脂质体的研究现状及主要应用

脂质体的研究现状及主要应用
脂质体的研究现状及主要应用

脂质体及其医药应用

化学01 马高建2010012222 摘要:脂质体是一种天然脂类化合物悬浮在水中形成的具有双层封闭结构的囊泡,目前可由人工合成的磷脂化合物来制备。它作为一种高效的载体,近年来在医药、化妆品和基因工程领域等都有广泛应用,国内外在这方面进行了大量的研究,并取得了一些进展。本文将对脂质体的研究现状和其在医药方面的应用做一下概括,并对脂质体的发展前景做一下展望。

关键词:脂质体、制备、医药、应用

脂质体最初是1965年英国学者Banyhanm和Standish将磷脂分散在水中进行电镜观察时发现的。磷脂分散在水中自然形成多层囊泡,每层均为脂质双分子层,囊泡中央和各层之间被水隔开,双分子层厚度约4 nm,后来将这种具有类似生物膜结构的双分子小囊泡称为脂质体,又称人工膜。

1988年,第一个脂质体包裹的药物在美国进行临床试验,现在用脂质体包裹的抗癌药、新疫苗、其他各种药品、化妆品、农药等也开始上市。

我国的脂质体研究始于上世纪70年代,经过近30年的研究,我国在脂质体的研究和应用方面取得了可喜的成果。目前我国已有多个以脂质体作载体的新药剂型进入临床验证阶段。

当前脂质体的医药应用研究主要集中在模拟膜的研究、药品的可控释放和体内的靶向给药,此外还有如何在体外培养中将基因和其他物质向细胞内传递。由于脂质体具有生物膜的特性和功能,它作为药物载体的研究已有多种,主要用于治疗癌症的药物,它可将包封的活性物质直接运输到所选择的细胞上,故有“生物导弹”之称。

1 脂质体及其分类

脂质体(或称类脂小球、液晶微囊),是一种类似微型胶囊的新剂型,是将药物包封于类脂质双分子层形成的薄膜中间所制成的超微型球状载体剂型,其内部为水相的闭合囊泡。由于其结构类似生物膜,故又称人工生物膜。脂质体主要有双分子层组成,磷脂(卵磷脂、脑磷脂、豆磷脂)和胆固醇是形成双分子层的基础物质,再加入其他附加剂制备而成。

1.1 结构

脂质体可以是单层的封闭双层结构,也可以是多层的封闭双层结构。在显微镜下,脂质体的外形除了常见的球形、橄榄形外,还有长管状结构,直径可以从几百A到零点几毫米(mm),而且各种大小和形状的结构可以共存。

1.2 性质

1.2.1 相变温度T c在加热情况下,脂质体的磷脂分子两条碳氢链从有序的凝胶

排列变为无序的类流动状态,对于生物膜模拟这一点是非常重要的。低于T c时,磷脂的碳氢链主要处于全反式构象,为“固体的”。高于T c时,碳氢链的链运动和交叉构象增加,为“流动的”。

1.2.2 稳定性主要包括化学稳定性,指磷脂的水解,不饱和脂肪酸和使用的胆甾

醇被氧化;大小的恒定性,由于聚集和融合使脂质体的大小发生变化;囊泡结构的保持;被包容物质的保存;生物体液对脂质体的完整性和渗透性的影响。

1.2.3 渗透性脂质体的渗透性是指它对水、离子、非电解质等的渗透能力,取决

于脂质体的化学组成,T c和渗透物质的种类。脂质体的渗透性对于作药品携带剂和靶向给药很重要。

1.3 分类

1.3.1 脂质体根据结构不同,可以分为单室脂质体(球径≤25 μm)、多室脂质体

(球径≤100 μm)、大孔径脂质体(球径约为0.13±0.06 μm,单层状)。

1.3.2 脂质体按性能可分为一般脂质体、热敏脂质体、磁性脂质体、微波敏脂质

体、声振波敏脂质体、光敏脂质体、pH敏感脂质体、隐形脂质体、目标

导向脂质体、阳离子脂质体等制剂。

1.4 作用机制

(1)吸附是脂质体作用的开始,有温度、电荷依赖性,使脂质体吸附在培养细胞表面。脂交换过程为脂质体与细胞先是吸附,然后在细胞表面蛋白

质的介导下,特异交换脂类的极性顶部基团或非特异性的交换酰基链进

入细胞;

(2)内吞是脂质体主要作用机制,是非渗透载体穿过细胞最普遍形式;(3)融合脂质体膜和细胞膜成分相似可通过融合作用载药入细胞内。

2 脂质体的制备

很多年前,人们在研究各种生物膜的过程中就发现,膜脂类的两亲分子都能在人为条件下形成球形的脂泡,即脂质体,如将磷脂酰胆碱悬浮于水介质中,通过声波作用即可得到大小均匀的闭合泡分散体系,这就是早起获得的脂质体。到目前为止,在脂质体制备方面已研究出多种方法,比较常用的有以下几种:逆向蒸发法、类脂薄膜水化法、冻融法、冻干再水化法、钙诱导融合法、乙醇注入法、超声波法和表面活性剂增溶法等。

脂质体的制备方法可分为三大类:(1)物理分散法;(2)两相分散法;(3)表面活性剂增溶法。

2.1 物理分散法

物理分散法的基本原理是将类脂材料干燥成薄膜,然后加入水溶性介质分

散、膨胀、水合(即以手摇法为基础),然后再进一步处理。这些方法的优点是制作简单,工艺不复杂,但包覆率都较低。

2.1.1 薄膜法类脂材料溶解在有机溶剂中,然后在旋转蒸发仪上真空蒸除溶剂,

加入缓冲液,再加些小玻璃球以帮助分散,这样就形成了一个乳白色的分散液。

2.1.2 非手摇法在类脂膜形成后,首先将湿的氮气流通过薄膜15分钟,然后再

加水膨胀、水合并慢慢搅拌形成脂质体。此法可提高其包覆率。

2.1.3 超声波法超声波法可分为两种:水浴超声波和探针超声波。探针超声波一

般是将探针进入到分散液中,它只花几分钟就能完成。现在更常用的是水浴超声波,它的优点是免除了可能的金属污染,重复性较好,但较为费时,均匀性也不是很好。

2.1.4 法兰白加压法此法是用非常高的压力将大的类脂球通过一个膜,将MLV

经过1400大气压的法兰西压力筒一次,约60%左右的颗粒直径达25~50 nm,而通过四次后,约94%的脂质体直径达到了31.5~52.5 nm。

2.1.5 微乳化法利用高压留经过精确规限的细微通道,流体立即被加速至极高速

度,并在特定的专利反应室内产生强大的剪切。冲击及空化作用,形成预期的精细密集、极为均一的脂质体。此法重复性好,能大规模生产;颗粒均匀,稳定性好;包覆率高。

2.1.6 预脂质体法此法是通过减少水的量增加干燥类脂的表面积而发展起来的。

将类脂干燥到一个多孔的支持体上,然后在搅拌下加入少量水以润湿被粉末包覆的干燥类脂,当支持体溶解后,就形成了一个MLV悬浮液。一般

这个过程是一点一点加水,带水蒸发后再加剩余的水,最后形成一个干燥的类脂(预脂质体)。此法很有商业价值,因为在做成后,可将其密封起

来,以避免氧化后变质,在用之前再加水溶解或加载活性成分。

2.2 两相分散法

这个方法的基本原理是将类脂溶于无机溶剂中,然后这个油相与水相接触,同时胶黏剂蒸发,以变成脂质体。

2.2.1 乙醇注入法将类脂的乙醇溶液通过一个细的针头迅速注入到水溶性介质

中,形成脂质体,它的直径约25 nm。其主要缺点是包覆率低,溶剂乙醇很难除去。

2.2.2 乙醚注入法将类脂的乙醚溶液通过一个细的针头慢慢注入到升温的水溶

性介质中,形成脂质体。此法的优点是方法较温和、包覆率高且被氧化的可能性小,但是速度慢,不适合大量制备。

2.2.3 逆向蒸发法此法是先将类脂溶于乙醚中,然后加水溶性介质以形成油包水

乳液,真空下蒸发溶剂,得到了脂质体胶。该法包覆率高,一般在40%左右可形成大的单层球,颗粒也较均匀、稳定。

2.3 表面活性剂增溶法

为防止表面活性剂、类脂和蛋白质混合胶束的形成,直到膜悬浮液澄清时表面活性剂才可加入。当表面活性剂浓度降低后,原来的类脂和蛋白质就形成了空心球的结构。

2.3.1 熔融-匀质法这是目前制备SLN最经典的方法,将熔融的三月硅酸甘油酯、

大豆磷脂和Poloxamer 188在高于70 ℃下高压匀质,冷却后得到。

2.3.2 冷却-匀质法将药物与脂质混合熔融,冷却后与液氮或干冰一起研磨至50

pm以下,然后和表面活性剂溶液在低于脂质熔点5~10 ℃下高压匀质。2.3.3 微乳法此法不适用有机溶剂,在熔融的硬脂酸、二十二烷酸、硬脂酸枸橼

酸甘油酯中分别加入磷脂、辅助乳化剂(去氧牛黄胆酸)和热水,得到澄清的微乳。再将热微乳倒入25倍体积的冰水中迅速冷却,最后超过滤出

去辅助乳化剂,可以得到小于90 nm的超细硬脂酸甘油酯(SLN)。在通常情况下,粒径随乳化剂用量增加而降低。

3 脂质体的检测

3.1 颗粒度分布的测定

取少量脂质体,用去离子水稀释200倍,以动态激光散射粒度测定仪测定粒度及其分布,每个样品重复运行5次取其平均值。

3.2 脂质体的显微形态结构鉴定

3.2.1 负染法取脂质体液少许以1%磷钨酸染色后,涂碳的铜网在蜡片上制样,

用电子显微镜以2万倍观察并拍片。

3.2.2 冰冻蚀刻法取脂质体少许,在-150 ℃冷冻后转入-120 ℃冷冻台上,抽真

空,用冷刀断裂,再将其转入-100 ℃真空度为1.333×10-6 KPa的柱中刻蚀,以碳—铂复型,清洗后捞至铜网上,以2万倍电镜拍片,均为脂双层的冻裂光滑之表面蚀刻迹象。

3.3 包封率的测定

用超速离心法将脂质体分为两部分,然后分别测定离心上清液和沉淀的紫外吸收,各以空白脂质体作为对照,按下式计算包封率:

包封率(%)=离心沉淀的A265/(离心沉淀A265+离心上清A265)×100%

4 脂质体的医药应用

4.1 药物载体

由于脂质体形成时,各片层之间含有水相,水溶性药物可包裹在水相内,脂

溶性药物则嵌合于脂质双分子层中。根据脂质体的这一结构特点,将一些毒副作用大,稳定性差的药物制成脂质体,可达到降低毒性,增加药效的作用。脂质体在水相和脂相均能适应,与细胞亲和力强,可增加药物对细胞膜的通透性并可改变药物的动力学性质和组织分布。脂质体种类繁多,组成和大小不同,表面电荷也不同,对分子又有渗透性,靶向给药就是将药品通过鞋带系统理想的绕过身体正常部位,靶向体内需要治疗的患病区。如果将药物分子包结在脂质体中,外面再接上免疫蛋白等抗体,就有可能导向抗原实现靶向给药。

4.1.1 抗肿瘤药物的载体

脂质体作为抗肿瘤药物载体具有增加与肿瘤细胞的亲和力、克服耐药性、增加药物被癌细胞的摄入量、降低药物剂量、提高疗效、降低毒副作用的特点。有与肿瘤细胞中含有比正常细胞较高浓度的磷酸酶及酰胺酶,因此如将抗药物包制成脂质体,不仅由于酶解使药物容易释出,而且亦可促使药物在肿瘤细胞部位特异的蓄积。由于脂质体或已吞噬载有脂质体药物的巨噬细胞不断释放药物,从而延长了药物在血液中保持有效治疗作用浓度的时间。

4.1.2 抗寄生虫药物的载体

由于脂质体的天然靶向性,静脉注射后,可迅速被网状内皮细胞所摄食,利用这一特点可以用含药物脂质体治疗内皮系统疾病如利什曼病和疟疾等疾病。4.1.3 抗菌药物的载体

利用脂质体与生物细胞膜亲和力强的特性,将抗生素包裹在脂质体内可提高抗菌效果。结合是一种常见疾病,结核杆菌主要寄生在正常细胞中,有一定耐药性,若将抗结核药物包入脂质体中,脂质体可将药物带入细胞内,杀死结核菌疗效很好。

4.1.4 激素类药物的载体

抗甾醇类激素包入脂质体后具有很大的优越性,首先浓集于炎症部位便于细胞吞噬,其次被包的离散药物与血浆蛋白作用,一旦到达炎症部位,就可以内吞融合释放药物在较低剂量下发挥疗效。

脂质体作为药物载体,进入人体后主要被网状内皮系统吞噬,从而激活免疫功能,并改变被包封药物的体内分布,使药物主要在肝、脾、肺和骨髓等组织器官中积蓄,从而提高药物的生物利用度,减少药物的治疗剂量和降低药物的毒性,减轻变态反应和免疫反应,延缓释放,降低体内消除速度,改变药物在体内的分布,并能靶向性释药等。

4.2 包结药物

用脂质体包结对人体有毒的抗癌药。可使达到治疗所需的药量减少一半。用可以引起疾病的微生物或抗原的某一部分填充脂质体,可以制备新的疫苗,并可

减少抗原的用量。

4.2.1 酶载体

对酶系统疾病哦治疗脂质体的天然靶向性使包封酶的脂质体主要被肝摄取,脂质体是治疗酶原疾病的最好载体。

4.2.2 解毒剂的载体

某些重金属如:铅、铬等过量进入体内能引起中毒,某些螯合剂如EDTA或DTPA可溶解金属,但由于这些螯合剂不能通过细胞膜而影响了他们的体内效果脂质体为螯合物转运载体,可有效除去细胞积累的重金属。

4.2.3 作为免疫激活剂

使用游离的巨噬细胞活化因子或合成细胞壁酰基二肽直接注射入机体,巨噬细胞很少被活化。然而将这些药物包封成脂质体后注入机体,可使巨噬细胞的摄取明显能加,并能有效地活化巨噬细胞,抑制肿瘤的生长和转移。

利用脂质体包结药物可实现可控释放并达到长效的效果,目前此类药已有商品上市。如用类似洋葱状的脂质体包结杀菌膏,可保持药效长达几个月。将医治干眼病的药物包结在脂质体里,利用脂质体的黏附作用,逐渐释放眼药,可减少用药次数,还有用来治疗男性秃顶的药物等。

4.3 脂质体作为基因的载体

基因工程是将某种有用的外源性基因(如胰岛素基因、干扰素基因等),通过载体DNA的连接,转运进另一生物体(通常是生长繁殖快的细菌或链霉菌)体内,是生物体出现新的性状,即能产生胰岛素、干扰素之类有用的蛋白质。

目前常用的载体是细菌的质粒、噬菌体等。近年来在对脂质体大量研究的基础上,逐步将脂质体应用于基因工程技术方面。利用脂质体性质与细胞膜的相似性,把基因DNA溶在能维持活性的营养液内,进一步制成脂质体,保护基因免受DNA酶的降解。当这种内藏基因的脂质体与受体细胞的原生质体混合作用时,二者发生融合,基因DNA随即进入原生质体中,再生后形成细胞。

此外,脂质体还可作为病毒核苷酸等的载体,将脊髓灰质炎病毒RNA转运至Hela细胞。将控制兔珠蛋白合成的mRNA引入小鼠细胞,以改变遗传性。

脂质体技术虽不属于经典的基因工程所使用哦分子载体的范围,但在目前生物性载体贫乏之际,作为开拓的新途径,特别是解决真核细胞基因转化时,仍是一种行之有效的手段。

4.4 脂质体用于免疫诊断

具有荧光性的物质或酶活性物质包裹于脂质体中,再在脂质体上连接特异性抗体,当脂质体上抗体和特异性抗原结合后,脂质体破裂,释放出荧光素,测其荧光强度,即可求出抗原含量。

该法可用于定性或定量分析,操作快速而简便,已用该方法进行了一些病毒如梅毒、乙型肝炎的诊断以及免疫球蛋白。激素等药物的检测。

5 脂质体在其他方面的应用

5.1 脂质体在日用化妆品方面的应用

脂质体的发现和应用不仅给医药制剂工业注入了新的活力,在美容化妆品行业中亦对化妆品向高档次、高技术发展起了巨大的推动作用。国内外对脂质体应用领域的开拓、制备方法的改进以及分离富集方法的研究正方兴未艾。

磷脂具有较强的表面活性和胶体性质,它又是所有生物细胞的重要成分之一,在机体细胞代谢和细胞膜渗透性调节方面起着重要作用。因此,磷脂对人体皮肤有着良好的保湿性、具抗氧性、抗静电、乳化、分散、润湿、渗透。促湿、调理、软化、润肤、稳定剂型和柔发等多种功能,并能消除皮肤色素沉着,减少和去除老年斑,延缓皮肤衰老,还可促进毛发生长金额减少白发。由此可见,磷脂是一种十分理想的天然优质化妆品原料。

5.2 模拟生物膜

生物膜是生命体中最基本的组织单元。生物膜上大量的酶,是生化反应的重要场所。生物膜有选择性的影响两侧的持续有向的传质,换能过程并具有信息传递,代谢调控和识别细胞或分子等功能。由于天然膜结构的复杂性和不稳定性给生物膜的研究带来了极大的困难,因此脂质体模拟生物膜的研究备受人们重视。通过研究脂质体与天然生物膜的相似性,模拟生物膜的某些功能和特性,提供与天然膜相似的微环境,就有可能利用脂质体排列有序的双分子体系像生物膜一样为一些酶提供反应场所,促使一些酶促反应的发生。这对于进一步深入研究人体内的生化反应,抵抗疾病,延缓衰老具有非常重要的意义。

5.3 脂质体在中药研究中的应用

目前国内对脂质体中药研究,大多是关于化学药物的研究。有关中药单体或复方的研究还不多。有人采用熔融法制备了双参脂质体口服液,在减少主药用药剂量的情况下,提高了抑瘤作用,而且避免了静脉注射带来的静脉炎症等副作用,这是国内外首次关于中药复方脂质体的报导;有用超声波法制备黄芩脂质体;有人研究制备的黄芪多糖脂质体比黄芪多糖普通制剂和空白脂质体具有更加显著

的免疫增强效果等。

6 存在的问题

脂质体药物研究存在一些问题,如未充分了解脂质体体内分布和清除的机制,进入体内后由于机体的作用会使其破裂,包封药物快速渗漏;体内一些组织对脂质体进行识别、吸收,导致脂质体生物学不稳定。虽然近年来很多学者对脂质体膜进行表面修饰,一定程度提高脂质体体外稳定性。同时脂质体的靶向性还

较低,不能准确的把药物携带到病灶部位,这些问题都有待进一步研究解决。

7 展望

世界脂质体药品的销售额以每年60%的增长速度发展,2003年的销售额已达到30亿美元。巨大的商业化成果,使以脂质体为基础的医药品的研究和开发已经成为医药强国发展的重点。

由于脂质体的特殊特点越来越受到科学家的关注,脂质体作为基因工程载体为遗传工程提供了新的方法和途径。较质粒和病毒载体有许多独特之处,如构建容易,所携带材料广泛,作用对象几乎没有限制。用脂质体运载DNA至动植物细胞均较用裸露DNA直接转化效率高。脂质体的应用研究是当前十分活跃的领域,尤其是通过脂质体实现靶向给药,包结药物以及模拟生物膜,有可能使人类对于癌症和艾滋病的治疗取得突破性的进展,使我们对于人体内生化反应、生理过程有更深刻的认识,为人类的健康做出巨大贡献。

参考文献:

[1] 谢红兵,何宗卫,王梅. 脂质体及其在中药制剂中的应用研究进展. 海峡药业. 2009,21(3).

[2] 程永宝. 脂质体在医药及遗传工程方面的应用.

[3] 徐景才,张玉满,王艳朵. 脂质体在中药研究中的应用. 鲁南制药股份有限公司.中图分类号:TQ460 1文献标识码:B文章编号:1672-7738(2004)09-0040-02

[4] 谷贵文,刘兵. 脂质体及其医药应用. 黑龙江药业.1997,10(4).

[5] 汪多仁. 卵磷脂脂质体开发与应用进展. 科技与开发.

[6] 赵小凌,刘济湘,柴铁军,丁友真. 脂质体的制备、检测及其在化妆品中的应用研究. 1998,10(5).

[7] 赵春海,刘健. 脂质体发展及应用. 酿酒. 2006,33(1).

[8] Docter Jean Pierre Arnaud . 前脂质体技术在食品原料包埋的应用. 加工技艺.

[9] 于杰,叶超,李臣贵,陈蓉,胡育筑. 量子点脂质体技术的应用进展. 中国工业大学学报. 2011,42(4).

[10] 吴黎文,聂玲. 中药脂质体靶向给药的研究进展. Overview . 2012(2).

[11] 姜同英,莫凤奎,陈闯. 磷脂聚合物在医药学中的应用. 沈阳药科大学学报. 2003,20(4).

[12] 孙燕. 靶向制剂的研究现状与发展趋势. 中国实用医学. 2011,6(4).

[13] A. YEKTA OZER . APPLICATIONS OF LIGHT AND ELECTRON MICROSCOPIC TECHNIQUES IN LIPOSOME RESEARCH . M.R. Mozafari (ed.), Nanomaterials and Nanosystems for Biomedical Applications, 145-153,2007 Springer.

[14] O.A.Rozenberg,V. Yu.Bekreneva,L.V.Loshakova,S.P.Rezvaya,

E.F.Davidenkovn,K.P.Lhanson . SPECIFICITY OF LIPOSOME UPTAKE FROM LIPIDS OF TARGET CELLS . UDC 615,451,234,033,018,26.

[15] M. REZA MOZAFARI ,KIANOUSH KHOSRA VI-DARANI . AN OVERVIEW OF LIPOSOME-DERIVED NANOCARRIER TECHNOLOGIES . M.R. Mozafari (ed.), Nanomaterials and Nanosystems for Biomedical Applications, 113–123. 2007 Springer.

脂质体与当前国内外脂质体研究进展

摘要 脂质体作为药物载体具有很多优点, 但是其主动靶向性和稳定性较差, 为了克服上述缺点,近年来国内外研制出许多新型脂质体。通过检索近 20 年来国内外有关新型脂质体的相关文献, 对其进行综合分析和总结,提出脂质体在制剂中应用研究中存在的问题与建议,对新型脂质体如长循环脂质体、pH敏感脂质体、温度敏感脂质体、前体脂质体、磁性脂质体、免疫脂质体、膜融合脂质体、柔性脂质体等的研究及应用做一综述, 并展望了新型脂质体的发展前景。脂质体在制剂中应用是新剂型和新技术的现代化重要标志,也是国际化的需要,作为一种新型药物载体,研制出稳定的脂质体是脂质体作为药物载体走向实用的前提,因此具有十分重要的意义。 关键词:脂质体,药物载体,临床研究,综述

Abstract Liposome as drug delivery system has many advantages, but its less active targeting and stability, in order to overcome these shortcomings, both at home and abroad in recent years we have developed many novel liposome. By retrieved near 20 years to both at home and abroad about new fat mass body of related literature, on its for integrated analysis and summary, made fat mass body in preparations in the application research in the exists of problem and recommendations, on new fat mass body as long cycle fat mass body, and pH sensitive fat mass body, and temperature sensitive fat mass body, and Qian body fat mass body, and magnetic fat mass body, and immune fat mass body, and film fusion fat mass body, and flexible fat mass body, of research and the application do a summary of, and prospect has new fat mass body of development prospects. Application in liposome preparation are important signs of modernization of new dosage forms and technologies, as well as international needs, as a novel drug delivery system, developed stable liposomes is towards practical premise of liposome as drug carriers, it has a very important significance. Keywords:Liposome ,Drug carrier ,Clinical research ,Overview

pH敏感型脂质体的研究进展

pH敏感型脂质体的研究进展 10072855 王剑磊高材075 摘要:本文对脂质体,着重对pH敏感型脂质体以及pH敏感型类脂组的系统组成作了一个较简单的介绍,并阐述了临界pH的影响因素及其应用。 关键词:pH敏感型脂质体、pH敏感型类脂组成的系统、临界pH的影响因素 脂质体(Liposome)是利用磷脂双分子层膜所形成的囊泡包裹药物分子而形成的制剂。由于生物体质膜的基本结构也是磷脂双分子层膜,脂质体具有与生物体细胞相类似的结构,因此有很好的生物相容性。脂质体进入人体内部之后会作为一个“入侵者”而启动人体的免疫机制,被网状内皮系统吞噬,从而在肝、脾、肺和骨髓等组织中靶向性地富集。这就是脂质体的被动靶向性。脂质体主要成分是磷脂和胆固醇,其类似细胞膜的微球体。20世纪年代末Rahman等人首先将脂质体作为药物载体应用。70年代初用脂质体作为药物载体包埋淀粉葡萄糖甘酶治疗糖原沉积病首次获得成功。脂质体作为药物载体具有使药物靶向网状内皮系统、延长药效、降低药物毒性、提高疗效、避免耐受性、改变给药途径等优点,但脂质体作为药物载体仍存在对有些疾病的靶向特征不理想、体内稳定性和贮存稳定性欠佳等缺点,因而限制了脂质体的临床应用和工业化生产。近年来人们逐渐研制出长循环脂质体、前体脂质体、聚合膜脂质体等新犁脂质体以提高脂质体的稳定性;设计开发了温度敏感脂质体、pH敏感脂质体、免疫脂质体、磁性脂质体等新型脂质体以提高脂质体的靶向性。本文将着重对pH敏感型脂质体的研究进展做一综述。 1.pH敏感型脂质体(pH—sensitive Liposomes ) pH敏感型脂质体是指在低pH时脂肪酯羧基质子化而引起六角相形成,导致膜融合而达到细胞内靶向和控制药物释放的功能性脂质体,是用含有pH敏感基团的脂质制备的,可在一定程度上避免溶酶体降解并增加包封物摄取量和稳定性,有效地将包封物转运到胞浆。基于肿瘤间质液pH比正常组织低,应用pH敏感型脂质体载药能获得较非pH敏感型脂质体更好的转移效果。此外,PH敏脂质体在基因治疗中也得到了应用。Dzau VJ等利用病毒细胞融合脂质体的特点,将日本血细胞凝集病毒( HVJ )与脱氧寡核苷酸或质粒DNA脂质体复合,能诱导DNA直接进入细胞浆。pH敏感型脂质体的开发为大分子药物人工基因片段的胞内投递提供了手段。随着脂质体生产工艺研究的深入和不断完善,pH敏脂质体将成为临床治疗中的一种重要手段。pH敏感型脂质体在酸性环境中不稳定,而在细胞内吞过程中,在核内体始降低,所以设计合适的pH敏感型可以使其到达溶酶体前将内容物释放中,从而保证药物的活性。此外,炎染区域,某些肿瘤组织或局部缺血时异常酸化现象,所以在pH7 .4 ~6 .5范围内的pH敏感型脂质体对于药物的传递释很大的临床应用价值。 2.pH敏感型类脂组成的系统

脂质体的研究与应用

脂质体的研究与应用 摘要:脂质体是某些细胞质中的天然脂质小体有关脂质体的研究进展进行了检索、分析、整理和归纳,综述了脂质体的分类、制备方法及研究进展。 关键字:主动载药;被动载药;药物载体;前体脂质体;靶向给药脂质体(Liposomes)是由磷脂胆固醇等为膜材包合而成。磷脂分散在水中时能形成多层微囊,且每层均为脂质双分子层,各层之间被水相隔开,这种微囊就是脂质体。脂质体可分为单室脂质体、多室脂质体,含有表面活性剂的脂质体。按性能脂质体可分为一般质体(包括上述单室脂质体、多室脂质体和多相脂质体等)特殊性能脂质体、热敏脂质体、PH敏感脂质体、超声波敏感脂质体、光敏脂质体和磁性脂质体等。按电荷性,脂质体可分为中性脂质体、负电性脂质体、正电性脂质体。 脂质体作为药物载体在恶性肿瘤的靶向给药治疗方面极具潜力。为克服脂质体作为载体的靶向分布不理想、稳定性较差的缺点,近年来开发了一些新型脂质体,如温度敏感型、PL敏感型、免疫、聚合膜脂质体。前体脂质体概念的提出和研究,提供了克服脂质体不稳定的较好思路。 目前,制备脂质体的方法较多,常用的有薄膜法、反相蒸发法、溶剂注入法和复乳法等,这些方法一般称为被动载药法,而pH梯度法,硫酸铵梯度法一般被称为主动载药法。 1被动载药法 脂质体常用制备方法主要有薄膜分散法、反相蒸发法、注入法、超声波分散等。陈建明等[1]在制备含药脂质体时,首先将药物溶于水相或有机相中,然后按适宜的方法制备含药脂质体,该法适于脂溶性强的药物,所得脂质体具有较高包封率。 1 )薄膜分散法 此法是最原始但又是迄今为止最基本和应用最广泛的脂质体的制备方法。将磷脂和胆固醇等类脂及脂溶性药物溶于有机溶剂,然后将此溶液置于一大的圆底烧瓶中,再旋转减压蒸干,磷脂在烧瓶内壁上会形成一层很薄的膜,然后加入一定量的缓冲溶液,充分振荡烧瓶使脂质膜水化脱落,即可得到脂质体。 2)超声分散法 将磷脂、胆固醇和待包封药物一起溶解于有机溶剂中,混合均匀后旋转蒸发去除有机溶剂,将剩下的溶液再经超声波处理,分离即得脂质体。超声波法可分为两种“水浴超声波法和探针超声波法”,本法是制备小脂质体的常用方法,但是超声波易引起药物的降解问题。 3)冷冻干燥法 脂质体混悬液在贮存期间易发生聚集、融合及药物渗漏,且磷脂易氧化、水解,难以满足药物制剂稳定性的要求。目前,该法已成为较有前途的改善脂质体制剂长期稳定性的方法之一。 4 )冻融法 此法首先制备包封有药物的脂质体,然后冷冻。在快速冷冻过程中,由于冰晶的形成,使形成的脂质体膜破裂,冰晶的片层与破碎的膜同时存在,此状态不稳定,在缓慢融化过程中,暴露出的脂膜互相融合重新形成脂质体。分别用反相蒸发法、乳化法和冻融法制备了甲氧沙林脂质体。 5)复乳法

一、本课题研究的理论和实际应用价值,目前国内外研究的现...

一、本课题研究的理论和实际应用价值,目前国内外研究的现状和趋势(限 2 页,不能加页) (一)理论价值 ( 1)自译活动是一个特殊而显著的翻译现象。由于学术体制与政策的原因,中外翻译史的研 究通常只关注单语作家和译他译者,而且自译本身的相关概念很难做出科学界定,所以在很长一段时期以来自译没有引起翻译理论界应有的重视。通过对自译理论基础、本质特性、运作机制、标准 策略等分析研究,有利于人们认识和关注自译活动,确立自译研究的学术地位,从而推进自译理论 与实践研究,进一步丰富和发展翻译理论。 (2)研究文学自译现状,探究文学自译的产生和发展,有利于廓清自译的概念和内涵。借助 对自译作家及其作品的分析研究,并通过梳理自译理论,旨在分析出自译这种翻译方式存在的特殊性, 以及发现其对翻译研究的理论价值和启示,并希望能指导翻译实践,揭示文学自译在翻译研究 中的实际价值和理论意义。 (3)译者的创作与翻译思想决定着翻译的过程。自译作家的创作与翻译思想在其自译作品中 有着明显体现。自译作家的创作在语汇、句式、节奏等语言形式上对翻译有促进。其创作为翻译提 供了丰富的语汇,特别是在翻译中遇到难以解决的问题时,以前的创作可以为其带来灵感。 (4)自译者的翻译与创作相互影响,相互调和。主要表现为译中有作、亦译亦作和作中有译 等三种情况。由于翻译与创作存有互动,所以译作与创作之间存在巨大相似性。 (二)实际应用价值 (1)研究自译者的自译行为及其自译作品,目的在于分析出自译这种翻译方式存在的特殊性 并揭示其本质属性,不仅能丰富翻译研究内涵,还能揭示自译在翻译理论中的价值和意义。 (2)本项目以文学自译研究为主题,并选取我国著名自译作家林语堂、白先勇、张爱玲、萧 乾等四位自译作家为例,通过考察其个人创作观与翻译观,对比分析其自译作品是如何在各自创作观 与翻译观的引导下得以实现的,试图解释翻译过程即译者是如何进行自译的?自译和译他究竟有何不同? 进而试图揭示同为“环境性转换语者”的自译家们的自译活动有何“共性”与“个性”。 这对推动文学自译的发展,具有重要的理论意义和学术价值,对翻译理论建设有一定的意义。 (3)在国内翻译领域中,对自译研究较少。通过本项目研究,可以启发更多学者从理论上对 自译这一领域进行更深入的探索和研究。 (三)国内外研究现状和趋势述评 在国外,自译活动历史悠久,国外学者主要在三方面进行了研究: (1)关于自译定义。对自译下过定义的主要有 Grutman( 2004)、Popovic( 1976)、Whyte( 2002)等学者。其中 Grutman 的定义不仅“准确” ,还超出关于自译是否是真正翻译的讨论,深入到自译 更为广泛的层面。他不仅认为自译是“翻译自己作品的行为或者是这样一种行为的结果” ,指出了自译可指翻译过程也可是翻译结果,并暗示自译常常用于文学翻译,还将自译分为即时自译和延时自译两种状态,并强调自译文本的内部互文关系。更具参考价值。 ( 2)双语写作视域的自译理论。西方自译研究一个显著特点是立足双语写作视角,如Fitch (1988)、 Beaujour ( 1995)、 Beatson ( 1999)、 Scheiner ( 2000 )、 Liberman ( 2005)、 Trzeciak ( 2005)、 Hokenson & Munson ( 2007)等。最值一提,Hokenson & Munson ( 2007)将自译文本和 自译者同时并置于西方中世纪以来的社会和学术发展史中,从自译实践活动描述和自译理论分析两 个角度,详述了西方翻译史上自译现象:①首次清晰梳理了西方自译史并科学划分为中世纪与文艺 复兴时期( 1100-1600 )、近代时期(1600-1800 )和现当代时期(1800-2000 )等三个发展阶段。 ②对自译与双语写作进行平行研究,认为自译文本的关系可以视作在一个转化性语者的共同带中,以 文化间代表的方式展现了两个文本间的策略性关系。如果把自然双语者称为自然性双语习得者,那么 自译者则可称作策略性双语习得者。这一视角为双语和自译研究提供了新思路。③从“作者中

脂质体的研究进展学

新型药物载体免疫脂质体的研究进展 08药剂3班乔宇 20080702067 免疫脂质体(immunoliposomes)是单克隆抗体(monoclonal antibody,mAb,简称“单抗”)或其片段修饰的脂质体的简称,这种新型药物载体对靶细胞具有分子水平上的识别能力,具有很多优势,包括对肿瘤靶细胞呈现明显的选择性杀伤作用,且杀伤活性比游离药物、非特异抗体脂质体、单独单抗等更强;在荷瘤动物体内呈特异性分布,肿瘤病灶药物浓度升高,药物毒副作用较小;体内循环半衰期长及运载药物量大等。免疫脂质体发展至今经历了数代:第一代是抗体或抗体片断直接与脂质体的脂膜相连,但由于巨噬细胞的吞噬很快被血液清除;第二代在第一代的表面引入了聚乙二醇(PEG)等亲水性大分子,延长了在血液中的循环时间,但PEG长链对单抗的屏蔽使抗体与靶细胞的结合能力降低;第三代将抗体连接在PEG或其衍生物的末端,制成空问稳定性免疫脂质体(sterically stabilized immunoliposomes,SIL),延长了包含药物的脂质体的血液循环时问,且单抗伸展至脂质体外部发挥寻靶作用。 本文就免疫脂质体的分类、抗体连接脂质体的方法、临床应用及其发展现状进行综述。 1 免疫脂质体的分类 根据靶向特异性细胞和器官的原理可将免疫脂质体分为抗体介导和受体介导两类。 1.1 抗体介导的免疫脂质体 抗体介导的免疫脂质体是利用抗原一抗体特异性结合反应,将单抗与脂质体偶联。抗体有单克隆抗体和多克隆抗体之分,单抗因其专一性在抗体应用中占主导地位。现今,全世界已有超过1 50种单抗应用于临床或正处于临床研究阶段,且也已从原先的纯鼠单抗发展为人鼠嵌合抗体及人源化抗体,如已上市的人源化单抗Daclizumab、Palivizumab、Trastuzumab等;临床应用中,单抗从最初治疗器官移植排斥反应、降凝血发展到治疗癌症、HIV感染等疑难性疾病[2】。 1.1.1 两种抗体修饰的双靶向免疫脂质体 靶向物用两种不同的抗体修饰脂质体,可增加其结合特异性和细胞摄取率,并且抗体在靶向细胞时能产生协同作用【3】。Laginha等【4]假设脂质体通过抗体靶向到两种或多种受体时,由于受体密度增加,靶向效果会更好,并用荧光测定分析法验证了这一假设的正确性。这项实验中,分别制备了连接相同密度抗体的aCD19靶向脂质体、etCD20靶向脂质体、两种脂质体混合物(混合比例为1:1)及双靶向脂质体,证实了双靶向脂质体和混合脂质体较单个抗体修饰的脂质体和受体有更大的结合率和摄取率,且出现加和性;细胞毒性实验中,装载有阿霉素的双靶向脂质体较这两种脂质体混合物有更高的细胞毒性。Saul等【5]以阿霉素为模型药物,用叶酸和抗表皮生长因子的单抗修饰脂质体,同时靶向两种受体,使药物更多地聚集于肿瘤靶位,降低了对正常组织的毒性。 1.1.2 抗体片段修饰的免疫脂质体 虽然抗体对靶点具有高选择性,但持续给药时,患者往往会出现免疫反应,特别是应用外源性抗体f如鼠)时免疫反应加剧。而抗体片段Fab。(55kDa)、单链抗体可变区基因片段scFv(35kDa)产生的免疫原性比整个单抗低,且更易控制其性质

脂质体在基因治疗中的应用研究及进展

脂质体在基因治疗中的应用研究及进展 摘要:脂质体作为基因载体较病毒载体具有安全性高,免疫原性小,毒性小,容易制备等优点已成功应用于很多体外及动物体内实验,但由于其转染效率低,靶向性低等缺点使其发展受到了很大限制。本文作者通过查阅大量文献回顾脂质体在基因治疗中的应用以及研究进展。得出结论为目前脂质体在基因治疗中的研究热点在于提高脂质体的转染效率,在靶细胞和靶器官达到治疗浓度才能有更好的治疗效果。 关键词:脂质体;基因;转染;靶细胞;靶器官;治疗浓度 引言:基因治疗是将外源基因导入靶细胞并使其有效表达,从而达到治疗的目的。基因治疗的关键在于将目的基因导入到靶细胞或靶器官。而基因一旦进入体内,就有可能被体循环以及胞浆中的核酸酶降解,失效。为了使目的基因在起效前保持结构和功能的完整性,需利用基因载体对其进行保护。因此,基因载体的研究、发展和应用对基因治疗的成功起到至关重要的作用。理想的基因载体应具备可保护基因,使其不被体内核酸酶降解,本身以及降解产物无毒性,无免疫原性,能高效的特异性的传递基因,在体内外均稳定,易大规模生产等条件。目前基因治疗的载体可分为病毒载体和非病毒载体两类[1]。病毒载体因其存在免疫原性、细胞毒性、潜在致瘤性等安全问题,且其容纳的目的基因较小、制作成本高,因而使用受到一定限制。非病毒载体具有免疫原性低,毒性低,可携带的较大目的基因,制备成本低等优点而被广泛应用,其中以脂质体的发展和应用最为广泛。本文将就脂质体在基因治疗中的应用及研究做一简要综述。 1.脂质体的定义以及分类脂质体是磷脂依靠疏水缔合作用在水中自发形成的分子有序组合体,多表现为多层囊泡结构,每一层都为类脂双分子层,层间以及脂质体的内核为水相,而双分子膜为油相。磷脂结构上包括极性部分(称极性头部)和非极性部分(非极性尾部)。在水相中,非极性疏水尾部因疏水作用力相互聚集在一起,并同时将极性的亲水头部暴露于水相中,形成稳定的结构[2]。脂质体按性能可分为一般脂质体、热敏感脂质体、光敏感脂质体、磁性脂质体以及pH 值敏感型脂质体等。按电荷性质则可分为中性脂质体、阴离子脂质体和阳离子脂质体。 2. 脂质体体介导的基因传递机制细胞主要通过内吞的方式摄取周围的大分子物质。大分子物质先被细胞膜的某一区域所包裹,之后胞膜凹陷入胞内,芽生形成囊泡。此过程由胞膜表面的受体介导,大分子物质先与细胞表面的特异性受体结合,这些受体可集中在细胞膜上称为网格蛋白包被小窝的区域中,这一区域可形成网格蛋白包被囊泡[3]。除了受体介导的内吞机制外,Anderson[4]的研究表明细胞还存在独立的网格蛋白内吞途径,其中一个途径是通过细胞膜上的称为包膜窟的一处小凹陷对大分子物质的摄取完成,这一包膜窟自身参与细胞的信号传导以及包括胞吞在内的各类运输过程。一些药物和大分子物质通常不能穿过细胞的脂质双分子层,脂质体可将此类药物和大分子物质封装于脂质体亲水的内核中,既可通过由网格包被蛋白小窝上的受体介导的细胞内吞作用,也可通过胞膜的直接融合作用将目的物质运输入胞内[5]。因为常规的脂质体最终都将被网状内皮系统从血液清除,或者是在内吞过程中被溶酶体降解。所以人们一直在寻找能提高其运输效率和防止其降解的方法。 3.各类脂质体作为基因载体在基因治疗的研究现状普通脂质体由于其易被内皮网状系统吸收,靶向性低,易被核酸酶以及溶酶体降解,传递基因的效率低,为

国内外研究现状和研究意义

吉林大学博士学位论文 背景及意义 视觉是人类感知外界信息的重要手段,外界信息的80%以上都是人类通过视觉获取的,当今社会,视频在人类的生产、生活中被广泛传播,成为了人们获取信息最重要的手段。伴随着电子计算机处理能力的飞速发展,人们利用视频内容为自己服务的要求越来越高,利用计算机的高速处理能力为人类提供更加直接有效的视频信息变得越来越重要,智能视频处理的研究越来越受到重视,视频监控系统的应用也日益广泛。 目标跟踪作为智能视频处理的一个重要分支,得到了各国学者的重视,这其中有很多原因使得目标跟踪被大家所关注,其一,计算机的快速发展使得视频处理的大量运算得以实现;其二,存储介质的价格不断降低,使得大量的视频信息得以保留,方便后期调用;第三,军事、民事的需求增强,人们都想借助计算机协助改善生活质量。 目标跟踪在如下领域已经在发挥无可替代的作用: (1)军事应用,军事上的巨大应用前景极大促进了运动目标识别技术的发展,远程导弹、空空导弹的精确打击,飞机航线的设定和规避障碍等都离不开目标跟踪技术,无人机的自动导航功能,通过将目标跟踪得到的位置信息和自身航行速度做分析,实现自主飞行。 (2)机器人视觉,智能机器人能像人类一样运动的前提就是它能“看”到外面的世界,并用“大脑”对其分析判断,认知并跟踪不同的物体,机器手需要通过在手臂上安装的摄像头,锁定目标,并跟踪其运动轨迹,跟踪抓取物体。 (3)医学影像诊断,目标跟踪技术在超声成像中目标自动跟踪分析有着广泛的应用前景,由于超声图像噪声非常大,有用信息很难清楚直接的通过肉眼定位识别,在整个视频中,对有用目标进行准确识别跟踪,将会极大提高诊断准确性,Ayache 等人已经将目标跟踪应用到了超声检查的心脏跳动中,为医生及时准确的诊断心脏问题提供了很大的帮助。 (4)人机交互,传统的人机互动是通过鼠标、键盘、显示器完成的,一旦机器能够跟踪人类的肢体运动,就可以“理解”人类的手势、动作,甚至嘴型,彻底改变传统的人机交互方式,将人机交互变得和人与人之间的交流一样清晰。 (5)车辆跟踪,目标跟踪的一个非常重要的贴近民生的应用就是车辆跟踪。随着汽车相关技术的不断成熟和居民生活质量的大幅提升,我国从自行车大国逐步过度到汽车大国,家庭对汽车的拥有量将发生井喷,越来越多的家庭拥有自己的汽车,使得道路交通负担越来越重。另一方面,城市建设已经定形,城市中的公路已经无处可修,有限的公路对应不断增加的汽车数量,使得交通事故频发,这些问题对道路交通管理提出了更加严格的要求,逐步形成了智能交通系统的概念。智能交通能够由计算机自动识别车辆信息,并跟踪车辆行驶,分析闯红灯,违章变线,车辆逆行等违章行驶事件,将会极大减轻交通警察的工作压力,提高行车安全,减少交通事故的发生。另一个重要的应用是,如果车辆的目标跟踪得到快速发展,那么自动驾驶将成为可能,现在车辆上应用的定速巡航功能,仅仅可以做到定速,也就是电脑控制车速保持,而无法自动识别路面上车辆行驶情况,自动控制车辆的转弯变速,一旦车辆的目标跟踪技术成熟,那么将会给道路交通带来非常深远的影响,极大提高人们的生活质量。 1.2 国内外研究现状 目标跟踪领域的研究是一个非常复杂的课题,随着信息技术的飞速发展,视频监控深入到了人们生产生活中的各个领域,自然引起了各国学者的重视,许多国家投入了大量的人力物力财力去深入研究,解决目标跟踪领域出现的问题,促使目标跟踪算法的飞速发展,视频目标跟踪领域的提出以及发展现状简要的叙述如下: Wax 于1955 年最早提出了目标跟踪理论的基本原理,Sittler 于1964 年提出目标点轨迹的概念和目标运动路径最优数据关联的贝叶斯理论,由此改进了目标跟踪算法,为后来目标

2018年新型制剂微球脂质体行业分析报告

2018年新型制剂微球脂质体行业分析报告 2018年10月

目录 一、新型注射制剂兴起,关注微球和脂质体 (6) 1、剂型是药物的表现形式,注射剂型独具优势 (6) 2、传统注射制剂存在诸多缺陷,新型注射制剂应运而生 (7) 3、关注进展最快的注射用微球和脂质体 (9) (1)微球:长效化优势明显,市场表现较好,技术壁垒较高 (9) ①微球制剂长效化优势明显,上市后取代普通制剂,市场份额可超50% (9) ②微球主要用于多肽类药物,近些年多肽药物发展迅速,微球制剂市场空间广阔 (12) ③微球制剂产业化技术壁垒较高,研发成本高昂,研发周期长,竞争格局良好13 (2)脂质体:靶向性好,抗肿瘤药物前景广阔,技术壁垒较高 (15) ①脂质体作为药物运载体,靶向性强,在提高药物疗效的同时可降低药物副作用 (15) ②脂质体主要用于抗肿瘤药物,抗肿瘤药物市场增长迅速,前景广阔 (17) ③脂质体工业化生产较难,技术壁垒较高,竞争格局良好 (18) 二、全球注射微球脂质体的崛起之路 (19) 1、三十余年的发展,全球注射微球脂质体市场稳步增长 (19) 2、回溯全球90年代制剂发展,探寻微球脂质体的崛起原因 (21) (1)技术端:制剂水平的进步和相关技术突破 (21) (2)政策端:专利法案推动科研成果转化,政策鼓励剂型创新 (24) (3)需求端:全球疾病谱变化,肿瘤等慢性病患者人数增加 (26) 三、国内外代差明显,三大因素推动行业快速发展 (27) 1、微球脂质体处于起步阶段,销售额增长迅速 (27) 2、“技术+政策+需求”三因素推动行业快速发展 (29) (1)技术端:技术已有突破,产品质量不断提升 (29)

脂质体的研究现状及主要应用

脂质体及其医药应用 化学01 马高建2010012222 摘要:脂质体是一种天然脂类化合物悬浮在水中形成的具有双层封闭结构的囊泡,目前可由人工合成的磷脂化合物来制备。它作为一种高效的载体,近年来在医药、化妆品和基因工程领域等都有广泛应用,国内外在这方面进行了大量的研究,并取得了一些进展。本文将对脂质体的研究现状和其在医药方面的应用做一下概括,并对脂质体的发展前景做一下展望。 关键词:脂质体、制备、医药、应用 脂质体最初是1965年英国学者Banyhanm和Standish将磷脂分散在水中进行电镜观察时发现的。磷脂分散在水中自然形成多层囊泡,每层均为脂质双分子层,囊泡中央和各层之间被水隔开,双分子层厚度约4 nm,后来将这种具有类似生物膜结构的双分子小囊泡称为脂质体,又称人工膜。 1988年,第一个脂质体包裹的药物在美国进行临床试验,现在用脂质体包裹的抗癌药、新疫苗、其他各种药品、化妆品、农药等也开始上市。 我国的脂质体研究始于上世纪70年代,经过近30年的研究,我国在脂质体的研究和应用方面取得了可喜的成果。目前我国已有多个以脂质体作载体的新药剂型进入临床验证阶段。 当前脂质体的医药应用研究主要集中在模拟膜的研究、药品的可控释放和体内的靶向给药,此外还有如何在体外培养中将基因和其他物质向细胞内传递。由于脂质体具有生物膜的特性和功能,它作为药物载体的研究已有多种,主要用于治疗癌症的药物,它可将包封的活性物质直接运输到所选择的细胞上,故有“生物导弹”之称。 1 脂质体及其分类 脂质体(或称类脂小球、液晶微囊),是一种类似微型胶囊的新剂型,是将药物包封于类脂质双分子层形成的薄膜中间所制成的超微型球状载体剂型,其内部为水相的闭合囊泡。由于其结构类似生物膜,故又称人工生物膜。脂质体主要有双分子层组成,磷脂(卵磷脂、脑磷脂、豆磷脂)和胆固醇是形成双分子层的基础物质,再加入其他附加剂制备而成。 1.1 结构 脂质体可以是单层的封闭双层结构,也可以是多层的封闭双层结构。在显微镜下,脂质体的外形除了常见的球形、橄榄形外,还有长管状结构,直径可以从几百A到零点几毫米(mm),而且各种大小和形状的结构可以共存。 1.2 性质 1.2.1 相变温度T c在加热情况下,脂质体的磷脂分子两条碳氢链从有序的凝胶

国内外研究现状及发展趋势

国内外研究现状及发展趋势 世界银行2000年研究报告《中国:服务业发展和中国经济竞争力》的研究结果表明,在中国有4个服务性行业对于提高生产力和推动中国经济增长具有重要意义,它们是物流服务、商业服务、电子商务和电信。其中,物流服务占1997年服务业产出的42.4%,是比重最大的一类。进入21世纪,中国要实现对WTO缔约国全面开放服务业的承诺,物流服务作为在服务业中所占比例较大的服务门类,肯定会首先遭遇国际物流业的竞争。 物流的配送方式从手工下单、手工核查的方式慢慢转变成现今的物流平台电子信息化管理方式,从而节省了大量的人力,使得配送流程管理自动化、一体化。 当今出现一种智能运输系统,即是物流系统的一种,也是我国未来大力研究的方向。它是指采用信息处理、通信、控制、电子等先进技术,使人、车、路更加协调地结合在一起,减少交通事故、阻塞和污染,从而提高交通运输效率及生产率的综合系统。我国是从70年代开始注意电子信息技术在公路交通领域的研究及应用工作的,相应建立了电子信息技术、科技情报信息、交通工程、自动控制等方面的研究机构。迄今为止以取得了以道路桥梁自动化检测、道路桥梁数据库、高速公路通信监控系统、高速公路收费系统、交通与气象数据采

集自动化系统等为代表的一批成果。尽管如此,由于研究的分散以及研究水平所限,形成多数研究项目是针对交通运输的某一局部问题而进得的,缺乏一个综全性的、具有战略意义的研究项目恰恰是覆盖这些领域的一项综合性技术,也就是说可以通过智能运输系统将原来这些互不相干的项目有机的联系在一起,使公路交通系统的规划、建设、管理、运营等各方面工作在更高的层次上协调发展,使公路交通发挥出更大的效益。 1.国内物流产业发展迅速。国内物流产业正处在前所未有的高速增长阶段。2008年,全国社会物流总额达89.9万亿元,比2000年增长4.2倍,年均增长23%;物流业实现增加值2万亿元,比2000年增长1.9倍,年均增长14%。2008年,物流业增加值占全部服务业增加值的比重为16. 5%,占GDP的比重为6. 6%。预计“十一五”期间,我国物流产业年均增速保持在15%以上,远远高于美国的10%和加拿大、西欧的9%。 2.物流专业化水平与服务效率不断提高。社会物流总费用与GDP 的比例体现了一个国家物流产业专业化水平和服务效率。我国社会物流总费用与GDP的比例在近年来呈现不断下降趋势,“十五”期间,社会物流总费用占GDP的比例,由2000年的19.4%下降到2006年的18. 3%;2007年这一比例则下降到18. 0%,标志着我国物流产业的专业化水平和服务效率不断提高。但同发达国家相比较,我国物流

脂质体

脂质体(Liposomes)是由磷脂胆固醇等为膜材包合而成。磷脂分散在水中时能形成多层微囊,且每层均为脂质双分子层,各层之间被水相隔开,这种微囊就是脂质体。脂质体可分为单室脂质体、多室脂质体,含有表面活性剂的脂质体。按性能脂质体可分为一般质体(包括上述单室脂质体、多室脂质体和多相脂质体等)特殊性能脂质体、热敏脂质体、PH敏感脂质体、超声波敏感脂质体、光敏脂质体和磁性脂质体等。按电荷性,脂质体可分为中性脂质体、负电性脂质体、正电性脂质体。 脂质体作为药物载体在恶性肿瘤的靶向给药治疗方面极具潜力。为克服脂质体作为载体的靶向分布不理想、稳定性较差的缺点,近年来开发了一些新型脂质体,如温度敏感型、PL敏感型、免疫、聚合膜脂质体。前体脂质体概念的提出和研究,提供了克服脂质体不稳定的较好思路。 脂质体作为目前最先进的,被喻为"生物导弹"的第四代给药系统成为靶向给药系统的新剂型。 脂质体的靶向性 通过改变脂质体的给药方式、给药部位和粒径来调整其靶向,另外,还可在脂质体上连接某种识别分子,通过其与靶细胞的特异性结合来实现专一靶向性。 靶向性是脂质体作为药物载体最突出的优点,脂质体进入体内后,主要被网状内皮系统吞噬,从而使所携带的药物,在肝、脾、肺和骨髓等富含吞噬细胞的组织器官内蓄积。 1.天然靶向性是脂质体静脉给药时的基本特征,这是由于脂质体进入体内即被巨噬细胞作为外界异物吞噬的天然倾向产生的。脂质体不仅是肿瘤化疗药物的理想载体,也是免疫激活剂的理想载体。 2. 隔室靶向性是指脂质体通过不同的给药方式进入体内后,可以对不同部位具有靶向性,可以通过各种给药方式进入体内不同的隔室位置产生靶向性。在组织间或腹膜内给予脂质体时,由于隔室的特点,可增加对淋巴结的靶向性。 3. 物理靶向性这种靶向性是在脂质体的设计中,应用某种物理因素的改变,例如用药局部的pH、病变部位的温度等的改变而明显改变脂质体膜的通透性,引起脂质体选择性地在该部位释放药物。弱离子性药物的脂质体,在进入体内后,可以选择性地在肿瘤的低pH局部释放药物。这种受pH影响释放药物的脂质体称为pH敏感脂质体。 4.配体专一靶向性这种靶向性是在脂质体上连接某种识别分子,即所谓的配体,通过配体分子的特异性专一地与靶细胞表现的互补分子相互作用,而使脂质体在靶区释放药物。 脂质体的分类 1. 阳性脂质体 阳性脂质体(cationic liposome)又称阳离子脂质体,正电荷脂质体(Positiveiy charged liposome)是一种本身带有正电荷的脂质囊泡。 1.1 阳性脂质体的组成大多数阳性脂质体是由一种中性磷脂和一种或多种阳性成分 组成。 中性磷脂成分:阳性脂质体中使用的中性磷脂成分上与常规脂质体相似,如胆固醇(cho1)、磷脂酰胆碱(PC)、磷脂酚乙醇胺(PE)等。 阳性成分:多为合成的双链季铵盐型表面活性剂,具有体外稳定性好,体内可被生物降解的优点,但均具有一定的细胞毒性。

脂质体在药剂领域的研究进展

脂质体在药剂领域的研究进展 摘要:目的:本文对脂质体特点、制备方法、最新进展及其在药剂领域的应用进行概述,总结分析脂质体在药剂领域的发展方向和前景。方法:查阅中国知网、Science direct、Web of Science等主流数据库的文献,并总结归纳。结果:发现脂质体在药剂领域(中药、化学药、生物制品等)应用广泛,近年来取得很大进展,部分药物已用于临床。结论:脂质体作为一种新型药物载体,不断发展与完善在药剂领域具有十分广阔的应用前景。 关键词:脂质体、药物递送、靶向、研究进展 Research Progress of Liposomes in Pharmaceutical Field Dan Zhao, school of pharmacy, Pharmaceutics 1302, 3131602034 Abstract: Objective: this article summarizes the characteristics of liposomes, preparation methods, latest developments and their applications in pharmacy field, and to conclude the development direction and prospects of liposomes in pharmaceutical field. Methods: The literatures of mainstream databases such as China Knowledge Network, Sciencedirect and Web of Science were reviewed and summarized. Results: Liposomes have been widely used in pharmaceutical field (traditional Chinese medicine, chemical medicine, biological products, etc.) and have made great progress in recent years. Some drugs have been used in clinic. Conclusions: As a new drug carrier, liposomes have very wide application prospects in pharmaceutical field. Keywords: liposomes, drug delivery, targeting, research progress 脂质体是指由磷脂等类脂质构成的双分子层球状囊泡,它将药物包封于双分子层内而形成微型载药系统。除常见的类脂质双分子层外,它也可以是多层同心脂质双分子层。上个世纪60年代中期,脂质体技术应用于化妆品领域, 但直到 20世纪 70年代才将脂质体应用于药物载体, 并引起广泛关注1。因为脂质体具有诸多优良的特性,例如可通过修饰进行靶向给药、毒性及免疫反应小2等等,其后被广泛用于生命科学及工程领域。 1.脂质体及脂质体药物制剂的特点 脂质体具有以下特点3: 1)脂质体本质上是一种囊泡; 2)脂质体很小一般在 1 μm 以下(1 000 μm =1 mm); 3)脂质体的囊泡壁一般是由两层磷脂分子构成,也可以是多层同心脂质双分子层; 4)磷脂在一定条件下才能形成脂质体 ,并非把磷脂放在水中就产生脂质体 ,磷脂在水中或甘油中搅拌只能形成乳化颗粒; 5)脂质体可以包裹其他物质(如药物)形成不同内容物脂质体,通过电、超声、热、光等致孔可以使药物从脂质体释放,并且所形成孔的大小和分布会影响释药速度4。 脂质体药物制剂具有以下特点5: 1)体内可降解; 2)低免疫原性; 3)保护药物活性基团; 4)可制备靶向制剂; 5)延长药物半衰期。 理想的脂质体载药系统应具备以下特点:包封率高,药物不易渗漏、粒径分布范围窄、稳定性好,氧化降解速度缓慢3。虽然近年来脂质体药物的研究取得了很大的进步,如多柔

国内研究现状及发展

国内研究现状及发展 我国改革开放在“发展高科技,实现产业化”、“大力加强传感器的开发和在国民经济中的普遍应用”等一些列政策导向和支持下,在蓬勃发展的我国电子信息产业市场的推动下,传感器已形成了一定的产业基础,并在技术创新、自主研发、成果转化和竞争能力等方面有了长足进展,为促进国民经济的发展做出了重要贡献。但由于国内的半导体产业起步较晚,基础比较薄弱,对温度传感芯片的设计和研究才处于起步阶段,与国际先进技术相比还存在相当大的差距。为此,相关的企业和部门正朝着更高的目标前进,做出了一系列积极的尝试和探索,例如由中国电子器材总公司主办的、由中国电子元件行业协会等公司共同携手组织的“中国热敏电阻及温度传感器展览会”,该展览会是中国最大的热敏电阻及温度传感器展,以共同探讨交流中国“热敏电阻及温度传感器”之发展机会,促进行业发展。在集成数字智能温度传感器领域,国内相关的设计和研究尚处于较基础的阶段。目前市场上流行的同类温度传感器诸如DS18B20,AD7416 ,AD7417,AD7418,AD590等F,大多出自国外DALLAS、ADI等大公司。国内公司不仅相关产品少,而且已申请到的相关专利也比较少,除了厦门大学等高校申请的专利外,还有香港应用科技研究院、苏州纳芯微电子、北京中电华大电子设计、上海贝岭等少数研究机构或企业的专利,虽然其专利名称较大,但技术涉及点比较有限。因此,在集成数字温度传感器方面,我国尚有较大的发展空间。 2.1.2 国外研究现状及发展 国外情况方面,全世界现在大概有50个国家从事传感器的研制生产工作,研发、生产单位数千余家。在市场上,温度传感器的种类众多,在应用与高精度、高可靠性的场合时DALLAS(达拉斯)公司生产的DS18B20温度传感器当仁不让。DS18B20是美国DALLAS半导体公司继DS1820之后最新推出的一种改进型智能温度传感器。与传统的热敏电阻相比,他能够直接读出被测温度并且可根据实际要求通过简单的编程实现9-12位的数字值读书方式。可以分别在93.75ms和750ms内完成9位和12位的数字量,并且从DS18B20读出的信息或写入DS18B20的信息仅需要一根口线(单线接口)读写,温度变换功率来源于数据总线,总线本身也可以向所挂接的DS18B20供电,而无需额外电源。因而使用DS18B20可是系统结构更趋简单,可靠性更高,而其超小的体积,超低的硬件开消,抗干扰能力强,精度高,附加功能强,使得DS18B20更受欢迎。对于普通的电子爱好者来说,DS18B20的优势更是学习单片机技术和开发温度相关的小产品的不二选择。DS18B20的主要特征有:全数字温度转换及输出;先进的单总线数据通信;最高12位分辨率,精度可达土0.5摄氏度;12位分辨率时的最大工作周期为750毫秒;可选择寄生工作方式;检测温度范围为–55°C ~+125°C (–67°F ~+257°F);内置EEPROM,限温报警功能;64位光刻ROM,内置产品序列号,方便多机挂接;多样封装形式,适应不同硬件系统。DS18B20以其较高的综合性能获得了较高的市场率,但其精度仅能实现-10°C~+85°C下误差土0.5°C,这与其使用的测温原理有关,DS18B20采用了不同温度系数的振荡器测量振荡周期的方法进行测温,

BIM的应用现状及发展研究 dm

目录 摘要................................................................... - 1 - ABSTRCT ................................................................ - 2 - 第1章绪论............................................................ - 3 - 1.1 BIM的概述..................................................... - 3 - 1.2 BIM给我们带来的好处........................................... - 3 - 1.2.1具体而言,BIM 的应用具有以下价值。 ........................ - 3 - 1.3 关于BIM的案例 ................................................ - 5 - 第2章 BIM的应用现状.................................................. - 8 - 2.1 建筑节能设计的现状........................................... - 8 - 2.2 基于BIM技术的建筑节能设计应用研究 2.2.1 BIM技术......... - 9 - 2.2.2 基于BIM技术的建筑节能设计................................ - 9 - 第三章 BIM在我国的发展............................................... - 11 - 3.1 协同设计与BIM技术的融合....................................... - 11 - 3.2 从二维设计到三维BIM设计...................................... - 12 - 3.3 影响3D BIM普及的主要因素...................................... - 14 - 第四章 BIM在我们国家的状况........................................... - 16 - 4.1 中国BIM软件现状 .............................................. - 16 - 4.2 BIM软件中国战略目标探讨...................................... - 17 - 4.2.1 BIM软件为整个工程建设行业产生最大价值的角度............. - 17 - 4.2.2 BIM软件本身这个市场的影响力和占有率角度................. - 18 - 4.3 BIM软件中国战略行动路线探讨.................................. - 18 - 小结.................................................................. - 21 -

相关文档
最新文档