假设检验
中级计量经济学讲义_第六章带有线性约束的多元线性回归模型及其假设检验

第六章 带有线性约束的多元线性回归模型及其假设检验

在本章中,继续讨论第五章的模型,但新的模型中,参数β满足J 个线性约束集,R β=q ,矩阵R 有和β相一致的K 列和总共J 个约束的J 行,且R 是行满秩的,我们考虑不是过度约束的情况,因此,J <K 。

带有线性约束的参数的假设检验,我们可以用两种方法来处理。第一个方法,我们按照无约束条件求出一组参数估计后,然后我们对求出的这组参数是否满足假设所暗示的约束,进行检验,我们在本章的第一节中讨论。

第二个方法是我们把参数所满足的线性约束和模型一起考虑,求出参数的最小二乘解,尔后再作检验,后者就是参数带有约束的最小二乘估计方法,我们在本章的第二节中讨论。

第一节 线性约束的检验 从线性回归模型开始,

εβ+=X y (1)

我们考虑具有如下形式的一组线性约束,

J

K JK J J K K K K q r r r q r r r q r r r =+++=+++=+++βββββββββ

22112

222212*********

这些可以用矩阵改写成一个方程

q R =β (2)

作为我们的假设条件0H 。

R 中每一行都是一个约束中的系数。矩阵R 有和β相一致的K 列和总共J 个约束的J 行,且R 是行满秩的。因此,J 一定要小于或等于K 。R 的各行必须是线性无关的,虽然J =K 的情况并不违反条件,但其唯一决定了β,这样的约束没有意义,我们不考虑这种情况。

给定最小二乘估计量b ,我们的兴趣集中于“差异”向量d=Rb -q 。d 精确等于0是不可能的事件(因为其概率是0),统计问题是d 对0的离差是否可归因于抽样误差或它是否是显著的。

由于b 是多元正态分布的,且d 是b 的一个线性函数,所以d 也是多元正态分布的,若原假设为真,d 的均值为0,方差为

R X X R R b Var R q Rb Var d Var ''='=-=-1

2)(])[(][][σ (3)

对H 0的检验我们可以将其基于沃尔德(Wald )准则:

d d Var d J W 1

2

])

[()(-'==χ

=)(])([)(112q Rb R X X R q Rb -'''---σ (4)

在假设正确时将服从自由度为J 的2χ分布(为什么?)。

直觉上,d 越大,即最小二乘满足约束的错误越大,则2χ统计量越大,所以,一个大的2χ值将加重对假设的怀疑。

??

?

??'

??? ??='=

-σεσεσ

σ

M e

e s

K n 2

2

2

)( (5) 由于σ未知,(4)中的统计量是不可用的,用s 2替代σ2,我们可以导出一个F[J ,(n -K )]样本统计量,令

)

/(]/)[(/)(])([)(2

21

12K n s K n J

q Rb R X X R q Rb F ---'''-=

--σσ (6)

分子是(1/J )乘(4)中的W ,分母是1/(n -K )乘(5)中的幂等二次型。所以,F 是两个除以其自由度的卡方变量的比率。如果它们是独立的,则F 的分布是F[J ,(n -K )],我们前边发现b 是独立于s 2

的,所以条件是满足的。

我们也可以直接推导。利用(5)及M 是幂等的这一事实,我们可以把F 写为

)

/()]/([])/([/}/)({])([}/)({1

1K n M M J

b R R X X R b R F -'-'''-=

--σεσεσβσβ (7)

由于

??

? ??=??? ??''=--σεσεσ

βT X X X R b R 1

)()

(

F 统计量是)/(σε的两个二次型的比率,由于M )/(σε和T )/(σε都服从正态分布且

它们的协方差TM 为0,所以二次型的向量都是独立的。F 的分子和分母都是独立随机向量的函数,因而它们也是独立的。这就完成了证明。

消掉(6)中的两个σ2,剩下的是检验一个线性假设的F 统计量,

)

/(/)(])([)(1

1K n e e J

q Rb R X X R q Rb F -'-'''-=

--

J

q Rb R X X R s q Rb )

(])([)(1

12-'''-=

-- (8)

我们将检验统计量

J

q Rb R X X s R q Rb K n J F )

(}])([{)(],[1

12-'''-=

---

和F 分布表中的临界值相比较,一个大的F 值是反对假设的证据。

注意:将wald 统计量中的2σ用2s 去替代,相应的就将J 维的卡方分布转换为维度为(J,n-K )的F 分布。

第二节 参数带有约束的最小二乘估计 一、带有约束的最小二乘函数

在许多问题中,要求其中的未知参数β满足某特定的线性约束条件:R β=q ,这里R

是J ×K 矩阵(J <K ),并假定它的秩为J 维向量,常常希望求β的估计β

?,使得 2

}

:{2

min

β

ββX Y X Y q R -=-= (9)

满足条件(9)的称为β的具有线性约束R β=q 的最小二乘估计。

解β

?的问题实际上是在约束条件 R β=q

下求 ∑

==???

? ?

?

-=

-=n

i m

j j ij i x Y X Y f 1

2

1

2

ββ

的限制极值点问题。

这个问题的一个拉格朗日解可写作

)(2)()(*

q R X y X y S

-'+-'-=βλββ

解b *和λ将满足必要条件

02)(2**

='+-'-=??λβ

R Xb y X S

0)(2**

=-=??q Rb S

λ

展开可以得到分块矩阵方程

??

????'=????????????'

'q y X b R

R X X λ*0 或

Wd *=v

假定括号中的分块矩阵是非奇异的,约束最小二乘估计量

d *=W -1

v ??

????=λ*b

其中

???

?

?

?--=--------------1

1

1111

1

1

111111

)

')'(()'()')'(()

')

'((')

'()'()')'((')'()'(R X X R X X R R X X R R X X R R X X X X R R X X R R X X X X W

此外,若X ′X 是非奇异的,则用分块逆公式可以得到b *和λ的显示解 )

(])([)()')

'((')'()

')

'((')

'(')

'()')'((')

'()(')'()')'((')'(')'()

')

'((')

'(')

'()

')

'((')

'(')'(1

111

1

1

1

1

1

1

1

1

11

11111

1

1

1

1

1

1

1

*q Rb R X X R R X X b q

R X X R R X X Rb R X X R R X X y X X X q

R X X R R X X e Xb X X X R R X X R R X X y X X X q

R X X R R X X y X X X R R X X R R X X y X X X b -''''-=+-=++-=+-=--------------------------

)(])([1

1q Rb R X X R -''=--λ

格林和西克斯(1991)表明b *的协方差矩阵简单地就是2σ乘以W -1

的左上块,在X ′X 是非奇异的通常情况下,再一次可以得到一个显性公式

1

111212*)(])([)()(][-----'''''-'=X X R R X X R R X X X X b Var σσ,

这样,

-=][][*b Var b Var (一个非负定矩阵)

, Var[b *]的方差比Var[b]小的一个解释是约束条件提供了更多的信息价值。

二、对约束的检验的另一个方法

令**Xb y e -=,我们来计算新的离差平方和**

e e '。 )()(***b b X e b b X Xb y e --=---=

则新的离差平方和是

e e b b X X b b e e e e '≥-''-+'=')()(****

2

2

~'k n e

e -χσ

2

)(2

*

*~'J k n e e --χσ

因为新的模型中参数的个数为k-J 个,J 个约束条件是原模型中的J 个参数可以被其他k-J 个表示。

(此表达式中的中间项含有X ′e ,它是0)。这说明我们可以将一个约束检验基于拟合的损失。这个损失是,

)(])([)(11**

q Rb R X X R q Rb e e e e -'''-='-'-- 这出现在前边推导的F 统计量的分子上,我们得到统计量的另一个可选形式。 可选形式是

)

/(/)(],[**

K n e e J e e e e K n J F -''-'=

-

最后,以SST=2

)(y y -∑除F 的分子和分母,我们得到第三种形式,

)

/()1(/)(],[2

2

*2

K n R J

R R

K n J F ---=

-

由于两个模型的拟合之差直接体现在检验统计量中,这个形式具有一些直观吸引力。

[实例]对数变换生产函数

所有科布—道格拉斯模型的一般化是如下的对数变换模型,

εββββββ++++++=2

ln ln 2

ln

2

ln

ln ln ln 6

2

5

2

4

321K

L K

L

K L Y (10)

无约束回归的结果在表1中给出。

表1 无约束回归的结果

回归标准误差 0.17994 残差平方和 0.67993 R 平方 0.95486 调整R 平方

0.94411

变量 系数 标准误差 t 值 常数项 0.944216 2.911 0.324 LnL 3.61363 1.548 2.334 LnK

-1.89311 1.016 -1.863 L 2

ln 21 -0.96406 0.7074 -1.363 K 2

ln

21

0.08529 0.2926 0.291 lnL ×lnK 0.31239 0.4389 0.71 系数估计量的估计协方差矩阵

常数项 lnL lnK Ln2L/2

Ln2K/2

lnL ×lnK

常数项 8.472 LnL -2.388 2.397

LnK

-0.3313 -1.231 1.033 L 2

ln 21 -0.08760 -0.6658 0.5231 0.5004 K 2

ln

21

0.2332 0.03477 0.02637 0.1467 0.08562 lnL ×lnK 0.3635

0.1831

-0.2255

-0.2880

-0.1160

0.1927

考虑了约束条件0654===βββ的模型就可以得到科布一道格拉斯模型:

εβββ+++=K L Y ln ln ln 321 (11)

这是一个条件约束下的无条件的多元线性回归模型。就可以用一般线性回归的方法求解模型。假如我们通过有约束条件下的无条件的多元线性回归模型得到:

85163.0**

='e e ,而且n -K=21,则科布—道格拉斯模型假设的F 统计量是 768.121

/67993.03

/)67993.085163.0(]21,3[=-=

F

查自F 分布表的5%临界值是3.07,所以我们不能拒绝科布—道格拉斯模型是适当的这一假设。

考虑了约束条件0654===βββ和条件132=+ββ的模型就是满足规模效应的科布—道格拉斯生产函数。这个模型可以推导如下:

ε

ββε

βββε

βββ+-+=-∴+-++=+++=)ln (ln K ln ln ln )1(ln ln ln ln 21221321K L Y K L K L Y (12)

假如我们通过有约束条件下的无条件的多元线性回归模型得到:

89172.0**

='e e ,而且n -K=21,则科布—道格拉斯模型假设的F 统计量是 635.121

/67993.04

/)67993.089172.0(]21,4[=-=

F

查自F 分布表的5%临界值是2.85,所以我们不能拒绝科布—道格拉斯模型是规模效应的生产函数的这一假设。 补充:

(1) 要素替代弹性

将要素替代弹性定义为两种要素的比例的变化率与边际替代率的变化率之比,一般用

σ表示。则有

(/)(/)(/)

(/)

L K L K d M P M P d K L K L M P M P σ=

(2)

一般情况下,要素替代弹性σ为一个正数。

1)如果用K 替代L ,则(2)式分子大于0;由于L 减少,其边际产量L M P 增大,而由于K 增加,其边际产量K M P 减小,于是(2)式分母也大于0。所以要素替代弹性σ大于0,表明要素之间具有有限可替代性;

2)在特殊情况下,要素之间不可以替代,此时K/L 不变,则(2)式分子等于0,所以替代弹性σ等于0;

3)另一种极端情况是,无论要素的数量增加或者减少,其边际产量不变,此时(2)式分母等于0,替代弹性σ为∞,表明要素之间具有无限可替代性。

超越对数生产函数模型

一个更具有一般性的变替代弹性生产函数模型是由L.Christensen 、D.Jor-genson 和Lau

于1973年提出的超越对数生产函数模型。其形式为(为何可以采用如下形式?)

2

2

0ln ln ln (ln )(ln )ln ln K L K K LL K L Y K L K L K L ββββββ=+++++? (21)

该生产函数模型的显著特点是它的易估计和包容性。它是一个简单线性模型,可以直接采用单方程线性模型的估计方法进行估计。所谓包容性,是它可以被认为是任何形式的生产函数的近似。例如,如果12

K K L L K L βββ==-

,则表现为CES 生产函数。所以可以根据该

生产函数的估计结果判断要素的替代性质;另外,可以比较容易设计一些假设检验条件,来验证有关经济理论是否正确。

第三节 结构变化与邹至庄检验

(Structure Change and Chou-Test)

一、

问题提出

我们经常碰到这样的问题。某项政策的出台及实施,其效果如何?不同地区或不同时期内,我们分别可以得到这两个地区或时期的观测值,我们的问题是:这两个地区或时期的情况是否不同,经济结构有无差异。

这类问题,被华人经济学家邹至庄用构造的F 检验解决了(1960年)。这样的F 检验的统计量,就称为邹至庄检验(Chou-T est )。

二、问题的模型表述

设1122( ),( )Z Y Z Y 分别表示这两个时期的观测值,允许两个时期中系数不同的无约束回归是11112222

Y Z Y Z βεβε=+??

=+?,我们可以将其改写成一个回归方程

111

1222

200

Y Z Y Z βεβε????????=+ ? ? ? ???????

??

(1)

即Y

Z βε

=+模型,其中Y=12Y Y ??

???

,Z=1200

Z Z ?? ???

,β=12ββ??

???

,ε=12εε??

???

上述问题就转换成检验

012112

::H H ββββ=≠的问题。

我们可以用两种方式来处理问题

一)用约束条件12ββ=,来检验。12ββ=是更一般约束条件R β=q 的一个特殊形式,其中R=(I,-I) 和 q=0。这个直接可以从基于Wald 统计量的带约束条件的F 检验得到。(请自己推导)。

例题:用约束条件下,F 检验推导出邹至庄检验的表达式:

解:在约束条件R β=q 下,F 检验

2

1

1

()[()]()

(,)Rb q S R Z Z R Rb q F J n k J

--'''---=

而邹至庄检验时约束条件R β=q 的一种特殊形式,即R=(I,-I),而q=0,也即等同于条件12ββ=。(有2k 个参数,并且是有k 个约束)。故

()2

1

1

12'1

21

111212'1222

'1

'

1

1

121

1221()[()]()

(,2)()0

()[(,)]()0() ()[()

()]

( =

R b q S R Z Z R R b q F k n n k k

I

Z Z b b S I I b b I

Z Z k

b b S

Z

Z Z Z b b --------'''--+-=

????'---

? ?-??

?

?=

'-+-2)

k

服从F (12,2k n n k +-)的分布。

另外,在考虑了约束条件21ββ=后,我们可以将模型(1)改写成一个无约束的

新的回归方程

??????+??????????

?

????

??

?=???

???211121

210

0εεββZ Z Y Y , 即

??

????+???

?

??=??????2112121εεβZ Z Y Y (2)

即无约束的线性模型Y

Z βε

=+模型,其中Y=12Y Y ??

???

,Z=???

? ??21Z Z ,ββ=12ββ?? ???,ε=12εε??

???。 假如模型(2)的残差平方和是**

e e ',在假设条件12ββ=下, 我们可以得到F 统计量可更简单地表示为:

)

2/(/)(]2,[21**

21k n n e e k e e e e k n n k F -+''-'=

-+。

二) 更直接、更容易的一个处理是将约束直接构造进模型中,若两个系数向量相同,则模型(1)就转换为:

111222Y Z Y Z εβε??????=+ ? ? ???????

(2)

由此我们推导出可以检验的邹至庄统计量Chou-T est 。 从模型(1)中,我们可以得到无约束最小二乘估计量是

1

'''1'11

11

111111'

''1'

2222222220

()0

()0

0()b Z Z Z Y Z Z Z Y b Z Z Z Y b Z Z Z Y Z Z Z Y ----??????????

''====

? ?

? ? ???

????????

'1'11

1111'1'222222'1'

1

11111'1'2

22222'1

'

11

11

'1'22220()0()0()0

()()0

0()Y Z Z Z Z Y e Y Zb Y Z Z Z Z Y Y Z Y Z Z Z Y Z Y Z Z Z Z Z Z Z

I Z Z Z Z ------??

????=-=-

? ?

???????????????

=- ?

? ?

???????

?????=-

???1122112 Y e Y e Y M Y ?????= ? ? ? ???????

??

?

??

11'''''

121112122()()Y Y e e Y Y M M Y Y M Y Y ????'== ? ?

????

2

122

~(2)e e

n n k χσ

'+- (3)

对于有约束条件12ββ=限制的模型(2)

()1

111

*''

''121

2

222111''''

11221222122()() () Z Z Y e I Z Z Z Z Z Z Y Z Y I Z Z Z Z Z Z Z Y Y M Y --??????????

?=-? ? ?

? ?

?????????

?

?

??????=-+ ? ?

?????????

?

??

11*'*'''''

122212222()()Y Y e e Y Y M M Y Y M Y Y ????== ? ?

????

*'*

2

122

~()e e

n n k χσ

+- (4)

11*'*''

''

122

1123

22()()()Y Y e e e e Y Y M

M Y Y M Y Y ????'-=- ? ?????

*'*

2

e e e e

σ

'-服从何分布?

首先证明:310M M =

()()2

211211211

11''''

11221211

2'1'11''''

1111112212'1'22222() =()()0

()0() M M M M M M M M M Z I Z Z Z Z Z Z M M Z Z Z Z Z Z Z Z Z Z Z Z I Z Z Z Z Z -----=-=-????-+?- ? ???????

????=-+- ? ?

? ??????

?

()()1111''''''''

1122121122

1222 =()() 0

Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z --????-++-+ ? ?????

=

故2112M M M M -+=而且211()0M M M -=

故21211212()()()(2)r M M r M r M n n k n n k k -=-=+--+-= 同样21()M M -是幂等矩阵 故

*'

*

2

2

~()e e e e

k χσ

'-且与

2

122

~(2)

e e

n n k χσ

'+-

是独立的,所以

)

2/(/)(]2,[21**

21k n n e e k e e e e k n n k F -+''-'=

-+

这个就是邹至庄检验统计量(Chou-T est )。

多元线性回归模型的各种检验方法.doc

对多元线性回归模型的各种检验方法 对于形如 u X X X Y k k +++++=ββββΛΛ22110 (1) 的回归模型,我们可能需要对其实施如下的检验中的一种或几种检验: 一、 对单个总体参数的假设检验:t 检验 在这种检验中,我们需要对模型中的某个(总体)参数是否满足虚拟假设0 H :j j a =β,做出具有统计意义(即带有一定的置信度)的检验,其中j a 为某个给定的已知数。特别是,当j a =0时,称为参数的(狭义意义上的)显著性检验。如果拒绝0H ,说明解释变量j X 对 被解释变量Y 具有显著的线性影响,估计值j β?才敢使 用;反之,说明解释变量j X 对被解释变量Y 不具有显 著的线性影响,估计值j β?对我们就没有意义。具体检验 方法如下: (1) 给定虚拟假设 0H :j j a =β;

(2) 计算统计量 )?(?)?()(?j j j j j j Se a Se E t βββββ-=-= 的数值; 11?)?(++-==j j jj jj j C C Se 1T X)(X ,其中σβ (3) 在给定的显著水平α下(α不能大于1.0即 10%,也即我们不能在置信度小于90%以下的前提下做结论),查出双尾t (1--k n )分布的临界值2/αt ; (4) 如果出现 2/αt t >的情况,检验结论为拒绝 0H ;反之,无法拒绝0H 。 t 检验方法的关键是统计量 )?(?j j j Se t βββ-=必须服从已 知的t 分布函数。什么情况或条件下才会这样呢?这需要我们建立的模型满足如下的条件(或假定): (1) 随机抽样性。我们有一个含n 次观测的随机样(){}n i Y X X X i ik i i ,,2,1:,,,,21ΛΛ=。这保证了误差u 自身的随机性,即无自相关性,

多元线性回归模型的案例分析

1. 表1列出了某地区家庭人均鸡肉年消费量Y 与家庭月平均收入X ,鸡肉价格P 1,猪肉价格P 2与牛肉价格P 3的相关数据。 年份 Y/千 克 X/ 元 P 1/(元/千克) P 2/(元/千克) P 3/(元/千克) 年份 Y/千克 X/元 P 1/(元/ 千克) P 2/(元/ 千克) P 3/(元/千克) 1980 2.78 397 4.22 5.07 7.83 1992 4.18 911 3.97 7.91 11.40 1981 2.99 413 3.81 5.20 7.92 1993 4.04 931 5.21 9.54 12.41 1982 2.98 439 4.03 5.40 7.92 1994 4.07 1021 4.89 9.42 12.76 1983 3.08 459 3.95 5.53 7.92 1995 4.01 1165 5.83 12.35 14.29 1984 3.12 492 3.73 5.47 7.74 1996 4.27 1349 5.79 12.99 14.36 1985 3.33 528 3.81 6.37 8.02 1997 4.41 1449 5.67 11.76 13.92 1986 3.56 560 3.93 6.98 8.04 1998 4.67 1575 6.37 13.09 16.55 1987 3.64 624 3.78 6.59 8.39 1999 5.06 1759 6.16 12.98 20.33 1988 3.67 666 3.84 6.45 8.55 2000 5.01 1994 5.89 12.80 21.96 1989 3.84 717 4.01 7.00 9.37 2001 5.17 2258 6.64 14.10 22.16 1990 4.04 768 3.86 7.32 10.61 2002 5.29 2478 7.04 16.82 23.26 1991 4.03 843 3.98 6.78 10.48 (1) 求出该地区关于家庭鸡肉消费需求的如下模型: 01213243ln ln ln ln ln Y X P P P u βββββ=+++++ (2) 请分析,鸡肉的家庭消费需求是否受猪肉及牛肉价格的影响。 先做回归分析,过程如下: 输出结果如下:

计量经济学·多元线性回归模型

计量经济学·多元线性回归模型

2006年 217656.6 77597.2 63376.86 2007年 268019.4 93563.6 73300.1 2008年 316751.7 100394.94 79526.53 2009年 345629.2 82029.69 68618.37 2010年 408903 107022.84 94699.3 2011年 484123.5 123240.56 113161.39 2012年 534123 129359.3 114801 2013年 588018.8 137131.4 121037.5 2014年 636138.7 143911.66 120422.84 数据来源:国家统计局 三、模型的检验及结果的解释、评价 (一)OLS 法的检验 相关系数: Y X1 X2 Y 1 0.9799919175967026 0.98352422945 0628 X1 0.97999191759 67026 1 0.99756527944 46187 X2 0.983524229450628 0.99756527944 46187 1 线性图: 100,000 200,000300,000400,000500,000600,000700,000Y X1 X2 估计参数: Dependent Variable: Y

Method: Least Squares Date: 12/14/15 Time: 14:47 Sample: 1985 2014 Included observations: 30 Variable Coefficient Std. Error t-Statistic Prob. C 3775.319359 326024 8769.9280467 183 0.4304846447 102545 0.67026006 64360232 X1 -0.91272630 85551189 1.9385186318 83585 -0.470837005 9194414 0.64153894 75333828 X2 5.522785592 51161 2.2548570541 42605 2.4492841275 08302 0.02108703 0146243 R-squared 0.967586049 4429319 Mean dependent var 173871.823 3333334 Adjusted R-squared 0.965185016 0683343 S.D. dependent var 187698.441 4104575 S.E. of regression 35022.22758 863741 Akaike info criterion 23.8599929 764685 Sum squared resid 3311702348 2.29852 Schwarz criterion 24.0001127 1463471 Log likelihood -354.899894 6470274 Hannan-Quinn criter. 23.9048184 8460881 F-statistic 402.9873385 683694 Durbin-Watson stat 0.54328498 36158895 Prob(F-statistic) 7.850214650 723685e-21 统计检验: (1)拟合优度:从上表可以得到R2=0.9675860494429319,修正后的可决系数R2=0.9651850160683343,这说明模型对样本的拟合很好。 (2)F检验:针对H0: (二)多重共线性的检验及修正 相关系数矩阵: X1 X2

经典线性回归模型

2 经典线性回归模型 §2.1 概念与记号 1.线性回归模型是用来描述一个特定变量y 与其它一些变量x 1,…,x p 之间的关系。 2. 称特定变量y 为因变量 (dependent variable )、 被解释变量 (explained variable )、 响应变量(response variable )、被预测变量(predicted variable )、回归子 (regressand )。 3.称与特定变量相关的其它一些变量x 1,…,x p 为自变量(independent variable )、 解释变量(explanatory variable )、控制变量(control variable )、预测变量 (predictor variable )、回归量(regressor )、协变量(covariate )。 4.假定我们观测到上述这些变量的n 组值:( ) ip i i x x y , , , 1 L (i=1,…,n)。称 这n 组值为样本(sample )或数据(data )。 §2.2 经典线性回归模型的假定 假定 2.1(线性性(linearity)) i ip p i i x x y e b b b + + + + = L 1 1 0 (i=1,…,n)。 (2.1) 称方程(2.1)为因变量y 对自变量x 1,…,x p 的线性回归方程(linear regression equation ),其中 ( ) p , k k , , 1 0 L = b 是待估的未知参数(unknown parameters ), ( ) n i i , , 1 L = e 是满足一定限制条件的无法观测的误差项(unobserved error term ) 。称自 变量的函数 ip p i x x b b b + + + L 1 1 0 为回归函数(regression function )或简称为回归 (regression )。称 0 b 为回归的截距(ntercept),称 ( ) p k k , , 1 L = b 为自变量的回归系数 (regression coefficients ) 。某个自变量的回归系数表示在其它条件保持不变的情况下,

多元线性回归模型实验报告 计量经济学

实验报告 课程名称金融计量学 实验项目名称多元线性回归模型班级与班级代码 实验室名称(或课室) 专业 任课教师xxx 学号:xxx 姓名:xxx 实验日期:2012年5 月3日 广东商学院教务处制

姓名xxx 实验报告成绩 评语: 指导教师(签名) 年月日说明:指导教师评分后,实验报告交院(系)办公室保存

多元线性回归模型 一、实验目的 通过上机实验,使学生能够使用 Eviews 软件估计可化为线性回归模型的非线性模型,并对线性回归模型的参数线性约束条件进行检验。二、实验内容 (一)根据中国某年按行业分的全部制造业国有企业及规模以上制造业非国有企业的工业总产值Y,资产合计K及职工人数L进行回归分析。(二)掌握可化为线性多元非线性回归模型的估计和多元线性回归模型的线性约束条件的检验方法 (三)根据实验结果判断中国该年制造业总体的规模报酬状态如何?三、实验步骤 (一)收集数据 下表列示出来中国某年按行业分的全部制造业国有企业及规模以上制造业非国有企业的工业总产值Y,资产合计K及职工人数L。 序号工业总产值Y (亿元) 资产合计K (亿元) 职工人数L (万人)序号 工业总产 值Y(亿元) 资产合计K (亿元) 职工人数L (万人) 1 3722.7 3078.2 2 11 3 17 812.7 1118.81 43 2 1442.52 1684.4 3 67 18 1899.7 2052.16 61 3 1752.37 2742.77 8 4 19 3692.8 5 6113.11 240 4 1451.29 1973.82 27 20 4732.9 9228.2 5 222 5 5149.3 5917.01 327 21 2180.23 2866.65 80 6 2291.16 1758.7 7 120 22 2539.76 2545.63 96 7 1345.17 939.1 58 23 3046.95 4787.9 222 8 656.77 694.94 31 24 2192.63 3255.29 163 9 370.18 363.48 16 25 5364.83 8129.68 244 10 1590.36 2511.99 66 26 4834.68 5260.2 145 11 616.71 973.73 58 27 7549.58 7518.79 138 12 617.94 516.01 28 28 867.91 984.52 46 13 4429.19 3785.91 61 29 4611.39 18626.94 218 14 5749.02 8688.03 254 30 170.3 610.91 19 15 1781.37 2798.9 83 31 325.53 1523.19 45 16 1243.07 1808.44 33 表1

非线性回归分析

SPSS—非线性回归(模型表达式)案例解析 2011-11-16 10:56 由简单到复杂,人生有下坡就必有上坡,有低潮就必有高潮的迭起,随着SPSS 的深入学习,已经逐渐开始走向复杂,今天跟大家交流一下,SPSS非线性回归,希望大家能够指点一二! 非线性回归过程是用来建立因变量与一组自变量之间的非线性关系,它不像线性模型那样有众多的假设条件,可以在自变量和因变量之间建立任何形式的模型非线性,能够通过变量转换成为线性模型——称之为本质线性模型,转换后的模型,用线性回归的方式处理转换后的模型,有的非线性模型并不能够通过变量转换为线性模型,我们称之为:本质非线性模型 还是以“销售量”和“广告费用”这个样本为例,进行研究,前面已经研究得出:“二次曲线模型”比“线性模型”能够更好的拟合“销售量随着广告费用的增加而呈现的趋势变化”,那么“二次曲线”会不会是最佳模型呢? 答案是否定的,因为“非线性模型”能够更好的拟合“销售量随着广告费用的增加而呈现的变化趋势” 下面我们开始研究: 第一步:非线性模型那么多,我们应该选择“哪一个模型呢?” 1:绘制图形,根据图形的变化趋势结合自己的经验判断,选择合适的模型 点击“图形”—图表构建程序—进入如下所示界面:

点击确定按钮,得到如下结果:

放眼望去, 图形的变化趋势,其实是一条曲线,这条曲线更倾向于"S" 型曲线,我们来验证一下,看“二次曲线”和“S曲线”相比,两者哪一个的拟合度更高! 点击“分析—回归—曲线估计——进入如下界面

在“模型”选项中,勾选”二次项“和”S" 两个模型,点击确定,得到如下结果: 通过“二次”和“S “ 两个模型的对比,可以看出S 模型的拟合度明显高于

计量经济学简单线性回归实验报告精编

实验报告 1. 实验目的随着中国经济的发展,居民的常住收入水平不断提高,粮食销售量也不断增长。研究粮食年销售量与人均收入之间的关系,对于探讨粮食年销售量的增长的规律性有重要的意义。 2. 模型设定 为了分析粮食年销售量与人均收入之间的关系,选择“粮食年销售量” 为被解释变量(用Y 表示),选择“人均收入”为解释变量(用X 表 示)。本次实验报告数据取自某市从1974 年到1987 年的数据(教材书上101页表3.11),数据如下图所示:

1粮食年销售量Y/万吨人均收入X/ rF1974[ 9& 45153.2 1975100.7190 pl1976102.8240.3 1977133. 95301.12 [61978140.13361 71979143.11420 8—1980146.15491.76「91981144.6501 101982148. 94529.2 1 11-1983158.55552. 72匸1984169. 68771.16 131985P 162.1481L8 14二1986170. 09988.43 1519871F& 691094.65为分析粮食年销售量与人均收入的关系,做下图所谓的散点图 从散点图可以看出粮食年销售量与人均收入大体呈现为线性关 系,可以建立如下简单现行回归模型: 3?估计参数

Y t = ■? 1 2 X t ——I t 假定所建模型及其中的随机扰动项叫满足各项古典假定,可以 用OLS法估计其参数。 通过利用EViews对以上数据作简单线性回归分析,得出回归结果如下表所示: Dependent Variable Y Method: Least Squares Date 10/15/11 Time 14 49 Sample- 1 14 Included observations: 14 Variable Coefficient Std Error t-Statistic Prob C99 61349 6 431242 15 489000 0000 X0.0814700.010738 7.5071190.0000 R-squared0 827493Mean dependent var142 7129 Adjusted R-squared0 813123S.D. dependent var26.09805 S E of regression11 28200Akaike info criterion7 915858 Sum squared resid1527 403Schwarz criterion7 907152 Log likelihood-52.71101F-statisti c5756437 Durbin-V/atson stat0 638969Prob(尸-statistic)0 000006 可用规范的形式将参数估计和检验的结果写为: A Y t =99.61349+0.08147 X t (6.431242)(0.10738) t= (15.48900) (7.587119) R2=0.827498 F=57.56437 n=14 4?模型检验 (1).经济意义检验 A A 所估计的参数1=99.61349, 1 2=0.08147,说明人均收入每增加 1元,平均说来可导致粮食年销售量提高0.08147元。这与经济学中

中级计量经济学讲义_第六章带有线性约束的多元线性回归模型及其假设检验

第六章 带有线性约束的多元线性回归模型及其假设检验 在本章中,继续讨论第五章的模型,但新的模型中,参数β满足J 个线性约束集,R β=q ,矩阵R 有和β相一致的K 列和总共J 个约束的J 行,且R 是行满秩的,我们考虑不是过度约束的情况,因此,J <K 。 带有线性约束的参数的假设检验,我们可以用两种方法来处理。第一个方法,我们按照无约束条件求出一组参数估计后,然后我们对求出的这组参数是否满足假设所暗示的约束,进行检验,我们在本章的第一节中讨论。 第二个方法是我们把参数所满足的线性约束和模型一起考虑,求出参数的最小二乘解,尔后再作检验,后者就是参数带有约束的最小二乘估计方法,我们在本章的第二节中讨论。 第一节 线性约束的检验 从线性回归模型开始, εβ+=X y (1) 我们考虑具有如下形式的一组线性约束, J K JK J J K K K K q r r r q r r r q r r r =+++=+++=+++βββββββββ 22112 222212********* 这些可以用矩阵改写成一个方程 q R =β (2) 作为我们的假设条件0H 。 R 中每一行都是一个约束中的系数。矩阵R 有和β相一致的K 列和总共J 个约束的J 行,且R 是行满秩的。因此,J 一定要小于或等于K 。R 的各行必须是线性无关的,虽然J =K 的情况并不违反条件,但其唯一决定了β,这样的约束没有意义,我们不考虑这种情况。 给定最小二乘估计量b ,我们的兴趣集中于“差异”向量d=Rb -q 。d 精确等于0是不可能的事件(因为其概率是0),统计问题是d 对0的离差是否可归因于抽样误差或它是否是显著的。

案例分析报告(一元线性回归模型)

案例分析报告(2014——2015学年第一学期) 课程名称:预测与决策 专业班级:电子商务1202 学号: 2204120202 学生姓名:陈维维 2014 年 11月

案例分析(一元线性回归模型) 我国城镇居民家庭人均消费支出预测 一、研究目的与要求 居民消费在社会经济的持续发展中有着重要的作用,居民合理的消费模式和居民适度的消费规模有利于经济持续健康的增长,而且这也是人民生活水平的具体体现。从理论角度讲,消费需求的具体内容主要体现在消费结构上,要增加居民消费,就要从研究居民消费结构入手,只有了解居民消费结构变化的趋势和规律,掌握消费需求的热点和发展方向,才能为消费者提供良好的政策环境,引导消费者合理扩大消费,才能促进产业结构调整与消费结构优化升级相协调,才能推动国民经济平稳、健康发展。例如,2008年全国城镇居民家庭平均每人每年消费支出为11242.85元,最低的青海省仅为人均8192.56元,最高的上海市达人均19397.89元,上海是黑龙江的2.37倍。为了研究全国居民消费水平及其变动的原因,需要作具体的分析。影响各地区居民消费支出有明显差异的因素可能很多,例如,零售物价指数、利率、居民财产、购物环境等等都可能对居民消费有影响。为了分析什么是影响各地区居民消费支出有明显差异的最主要因素,并分析影响因素与消费水平的数量关系,可以建立相应的计量经济模型去研究。 二、模型设定 我研究的对象是各地区居民消费的差异。居民消费可分为城镇居民消费和农村居民消费,由于各地区的城镇与农村人口比例及经济结构有较大差异,最具有直接对比可比性的是城市居民消费。而且,由于各地区人口和经济总量不同,只能用“城镇居民每人每年的平均消费支出”来比较,而这正是可从统计年鉴中获得数据的变量。 所以模型的被解释变量Y选定为“城镇居民每人每年的平均消费支出”。 因为研究的目的是各地区城镇居民消费的差异,并不是城镇居民消费在不同时间的变动,所以应选择同一时期各地区城镇居民的消费支出来建立模

计量经济学·多元线性回归模型

计量经济学·多元线性回归模型应用作业 1985~2014年中国GDP与进口、出口贸易总额的关系 一、概述 在当今市场上,一国的GDP与多个因素存在着紧密的联系,例如进口总额和出口总额等都是影响一国GDP 的重要因素。本次将以中国1985-2014年GDP和进口总额、出口总额两个因素因素的数据,通过建立计量经济模型来分析上述变量之间的关系,强调贸易对GDP 的重要性,从而促进国内生产总值的发展。 二、模型构建过程 ⒈变量的定义 解释变量:X1进口贸易总额,X2出口贸易总额被解释变量:Y国内生产总值 建立计量经济模型:解释原油产量与进口贸易总额、出口贸易总额之间的关系。 ⒉模型的数学形式 设定GDP与两个解释变量相关关系模型,样本回归模型为: ⒊数据的收集 该模型的构建过程中共有两个变量,分别是中国从1990-2006年民用汽车拥有量、电力产量、国内生产总值以及能源消费总量,因此为时间序列数据,最后一个即2006年的数据作为预测对比数据,收集的数据如下所示 时间国内生产总值(亿元) 出口总额(人民币亿 元) 进口总额(人民币亿 元) 1985年9039.9 808.9 1257.8 1986年10308.8 1082.1 1498.3 1987年12102.2 1470 1614.2 1988年15101.1 1766.7 2055.1 1989年17090.3 1956 2199.9 1990年18774.3 2985.8 2574.3 1991年21895.5 3827.1 3398.7 1992年27068.3 4676.3 4443.3 1993年35524.3 5284.8 5986.2 1994年48459.6 10421.8 9960.1 1995年61129.8 12451.8 11048.1 1996年71572.3 12576.4 11557.4 1997年79429.5 15160.7 11806.5 1998年84883.7 15223.6 11626.1 1999年90187.7 16159.8 13736.5 2000年99776.3 20634.4 18638.8 2001年110270.4 22024.4 20159.2 2002年121002 26947.9 24430.3 2003年136564.6 36287.9 34195.6 2004年160714.4 49103.3 46435.8 2005年185895.8 62648.1 54273.7

建立计量经济学模型的步骤和要点1

阅读使人充实,会谈使人敏捷,写作使人精确。——培根 建立计量经济学模型的步骤和要点 一、理论模型的设计对所要研究的经济现象进行深入的分析,根据研究的目的,选择模型中将包含的因素,根据数据的可得性选择适当的变量来表征这些因素,并根据经济行为理论和样本数据显示出的变量间的关系,设定描述这些变量之间关系的数学表达式,即理论模型。 生产函数就是一个理论模型。理论模型的设计主要包含三部分工作,即选择变量、确定变量之间的数学关系、拟定模型中待估计参数的数值范围。 1、确定模型所包含的变量 在单方程模型中,变量分为两类。作为研究对象的变量,也就是因果关系中的“果”,例如生产函数中的产出量,是模型中的被解释变量;而作为“原因”的变量,例如生产函数中的资本、劳动、技术,是模型中的解释变量。确定模型所包含的变量,主要是指确定解释变量。可以作为解释变量的有下列几类变量:外生经济变量、外生条件变量、外生政策变量和滞后被解释变量。其中有些变量,如政策变量、条件变量经常以虚变量的形式出现。 严格他说,上述生产函数中的产出量、资本、劳动、技术等,只能称为“因素”,这些因素间存在着因果关系。为了建立起计量经济学模型,必须选择适当的变量来表征这些因素,这些变量必须具有数据可得性。于是,我们可以用总产值来表征产出量,用固走资产原值来表征资本,用职工人数来表征劳动,用时间作为一个变量来表征技术。这样,最后建立的模型是关于总产值、固定资产原值、职工人数和时间变量之间关系的数学表达式。下面,为了叙述方便,我们将“因素”与“变量”间的区别暂时略去,都以“变量”来表示。 关键在于,在确定了被解释变量之后,怎样才能正确地选择解释变量。 首先,需要正确理解和把握所研究的经济现象中暗含的经济学理论和经济行为规律。这是正确选择解释变量的基础。例如,在上述生产问题中,已经明确指出属于供给不足的情况,那么,影响产出量的因素就应该在投入要素方面,而在当前,一般的投入要素主要是技术、资本与劳动。如果属于需求不足的情况,那么影响产出量的因素就应该在需求方面,而不在投入要素方面。这时,如果研究的对象是消费品生产,应该选择居民收入等变量作为解释变量;如果研究的对象是生产资料生产,应该选择固定资产投资总额等变量作为解释变量。由此可见,同样是建立生产模型,所处的经济环境不同、研究的行业不同,变量选择是不同的。 法拉兹·日·阿卜——学问是异常珍贵的东西,从任何源泉吸收都不可耻。. 阅读使人充实,会谈使人敏捷,写作使人精确。——培根 其次,选择变量要考虑数据的可得性。这就要求对经济统计学有透彻的了解。计量经济学模型是要在样本数据,即变量的样本观测值的支持下,采用一定的数学方法估计参数,以揭示变量之间的定量关系。所以所选择的变量必须是统计指标体系中存在的、有可靠的数据来源的。如果必须引入个别对被解释变量有重要影响的政策变量、条件变量,则采用虚变量的样本观测值的选取方法。

经典线性回归模型的诊断与修正

经典线性回归模型的诊断与修正下表为最近20年我国全社会固定资产投资与GDP的统计数据:1 年份国内生产总值(亿元)GDP 全社会固定资产投资(亿元)PI 1996 71813.6 22913.5 1997 79715 24941.1 1998 85195.5 28406.2 1999 90564.4 29854.7 2000 100280.1 32917.7 2001 110863.1 37213.49 2002 121717.4 43499.91 2003 137422 55566.61 2004 161840.2 70477.43 2005 187318.9 88773.61 2006 219438.5 109998.16 2007 270232.3 137323.94 2008 319515.5 172828.4 2009 349081.4 224598.77 2010 413030.3 251683.77 2011 489300.6 311485.13 2012 540367.4 374694.74 2013 595244.4 446294.09 1数据来源于国家统计局网站年度数据

1、普通最小二乘法回归结果如下: 方程初步估计为: GDP=75906.54+1.1754PI (32.351) R2=0.9822F=1046.599 DW=0.3653 2、异方差的检验与修正 首先,用图示检验法,生成残差平方和与解释变量PI的散点图如下:

从上图可以看出,残差平方和与解释变量的散点图主要分布在图形的下半部分,有随PI的变动增大的趋势,因此,模型可能存在异方差。但是否确定存在异方差,还需作进一步的验证。 G-Q检验如下: 去除序列中间约1/4的部分后,1996-2003年的OLS估计结果如下所示:

第七章 带有线性约束的多元线性回归模型及其假设检验(金融计量-浙大 蒋岳祥)

第七章 带有线性约束的多元线性回归模型及其假设检验 在本章中,继续讨论第五章的模型,但新的模型中,参数β满足J 个线性约束集,R β=q ,矩阵R 有和β相一致的K 列和总共J 个约束的J 行,且R 是行满秩的,我们考虑不是过度约束的情况,因此,J <K 。 带有线性约束的参数的假设检验,我们可以用两种方法来处理。第一个方法,我们按照无约束条件求出一组参数估计后,然后我们对求出的这组参数是否满足假设所暗示的约束,进行检验,我们在本章的第一节中讨论。 第二个方法是我们把参数所满足的线性约束和模型一起考虑,求出参数的最小二乘解,尔后再作检验,后者就是参数带有约束的最小二乘估计方法,我们在本章的第二节中讨论。 第一节 线性约束的检验 从线性回归模型开始, εβ+=X y (1) 我们考虑具有如下形式的一组线性约束, J K JK J J K K K K q r r r q r r r q r r r =+++=+++=+++βββββββββ 22112 22221211 1212111 这些可以用矩阵改写成一个方程 q R =β (2) 作为我们的假设条件0H 。 R 中每一行都是一个约束中的系数。矩阵R 有和β相一致的K 列和总共J 个约束的J 行,且R 是行满秩的。因此,J 一定要小于或等于K 。R 的各行必须是线性无关的,虽然J =K 的情况并不违反条件,但其唯一决定了β,这样的约束没有意义,我们不考虑这种情况。 给定最小二乘估计量b ,我们的兴趣集中于“差异”向量d=Rb -q 。d 精确等于0是不可能的事件(因为其概率是0),统计问题是d 对0的离差是否可归因于抽样误差或它是否是显著的。

线性回归模型的研究毕业论文

线性回归模型的研究毕业论文 1 引言 回归分析最早是由19世纪末期高尔顿(Sir Francis Galton)发展的。1855年,他发表了一篇文章名为“遗传的身高向平均数方向的回归”,分析父母与其孩子之间身高的关系,发现父母的身高越高或的其孩子也越高,反之则越矮。他把儿子跟父母身高这种现象拟合成一种线性关系。但是他还发现了个有趣的现象,高个子的人生出来的儿子往往比他父亲矮一点更趋向于平均身高,矮个子的人生出来的儿子通常比他父亲高一点也趋向于平均身高。高尔顿选用“回归”一词,把这一现象叫做“向平均数方向的回归”。于是“线形回归”的术语被沿用下来了。 回归分析中,当研究的因果关系只涉及因变量和一个自变量时,叫做一元回归分析;当研究的因果关系涉及因变量和两个或两个以上自变量时,叫做多元回归分析。此外,回归分析中,又依据描述自变量与因变量之间因果关系的函数表达式是线性的还是非线性的,分为线性回归分析和非线性回归分析。按照参数估计方法可以分为主成分回归、偏最小二乘回归、和岭回归。 一般采用线性回归分析,由自变量和规定因变量来确定变量之间的因果关系,从而建立线性回归模型。模型的各个参数可以根据实测数据解。接着评价回归模型能否够很好的拟合实际数据;如果不能够很好的拟合,则重新拟合;如果能很好的拟合,就可以根据自变量进行下一步推测。 回归分析是重要的统计推断方法。在实际应用中,医学、农业、生物、林业、金融、管理、经济、社会等诸多方面随着科学的发展都需要运用到这个方法。从而推动了回归分析的快速发展。 2 回归分析的概述 2.1 回归分析的定义 回归分析是应用极其广泛的数据分析方法之一。回归分析(regression analysis)是确定两种或两种以上变数间相互依赖的定量关系的一种统计分析方法。 2.2 回归分析的主要容

计量经济学模型

多元线性回归模型 一、建立模型 社会物流总费用受多种综合因素的影响,如运输费用、仓储费用、包装费用、装卸搬运费用、流通加工费用、信息处理费用等,而其中最重要的因素就是运输费用和仓储费用,即运输费用和仓储费用与社会物流总费用之间存在单方向的因果关系;由此,我们可设以下回归模型:Yi=b0+b1*x1i+b2*x2i+ ui 现在以中国1995年至2004年物流总费用占GDP比例(%)的资料进行回归分析,并对估计模型进行检验。 1995年至2004年物流总费用占GDP比例(%) 在Eviews中新建工作簿,定义变量“商品价格”(x1)、“消费者人均月收入”(x2)及“商品需求量”(y),并输入相关数据,得出相应散点图如下: ①x1 与y 的散点图为:

②x2与y 的散点图为: 由两张散点图不能明确的看出x1、x2与y之间存在线性关系,故通过Eviews 软件计算,得出估计模型的参数结果如下:

由以上数据可知回归方程为: Y=11.57032+0.405599*x1 +0.794365*x2 (5.07) (2.67) (7.69) 1499.02=R 8909.02=R 37.62689=F 二、模型检验 1、 经济意义检验: ①b0=11.57032,在运输费用与仓储费用接近于零时,仍存在其他物流费用;②b1=0.405599,说明运输费用与社会物流总费用之间存在正的线性关系,运输费用每增加1%,社会物流总费用增加0.405599% ③b2= 0.794365,说明仓储费用与社会物流总费用之间存在正的线性关系,仓储费用每增加1%,社会物流总费用增加0.794365% 2、计量经济学检验: ①拟合优度检验:本模型的拟合优度系数为0.914898,表明本模型具有较高的拟合优度,x1、x2对y 的解释能力较好; ②变量的显著性检验(t 检验):方程的截距项和斜率项的t 检验值分别为5.07、2.67、7.69,均大于5%显著性水平下自由度为n-2=8的临界值t0.025(8)=1.860,模型参数估计显著,拒绝原假设H0; ③方程的显著性检验(F 检验):有上图可知,F-statistic =37.62689;Prob(F-statistic)

(完整word版)多元线性回归模型案例分析

多元线性回归模型案例分析 ——中国人口自然增长分析一·研究目的要求 中国从1971年开始全面开展了计划生育,使中国总和生育率很快从1970年的5.8降到1980年2.24,接近世代更替水平。此后,人口自然增长率(即人口的生育率)很大程度上与经济的发展等各方面的因素相联系,与经济生活息息相关,为了研究此后影响中国人口自然增长的主要原因,分析全国人口增长规律,与猜测中国未来的增长趋势,需要建立计量经济学模型。 影响中国人口自然增长率的因素有很多,但据分析主要因素可能有:(1)从宏观经济上看,经济整体增长是人口自然增长的基本源泉;(2)居民消费水平,它的高低可能会间接影响人口增长率。(3)文化程度,由于教育年限的高低,相应会转变人的传统观念,可能会间接影响人口自然增长率(4)人口分布,非农业与农业人口的比率也会对人口增长率有相应的影响。 二·模型设定 为了全面反映中国“人口自然增长率”的全貌,选择人口增长率作为被解释变量,以反映中国人口的增长;选择“国名收入”及“人均GDP”作为经济整体增长的代表;选择“居民消费价格指数增长率”作为居民消费水平的代表。暂不考虑文化程度及人口分布的影响。 从《中国统计年鉴》收集到以下数据(见表1): 表1 中国人口增长率及相关数据

设定的线性回归模型为: 1222334t t t t t Y X X X u ββββ=++++ 三、估计参数 利用EViews 估计模型的参数,方法是: 1、建立工作文件:启动EViews ,点击File\New\Workfile ,在对 话框“Workfile Range ”。在“Workfile frequency ”中选择“Annual ” (年度),并在“Start date ”中输入开始时间“1988”,在“end date ”中输入最后时间“2005”,点击“ok ”,出现“Workfile UNTITLED ”工作框。其中已有变量:“c ”—截距项 “resid ”—剩余项。在“Objects ”菜单中点击“New Objects”,在“New Objects”对话框中选“Group”,并在“Name for Objects”上定义文件名,点击“OK ”出现数据编辑窗口。 年份 人口自然增长率 (%。) 国民总收入(亿元) 居民消费价格指数增长 率(CPI )% 人均GDP (元) 1988 15.73 15037 18.8 1366 1989 15.04 17001 18 1519 1990 14.39 18718 3.1 1644 1991 12.98 21826 3.4 1893 1992 11.6 26937 6.4 2311 1993 11.45 35260 14.7 2998 1994 11.21 48108 24.1 4044 1995 10.55 59811 17.1 5046 1996 10.42 70142 8.3 5846 1997 10.06 78061 2.8 6420 1998 9.14 83024 -0.8 6796 1999 8.18 88479 -1.4 7159 2000 7.58 98000 0.4 7858 2001 6.95 108068 0.7 8622 2002 6.45 119096 -0.8 9398 2003 6.01 135174 1.2 10542 2004 5.87 159587 3.9 12336 2005 5.89 184089 1.8 14040 2006 5.38 213132 1.5 16024

计量经济学名词解释

1、计量经济学 计量经济学是一门从数量上研究物质资料的生产、交换、分配、消费等经济关系和经济活动规律及其应用的科学。 2、数据质量 数据满足明确或隐含需求程度的指标 3、相关分析 主要研究变量之间的相互关联程度,用相关系数表示。包括简单相关和多重相关(复相关)。 4、回归分析(Regression Analysis) 研究一个变量(因变量)对于一个或多个其他变量(解释变量)的数量依存关系。其目的在于根据已知的解释变量的数值来估计或预测因变量的总体平均值。 5.内生变量 指由模型系统内决定的变量,取值在系统内决定 6、面板数据 时间序列数据和截面数据的混合 7.异方差: 总体回归函数中的随机误差项满足同方差性,即它们都有相同的方差。如果这一假定不满足,则称线性回归模型存在异方差性。 8.自相关 自相关是在时间序列资料中按时间顺序排列的观测值之间的相关或在横截面资料中按空间顺序排列的观测值之间的相关 9.多重共线性 解释变量之间存在完全的线性关系或近似的线性关系。解释变量存在完全的线性关系叫完全多重共线;解释变量之间存在近似的线性关系叫不完全多重共线。 10.虚拟变量 虚拟变量:在建立模型时,有一些影响经济变量的因素无法定量描述 构造只取“0”或“1”的人工变量,通常称为虚拟变量,记为D 11.平稳序列 是指时间序列的统计规律不会随着时间的推移而发生变化。

12.伪回归 所谓“伪回归”,是指变量间本来不存在相依关系,但回归结果却得出存在相依关系的错误结论。 13.协整 所谓协整,是指多个非平稳变量的某种线性组合是平稳的 14.前定变量 所有的外生变量和滞后的内生变量。前定变量=外生变量+滞后内生变量+滞后外生变量 15.恰好识别 恰好识别:能够唯一地估计出结构参数值。 16.结构式模型 体现经济理论中经济变量之间的关系结构的联立方程模型,称为结构式模型17.过度识别 过度识别:结构参数的估计值具有多个确定值 18.自回归模型 自回归模型:指模型中的解释变量仅是X 的当期值与被解释变量Y 的若干期滞后值,它由于被解释变量的滞后期值对被解释变量现期做了回归,故叫做自回归模型。 利用前期若干时刻的随机变量的线性组合来描述以后某时刻随机变量的线性回归模型。 19.拟合优度2R:拟合优度检验:指检验模型对样本观测值的拟合程度 20.修正的拟合优度2R 二、.

计量经济学判断题 )

1. 总离差平方和可分解为回归平方和与残差平方和。( 对 ) 2. 整个多元回归模型在统计上是显着的意味着模型中任何一个单独的解释变量均是统计显着的。( 错 ) 3. 多重共线性只有在多元线性回归中才可能发生。( 对 ) 4. 通过作解释变量对时间的散点图可大致判断是否存在自相关。( 错 ) 5. 在计量回归中,如果估计量的方差有偏,则可推断模型应该存在异方差( 错 ) 6. 存在异方差时,可以用广义差分法来进行补救。( 错 ) 7. 当经典假设不满足时,普通最小二乘估计一定不是最优线性无偏估计量。( 错 ) 8. 判定系数检验中,回归平方和占的比重越大,判定系数也越大。( 对 ) 9. 可以作残差对某个解释变量的散点图来大致判断是否存在自相关。( 错 )做残差 ) n 5、经典线性回归模型(CLRM )中的干扰项不服从正态分布的,OLS 估计量将有偏的。错,,即使经典线性回归模型(CLRM )中的干扰项不服从正态分布的,OLS 估计量仍然是无偏的。 因为222)()?(βμββ=+=∑i i K E E ,该表达式成立与否与正态性无关。 1、在简单线性回归中可决系数2R 与斜率系数的t 检验的没有关系。错误,在简单线性回归 中,由于解释变量只有一个,当t 检验显示解释变量的影响显着时,必然会有该回归模型的可决系数大,拟合优度高。 2、异方差性、自相关性都是随机误差现象,但两者是有区别的。正确,异方差的出现总是与模型中某个解释变量的变化有关。自相关性是各回归模型的随机误差项之间具有相关关

系。3、通过虚拟变量将属性因素引入计量经济模型,引入虚拟变量的个数与模型有无截距项无关。错误,模型有截距项时,如果被考察的定性因素有m个相互排斥属性,则模型中引入m-1个虚拟变量,否则会陷入“虚拟变量陷阱”;模型无截距项时,若被考察的定性因素有m个相互排斥属性,可以引入m个虚拟变量,这时不会出现多重共线性。 4、满足阶条件的方程一定可以识别。错误,阶条件只是一个必要条件,即满足阶条件的的方程也可能是不可识别的。 5、库依克模型、自适应预期模型与局部调整模型的最终形式是不同的。错误,库依克模型、自适应预期模型与局部调整模型的最终形式是相同的,其最终形式都是一阶自回归模型。2、多重共线性问题是随机扰动项违背古典假定引起的。错误,应该是解释变量之间高度相关引起的. (3) 线性回归模型意味着因变量是自变量的线性函数。(错) (4) 在线性回归模型中,解释变量是原因,被解释变量是结果。(对) 1、虚拟变量的取值只能取0或1(对) 2、通过引入虚拟变量,可以对模型的参数变化进行检验(对) 1、简单线性回归模型与多元线性回归模型的基本假定是相同的。错 在多元线性回归模型里除了对随机误差项提出假定外,还对解释变量之间提 出无多重共线性的假定。 2、在模型中引入解释变量的多个滞后项容易产生多重共线性。对 在分布滞后模型里多引进解释变量的滞后项,由于变量的经济意义一样,只

相关文档
最新文档