约束线性回归参数极大似然估计的渐进性

约束线性回归参数极大似然估计的渐进性
约束线性回归参数极大似然估计的渐进性

多元线性回归模型的各种检验方法.doc

对多元线性回归模型的各种检验方法 对于形如 u X X X Y k k +++++=ββββΛΛ22110 (1) 的回归模型,我们可能需要对其实施如下的检验中的一种或几种检验: 一、 对单个总体参数的假设检验:t 检验 在这种检验中,我们需要对模型中的某个(总体)参数是否满足虚拟假设0 H :j j a =β,做出具有统计意义(即带有一定的置信度)的检验,其中j a 为某个给定的已知数。特别是,当j a =0时,称为参数的(狭义意义上的)显著性检验。如果拒绝0H ,说明解释变量j X 对 被解释变量Y 具有显著的线性影响,估计值j β?才敢使 用;反之,说明解释变量j X 对被解释变量Y 不具有显 著的线性影响,估计值j β?对我们就没有意义。具体检验 方法如下: (1) 给定虚拟假设 0H :j j a =β;

(2) 计算统计量 )?(?)?()(?j j j j j j Se a Se E t βββββ-=-= 的数值; 11?)?(++-==j j jj jj j C C Se 1T X)(X ,其中σβ (3) 在给定的显著水平α下(α不能大于1.0即 10%,也即我们不能在置信度小于90%以下的前提下做结论),查出双尾t (1--k n )分布的临界值2/αt ; (4) 如果出现 2/αt t >的情况,检验结论为拒绝 0H ;反之,无法拒绝0H 。 t 检验方法的关键是统计量 )?(?j j j Se t βββ-=必须服从已 知的t 分布函数。什么情况或条件下才会这样呢?这需要我们建立的模型满足如下的条件(或假定): (1) 随机抽样性。我们有一个含n 次观测的随机样(){}n i Y X X X i ik i i ,,2,1:,,,,21ΛΛ=。这保证了误差u 自身的随机性,即无自相关性,

SAS学习系列25. 非线性回归

25. 非线性回归 现实世界中严格的线性模型并不多见,它们或多或少都带有某种程度的近似;在不少情况下,非线性模型可能更加符合实际。 对变量间非线性相关问题的曲线拟合,处理的方法主要有: (1)首先确定非线性模型的函数类型,对于其中可线性化问题则通过变量变换将其线性化,从而归结为前面的多元线性回归问题来解决; (2)若实际问题的曲线类型不易确定时,由于任意曲线皆可由多项式来逼近,故常可用多项式回归来拟合曲线; (3)若变量间非线性关系式已知(多数未知),且难以用变量变换法将其线性化,则进行数值迭代的非线性回归分析。 (一)可变换为线性的非线性回归

在很多场合,可以对非线性模型进行线性化处理,尤其是可变换为线性的非线性回归,运用最小二乘法进行推断,对线性化后的线性模型,可以应用REG过程步进行计算。 例1 有实验数据如下: 试分别采用指数回归(y =ae bx)方法进行回归分析。 代码: data exam25_1; input x y; cards; 1.1 109.95 1.2 40.45 1.3 20.09 1.4 24.53 1.5 11.02 1.6 7.39 1.7 4.95 1.8 2.72 1.9 1.82 2 1.49 2.1 0.82 2.2 0.3 2.3 0.2 2.4 0.22 ; run; proc sgplot data = exam25_1; scatter x = x y = y; run; proc corr data = exam25_1; var x y; run;

data new1; set exam25_1; v = log(y); run; proc sgplot data = new1; scatter x = x y = v; title'变量代换后数据'; run; proc reg data = new1; var x v; model v = x; print cli; title'残差图'; plot residual. * predicted.; run; data new2; set exam25_1; y1 = 14530.28*exp(-4.73895*x); run; proc gplot data = new2; plot y*x=1 y1*x=2 /overlay; symbol v=dot i=none cv=red; symbol2i=sm color=blue; title'指数回归图'; 运行结果:

多元线性回归模型实验报告 计量经济学

实验报告 课程名称金融计量学 实验项目名称多元线性回归模型班级与班级代码 实验室名称(或课室) 专业 任课教师xxx 学号:xxx 姓名:xxx 实验日期:2012年5 月3日 广东商学院教务处制

姓名xxx 实验报告成绩 评语: 指导教师(签名) 年月日说明:指导教师评分后,实验报告交院(系)办公室保存

多元线性回归模型 一、实验目的 通过上机实验,使学生能够使用 Eviews 软件估计可化为线性回归模型的非线性模型,并对线性回归模型的参数线性约束条件进行检验。二、实验内容 (一)根据中国某年按行业分的全部制造业国有企业及规模以上制造业非国有企业的工业总产值Y,资产合计K及职工人数L进行回归分析。(二)掌握可化为线性多元非线性回归模型的估计和多元线性回归模型的线性约束条件的检验方法 (三)根据实验结果判断中国该年制造业总体的规模报酬状态如何?三、实验步骤 (一)收集数据 下表列示出来中国某年按行业分的全部制造业国有企业及规模以上制造业非国有企业的工业总产值Y,资产合计K及职工人数L。 序号工业总产值Y (亿元) 资产合计K (亿元) 职工人数L (万人)序号 工业总产 值Y(亿元) 资产合计K (亿元) 职工人数L (万人) 1 3722.7 3078.2 2 11 3 17 812.7 1118.81 43 2 1442.52 1684.4 3 67 18 1899.7 2052.16 61 3 1752.37 2742.77 8 4 19 3692.8 5 6113.11 240 4 1451.29 1973.82 27 20 4732.9 9228.2 5 222 5 5149.3 5917.01 327 21 2180.23 2866.65 80 6 2291.16 1758.7 7 120 22 2539.76 2545.63 96 7 1345.17 939.1 58 23 3046.95 4787.9 222 8 656.77 694.94 31 24 2192.63 3255.29 163 9 370.18 363.48 16 25 5364.83 8129.68 244 10 1590.36 2511.99 66 26 4834.68 5260.2 145 11 616.71 973.73 58 27 7549.58 7518.79 138 12 617.94 516.01 28 28 867.91 984.52 46 13 4429.19 3785.91 61 29 4611.39 18626.94 218 14 5749.02 8688.03 254 30 170.3 610.91 19 15 1781.37 2798.9 83 31 325.53 1523.19 45 16 1243.07 1808.44 33 表1

多元线性回归分析预测法

多元线性回归分析预测法 (重定向自多元线性回归预测法) 多元线性回归分析预测法(Multi factor line regression method,多元线性回归分析法) [编辑] 多元线性回归分析预测法概述 在市场的经济活动中,经常会遇到某一市场现象的发展和变化取决于几个影响因素的情况,也就是一个因变量和几个自变量有依存关系的情况。而且有时几个影响因素主次难以区分,或者有的因素虽属次要,但也不能略去其作用。例如,某一商品的销售量既与人口的增长变化有关,也与商品价格变化有关。这时采用一元回归分析预测法进行预测是难以奏效的,需要采用多元回归分析预测法。 多元回归分析预测法,是指通过对两上或两个以上的自变量与一个因变量的相关分析,建立预测模型进行预测的方法。当自变量与因变量之间存在线性关系时,称为多元线性回归分析。 [编辑] 多元线性回归的计算模型[1] 一元线性回归是一个主要影响因素作为自变量来解释因变量的变化,在现实问题研究中,因变量的变化往往受几个重要因素的影响,此时就需要用两个或两个以上的影响因素作为自变量来解释

因变量的变化,这就是多元回归亦称多重回归。当多个自变量与因变量之间是线性关系时,所进行的回归分析就是多元性回归。 设y为因变量,为自变量,并且自变量与因变量之间为线性关系时,则多元线性回归模型为: 其中,b0为常数项,为回归系数,b1为固定时,x1每增加一 个单位对y的效应,即x1对y的偏回归系数;同理b2为固定时,x2每增加一个单位对y的效应,即,x2对y的偏回归系数,等等。如果两个自变量x1,x2同一个因变量y呈线相关时,可用二元线性回归模型描述为: 其中,b0为常数项,为回归系数,b1为固定时,x2每增加一 个单位对y的效应,即x2对y的偏回归系数,等等。如果两个自变量x1,x2同一个因变量y呈线相关时,可用二元线性回归模型描述为: y = b0 + b1x1 + b2x2 + e 建立多元性回归模型时,为了保证回归模型具有优良的解释能力和预测效果,应首先注意自变量的选择,其准则是: (1)自变量对因变量必须有显著的影响,并呈密切的线性相关; (2)自变量与因变量之间的线性相关必须是真实的,而不是形式上的; (3)自变量之彰应具有一定的互斥性,即自变量之彰的相关程度不应高于自变量与因变量之因的相关程度; (4)自变量应具有完整的统计数据,其预测值容易确定。 多元性回归模型的参数估计,同一元线性回归方程一样,也是在要求误差平方和()为最小的前提下,用最小二乘法求解参数。以二线性回归模型为例,求解回归参数的标准方程组为 解此方程可求得b0,b1,b2的数值。亦可用下列矩阵法求得

中级计量经济学讲义_第六章带有线性约束的多元线性回归模型及其假设检验

第六章 带有线性约束的多元线性回归模型及其假设检验 在本章中,继续讨论第五章的模型,但新的模型中,参数β满足J 个线性约束集,R β=q ,矩阵R 有和β相一致的K 列和总共J 个约束的J 行,且R 是行满秩的,我们考虑不是过度约束的情况,因此,J <K 。 带有线性约束的参数的假设检验,我们可以用两种方法来处理。第一个方法,我们按照无约束条件求出一组参数估计后,然后我们对求出的这组参数是否满足假设所暗示的约束,进行检验,我们在本章的第一节中讨论。 第二个方法是我们把参数所满足的线性约束和模型一起考虑,求出参数的最小二乘解,尔后再作检验,后者就是参数带有约束的最小二乘估计方法,我们在本章的第二节中讨论。 第一节 线性约束的检验 从线性回归模型开始, εβ+=X y (1) 我们考虑具有如下形式的一组线性约束, J K JK J J K K K K q r r r q r r r q r r r =+++=+++=+++βββββββββ 22112 222212********* 这些可以用矩阵改写成一个方程 q R =β (2) 作为我们的假设条件0H 。 R 中每一行都是一个约束中的系数。矩阵R 有和β相一致的K 列和总共J 个约束的J 行,且R 是行满秩的。因此,J 一定要小于或等于K 。R 的各行必须是线性无关的,虽然J =K 的情况并不违反条件,但其唯一决定了β,这样的约束没有意义,我们不考虑这种情况。 给定最小二乘估计量b ,我们的兴趣集中于“差异”向量d=Rb -q 。d 精确等于0是不可能的事件(因为其概率是0),统计问题是d 对0的离差是否可归因于抽样误差或它是否是显著的。

经典线性回归模型

2 经典线性回归模型 §2.1 概念与记号 1.线性回归模型是用来描述一个特定变量y 与其它一些变量x 1,…,x p 之间的关系。 2. 称特定变量y 为因变量 (dependent variable )、 被解释变量 (explained variable )、 响应变量(response variable )、被预测变量(predicted variable )、回归子 (regressand )。 3.称与特定变量相关的其它一些变量x 1,…,x p 为自变量(independent variable )、 解释变量(explanatory variable )、控制变量(control variable )、预测变量 (predictor variable )、回归量(regressor )、协变量(covariate )。 4.假定我们观测到上述这些变量的n 组值:( ) ip i i x x y , , , 1 L (i=1,…,n)。称 这n 组值为样本(sample )或数据(data )。 §2.2 经典线性回归模型的假定 假定 2.1(线性性(linearity)) i ip p i i x x y e b b b + + + + = L 1 1 0 (i=1,…,n)。 (2.1) 称方程(2.1)为因变量y 对自变量x 1,…,x p 的线性回归方程(linear regression equation ),其中 ( ) p , k k , , 1 0 L = b 是待估的未知参数(unknown parameters ), ( ) n i i , , 1 L = e 是满足一定限制条件的无法观测的误差项(unobserved error term ) 。称自 变量的函数 ip p i x x b b b + + + L 1 1 0 为回归函数(regression function )或简称为回归 (regression )。称 0 b 为回归的截距(ntercept),称 ( ) p k k , , 1 L = b 为自变量的回归系数 (regression coefficients ) 。某个自变量的回归系数表示在其它条件保持不变的情况下,

多元线性回归预测模型论文

多元线性回归统计预测模型 摘要:本文以多元统计分析为理论基础,在对数据进行统计分析的基础上建立多元线性回归模型并对未知量作出预测,为相关决策提供依据和参考。重点介绍了模型中参数的估计和自变量的优化选择及简单应用举例。 关键词:统计学;线性回归;预测模型 一.引言 多元线性回归统计预测模型是以统计学为理论基础建立数学模型,研究一个随机变量Y与两个或两个以上一般变量X 1,X 2,…,Xp 之间相依关系,利用现有数据,统计并分析,研究问题的变化规律,建立多元线性回归的统计预测模型,来预测未来的变化情况。它不仅能解决一些随机的数学问题,而且还可以通过建立适当的随机模型进而解决一些确定的数学问题,为相关决策提供依据和参考。 目前统计学与其他学科的相互渗透为统计学的应用开辟新的领域。并被广泛的应用在各门学科上,从物理和社会科学到人文科学,甚至被用来工业、农业、商业及政府部门。而多元线性回归是多元统计分析中的一个重要方法,被应用于众多自然科学领域的研究中。多元线性回归分析作为一种较为科学的方法,可以在获得影响因素的前提下,将定性问题定量化,确定各因素对主体问题的具体影响程度。 二.多元线性回归的基本理论 多元线性回归是多元统计分析中的一个重要方法,被广泛应用于众多自然科学领域的研究中。多元线性回归分析的基本任务包括:根据因变量与多个自变量的实际观测值建立因变量对多个自变量的多元线性回归方程;检验、分析各个自变量对因自变量的综合线性影响的显著性;检验、分析各个自变量对因变量的单纯线性影响的显著性,选择仅对因变量有显著线性影响的自变量,建立最优多元线性回归方程;评定各个自变量对因变量影响的相对重要性以及测定最优多元线性回归方程的偏离度等。由于多数的多元非线性回归问题都可以化为多元线性回归问题,所以这里仅讨论多元线性回归。许多非线性回归和多项式回归都可以化为多元线性回归来解决,因而多元线性回归分析有着广泛的应用。 2.1 多元线性回归模型的一般形式 设随机变量y 与一般变量12,, ,p x x x 线性回归模型为 01122...p p y x x x ββββε=+++++ (2.1) 模型中Y为被解释变量(因变量),而12,,,p x x x 是p 个可以精确测量并可控制的一般变 量,称为解释变量(自变量)。p =1时,(2.1)式即为一元线性回归模型,p 大于2时,(2.1)

第七章 带有线性约束的多元线性回归模型及其假设检验(金融计量-浙大 蒋岳祥)

第七章 带有线性约束的多元线性回归模型及其假设检验 在本章中,继续讨论第五章的模型,但新的模型中,参数β满足J 个线性约束集,R β=q ,矩阵R 有和β相一致的K 列和总共J 个约束的J 行,且R 是行满秩的,我们考虑不是过度约束的情况,因此,J <K 。 带有线性约束的参数的假设检验,我们可以用两种方法来处理。第一个方法,我们按照无约束条件求出一组参数估计后,然后我们对求出的这组参数是否满足假设所暗示的约束,进行检验,我们在本章的第一节中讨论。 第二个方法是我们把参数所满足的线性约束和模型一起考虑,求出参数的最小二乘解,尔后再作检验,后者就是参数带有约束的最小二乘估计方法,我们在本章的第二节中讨论。 第一节 线性约束的检验 从线性回归模型开始, εβ+=X y (1) 我们考虑具有如下形式的一组线性约束, J K JK J J K K K K q r r r q r r r q r r r =+++=+++=+++βββββββββ 22112 22221211 1212111 这些可以用矩阵改写成一个方程 q R =β (2) 作为我们的假设条件0H 。 R 中每一行都是一个约束中的系数。矩阵R 有和β相一致的K 列和总共J 个约束的J 行,且R 是行满秩的。因此,J 一定要小于或等于K 。R 的各行必须是线性无关的,虽然J =K 的情况并不违反条件,但其唯一决定了β,这样的约束没有意义,我们不考虑这种情况。 给定最小二乘估计量b ,我们的兴趣集中于“差异”向量d=Rb -q 。d 精确等于0是不可能的事件(因为其概率是0),统计问题是d 对0的离差是否可归因于抽样误差或它是否是显著的。

SAS讲义 第三十四课非线性回归分析

第三十四课 非线性回归分析 现实世界中严格的线性模型并不多见,它们或多或少都带有某种程度的近似;在不少情况下,非线性模型可能更加符合实际。由于人们在传统上常把“非线性”视为畏途,非线性回归的应用在国内还不够普及。事实上,在计算机与统计软件十分发达的令天,非线性回归的基本统计分析已经与线性回归一样切实可行。在常见的软件包中(诸如SAS 、SPSS 等等),人们已经可以像线性回归一样,方便的对非线性回归进行统计分析。因此,在国内回归分析方法的应用中,已经到了“更上一层楼”,线性回归与非线性回归同时并重的时候。 对变量间非线性相关问题的曲线拟合,处理的方法主要有: ● 首先决定非线性模型的函数类型,对于其中可线性化问题则通过变量变换将其线 性化,从而归结为前面的多元线性回归问题来解决。 ● 若实际问题的曲线类型不易确定时,由于任意曲线皆可由多项式来逼近,故常可 用多项式回归来拟合曲线。 ● 若变量间非线性关系式已知(多数未知),且难以用变量变换法将其线性化,则进 行数值迭代的非线性回归分析。 一、 可变换成线性的非线性回归 在实际问题中一些非线性回归模型可通过变量变换的方法化为线性回归问题。例如,对非线性回归模型 ()t i t i t i t ix b ix a y εα+++=∑=2 1 0sin cos (34.1) 即可作变换 t t t t t t t t x x x x x x x x 2sin ,2cos ,sin ,cos 4321==== 将其化为多元线性回归模型。一般地,若非线性模型的表达式为 ()()()t m m t t t x g b x g b x g b b y ++++= 22110 (34.2) 则可作变量变换 ()()() t m m t t t t t x g x x g x x g x ===* 2*21*1,,, (34.3) 将其化为线性回归模型的表达式,从而用前面线性模型的方法来解决,其中(34.3)中的x t 也 可为自变量构成的向量。 这种变量变换法也适用于因变量和待定参数 b i 。如 ()[]1exp 2132211-++=t t t t t x x b x b x b a y (34.4) 时上式两边取对数得 ()1ln ln 2132211-+++=t t t t t x x b x b x b a y (34.5) 现作变换 1,ln ,ln 2130*-===t t t t t x x x a b y y (34.6) 则可得线性表达式

差分约束系统详解

差分约束系统 在一个差分约束系统(system of difference constraints)中,线性规划矩阵A的每一行包含一个1和一个-1,A的其他所有元素都为0。因此,由Ax≤b给出的约束条件是m个差分约束集合,其中包含n个未知量,对应的线性规划矩阵A为m行n列。每个约束条件为如下形式的简单线性不等式:xj-xi≤bk。其中1≤i,j≤n,1≤k≤m。 例如,考虑这样一个问题,寻找一个5维向量x=(xi)以满足: 这一问题等价于找出未知量xi,i=1,2,…,5,满足下列8个差分约束条件:x1-x2≤0 x1-x5≤-1 x2-x5≤1 x3-x1≤5 x4-x1≤4 x4-x3≤-1 x5-x3≤-3 x5-x4≤-3 该问题的一个解为x=(-5,-3,0,-1,-4),另一个解y=(0,2,5,4,1),这2个解是有联系的:y中的每个元素比x中相应的元素大5。

引理:设x=(x1,x2,…,xn)是差分约束系统Ax≤b的一个解,d为任意常数。则 x+d=(x1+d,x2+d,…,xn+d)也是该系统Ax≤b的一个解。 约束图 在一个差分约束系统Ax≤b中,m X n的线性规划矩阵A可被看做是n顶点,m条边的图的关联矩阵。对于i=1,2,…,n,图中的每一个顶点vi对应着n个未知量的一个xi。图中的每个有向边对应着关于两个未知量的m个不等式中的一个。 给定一个差分约束系统Ax≤b,相应的约束图是一个带权有向图G=(V,E),其中 V={v0,v1,…,vn},而且E={ (vi,vj) : xj-xi≤bk是一个约束}∪{ (v0,v1) , (v0,v2) , … , (v0,vn) }。引入附加顶点v0是为了保证其他每个顶点均从v0可达。因此,顶点集合V由对应于每个未知量xi的顶点vi和附加的顶点v0组成。边的集合E由对应于每个差分约束条件的边与对应于每个未知量xi的边(v0,vi)构成。如果xj-xi≤bk是一个差分约束,则边(vi,vj)的权 w(vi,vj)=bk(注意i和j不能颠倒),从v0出发的每条边的权值均为0。 定理:给定一差分约束系统Ax≤b,设G=(V,E)为其相应的约束图。如果G不包含负权回路,那么x=( d(v0,v1) , d(v0,v2) , … , d(v0,vn) )是此系统的一可行解,其中d(v0,vi)是约束图中v0到vi的最短路径(i=1,2,…,n)。如果G包含负权回路,那么此系统不存在可行解。 差分约束问题的求解 由上述定理可知,可以采用Bellman-Ford算法对差分约束问题求解。因为在约束图中,从源点v0到其他所有顶点间均存在边,因此约束图中任何负权回路均从v0可达。如果Bellman-Ford算法返回TRUE,则最短路径权给出了此系统的一个可行解;如果返回FALSE,则差分约束系统无可行解。 关于n个未知量m个约束条件的一个差分约束系统产生出一个具有n+1个顶点和n+m条边的约束图。因此采用Bellman-Ford算法,可以再O((n+1)(n+m))=O(n^2+nm)时间内将系

多元线性回归模型的检验

多元性回归模型与一元线性回归模型一样,在得到参数的最小二乘法的估计值之后,也需要进行必要的检验与评价,以决定模型是否可以应用。 1、拟合程度的测定。 与一元线性回归中可决系数r2相对应,多元线性回归中也有多重可决系数r2,它是在因变量的总变化中,由回归方程解释的变动(回归平方和)所占的比重,R2越大,回归方各对样本数据点拟合的程度越强,所有自变量与因变量的关系越密切。计算公式为: 其中, 2.估计标准误差 估计标准误差,即因变量y的实际值与回归方程求出的估计值之间的标准误差,估计标准误差越小,回归方程拟合程度越程。 其中,k为多元线性回归方程中的自变量的个数。 3.回归方程的显著性检验 回归方程的显著性检验,即检验整个回归方程的显著性,或者说评价所有自变量与因变量的线性关系是否密切。能常采用F检验,F统计量的计算公式为: 根据给定的显著水平a,自由度(k,n-k-1)查F分布表,得到相应的临界值Fa,若F > Fa,则回归方程具有显著意义,回归效果显著;F < Fa,则回归方程无显著意义,回归效果不显著。 4.回归系数的显著性检验 在一元线性回归中,回归系数显著性检验(t检验)与回归方程的显著性检验(F检验)是等价的,但在多元线性回归中,这个等价不成立。t检验是分别检验回归模型中各个回归系数是否具有显著性,以便使模型中只保留那些对因变量有显著影响的因素。检验时先计算统计量ti;然后根据给定的显著水平a,自由度n-k-1查t分布表,得临界值ta或ta / 2,t > t ? a或ta / 2,则回归系数bi与0有显著关异,反之,则与0无显著差异。统计量t 的计算公式为: 其中,Cij是多元线性回归方程中求解回归系数矩阵的逆矩阵(x'x) ?1的主对角线上的第j个元素。对二元线性回归而言,可用下列公式计算: 其中, 5.多重共线性判别 若某个回归系数的t检验通不过,可能是这个系数相对应的自变量对因变量的影平不显

线性系统的应用

线性系统的应用 在实施中看到一些线性方程的时候!这里讨论的问题提供一闪而过的两个领域中所提到的一章的介绍-网络和经济模式。随后有更多的线性代数的概念在我们处理。我们将许多其他应用程序检查的线性系统。 网络流量 当科学家,工程师,或经济学家通过网络学习一些数量的流动通过网络自然系统形成的线性方程组。城市规划者和交通工程师监控模式的交通流在网格的城市街道的野花。电气科学工程师计算出当前通过电路的流量。科学家分析生产商家从顾客的销售量和结余量的分布。对于许多网络来说,方程式的系统包含在成百甚至上千的变量和方程式中。 一个网络包括一套被称为交叉点或节点,有直线或弧度的叫分支,流量(速率)可以合理的显现出来。 网络流量最基本的假设是总的流量是流入和流出网络流量结合点的总和。举个例子,有30个单位的流量通过其他的分支。包含X1和X2变量的流量从其他分支流出。自从其他分支里的流量被保存后,我们必须有X1+X2=30这个等式。与之相似的方式,其他流量的交界处用一个线性方程描述。网络分析的问题是当部分可知的信息可知时,流量应从其他分支流出。 例1 这有一个交通流量图,一路的流量是在下午较早时

刻的典型,然后决定选择常规的网络模式。 解决方案我们写出方程式以便描述流量而后找出系统的常规解决方案。标签的街的交叉路口下车和位置流量的分支,就像图里描述的那样。设置流出的流量的总和。同时,进入网络的流量总和(500+300+100+400)等于从网络流出的流量和(300+X3+600)这里只是简单的令X3=400.综合这些等式用第一个等式重新排列,我们获得了随之而来的系统的方程式。 X1+X2=800 X2-X3+X4=300 X4+X5=500 X1+ X5=600 X3=400 减少相关的连续增广矩阵就可得到 X1+ X5=600 X2 -X5=200

第三章 多元线性回归分析1

第三章 多元线性回归分析 主要内容: ? 多元线性回归模型 ? 多元线性回归模型的参数估计 ? 多元线性回归模型的统计检验 ? 多元线性回归模型的预测 ? 案例 3.1 多元线性回归模型 一、多元线性回归模型 多元线性回归模型:表现在线性回归模型中的解释变量有多个。 一般表现形式: i ki k i i i u X X X Y +++++=ββββ 22110 i=1,2,…,n 其中:k 为解释变量的数目,j β称为回归参数(regression coefficient )。 ki k i i ki i i i X X X X X X Y E ββββ+???+++=2211021),,|( 经济解释:j β也被称为偏回归系数,表示在其他解释变量保持不变的情况下,j X 每变化1个单位时, Y 的均值E(Y)的变化; 或者说j β给出了j X 的单位变化对Y 均值的“直接”或“净”(不含其他变量)影响。 样本回归函数:用来估计总体回归函数 i =1,2…,n 其随机表示式: i e 称为残差或剩余项(residuals),可看成是总体回归函数中随机扰动项i u 的近似替代。 i ki ki i i i e X X X Y +++++=ββββ????22110 ki ki i i i X X X Y ββββ?????22110++++=

§3.2 多元线性回归模型的估计 一、普通最小二乘估计 对于随机抽取的n 组观测值 对样本回归函数: i=1,2…n 根据最小二乘原理,参数估计值应该是下列方程组的解 ∑∑∑===+???+++-=-==???????? ?????????=?? =?? =?? =?? n i ki k i i i n i n i i i i k X X X Y Y Y e Q Q Q Q Q 1 2 2211011 22 210))????(()?(0?0?0?0?ββββββββ其中 即 Y X X X '='β?)( 由于X X '满秩,故有 Y X X X ''=-1)(?β 随机误差项μ的方差σ的无偏估计 可以证明,随机误差项u 的方差的无偏估计量为 二、参数估计量的性质 在满足基本假设的情况下,其结构参数β的普通最小二乘估计、最大或然估计及矩估计仍具有:线性性、无偏性、有效性。 1、 线性 CY Y X X X =''=-1)(?β 其中,C =X X X ''-1 )( 为一仅与固定的X 有关的行向量 2、无偏性 3、有效性(最小方差性) 参数估计量β ?的方差-协方差矩阵 β μX X X βμX βX X X Y X X X β 11=''+=+''=''=---)()())()(())(()?(1E E E E 11 ?2 2 --'= --=∑k n k n e i e e σ Ki ki i i i X X X Y ββββ?????22110++++= k j n i X Y ji i ,2,1,0,,,2,1),,(==

有限元小教程:线性约束方程

线 性 约 束 方 程 By wild_field 1. 解释 线性约束方程即线性多点约束方程,为节点(或节点组)变量的线性组合。形如: 021=+???++R k u N A Q j u A P i u A (1) 其中节点变量P i u 表示节点P 在第i 个自由度方向上的位移。 2. 所需的参数(请参看(1)式) ⑴ 方程式中项的个数:N ; ⑵ 节点(或节点组):P ,Q ,…,R ;自由度:i ,j ,…,k ; ⑶ 系数: n A A A , (21) 例如: 010*******=+?u u u (2) 其参数为:N =3, P =5, i =3, 1A =1.0, Q =6, j =1, 2A =–1.0, R =1000, k =3, 3A =1.0。 3. 用法 ⑴ inp 文件用法为: 等式(2)在inp 文件中写为: *EQUATION 3 5, 3, 1.0, 6, 1, -1.0, 1000, 3, 1.0 写成通俗的格式为: *EQUATION N P, i, 1A , Q, j, 2A , … 这里的P 和Q 可为节点或节点组。如果P 为节点组,那么Q 可以为节点组,也可为节点;如果P 为单一的节点,那么Q 只能为单一的节点。当节点组相对应时,要注意节点间的对应关系要正确。

⑵ CAE 用法: Interaction 模块:Create Constraint :Equation 。 只能以节点组的形式应用。第一个组可以包含一个点或多个点,第二个组仅能包含一个点。 4. 一个常用的约束方程 021=?+???++Z m u R k u N A Q j u A P i u A ) (3) 方程(3)引入了点Z (比如上图的参考点),它与模型中任何一个单元都不相连,是一个“孤立”的点。Z m u )为Z 点在自由度m 方向上的位移,这个位移的值可随时间变化,并可以通过边界条件来施加。方程内的其它点(比如上图黄线框内的点)在其规定的自由度方向上的位移都会随着Z 点在自由度m 方向上位移的变化而变化。这种方法经常在Abaqus/Explicit 中应用。 5. 求得约束力 对于给定的约束方程,节点的约束力是与各自的系数成比例关系的。为求得约束力,可引入一个“孤立点”Z ,改写方程如下:

一元线性回归的参数估计

第五章回归分析 “回归”一词的由来 1889年,英国著名统计学家Francils Galton在研究父代与子代身高之间的关系时发现:身材较高的父母,他们的孩子也较高,但这些孩子的平均身高并没有他们父母的平均身高高;身材较矮的父母,他们的孩子也较矮,但这些孩子的平均身高却比他们父母的平均身高高。 Galton把这种后代的身高向中间值靠近的趋势称为“回归现象”。后来,人们把由一个变量的变化去推测另一个变量的变化的方法称为“回归方法”。 回归分析的基本概念 1. 函数关系和统计相关关系 在一个实际问题中会遇到多个变量,可将其区分为自变量和因变量. 自变量和因变量之间的关系又可分为两

类:函数关系和统计相关关系. 函数关系:自变量的取值确定后,因变量的值就完全确定. 如圆的半径与圆的面积就构成函数关系. 统计相关关系:自变量的取值确定后,因变量的值并不完全确定;通过大量的统计数据又可发现它们之间确实存在着某种关系,这时称自变量与因变量之间构成统计相关关系. 如 (1)商品定价x 与该商品的销售量Y ; (2)日期x 与某地的日平均气温 Y ; (3)父母身高),(y x 与儿子成年后的身高Z ; 上述自变量与相应因变量之间都构成统计相关关系. 2. 回归分析 回归分析(Regression Analysis ),就是一种研究自变量(是可控变量时)与因变量(随机变量)之间的统计相关

关系的统计方法. 从自变量和因变量的一组观测数据出发,寻找一个函数式,将变量之间的统计相关关系近似表达出来,这个能近似表达自变量与因变量之间关系的函数,称为回归函数. 3. 回归的分类 依照回归函数是线性的还是非线性的,分为线性回归(Linear Regression)和非线性回归(Nonlinear Regression);依照回归函数是一元函数还是多元函数,又可分为一元回归(Simple Regression)和多元回归(Multiple Regression). §5.1 一元线性回归中的 参数估计 一元线性回归的数学模型与主要问题 (1)一元回归的数学模型

SAS学习系列23. 多元线性回归

23. 多元线性回归 一、多元线性回归 1. 模型为 Y=β0+β1X1+…+ βN X N+ε 其中X1, …, X N是自变量,Y是因变量,β0, β1…, βN是待求的未知参数,ε是随机误差项(残差),若记 多元线性回归模型可写为矩阵形式: Y=Xβ+ε 通常要求:矩阵X的秩为k+1(保证不出现共线性), 且k

2. σ2的估计和T检验 选取σ2的估计量: 则 假如t值的绝对值相当大,就可以在适当选定的置信水平上否定原假设,参数的1-α置信区间可由下式得出: 其中tα/2为与α%显著水平有关的t分布临界值。 3. R2和F检验 若因变量不具有0平均值,则必须对R2做如下改进: 随着模型中增添新的变量,R2的值必定会增大,为了去掉这种增大的

干扰,还需要对R 2进行修正(校正拟合优度对自由度的依赖关系): 22/(1)1 11(1)/(1)1 ESS N k N R R TSS N N k ---=- =----- 做假设检验: H 0: β1=…=βN =0; H 1: β1…, βN 至少有一个≠0; 使用F 统计量做检验, 若F 值较大,则否定原假设。 二、PROC REG 过程步 基本语法: PROC REG data = 数据集; MODEL 因变量 = 自变量列表 ; < restrict 自变量的等式约束;> 说明:MODEL 语句用来指定因变量和自变量; restrict 语句示例:restrict a1+a2=1; 常用的输出可选项: STB ——输出标准化偏回归系数矩阵 CORRB ——输出参数估计矩阵 COLLINOINT ——对自变量进行共线性分析 P ——输出个体观测值、预测值及残差 (R/CLM/CLI 包含P )

线性系统

线性系统理论论文 论文题目:线性系统理论综述 —连续系统线性二次最优控制学院: 年级: 专业: 姓名: 学号: 指导教师:

目录 摘要 (3) 前言 (3) 第一章线性系统理论概述 (3) 1.1线性系统理论的研究对象 (4) 1.2 线性系统理论的主要任务 (4) 1.3 线性系统的主要学派 (5) 1.4 现代线性系统的主要特点 (5) 1.5 线性系统的发展 (6) 第二章连续系统线性二次最优控制 (6) 2.1最优控制问题 (6) 2.2最优控制的性能指标 (7) 2.3 最优控制问题的求解方法 (8) 2.4 线性二次型最优控制 (9) 2.5 连续系统线性二次型最优控制实例 (10) 2.6 小结 (13) 总结 (13) 参考文献 (13)

摘要 线性系统理论是现代控制理论中最基本、最重要也是最成熟的一个分支,是生产过程控制、信息处理、通信系统、网络系统等多方面的基础理论。本文对线性系统的历史背景、研究现状和发展趋势作了简单的综述。线性二次最优控制理论内容丰富、应用广泛,引起广泛地关注并取得了丰硕成果。最优控制问题就是在一切可能的控制方案中寻找一个控制系统的最优控制方案或最优控制规律,使系统能最优地达到预期的目标。本文基于连续系统线性二次最优控制,提出新的控制算法并结合实例进行了仿真验证。 关键字:线性系统;线性二次最优控制;控制系统;连续系统 前言 线性系统理主要阐述线性系统时域理论,给出了线性系统状态空间的概念、组成方法和基本性质,进而导出系统的状态空间描述。以状态空间法为主要工具研究多变量线性系统的理论[1]。随着计算机技术的发展,以线性系统为对象的计算方法和计算辅助设计问题也受到普遍的重视。与经典线性控制理论相比,现代线性系统主要特点是:研究对象一般是多变量线性系统,而经典线性理论则以单输入单输出系统为对象;除输入和输出变量外,还描述系统内部状态的变量;在分析和综合方面以时域方法为主而经典理论主要采用频域方法;使用更多数据工具。 随着航海、航天、导航和控制技术不断深入研究,系统的最优化问题已成为一个重要的问题。本文介绍了最优控制的基本原理,并给定了一个具体的连续线性二次型控制系统[4],利用MATLAB软件对其最优控制矩阵进行了求解,通过仿真实验,设计得到最优控制效果比较好,达到了设计的目的。 第一章线性系统理论概述 作为现代控制理论中最基本、最成熟的分支之一—线性系统理论,具有其基本的重要性。回顾线性系统几十年的发展历程可以看到,它的每一个进步几乎都

约束线性回归模型

实验三:滞后变量模型 (验证性实验) 一、实验名称和性质 二、实验目的 1、掌握滞后变量回归模型参数估计及检验方法。 三、实验的软硬件环境要求 硬件环境要求: 科学计算与经济分析实验室,计算机网络设备,需要连接Internet 使用的软件名称、版本号以及模块 带Windows操作系统以及EViews应用演示软件。 四、知识准备 前期要求掌握的知识: (1)理解分布滞后模型及其在实际经济问题中应用; 实验流程: 滞后模型设定→滞后模型的参数估计→格兰杰因果检验→结论 五、实验材料和原始数据 数据1:表5.1给出了中国电力行业基本建设投资X与发电量Y的相关资料,建立一个多项式分布滞后模型来考察两者的关系。 表5.1 :中国电力工业固定资产投资与发电量

资料来源:电力固定资产固定资产投资来自《中国电力统计年鉴》,发电量来自《中国统计年鉴》。 数据2:为了考察2006年中国居民收入与消费的关系,下表给出了中国名义支出法地区生产总值(GDP)、名义居民总消费(CONS)以及税收总额(TAX)、居民消费价格指数(CPI),并由这些数据整理出实际消费支出(Y)以及实际可支配收入(X) 表2.6.3 中国居民总量消费支出与收入资料 单位:亿元年份GDP CONS CPI TAX GDPC X Y 19783605.6 1759.1 46.21519.28 7802.5 6678.83806.7 19794092.6 2011.5 47.07537.828694.2 7551.64273.2 19804592.9 2331.2 50.62571.70 9073.7 7944.24605.5 19815008.8 2627.9 51.90629.899651.8 8438.05063.9 19825590.0 2902.9 52.95700.02 10557.3 9235.25482.4 19836216.2 3231.1 54.00775.5911510.8 10074.65983.2 19847362.7 3742.0 55.47947.35 13272.8 11565.06745.7 19859076.7 4687.4 60.652040.79 14966.8 11601.77729.2 198610508.5 5302.1 64.572090.37 16273.7 13036.58210.9 198712277.4 6126.1 69.302140.36 17716.3 14627.78840.0 198815388.6 7868.1 82.302390.47 18698.7 15794.09560.5 198917311.3 8812.6 97.002727.40 17847.4 15035.59085.5 199019347.8 9450.9 100.002821.86 19347.8 16525.99450.9 199122577.4 10730.6 103.422990.17 21830.9 18939.610375.8 199227565.2 13000.1 110.033296.91 25053.0 22056.511815.3 199336938.1 16412.1 126.204255.30 29269.1 25897.313004.7 199450217.4 21844.2 156.655126.88 32056.2 28783.413944.2 199563216.9 28369.7 183.416038.04 34467.5 31175.415467.9 199674163.6 33955.9 198.666909.82 37331.9 33853.717092.5 199781658.5 36921.5 204.218234.04 39988.5 35956.218080.6 199886531.6 39229.3 202.599262.80 42713.1 38140.919364.1 199991125.0 41920.4 199.7210682.58 45625.8 40277.020989.3 200098749.0 45854.6 200.5512581.51 49238.0 42964.622863.9 2001108972.4 49213.2 201.9415301.38 53962.5 46385.424370.1 2002120350.3 52571.3 200.3217636.45 60078.0 51274.026243.2 2003136398.8 56834.4 202.7320017.31 67282.2 57408.128035.0 2004160280.4 63833.5 210.6324165.68 76096.3 64623.130306.2 2005188692.1 71217.5 214.4228778.54 88002.1 74580.433214.4 2006221170.5 80120.5 217.6534809.72 101616.3 85623.136811.2

相关文档
最新文档