脂质体的研究新进展_杨鹏波

脂质体的研究新进展_杨鹏波
脂质体的研究新进展_杨鹏波

JOURNAL OF ZHEJIANG CHINESE MEDICAL UNIVERSITY VOL. 37 NO.7 Jul

. 2013

硕博之窗脂质体的研究新进展

杨鹏波张华

山东中医药大学济南250355

摘要:[目的]综述脂质体的应用和研究进展,为药物制成脂质体提供更多的选择。[方法]查阅近几年国内相关的文献资料并总结脂质体在各方面的应用、新的制备方法和修饰方法及其各自的优点。[结果]从脂质体的的应用、制备方法、修饰、质量评价等方面,可看脂质体与生物膜有着极好的相容性,作为载体有很大的优势,修饰后,能增强靶向性,提高药物的疗效,降低毒副作用。[结论]随着新材料的产生和新技术的发展,脂质体的优势将更加显现脂质体作为一种新型的药物载体,与生物膜具有相似性,具有多种优良特性,改变了传统的给药方式。经过近40年的研究,已到广泛的应用。

关键词:脂质体;分类;制备方法;联用技术;质量评价

中图分类号:R282.71文献标识码:A文章编号:1005-5509(2013)07-0936-04

New Progress of The Research of Liposome Yang Pengbo,Zhang Hua Shandong University of TCM Shandong,Jinan(250355)

Abstract:[Objective]This paper summarizes the latest literature,which can offer more choices for making liposome drug.[Methods]This article summarizes the application of liposomes in all aspects and new preparation methods and modification methods and their respective advantages.[Results]Liposome as a new type of drug carrier,which has similarity with biological membrane,has many good qualities and changes the traditional way to give medicine.[Con-clusion]Liposome has the broad application after nearly forty years of research.

Key words:liposome;classification;preparation;combination technology;quality accessment

脂质体是由脂质双分子层(由磷脂和胆固醇组

成)构成的封闭囊泡,它具有很多的优良性质,如具

有细胞的亲和性和靶向性、缓释性、减低药物毒性、

提高药物稳定性、透皮吸收效率高、可以携带药物进

入细胞、避免耐受性、改变给药途径等[1]。近年来随着

新材料,新技术的产生,又出现了一些新型的脂质体。

1分类

依据载药脂质体给药途径不同,可分为以下几种。

1.1口服脂质体主要用于粘膜免疫和抗肿瘤两个

方面。王刚[2]等将槲皮素制成脂质体,通过研究槲皮

素口服给药后在胃组织中的药物浓度和吸收百分率

得出:槲皮素脂质体有较强的胃肠粘附性,可以延长

药物在胃中的滞留时间,从而提高了药物在胃肠道

的吸收率。

1.2非口服脂质体

1.2.1透皮给药脂质体脂质体透过皮肤的机理:

水合作用、穿透机制、融合机制等。吴青青[3]等采用乙

醇注入法制备姜黄素脂质体,对姜黄素的溶液和其脂

质体经小鼠离体皮肤的累积渗透量及皮肤滞留量进

行比较发现,姜黄素脂质体在皮肤中的滞留量和皮肤

累积透过量都比较大,提高了疗效,降低了毒性。

1.2.2眼用载药脂质体目前主要应用于滴眼剂、玻

璃体内注射给药及眼用喷雾剂等。作用机制:与生物

膜融合作用、通过角膜细胞实现跨角膜转运和脂质体

与眼角膜的吸附作用。郑建灵[4]等采用无膜溶出法研

究西罗莫司壳聚糖包覆脂质体-原位凝胶的释放机

制,对释放曲线进行拟合分析,与传统眼用药物相比,

提高了西罗莫司的生物利用度,降低了对眼睛的刺激

性,具有很好的生物安全性。

1.2.3肺部给药脂质体包括抗感染药物、抗哮喘药

物、抗肿瘤药物、多肽蛋白类药物、基因药物、抗氧剂

[5]。刘洁[6]等从细胞免疫水平考察流感疫苗脂质体干

粉肺部免疫的免疫原性,流感疫苗脂质体肺部免疫产

生的细胞免疫效果比较高,并具有良好的物理稳定性

和生物学稳定性。

1.2.4注射用脂质体有抗肿瘤药物和抗感染药物

及局部用药。钱隽[7]等对注射用紫杉醇脂质体和常规

紫杉醇注射液在肿瘤患者中的药动学进行了比较。注——

——

——

——

——

——

——

通讯作者:张华,E-mail:zhongyiyao77@https://www.360docs.net/doc/9c5662314.html,

射用紫杉醇脂质体加强了组织亲和性,具有缓释作用,降低了药物的毒性,增强了抗肿瘤效果。王燕[8]等考察了两性霉素B脂质体注射剂与普通注射剂的疗效,两性霉素B脂质体注射剂增强了药物的作用,降低了毒副作用。王桂芝[9]考察了利多卡因脂质体注射剂与普通注射剂,利多卡因脂质体注射剂降低了毒性,延长了麻醉时间。

2脂质体的制备方法

脂质体常用的制备方法有乙醇注入法、逆向蒸发法、乙醚注入法、pH梯度法、薄膜分散法、冻融法、超声分散法、冷冻干燥法[10]等。近几年又产生几种新的方法。

2.1超临界二氧化碳法超临界二氧化碳是一种无毒、惰性且对环境无害的介质,较传统制备方法安全,且包封率较高。文震[11]等利用超临界CO2技术先将膜材和药物制成脂质体混悬液,再真空干燥制备脂质体,影响脂质体包封率和粒径的因素有压力(脂质体的包封率、载药量均随着压力的升高而增大)、温度[当温度低于323K(磷脂相变温度)Tm时,包封效果较差;当温度高于323K,包封率、载药量随温度增加而增大;再继续增高就会下降]、共溶剂。测得脂质体平均包封率为87.2%,平均载药量为5.9%,平均粒径448nm。

2.2微乳法用微乳法制备脂质体包封率比较高,粒径较大。用有机溶剂溶解磷脂和胆固醇后加入待包封的药物溶液,乳化得W/O乳液;再加入大量的水中混合,乳化得W/O/W乳液;在一定温度下除去有机溶剂可得脂质体。姚新武[12]等利用复乳法制备龙胆苦苷脂质体。发现第1次乳化超声时间、除去有机溶剂时的温度、超声功率等对粒径和包封率均有影响。测得药物脂质体平均粒径为131nm,其包封率为52.39%。

2.3硫酸铵梯度法与常用的pH梯度法相比,此法不需要改变水相的pH值,比较容易控制梯度,也不需要缓冲液和pH滴定,脂质体的包封率比较高。制备步骤:将硫酸铵包于脂质体水相;通过透析、凝胶色谱或超滤的方法除去脂质体外水相的硫酸铵,药物逆硫酸铵梯度载入脂质体,即得药物脂质体。王琳[13]等采用硫酸铵梯度法制备马钱子碱脂质体。影响脂质体包封率、粒径的因素有卵磷脂与胆固醇比、硫酸铵浓度、药脂比和硫酸铵溶液的体积。其包封率平均为92.17%。

也可使用联用技术,如下。

2.4薄膜分散-机械振荡法陈柳华[14]等利用薄膜

蒸发-超声分散法制备氟比洛芬脂质体,并通过鱼精

蛋白凝聚法研究了影响脂质体载药性能的因素。先采

用薄膜分散法制备得烧瓶内壁形成一层脂质膜;通氮

气除去残留溶剂后加磷酸缓冲液,超声,经滤膜过滤

得氟比洛芬脂质体。影响脂质体载药性能因素有卵磷

脂浓度、氟比洛芬/卵磷脂的质量比、胆固醇浓度。测

得药物脂质体的平均粒径为100~250nm,具有良好的

分散性,且载药量高。

2.5膜水化-高压均质法邓礼荷[15]等采用该法制

备羟基喜树碱脂质体,并研究冻干工艺及保护剂对羟

基喜树碱脂质体质量的影响。制备:先将膜材溶于溶

剂后,40℃下旋转蒸发溶剂至成膜,加磷酸盐缓冲溶

液水化后经高压均质机均化;加入冷冻干燥剂后经微

孔滤膜后经分步预冻,加入冷冻干燥机中经冷冻干燥

既得。测得药物脂质体的平均包封率均87%,平均粒

径约200nm,加入冻干剂可降低冻结过程中脂质体囊

泡的脱水速度和皱缩速度,并可以防止冰晶对泡囊的

机械损伤。

2.6薄膜挤压-硫酸铵梯度法采用薄膜挤压-硫酸

铵梯度法制备的脂质体粒径小而均匀,且载药量较高。陈斯泽[16]等采用该法制备盐酸洛拉曲克脂质体并

考察了其理化特性。先采用薄膜挤压法制备空白脂质体,透析后再采用硫酸铵梯度法制备得盐酸洛拉曲克

脂质体。测得药物脂质体质体平均粒径为103.5nm,

平均包封率为83.6%,且分布均匀,还可以缓慢释放

药物。

3脂质体的修饰

普通脂质体具有被动靶向性,存在靶向性低、对

某些疾病的治疗不理想、稳定性差等缺点,因此对脂

质体表面进行了修饰,修饰脂质体具有更强的靶向性

保证药物在病变部位充分释药。修饰的物质主要有胆

固醇、聚乙二醇、抗体、壳聚糖及其衍生物、胶原蛋白、

壳聚糖、半乳糖、聚乙烯醇、转铁蛋白、吐温80等[17]。

3.1长循环脂质体用聚乙二醇修饰脂质体,可延

长其在循环系统的滞留时间。聚乙二醇连接主要有两

种方式:一种是以共价键;另一种是以疏水性取代基

的疏水吸附或结合。周蔚[18]等采用薄膜超声分散法制

备长循环紫杉醇脂质体,并考察了长循环紫杉醇脂质

杨鹏波

脂质体的研究新进展

体和普通剂型在体内的分布情况,发现以相同剂量给药,紫杉醇长循环脂质体较普通型抑瘤作用更明显;提高了动物的最大耐受量,降低了毒性,提高了药物的体内安全性。

3.2膜融合脂质体将脂质体与特定病毒融合,这些病毒包括人免疫缺陷病毒1型、流感病毒、仙台病毒、城疫病毒和疱疹性口炎病毒等,可以快速、高效地介导基因进入宿主细胞,降低了药物的毒性,提高了靶向性。刘丽梅[19]等将新城疫病毒Ⅳ系弱毒株构建新型膜融合脂质体,观察新城疫病毒Ⅳ系弱毒株膜融合脂质体诱导的细胞毒性T淋巴细胞反应活性及体内抑瘤效应,发现其能充分调动肿瘤患者淋巴细胞的活化,提高对肿瘤细胞的杀伤能力,降低了药物的毒副作用,提高了安全性。

3.3热敏脂质体以热敏脂质体为载体包埋化疗药物,可以提高靶向性、降低全身毒性、增强抗肿瘤疗效。设计时需注意:选择具有合适的、人体能够耐受相变温度(Tm,一般应低于45℃)的磷脂;加入适量胆固醇(磷脂与胆固醇的质量比通常为3:1~6:1)以增加脂质体膜的刚性,提高脂质体中药物的稳定性、减少药物泄露,但刚性过强会影响脂质体的热敏性及药物的释放[20]。尤晓惠[21]等用薄膜分散法制备紫杉醇热敏脂质体及紫杉醇普通脂质体,发现热敏脂质体能在加热部位聚集,增加了肿瘤血管的通透性,使药物更易通过血管进入肿瘤组织,提高加热部位的药物浓度,从而提高了药物的疗效,减低了毒性。

3.4免疫脂质体分为抗体介导的免疫脂质体和受体介导的免疫脂质体两大类,将单克隆抗体联接到脂质体表面即可实现免疫性能。主要应用:化疗药物的载体、放射性核素的载体、基因治疗的载体、透过血脑屏障药物的载体、疫苗载体等[22]。段降龙[23]等制备尿素免疫脂质体发现免疫脂质体延缓了药物的生物降解,尿素从脂质体中缓慢释放,药效持续时间长,降低了尿素治疗血管瘤后并发症的发生。

3.5磁性脂质体主要材料是纳米级的四氧化三铁或三氧化二铁等。制备方法:一是直接将脂质体覆盖在磁粒子上(优点是粒径小、不会溶解表面活性剂类的两亲分子);二是将磁粒子微乳化而进入脂质体内部(优点是可以同时携带药物等物质,应用广泛)。凌家俊[24]等用薄膜分散-超声法制备羟基喜树碱磁性脂质体并引入微透析技术,动态、连续地考察磁性脂质体的肿瘤局部聚集性,发现羟基喜树碱磁性脂质体在外加磁场引导下具有明显的磁靶向性,从而减低药物毒副作用、提高药物的疗效,增强了靶向性。

此外还有很多种修饰脂质体,例如pH敏感脂质体、隐形脂质体、光敏脂质体、柔性脂质体等。

4脂质体的质量评价

4.1形态与粒径及其分布脂质体的形态为封闭的多层囊状或者多层圆球。粒径一般用光学显微镜或者电镜测定。

4.2载药量与包封率影响因素有:药物的性质、粒径、类脂质膜材料的投料比、药脂比、制备方法、其他因素(例如温度、浓度、pH)测量方法有紫外分光光度法、HPLC、EPR、NMR等方法。作为药品开发时,脂质体的包封率不得低于80%[25]。

4.3渗漏率脂质体的渗漏率是脂质体不稳定性的主要指标。如果脂质体的渗漏率较高可以在膜材中加入一定量的胆固醇,以提高脂质体的膜稳定性,从而减少膜流动。

4.4脂质体制剂应该符合中国药典有关制剂通则的规定。

5结论与展望

脂质体具有与生物膜极好的相容性,作为药物的载体具有极大优势,在进行修饰后更增强了靶向性,使药物病灶聚集性增强,提高疗效,降低毒副作用。作为一个较新的药物载体和研究领域,还有很多方面需要深入研究,譬如脂质体的稳定性较差,易发生氧化和药物泄露等质量问题。

影响脂质体物理化学稳定性的因素有:浓度、pH、添加剂、温度以及金属离子、聚合物、电离辐射、光线、某些有机分子、表面电荷、温度、保存条件等。如果是液体脂质体制剂,则属于热力学和动力学不稳定体系,易发生脂质体粒的聚集或破裂现象,也易滋生微生物等,解决方法可以在膜中加入少量带电荷的成分减低聚合,还可以通过加入适合的添加剂、除去金属离子、调节适宜的pH、控制适宜的储存温度而降低脂质体的沉淀;磷脂容易发生氧化、水解等反应导致脂质体颗粒发生破裂、聚集现象。解决办法可以除去金属离子、不合适的有机分子,加入抗氧化剂,闭光、密闭保存而减低磷脂的氧化;还可通过调节适宜的pH、温度和在脂质体表面键入适宜的电荷、制备成冻干脂质体(或者长循环脂质体、前脂质体等)而减低

杨鹏波,等:脂质体的研究新进展

(上接第928页)

宁中医药杂志,2012,29(2):258-26.

[2]高霞.血脂代谢紊乱中医药治疗进展[J].中国误诊学杂志,

2011,11(6):1276-1277.

[3]陆云飞,钱彦方.首庙全国中医体质学说及腹诊研讨会学

术总结[J].中西医结合杂志,1987,7(11):7021.

[4]王琦.中医体质学[M].北京:人民卫生出版社,2009:3,256,

295~305.

[5]匡调元.体质食疗学[M].上海:上海科学技术出版社,1989:

10.

[6]宋咏梅.痰湿体质形成的影响因素[J].山东中医药大学学

报,2002,26(2):100-101.

[7]魏翠柏,李光善.论体质与个体化诊疗[J].中华中医药杂

志,2012,1(27):10-12.

[8]王琦.9种基本中医体质类型的分类及其诊断表述依据[J].

北京中医药大学学报,2005,28(4):1-8.

[9]匡调元.体质食疗学[M].上海:上海科学技术出版社,1989.

12-15.[10]沈翠珍,孙秋华.中医食疗对高血压病人痰湿体质作用的

研究[J]护理研究,2011,25(3):582-583.

[11]匡调元.体质食养学纲要[J].浙江中医药大学学报,2006,30

(3):217-219.

[12]范薇.高脂血症痰瘀证型机理研究[D].成都中医药大学,

2003.

[13]岳增辉.中医药防治高脂血症的研究进展[J].湖南中医学院

学报,2005,25(2):63-64.

[14]李素华.从痰论中风[J].光明中医,2010,25(10):1763-1764.

[15]刘榴,张百嘉.食疗中药抗动脉粥样硬化作用实验研究进

展[J].中药材,2002,25(11):835-837.

[16]赵蓉.香菇调脂胶囊对大鼠高脂血症的预防作用[D].华中

科技大学:2009.

[17]刘斌.去甲肾上腺素促进血管平滑肌增殖和细胞表型转化

[J].解剖学杂志,2008,31(4):493-495.

[18]刘晓芳,王如阳,王泓.薯类物质对食用油脂的吸附作用研

究[J].云南中医中药杂志,2008,29(10):49-51.

(收稿日期2013-04-02)

膜材的水解。尽管如此,瑕不掩瑜,随着新的制剂辅料的产生和制药技术的发展,脂质体的优势将更加显现。

参考文献:

[1]杨彤.新型脂质体的研究进展[J].Herald of Medicine,2009,

28(3):336-338.

[2]王刚,常明泉,杨光义,等.槲皮素长循环纳米脂质体的小鼠

口服吸收研究[J].医药导报,2011,30(10):1266-1268.

[3]吴青青,陈彦,张振海,等.姜黄素脂质体的制备及体外透皮

研究[J].中国医药工业杂志,2011,42(12):910-913.

[4]郑建灵,陈鹰,董少华,等.眼用西罗莫司壳聚糖包覆脂质

体-原位凝胶的体外释放特性与刺激性[J].中国药师,2012, 15(5):609-612.

[5]王志宣,邓英杰,张晓鹏,等.脂质体肺部给药系统的应用[J].

中国医药工业杂志,2007,38(1):58-61.

[6]刘洁,马波,鲁卫东,等.单价流感疫苗脂质体干粉细胞免疫

研究[J].南京工业大学报,2011,33(6):102-106.

[7]钱隽,王漪璇,郁韵.注射用紫杉醇脂质体与紫杉醇注射液

在肿瘤患者中的药动学比较[J].肿瘤,2011,31(12):1103-1007.

[8]王燕,刘慧丽,刘卉.两性霉素B脂质体治疗肺毛霉菌感染

1例临床护理[J].齐鲁护理杂志,2011,17(31):97-98. [9]王桂芝,高尔,陈维宁,等.小鼠和豚鼠利多卡因脂质体局部

麻醉的药效学[J].中华麻醉学杂志2006,26(5):465-466. [10]孙庆雪,邵伟,黄桂华.脂质体制备方法的选择[J].中成药,

2010,32(8):1397-1401.

[11]文震,刘波,郑宗坤,等.β-桉油醇脂质体的超临界C02沉析

法制备与理化性质测定[J].高校化学工程学报,2010,24(1): 122-126.

[12]姚新武,刘长霞,张鹏.响应面法优化龙胆苦苷脂质体的复

乳法制备工艺[J].北京化工大学学报,2012,39(2):68-73.

[13]王琳,蔡宝昌.马钱子碱脂质体制备工艺研究[J].齐鲁药事,

2010,29(11):641-643.

[14]陈柳华,甘礼华,赵云辉,等.氟比洛芬脂质体的制备及其载

药性能研究[J].同济大学学报,2011,39(7):1079-1083.

[15]邓礼荷,韦敏燕,汤晨懿.冻干工艺及保护剂对羟基喜树碱

脂质体质量的影响[J].中国医药工业杂志,2012,43(1):30-

34.

[16]陈斯泽,陈雪梅,汪森明,等.盐酸洛拉曲克脂质体的制备及

其质量考察[J].现代生物医学进展,2011,11(9):1779-1881. [17]丁嘉信,田景振,陈新梅.脂质体表面修饰的研究新进展[J].

齐鲁药事,2010,29(10):611-613.

[18]周蔚,周彩存,孟淑燕,等.靶向肺癌的紫杉醇长循环脂质体

抑瘤作用研究[J].肿瘤,2011,31(3):203-209.

[19]刘丽梅,宋连生,李薇,等.新城疫病毒膜融合脂质体疫苗抑

瘤的实验研究现代预防医学[J].2010,37(4):744-746.

[20]孙飞,尹莉芳,周建平,等.热敏脂质体的研究进展[J].药学进

展,2010,34(9):399-405.

[21]尤晓惠,张慧,潘见,等.紫杉醇热敏脂质体制备及抗肿瘤作

用评价[J].军事医学,2011,35(3):219-221.

[22]莫方芬,邓盛齐.新型药物载体免疫脂质体的研究进展[J].

中国抗生素杂志,2011,36(4):249-253.

[23]段降龙,龙延滨,李国威.尿素免疫脂质体的制备及理化性

质研究[J].陕西医学杂志,2011,40(6):653-655.

[24]凌家俊,古锦辉,谢毅,等.羟基喜树碱磁性脂质体的制备及

其靶向性特征试验[J].中国实验方剂学杂志,2012,18(16):

19-23.

[25]陈智娴.中药脂质体研究进展[J].实用中医药杂志,2010,26

(8):587-589.

(收稿日期:2013-03-14)

杨鹏波

脂质体的研究新进展

茶多酚的研究综述

茶多酚的研究综述 摘要: 本文主要综述了国内外对茶多酚的研究进展情况,介绍了茶多酚的组成、特性及其在生物学领域的应用, 为茶叶的开发利用提供参考。 关键词:茶多酚,生物学功能。 一、前言 茶多酚是从绿茶中提取出来的最主要的对人体最有益成分,是一类存在于茶树中的多羟基酚类化合物的混合物,俗名茶单宁、茶鞣质。其主要组分为儿茶素类(黄烷醇类)、黄酮及黄酮醇类、花色素类和酚酸及缩酚酸类多化合物的复合体。茶多酚的主要成分是儿茶素类,占其总量的80%左右。茶叶中的儿茶素类主要为儿茶素(catechin,C)、表儿茶素没食子酸酯(epicatechin gallate,ECG)、表没食子儿茶素(epigallocatechin,EGC)和表没食子儿茶素没食子酸酯(epigallocatechin gallate,EGCG)等[1]。近年来经科学研究和临床验证,表明茶多酚具有广泛的生物学功能,主要集中在消除自由基、抗氧化、免疫调节、降血脂、酶活性、杀菌抗病毒、脂类代谢、抗癌作用、等方面,本文主要综述近年来有关茶多酚的生物学研究进展。 二、茶多酚的生物学功能 1、消除自由基 人在生命代谢过程中会产生有害自由基,自由基极强的氧化能力会氧化不饱和脂肪酸形成LPO(过氧化脂质),累积的LPO会削弱生物膜的正常功能,影响活性物质的正常代谢,诱发肝炎、癌症、衰老、心血管等疾病。而TP因多酚羟基极易被氧化为醌类而产生H+,故有强抗氧化能力。清除自由基和抗氧化作用是TP 最重要的生物活性,是其抑癌抗癌药理作用的基础[2]。TP自身生成稳定的自由基中间体,抑制原来的自由基链锁反应,从而保护细胞成分不受损伤,与其他抗氧化剂相比,TP清除氧自由基具有高效性.与自由基清除剂超氧化物歧化酶(SOD)相比,1 mg TP清除O2?的效能相当于9 μg Cu,ZnSOD;与强抗氧化剂VitC,VitE相比,其清除O2?,?OH效能要高几倍甚至几十倍以上[3]。

鲁棒优化的方法及应用

鲁棒优化的方法及应用 杨威 在实际的优化中决策过程中,我们经常遇到这样的情形,数据是不确定的或者是非精确的;最优解不易计算,即使计算的非常精确,但是很难准确的实施;对于数据的一个小的扰动可能导致解是不可行。鲁棒优化是一个建模技术,可以处理数据不确定但属于一个不确定集合的优化问题。早在19世纪70年代,Soyster 就是最早开始研究鲁棒优化问题的学者之一,他的文章给出了当约束矩阵的列向量属于一个椭球形不确定的集合时的鲁棒线性优化问题。几年以后Falk 沿着这条思路做了非精确的线性规划。在以后的很长的一段时间里,鲁棒优化方面都没有新的成果出现。直到19世纪末,Ben-Tal,Nemirovski 的工作以及这时计算技术的发展,尤其是对于半定优化和凸优化内点算法的发展,使得鲁棒优化又成为一个研究的热点。 一个一般的数学规划的形式为 0000,min {:(,)0,(,)0,1,...,}n i x R x R x f x x f x i m ξξ∈∈-≤≤= 其中x 为设计向量,0f 为目标函数,12,,...,m f f f 是问题的结构元素。ξ表示属于 特定问题的数据。U 是数据空间中的某个不确定的集合。对于一个不确定问题的相应的鲁棒问题为 0000,min {:(,)0,(,)0,1,...,,}n i x R x R x f x x f x i m U ξξξ∈∈-≤≤=?∈ 这个问题的可行解和最优解分别称为不确定问题的鲁棒可行和鲁棒最优解。 这篇文章主要回顾了鲁棒优化的基本算法,目前的最新的研究结果及在经济上的应用。 1 鲁棒优化的基本方法 1.1鲁棒线性规划 一个不确定线性规划{min{:}(,,)}T n m n m x c x Ax b c A b U R R R ?≥∈???所对应的鲁 棒优化问题为min{:,,(,,)}T x t t c x Ax b c A b U ≥≥∈,如果不确定的集合是一个计算上易处 理的问题,则这个线性规划也是一个计算上易处理的问题。并且有下列的结论: 假设不确定的集合由一个有界的集合{}N Z R ξ=?的仿射像给出,如果Z 是 1线性不等式约束系统构成P p ξ≤,则不确定线性规划的鲁棒规划等价于一个线性规划问题。 2由锥二次不等式系统给出2 ,1,...,T i i i i P p q r i M ξξ-≤-=,则不确定线性规划的鲁棒规划等价于一个锥二次的问题。 3 由线性矩阵不等式系统给出dim 01 0i i i P P ξ ξ=+≥∑,则所导致的问题为一个半定规划问题。 1.2鲁棒二次规划

pH敏感型脂质体的研究进展

pH敏感型脂质体的研究进展 10072855 王剑磊高材075 摘要:本文对脂质体,着重对pH敏感型脂质体以及pH敏感型类脂组的系统组成作了一个较简单的介绍,并阐述了临界pH的影响因素及其应用。 关键词:pH敏感型脂质体、pH敏感型类脂组成的系统、临界pH的影响因素 脂质体(Liposome)是利用磷脂双分子层膜所形成的囊泡包裹药物分子而形成的制剂。由于生物体质膜的基本结构也是磷脂双分子层膜,脂质体具有与生物体细胞相类似的结构,因此有很好的生物相容性。脂质体进入人体内部之后会作为一个“入侵者”而启动人体的免疫机制,被网状内皮系统吞噬,从而在肝、脾、肺和骨髓等组织中靶向性地富集。这就是脂质体的被动靶向性。脂质体主要成分是磷脂和胆固醇,其类似细胞膜的微球体。20世纪年代末Rahman等人首先将脂质体作为药物载体应用。70年代初用脂质体作为药物载体包埋淀粉葡萄糖甘酶治疗糖原沉积病首次获得成功。脂质体作为药物载体具有使药物靶向网状内皮系统、延长药效、降低药物毒性、提高疗效、避免耐受性、改变给药途径等优点,但脂质体作为药物载体仍存在对有些疾病的靶向特征不理想、体内稳定性和贮存稳定性欠佳等缺点,因而限制了脂质体的临床应用和工业化生产。近年来人们逐渐研制出长循环脂质体、前体脂质体、聚合膜脂质体等新犁脂质体以提高脂质体的稳定性;设计开发了温度敏感脂质体、pH敏感脂质体、免疫脂质体、磁性脂质体等新型脂质体以提高脂质体的靶向性。本文将着重对pH敏感型脂质体的研究进展做一综述。 1.pH敏感型脂质体(pH—sensitive Liposomes ) pH敏感型脂质体是指在低pH时脂肪酯羧基质子化而引起六角相形成,导致膜融合而达到细胞内靶向和控制药物释放的功能性脂质体,是用含有pH敏感基团的脂质制备的,可在一定程度上避免溶酶体降解并增加包封物摄取量和稳定性,有效地将包封物转运到胞浆。基于肿瘤间质液pH比正常组织低,应用pH敏感型脂质体载药能获得较非pH敏感型脂质体更好的转移效果。此外,PH敏脂质体在基因治疗中也得到了应用。Dzau VJ等利用病毒细胞融合脂质体的特点,将日本血细胞凝集病毒( HVJ )与脱氧寡核苷酸或质粒DNA脂质体复合,能诱导DNA直接进入细胞浆。pH敏感型脂质体的开发为大分子药物人工基因片段的胞内投递提供了手段。随着脂质体生产工艺研究的深入和不断完善,pH敏脂质体将成为临床治疗中的一种重要手段。pH敏感型脂质体在酸性环境中不稳定,而在细胞内吞过程中,在核内体始降低,所以设计合适的pH敏感型可以使其到达溶酶体前将内容物释放中,从而保证药物的活性。此外,炎染区域,某些肿瘤组织或局部缺血时异常酸化现象,所以在pH7 .4 ~6 .5范围内的pH敏感型脂质体对于药物的传递释很大的临床应用价值。 2.pH敏感型类脂组成的系统

脂质体与当前国内外脂质体研究进展

摘要 脂质体作为药物载体具有很多优点, 但是其主动靶向性和稳定性较差, 为了克服上述缺点,近年来国内外研制出许多新型脂质体。通过检索近 20 年来国内外有关新型脂质体的相关文献, 对其进行综合分析和总结,提出脂质体在制剂中应用研究中存在的问题与建议,对新型脂质体如长循环脂质体、pH敏感脂质体、温度敏感脂质体、前体脂质体、磁性脂质体、免疫脂质体、膜融合脂质体、柔性脂质体等的研究及应用做一综述, 并展望了新型脂质体的发展前景。脂质体在制剂中应用是新剂型和新技术的现代化重要标志,也是国际化的需要,作为一种新型药物载体,研制出稳定的脂质体是脂质体作为药物载体走向实用的前提,因此具有十分重要的意义。 关键词:脂质体,药物载体,临床研究,综述

Abstract Liposome as drug delivery system has many advantages, but its less active targeting and stability, in order to overcome these shortcomings, both at home and abroad in recent years we have developed many novel liposome. By retrieved near 20 years to both at home and abroad about new fat mass body of related literature, on its for integrated analysis and summary, made fat mass body in preparations in the application research in the exists of problem and recommendations, on new fat mass body as long cycle fat mass body, and pH sensitive fat mass body, and temperature sensitive fat mass body, and Qian body fat mass body, and magnetic fat mass body, and immune fat mass body, and film fusion fat mass body, and flexible fat mass body, of research and the application do a summary of, and prospect has new fat mass body of development prospects. Application in liposome preparation are important signs of modernization of new dosage forms and technologies, as well as international needs, as a novel drug delivery system, developed stable liposomes is towards practical premise of liposome as drug carriers, it has a very important significance. Keywords:Liposome ,Drug carrier ,Clinical research ,Overview

茶多酚的研究进展及发展前景

茶多酚的研究进展及发展前景 郑婧、李昌洋、张海洋 摘要:本文介绍了国内外对茶多酚的研究进展情况,从茶多酚的原料、提取工艺、分离纯化、检测方法及应用等方面作了详细的论述,为茶叶的开发利用提供参考。 关键词:茶多酚提取工艺分离纯化检测 The research progress of tea polyphenols and development prospects Zheng Jing,Li Chang yang,Zhang Hai yang Abstract: this paper introduces to tea polyphenols are from tea polyphenol raw materials, extraction technology, purification, test method and application makes a detailed discussion, for the development and utilization of the tea to provide the reference. Keywords: tea polyphenols extraction technology purification test 茶多酚(Tea-Poiyphenols,简称TP),又名茶单宁,儿茶酸,属多酚类物质,是一种新型的天然抗氧化剂,是从茶叶中提取的多羟基酚类衍生物的混合物,占茶叶干重的13%-30%, 鲜叶的2%-5% 以儿茶素为主体成分,占总酚含量的60%-80%; 主要由表儿茶素(EC),没食子儿茶素(GC) 表没食子儿茶素

脂质体的研究与应用

脂质体的研究与应用 摘要:脂质体是某些细胞质中的天然脂质小体有关脂质体的研究进展进行了检索、分析、整理和归纳,综述了脂质体的分类、制备方法及研究进展。 关键字:主动载药;被动载药;药物载体;前体脂质体;靶向给药脂质体(Liposomes)是由磷脂胆固醇等为膜材包合而成。磷脂分散在水中时能形成多层微囊,且每层均为脂质双分子层,各层之间被水相隔开,这种微囊就是脂质体。脂质体可分为单室脂质体、多室脂质体,含有表面活性剂的脂质体。按性能脂质体可分为一般质体(包括上述单室脂质体、多室脂质体和多相脂质体等)特殊性能脂质体、热敏脂质体、PH敏感脂质体、超声波敏感脂质体、光敏脂质体和磁性脂质体等。按电荷性,脂质体可分为中性脂质体、负电性脂质体、正电性脂质体。 脂质体作为药物载体在恶性肿瘤的靶向给药治疗方面极具潜力。为克服脂质体作为载体的靶向分布不理想、稳定性较差的缺点,近年来开发了一些新型脂质体,如温度敏感型、PL敏感型、免疫、聚合膜脂质体。前体脂质体概念的提出和研究,提供了克服脂质体不稳定的较好思路。 目前,制备脂质体的方法较多,常用的有薄膜法、反相蒸发法、溶剂注入法和复乳法等,这些方法一般称为被动载药法,而pH梯度法,硫酸铵梯度法一般被称为主动载药法。 1被动载药法 脂质体常用制备方法主要有薄膜分散法、反相蒸发法、注入法、超声波分散等。陈建明等[1]在制备含药脂质体时,首先将药物溶于水相或有机相中,然后按适宜的方法制备含药脂质体,该法适于脂溶性强的药物,所得脂质体具有较高包封率。 1 )薄膜分散法 此法是最原始但又是迄今为止最基本和应用最广泛的脂质体的制备方法。将磷脂和胆固醇等类脂及脂溶性药物溶于有机溶剂,然后将此溶液置于一大的圆底烧瓶中,再旋转减压蒸干,磷脂在烧瓶内壁上会形成一层很薄的膜,然后加入一定量的缓冲溶液,充分振荡烧瓶使脂质膜水化脱落,即可得到脂质体。 2)超声分散法 将磷脂、胆固醇和待包封药物一起溶解于有机溶剂中,混合均匀后旋转蒸发去除有机溶剂,将剩下的溶液再经超声波处理,分离即得脂质体。超声波法可分为两种“水浴超声波法和探针超声波法”,本法是制备小脂质体的常用方法,但是超声波易引起药物的降解问题。 3)冷冻干燥法 脂质体混悬液在贮存期间易发生聚集、融合及药物渗漏,且磷脂易氧化、水解,难以满足药物制剂稳定性的要求。目前,该法已成为较有前途的改善脂质体制剂长期稳定性的方法之一。 4 )冻融法 此法首先制备包封有药物的脂质体,然后冷冻。在快速冷冻过程中,由于冰晶的形成,使形成的脂质体膜破裂,冰晶的片层与破碎的膜同时存在,此状态不稳定,在缓慢融化过程中,暴露出的脂膜互相融合重新形成脂质体。分别用反相蒸发法、乳化法和冻融法制备了甲氧沙林脂质体。 5)复乳法

脂质体的研究进展学

新型药物载体免疫脂质体的研究进展 08药剂3班乔宇 20080702067 免疫脂质体(immunoliposomes)是单克隆抗体(monoclonal antibody,mAb,简称“单抗”)或其片段修饰的脂质体的简称,这种新型药物载体对靶细胞具有分子水平上的识别能力,具有很多优势,包括对肿瘤靶细胞呈现明显的选择性杀伤作用,且杀伤活性比游离药物、非特异抗体脂质体、单独单抗等更强;在荷瘤动物体内呈特异性分布,肿瘤病灶药物浓度升高,药物毒副作用较小;体内循环半衰期长及运载药物量大等。免疫脂质体发展至今经历了数代:第一代是抗体或抗体片断直接与脂质体的脂膜相连,但由于巨噬细胞的吞噬很快被血液清除;第二代在第一代的表面引入了聚乙二醇(PEG)等亲水性大分子,延长了在血液中的循环时间,但PEG长链对单抗的屏蔽使抗体与靶细胞的结合能力降低;第三代将抗体连接在PEG或其衍生物的末端,制成空问稳定性免疫脂质体(sterically stabilized immunoliposomes,SIL),延长了包含药物的脂质体的血液循环时问,且单抗伸展至脂质体外部发挥寻靶作用。 本文就免疫脂质体的分类、抗体连接脂质体的方法、临床应用及其发展现状进行综述。 1 免疫脂质体的分类 根据靶向特异性细胞和器官的原理可将免疫脂质体分为抗体介导和受体介导两类。 1.1 抗体介导的免疫脂质体 抗体介导的免疫脂质体是利用抗原一抗体特异性结合反应,将单抗与脂质体偶联。抗体有单克隆抗体和多克隆抗体之分,单抗因其专一性在抗体应用中占主导地位。现今,全世界已有超过1 50种单抗应用于临床或正处于临床研究阶段,且也已从原先的纯鼠单抗发展为人鼠嵌合抗体及人源化抗体,如已上市的人源化单抗Daclizumab、Palivizumab、Trastuzumab等;临床应用中,单抗从最初治疗器官移植排斥反应、降凝血发展到治疗癌症、HIV感染等疑难性疾病[2】。 1.1.1 两种抗体修饰的双靶向免疫脂质体 靶向物用两种不同的抗体修饰脂质体,可增加其结合特异性和细胞摄取率,并且抗体在靶向细胞时能产生协同作用【3】。Laginha等【4]假设脂质体通过抗体靶向到两种或多种受体时,由于受体密度增加,靶向效果会更好,并用荧光测定分析法验证了这一假设的正确性。这项实验中,分别制备了连接相同密度抗体的aCD19靶向脂质体、etCD20靶向脂质体、两种脂质体混合物(混合比例为1:1)及双靶向脂质体,证实了双靶向脂质体和混合脂质体较单个抗体修饰的脂质体和受体有更大的结合率和摄取率,且出现加和性;细胞毒性实验中,装载有阿霉素的双靶向脂质体较这两种脂质体混合物有更高的细胞毒性。Saul等【5]以阿霉素为模型药物,用叶酸和抗表皮生长因子的单抗修饰脂质体,同时靶向两种受体,使药物更多地聚集于肿瘤靶位,降低了对正常组织的毒性。 1.1.2 抗体片段修饰的免疫脂质体 虽然抗体对靶点具有高选择性,但持续给药时,患者往往会出现免疫反应,特别是应用外源性抗体f如鼠)时免疫反应加剧。而抗体片段Fab。(55kDa)、单链抗体可变区基因片段scFv(35kDa)产生的免疫原性比整个单抗低,且更易控制其性质

茶多酚的合成工艺研究进展

茶多酚的合成工艺研究进展 摘要:茶多酚是茶叶中主要的水溶性物质,是茶叶主要功能成分之一,是茶叶中多酚类物质的总称。其多分分子结构中具有活泼的羟基氢,能终止自由基的连锁反应,消除体内超氧阴离子的自由基、防治心血管疾病、抑制肿瘤等优异功能。研究表明:茶多酚卓越的抗氧化性,能阻止和延缓不饱和脂肪酸的氧化和分解。茶多酚的抗氧化能力是二丁基羟基甲苯(BHT)、丁基羟基茴香醚(BHA)的4——6倍,是Ve 的6——7倍,Vc的5——10倍,而无合成物的潜在毒副作用。我国对茶多酚的研究始于上世纪五六十年代,到七十年代初已开始专项研究,现在此方面也处于世界领先水平,确定了茶多酚天然抗氧化剂为我国食品添加剂之一。现今茶多酚的功能引起了各国的广泛重视,成为各工业化国家的技术竞争目标和研究开发热点。关键词:茶叶、茶多酚、提取、功能 正文:1.茶多酚的研究 茶多酚可分为黄烷醇类、4-羟基黄烷醇类、花色苷类、黄酮类、黄酮醇类和酚酸类等。茶多酚在茶叶中的含量一般在15%-20%,在茶多酚中各组成分中,以黄烷醇类为主,而黄烷醇类又以儿茶素类物质为主。儿茶素类物质的含量约占茶多酚总量的70%左右。 茶多酚是酚类衍生物, 呈弱酸性(pH≈6),能使蛋白质凝固或变性,有杀菌和抑制细菌生长的作用,还有抗癌、抗衰老、抗辐射、清除人体自由基、降低血糖血脂等一系列重要药理功能(1)。近年来, 茶多酚在食品加工、医药保健、日用化工、农业生产等领域有重要的应用。因此,有效地提取茶多酚,实现茶多酚的综合利用具有十分重要的意义。 茶多酚外观为棕黄、淡黄或淡黄绿色的粉末,易溶于水,可溶于甲醇、乙醇、丙酮、乙酸乙酯,不溶于氯仿,味苦涩,在pH4-8稳定,遇强碱、强酸、光照、高热及过渡金属易变质。最高耐热温度在一个半小时内,可达250。C左右,在三价铁离子下易分解。 2.茶多酚的提取方法 2.1 溶剂萃取法 溶剂萃取法是传统的提取方法, 该法利用茶多酚易溶于水、乙醇、甲醇、丙酮、乙醚、乙酸乙酯等溶剂而不溶于氯仿的性质, 将其从茶叶中分离出来。溶剂萃取法主要有以下几种: 2.11 水提取法〔2〕,简称水法 以水为溶剂, 采用水浴加热提取多次, 合并提取液后用氯仿萃取, 分出氯仿相后改用乙酸乙酯多次萃取,合并乙酸乙酯相并减压蒸馏浓缩近干, 将其干燥后用去离子水重结晶即得产品。工艺流程为:水提-减压浓缩-溶剂萃取精制-浓缩转相-喷雾干燥。特点是设备投资小,但是排污量巨大,单位产值能耗大。 2.12 提膜浓缩萃取法,简称膜法 它是在水法基础上升级工艺,降低了环保成本。工艺流程为:水提-膜过滤-膜浓缩-溶剂萃取精制--喷雾干燥。特点是设备投资和膜运行成本大,能耗和排污较水法大幅降低。 2.13 有机溶剂萃取法〔3〕 工艺流程:茶叶--有机溶剂浸提--减压蒸馏浓缩--水+氯仿萃取--水层用乙酸乙酯进行萃取--含有茶多酚的乙酸乙酯溶液---浓缩、干燥---茶多酚粗品。该法的优点是茶多酚提取率相应提高,色素、咖啡因分别脱除,便于对茶叶进行综合利用。缺点是操作费时麻烦, 生产成本高;所用有机溶剂多,且溶剂回收、溶液浓缩能耗大,茶多酚氧化变质,产品纯度通常只能达到50%~70%〔4〕。 2.2 相转移提取法,简称酯法 工艺流程为:酯水相转移提取-浓缩-精制转相-BVD真空带式干燥机干燥。特点是:低能耗;低排污;收率高;整条工艺线路完全符合绿色环保低能耗高技术含量的产业发展政策。 2.3 树脂吸附法 树脂法是利用树脂具有吸附-解吸作用的特性来分离提纯茶叶中的茶多酚。根据其操作方法的不同可分为吸附柱分离法、离子交换柱分离法和凝胶柱分离法三种。工艺流程为:水提-树脂吸附-不同浓度乙醇洗脱-浓缩转相-喷雾干燥。特点是设备投资较大,需要乙醇精馏装置,溶剂消耗成本较高,排污量大〔5〕 2.4 超临界萃取法

鲁棒优化及相关问题的研究

鲁棒优化及相关问题的研究 鲁棒优化研究带不确定性的优化问题,是不确定优化的一个分支.在鲁棒优化中,主要关注由不可控参数引起的不确定性,且仅知道不 可控参数在某个不确定集中取值.由于对实际问题有效的建模和求解,鲁棒优化已发展成为处理不确定优化问题重要且十分普遍的工具.基于鲁棒性这个概念,本文围绕鲁棒优化探讨了无穷多目标优化、不确定向量优化和不确定互补问题中相关的一些重要课题.主要内容如下:1.基于对强鲁棒性、一致鲁棒性和严格鲁棒性的细致分析,通过设置调整变量建立了一种新的鲁棒性,称为松弛鲁棒性.其对应的松弛 鲁棒模型包含了相关文献中出现的具有松弛意义的大部分模型,例如偏离鲁棒模型、可靠鲁棒模型、软鲁棒模型以及随机方法中的期望值模型和风险规避模型.这个统一的模型表明:对不确定性的处理方式 取决于决策者对不确定性掌握的信息、对这些信息的态度以及可用的数学方法.另外,提出了鲁棒性测度并研究了它的一些基本性质,如平移同变性、单调性、正齐次性和凸性.2.在基于分量比较的序结构上,对无穷多目标优化问题引入了Pareto有效性和Geoffrion真有效性,并借此表明了无穷多目标优化与不确定/鲁棒优化的密切关系.针对 一般的不确定优化问题,利用推广的ε-约束方法得到了 Pareto鲁棒解的生成方法.通过一族锥刻画了Geoffrion真有效性,并揭示了Pareto有效性与Geoffrion真有效性的本质区别:Pareto有效性需要对其它的成员补偿都有界,而Geoffrion真有效性要求对其它的成员补偿一致有界.最后,将Geoffrion真有效性应用到鲁棒对应上,得到

了不确定型选择理论中著名的Hurwicz准则.3.遵循鲁棒标量优化中的研究方法,对不确定向量优化问题,首先建立了硬性意义下的鲁棒对应模型.然后,出于对这个鲁棒模型一个缺点的修正,利用Pareto 有效性的思想将其松弛,得到了紧性意义下的鲁棒对应模型.不同于文献中大量使用的集方法,这两个鲁棒模型属于鲁棒多目标/向量优化研究中的向量方法.与基于集方法得到的鲁棒模型进行了深刻地比较,展示出它们特殊的地位以及向量方法更大的潜力.4.对带模糊参数的互补问题,利用可能性理论中的可能性测度和必要性测度去除模糊,提出了两类确定性的模型,分别称为可能性满意模型和必要性满意模型.从不同的角度进行了分析,得到了它们的解具有的一些重要特征.随后,比较了几种受不同类型的不确定性影响的互补问题及相应的处理方法,包括对模糊映射的模糊互补问题、对不确定集的鲁棒互补问题和对随机不确定性的随机互补问题.最后,将这两类模型应用到模糊优化、模糊博弈和带模糊互补约束的数学规划问题上.

2018年新型制剂微球脂质体行业分析报告

2018年新型制剂微球脂质体行业分析报告 2018年10月

目录 一、新型注射制剂兴起,关注微球和脂质体 (6) 1、剂型是药物的表现形式,注射剂型独具优势 (6) 2、传统注射制剂存在诸多缺陷,新型注射制剂应运而生 (7) 3、关注进展最快的注射用微球和脂质体 (9) (1)微球:长效化优势明显,市场表现较好,技术壁垒较高 (9) ①微球制剂长效化优势明显,上市后取代普通制剂,市场份额可超50% (9) ②微球主要用于多肽类药物,近些年多肽药物发展迅速,微球制剂市场空间广阔 (12) ③微球制剂产业化技术壁垒较高,研发成本高昂,研发周期长,竞争格局良好13 (2)脂质体:靶向性好,抗肿瘤药物前景广阔,技术壁垒较高 (15) ①脂质体作为药物运载体,靶向性强,在提高药物疗效的同时可降低药物副作用 (15) ②脂质体主要用于抗肿瘤药物,抗肿瘤药物市场增长迅速,前景广阔 (17) ③脂质体工业化生产较难,技术壁垒较高,竞争格局良好 (18) 二、全球注射微球脂质体的崛起之路 (19) 1、三十余年的发展,全球注射微球脂质体市场稳步增长 (19) 2、回溯全球90年代制剂发展,探寻微球脂质体的崛起原因 (21) (1)技术端:制剂水平的进步和相关技术突破 (21) (2)政策端:专利法案推动科研成果转化,政策鼓励剂型创新 (24) (3)需求端:全球疾病谱变化,肿瘤等慢性病患者人数增加 (26) 三、国内外代差明显,三大因素推动行业快速发展 (27) 1、微球脂质体处于起步阶段,销售额增长迅速 (27) 2、“技术+政策+需求”三因素推动行业快速发展 (29) (1)技术端:技术已有突破,产品质量不断提升 (29)

脂质体的研究现状及主要应用

脂质体及其医药应用 化学01 马高建2010012222 摘要:脂质体是一种天然脂类化合物悬浮在水中形成的具有双层封闭结构的囊泡,目前可由人工合成的磷脂化合物来制备。它作为一种高效的载体,近年来在医药、化妆品和基因工程领域等都有广泛应用,国内外在这方面进行了大量的研究,并取得了一些进展。本文将对脂质体的研究现状和其在医药方面的应用做一下概括,并对脂质体的发展前景做一下展望。 关键词:脂质体、制备、医药、应用 脂质体最初是1965年英国学者Banyhanm和Standish将磷脂分散在水中进行电镜观察时发现的。磷脂分散在水中自然形成多层囊泡,每层均为脂质双分子层,囊泡中央和各层之间被水隔开,双分子层厚度约4 nm,后来将这种具有类似生物膜结构的双分子小囊泡称为脂质体,又称人工膜。 1988年,第一个脂质体包裹的药物在美国进行临床试验,现在用脂质体包裹的抗癌药、新疫苗、其他各种药品、化妆品、农药等也开始上市。 我国的脂质体研究始于上世纪70年代,经过近30年的研究,我国在脂质体的研究和应用方面取得了可喜的成果。目前我国已有多个以脂质体作载体的新药剂型进入临床验证阶段。 当前脂质体的医药应用研究主要集中在模拟膜的研究、药品的可控释放和体内的靶向给药,此外还有如何在体外培养中将基因和其他物质向细胞内传递。由于脂质体具有生物膜的特性和功能,它作为药物载体的研究已有多种,主要用于治疗癌症的药物,它可将包封的活性物质直接运输到所选择的细胞上,故有“生物导弹”之称。 1 脂质体及其分类 脂质体(或称类脂小球、液晶微囊),是一种类似微型胶囊的新剂型,是将药物包封于类脂质双分子层形成的薄膜中间所制成的超微型球状载体剂型,其内部为水相的闭合囊泡。由于其结构类似生物膜,故又称人工生物膜。脂质体主要有双分子层组成,磷脂(卵磷脂、脑磷脂、豆磷脂)和胆固醇是形成双分子层的基础物质,再加入其他附加剂制备而成。 1.1 结构 脂质体可以是单层的封闭双层结构,也可以是多层的封闭双层结构。在显微镜下,脂质体的外形除了常见的球形、橄榄形外,还有长管状结构,直径可以从几百A到零点几毫米(mm),而且各种大小和形状的结构可以共存。 1.2 性质 1.2.1 相变温度T c在加热情况下,脂质体的磷脂分子两条碳氢链从有序的凝胶

茶多酚的研究及新进展

茶多酚的研究进展 (华丹2007090306 ) 摘要:茶多酚(tea polyphenols,TP) 属于植物混合多羟基酚类,是儿茶素(黄烷醇类)、花色素类(花青素和花白素)、花黄素类(黄酮与黄酮醇类)和缩酸及缩酚酸类等集中于茶叶中的一群多酚复合物的总称。它是一种新型的天然抗氧化剂,自从20世纪60年代初发现茶多酚具有抗氧化活性激素后,茶多酚的提取、分离、检测、应用就引起了国内外广大学者的关注,经研究表明它是一种高效、天然安全的抗氧化剂,目前它在油脂、食品、医药、日化、轻化、化妆品、保健等诸多方面已有广泛应用,并被专家誉为21世纪将对人类健康产生巨大影响的化合物。茶多酚具有很强的生物学活性,除了抗氧化、清除自由基、抑制致癌物引起的突变外,还可以抑制细胞增殖、诱导细胞凋亡和阻遏细胞周期等,是一种很有前途的抗癌药物。本文就茶多酚的抗氧化、清除自由基、抗癌特性以及其生物活性和药理作用的研究进展和应用前景作一综述。 关键词:茶多酚防帕金森病糖尿病超氧化自由基提取纯化天然抗氧化剂抗肿瘤清除自由基降血糖抗氧化应用展望 一.茶多酚有防控帕金森综合症的作用 帕金森症是一种进行性的中枢神经系统退化疾病,是由产多巴胺脑细胞的异常损失引起的,目前尚无法治愈。 中科院生物物理所赵保路研究组的研究成果发现一氧化氮(NO)和活性氧(ROS)自由基在6-羟多巴(6-OHDA)诱发神经细胞凋亡和导致帕金森病起着重要作用[1]。他们系统研究了天然抗氧化剂茶多酚的性质、结构和功能,在细胞和动物模型中研究了茶多酚预防和治疗帕金森病的作用,阐明了茶多酚通过清除一氧化氮(NO)和活性氧(ROS)自由基预防帕金森症的分子机理和信号通路,并于2007年获得了国家发明专利。目前宣武医院正在进行临床实验。如果成功,这将是一个没有毒副作用的预防和治疗帕金森病的药物,给广大老年群体和帕金森病患者带来福音。 二.防治心血管疾病作用 茶多酚可以有效的防止动脉粥样硬化、降低血压、防止血小板凝集。动脉粥样硬化(AS)的发生与血浆脂质关系密切,低密度脂蛋白(LDL)可致AS,而高密度脂蛋白(HDL)则起拮抗作用。载脂蛋白缺乏和异常可影响血脂的运输和代谢,LDL的氧化修饰可使血管内皮受损,胆固醇沉积于血管壁而发生AS。茶多酚能有效防止心血管疾病的发生是因为茶多酚可以降低甘油三酯和LDL的含量,影响LDL的氧化修饰,提高HDL的含量。 在混合血浆中加入不同量的茶多酚后与对照组比较,结果,对照组的凝固时间为192s,而添加茶多酚0.5mg的实验组4h后血浆仍未凝固,且随茶多酚添量的减少,凝固时间逐渐恢复常态。同时还发现醋酸纤维电泳纤蛋白原区带消失,这说明茶多酚具有良好的抗凝和促纤作用[2]。姜玉如等[3]研究发现,茶多酚尤其是其中的儿茶素EC和EGC及其氧化产物茶黄素等,可抑制动脉中膜胶原及平滑肌细胞的增殖,有助于抑制血管平滑肌细胞增生后形成动脉粥样硬化

基于鲁棒优化的若干投资组合模型研究

基于鲁棒优化的若干投资组合模型研究 投资组合通常是指个人或机构所拥有的由股票、债券及衍生金融工具等多种有价证券构成的一个投资集合。传统上投资组合模型数学规划的经典范例是在输入参数准确可知并且等于某些标称值的假设条件下建立模型,并利用已有的数学规划方法求解模型得出最优解。然而,这些方法并没有考虑数据的不确定性对建模质量和可行性的影响,本文采用鲁棒优化方法构建投资组合模型解决投资组合模型容易受输入参数影响的问题。本文一方面试图将鲁棒优化方法在不同投资组合模型中的应用建立一个系统的框架,另一方面弥补了国内目前仅对部分投资组合鲁棒优化模型进行研究,而忽略了交易成本和现实约束对鲁棒优化投资组合模型的影响,丰富了鲁棒优化投资组合模型的应用范围,同时针对其衍生(含交易成本和现实约束)鲁棒优化模型得到以下结论:(1)鲁棒优化投资组合模型相比于传统的投资组合模型(相对应的模型进行比较,即如:鲁棒均值-CVaR投资组合(RCVaR)模型相比于均值-条件风险价值(CVaR)投资组合(MCVaR)模型)更能获得 稳定的回报,投资绩效更高。 (2)交易成本的引入。对于将交易成本引入投资组合优化模型后鲁棒优化模型进行分析,这类投资组合优化模型是可解的、有效的、具有鲁棒性的,其投资组合收益、投资组合风险和投资组合绩效表现均优于将交易成本直接引入投资组合优化模型,表明引入交易成本后鲁棒优化模型仍是有效的。同时在基于交易成本的鲁棒优化模型中引入现实约束,则会进一步提升投资组合收益、组合风险和投资组合绩效方面的表现。(3)现实约束的引入。 对于不含交易成本的鲁棒优化模型引入现实约束后得出:第一,分散化程度对投资组合影响。在投资组合各项资产权重充分分散之前,随着投资组合分散程度的增加,投资组合收益降低,投资组合风险减小,这与资本市场实际情况相同;在投资组合各项资产权重充分分散之后,随着投资组合分散程度的增加,投资组 合收益同样减小,但是投资组合风险增加。第二,流动性水平对投资组合影响。当投资组合管理者对资产组合的最低流动性水平要求越高时,投资组合的风险越大、投资组合的收益增加、投资组合的绩效降低,反之亦然,这与现实证券市场中的投资决策完全一致。 第三,资产上下界约束对投资组合影响。从投资组合收益与绩效角度而言,

脂质体

脂质体(Liposomes)是由磷脂胆固醇等为膜材包合而成。磷脂分散在水中时能形成多层微囊,且每层均为脂质双分子层,各层之间被水相隔开,这种微囊就是脂质体。脂质体可分为单室脂质体、多室脂质体,含有表面活性剂的脂质体。按性能脂质体可分为一般质体(包括上述单室脂质体、多室脂质体和多相脂质体等)特殊性能脂质体、热敏脂质体、PH敏感脂质体、超声波敏感脂质体、光敏脂质体和磁性脂质体等。按电荷性,脂质体可分为中性脂质体、负电性脂质体、正电性脂质体。 脂质体作为药物载体在恶性肿瘤的靶向给药治疗方面极具潜力。为克服脂质体作为载体的靶向分布不理想、稳定性较差的缺点,近年来开发了一些新型脂质体,如温度敏感型、PL敏感型、免疫、聚合膜脂质体。前体脂质体概念的提出和研究,提供了克服脂质体不稳定的较好思路。 脂质体作为目前最先进的,被喻为"生物导弹"的第四代给药系统成为靶向给药系统的新剂型。 脂质体的靶向性 通过改变脂质体的给药方式、给药部位和粒径来调整其靶向,另外,还可在脂质体上连接某种识别分子,通过其与靶细胞的特异性结合来实现专一靶向性。 靶向性是脂质体作为药物载体最突出的优点,脂质体进入体内后,主要被网状内皮系统吞噬,从而使所携带的药物,在肝、脾、肺和骨髓等富含吞噬细胞的组织器官内蓄积。 1.天然靶向性是脂质体静脉给药时的基本特征,这是由于脂质体进入体内即被巨噬细胞作为外界异物吞噬的天然倾向产生的。脂质体不仅是肿瘤化疗药物的理想载体,也是免疫激活剂的理想载体。 2. 隔室靶向性是指脂质体通过不同的给药方式进入体内后,可以对不同部位具有靶向性,可以通过各种给药方式进入体内不同的隔室位置产生靶向性。在组织间或腹膜内给予脂质体时,由于隔室的特点,可增加对淋巴结的靶向性。 3. 物理靶向性这种靶向性是在脂质体的设计中,应用某种物理因素的改变,例如用药局部的pH、病变部位的温度等的改变而明显改变脂质体膜的通透性,引起脂质体选择性地在该部位释放药物。弱离子性药物的脂质体,在进入体内后,可以选择性地在肿瘤的低pH局部释放药物。这种受pH影响释放药物的脂质体称为pH敏感脂质体。 4.配体专一靶向性这种靶向性是在脂质体上连接某种识别分子,即所谓的配体,通过配体分子的特异性专一地与靶细胞表现的互补分子相互作用,而使脂质体在靶区释放药物。 脂质体的分类 1. 阳性脂质体 阳性脂质体(cationic liposome)又称阳离子脂质体,正电荷脂质体(Positiveiy charged liposome)是一种本身带有正电荷的脂质囊泡。 1.1 阳性脂质体的组成大多数阳性脂质体是由一种中性磷脂和一种或多种阳性成分 组成。 中性磷脂成分:阳性脂质体中使用的中性磷脂成分上与常规脂质体相似,如胆固醇(cho1)、磷脂酰胆碱(PC)、磷脂酚乙醇胺(PE)等。 阳性成分:多为合成的双链季铵盐型表面活性剂,具有体外稳定性好,体内可被生物降解的优点,但均具有一定的细胞毒性。

脂质体在药剂领域的研究进展

脂质体在药剂领域的研究进展 摘要:目的:本文对脂质体特点、制备方法、最新进展及其在药剂领域的应用进行概述,总结分析脂质体在药剂领域的发展方向和前景。方法:查阅中国知网、Science direct、Web of Science等主流数据库的文献,并总结归纳。结果:发现脂质体在药剂领域(中药、化学药、生物制品等)应用广泛,近年来取得很大进展,部分药物已用于临床。结论:脂质体作为一种新型药物载体,不断发展与完善在药剂领域具有十分广阔的应用前景。 关键词:脂质体、药物递送、靶向、研究进展 Research Progress of Liposomes in Pharmaceutical Field Dan Zhao, school of pharmacy, Pharmaceutics 1302, 3131602034 Abstract: Objective: this article summarizes the characteristics of liposomes, preparation methods, latest developments and their applications in pharmacy field, and to conclude the development direction and prospects of liposomes in pharmaceutical field. Methods: The literatures of mainstream databases such as China Knowledge Network, Sciencedirect and Web of Science were reviewed and summarized. Results: Liposomes have been widely used in pharmaceutical field (traditional Chinese medicine, chemical medicine, biological products, etc.) and have made great progress in recent years. Some drugs have been used in clinic. Conclusions: As a new drug carrier, liposomes have very wide application prospects in pharmaceutical field. Keywords: liposomes, drug delivery, targeting, research progress 脂质体是指由磷脂等类脂质构成的双分子层球状囊泡,它将药物包封于双分子层内而形成微型载药系统。除常见的类脂质双分子层外,它也可以是多层同心脂质双分子层。上个世纪60年代中期,脂质体技术应用于化妆品领域, 但直到 20世纪 70年代才将脂质体应用于药物载体, 并引起广泛关注1。因为脂质体具有诸多优良的特性,例如可通过修饰进行靶向给药、毒性及免疫反应小2等等,其后被广泛用于生命科学及工程领域。 1.脂质体及脂质体药物制剂的特点 脂质体具有以下特点3: 1)脂质体本质上是一种囊泡; 2)脂质体很小一般在 1 μm 以下(1 000 μm =1 mm); 3)脂质体的囊泡壁一般是由两层磷脂分子构成,也可以是多层同心脂质双分子层; 4)磷脂在一定条件下才能形成脂质体 ,并非把磷脂放在水中就产生脂质体 ,磷脂在水中或甘油中搅拌只能形成乳化颗粒; 5)脂质体可以包裹其他物质(如药物)形成不同内容物脂质体,通过电、超声、热、光等致孔可以使药物从脂质体释放,并且所形成孔的大小和分布会影响释药速度4。 脂质体药物制剂具有以下特点5: 1)体内可降解; 2)低免疫原性; 3)保护药物活性基团; 4)可制备靶向制剂; 5)延长药物半衰期。 理想的脂质体载药系统应具备以下特点:包封率高,药物不易渗漏、粒径分布范围窄、稳定性好,氧化降解速度缓慢3。虽然近年来脂质体药物的研究取得了很大的进步,如多柔

一种新型脂质体热敏脂质体

一种新型脂质体热敏脂质体脂质体是一种定向药物载体,属于靶向给药系统的一种新剂型。它可以将药物粉末或溶液包埋在直径为纳米级的微粒中,这种微粒具有类细胞结构,进入人体内主要被网状内皮系统吞噬,从而激活机体的自身免疫功能,并改变被包封药物的体内分布,使药物主要在肝、脾、肺和骨髓等组织器官中积蓄,从而提高药物的治疗指数,减少药物的治疗剂量和降低药物的毒性。脂质体由双分子层组成,主要由磷脂为膜材及附加剂构成,其成分不但是形成脂质体双分子层的基础物质,而且本身也具有极为重要的生理功能。按性能脂质体可分为一般脂质体、热敏脂质体、pH敏感脂质体、微波敏感脂质体、声振波敏感脂质体、光敏感脂质体和磁性脂质体等。 热敏脂质体的释药原理 在研究的各种新型脂质体中,热敏脂质体(温度敏感脂质体)是一个很有发展前途的分支,它有效利用了脂质体和热疗的双重优势来提高治疗效果,降低毒副作用。 在正常的体温下,脂质体膜呈致密排列的胶晶态,亲水性药物很难透过脂质体膜而扩散出来。当脂质体随血液循环经过被加热的靶器官时,局部的高温使磷脂分子运动加强,脂质体膜的结构发生变化,原来排列整齐致密的胶晶态磷脂双分子层在较高温度下变成疏松混乱的液晶态。脂质体在由凝胶态转变到液晶结构的相变温度(Tm)时,其磷脂的脂酰链紊乱度及活动度增加,膜的流动性也增大,这种结构的变化导致脂质体膜的通透性发生改变,脂质体内部

包封的药物借助于跨膜浓度梯度而大量扩散到靶器官中,在靶部位形成较高的药物浓度,对周围的肿瘤细胞产生较强的杀伤作用,从而达到局部化疗的作用;而偏出相变温度时药物释放则缓慢。因此,根据这一原理用相变温度较低的类脂制备的脂质体,在未加热的器官中药物浓度比较低,对正常细胞产生的杀伤作用很小,使化疗药物所致的恶心、呕吐等副作用明显降低,减轻了病人的痛苦,增加了用药的顺应性;而当机体全身或局部温度升高到41~42℃时,就可以引起脂质体迅速释放内含药物,发挥药效。 制备热敏脂质体的材料 合成磷脂一般以二棕榈酰磷脂酰胆碱(DPPC)为主,通过加入其他不同碳链长度的磷脂来调节脂质体膜的释放特性。例如,DPPC (Tm=41℃)通常与二棕榈酰磷脂酰甘油(DPPG)(Tm=41℃)按一定比例混合以得到不同的Tm。由于合成磷脂的纯度高,脂酰基的烃链长度基本一致,受热时分子运动规律相近,因此有比较固定的相变温度。但合成磷脂的制备工艺复杂,成本高,因此限制了热敏脂质体在临床上的推广应用。 高分子聚合物各国学者试图用廉价的合成高分子材料替代合成磷脂,制备具有热敏性的类脂泡囊,以降低成本,增加实用性。经体外试验证明,这类高分子类脂小囊具有良好的热敏性,但受到生物相容性和生物可降解性的限制。 天然磷脂天然磷脂也可作为制备热敏脂质体的材料,但是由于组成天然磷脂的脂酰基的烃链长短不一,形成脂质体时这些烃链容

相关文档
最新文档