粉末电致发光材料晶体生长和发光特性(精)

粉末电致发光材料晶体生长和发光特性(精)
粉末电致发光材料晶体生长和发光特性(精)

粉末电致发光材料晶体生长和发光特性

本论文研究了Cu~+对ZnS:Cu电致发光材料发光特性的影响;讨论了晶体生长过程中灼烧温度、助熔剂的作用及对发光材料结构、粒度、发光特性的影响;采取相变技术和采用掺入两种激活剂的方法较大地提高了粉末电致发光材料的发光性能。研究表明,随着Cu+掺入量的增加,材料发光亮度随之增加,Cu+掺入浓度为0.15%时,发光材料的亮度达到最大,但发光亮度并不会随着Cu+掺杂浓度的增加一直增大。同时借助光致发光光谱进一步研究了ZnS:Cu的发光机理及发光特性,Cu+浓度小于0.15%时,光致发光光谱的峰值随Cu+浓度增加而逐渐增大,当Cu+浓度为0.15%时,光致发光光谱的峰值达到最大, Cu+浓度大于0.15%时,光致发光光谱的峰值开始迅速下降。通过改变灼烧温度及灼烧气氛达到改变晶体粒度的大小,随着焙烧温度的提高,ZnS:Cu的平均粒度增大,在800℃到1250℃之间可以获得平均粒度在5/μm-22/μm的发光材料,发光材料的亮度也呈增大的趋势。虽然助熔剂Br-、Cl-的加入对发光材料的粒度影响较小,但Br-、C1-起电荷补偿作用,可增加Cu+在晶体中的溶解度。我们采用晶体相变技术,获得了以立方相结构为主、结晶好、亮度高的绿色发光材料。本文提出在ZnS基质材料中同时掺入Cu+、Au+两种激活剂,通过改变掺杂比例来探索提高粉末电致发光材料发光性能的方法,在ZnS晶体中它们以一价阳离子形式进入ZnS晶格中,形成更多的发光中心。通过在基质ZnS材料中掺入Cu+和Au+两种不同浓度的激活剂,在不影响材料颜色的前提下,较大地提高了电致发光材料的亮度。论文的完成对改善绿色交流粉末电致发光材料ZnS:Cu的发光特性,获得优质的ZnS:Cu绿色发光材料及拓宽材料的应用领域有着重要的经济和现实意义。

同主题文章

[1].

Aron ,Vecht

,朱自熙. 八十年代粉末电致发光(EL)技术' [J]. 发光学报. 1981.(03)

[2].

近期外文资料索引' [J]. 液晶与显示. 1986.(06)

[3].

周连祥. 一种研究粉末电致发光(EL)器件频率特性的新方法' [J]. 发光学报. 1992.(01)

[4].

王金忠,杜国同,王新强,闫玮,马燕,姜秀英,杨树人,高鼎

三,Chang ,R ,P ,H. 退火对ZnO薄膜结构及发光特性的影响' [J]. 光学学报. 2002.(02)

[5].

谢伦军,陈光德,竹有章,汪,屿. ZnO薄膜表面和边缘的发光特性(英文)' [J]. 发光学报. 2006.(06)

[6].

刘哲. 从Se和/或As溶剂中生长的ZnSe单晶的光致发光(PL)及形态' [J]. 液晶与显示. 1988.(01)

[7].

段家怟,毛晋昌,张丽珠,张伯蕊,秦国刚. 氧与激光辐照对多孔硅光致发光光谱的影响' [J]. 红外与毫米波学报. 1992.(05)

[8].

常树岚. Ce、Eu、Tb、Sm在CaO-B_2O_3-CaCl_2中的光谱行为' [J]. 延边大学学报(自然科学版). 2007.(03)

[9].

滕枫,唐爱伟. 掺杂DCJTB聚乙烯咔唑的发光性质' [J]. 发光学报. 2008.(06)

[10].

李清山,方容川. 多孔硅光致发光的时间效应' [J]. 中国科学技术大学学报. 1993.(03)

【关键词相关文档搜索】:光学工程; ZnS; 电致发光; 晶体生长; 相变; 发光光谱; 助熔剂; 激活剂

【作者相关信息搜索】:河北大学;光学工程;李志强;王伟平;

发光材料

上海理工大学 目录 一、引言 (1) 二、发光现象及其原理 (1) 2.1荧光现象 (1) 2.2 LED现象 (2) 2.3白炽灯现象 (2) 2.4 HID现象 (2) 2.5有机发光原理 (2) 三、发光材料的应用 (3) 3.1光致发光材料 (3) 3.2阴极射线发光材料 (4) 3.3电致发光材料 (4) 3.4辐射发光材料 (4) 3.5光释发光材料 (5) 3.6热释发光材料 (5) 3.7高分子发光材料 (5) 3.8纳米发光材料 (6) 四、结束语 (6) 五、参考文献 (7)

发光材料 一、引言 众所周知[1],材料、能源和信息是21世纪的三大支柱。发光材料作为人类生活中最为重要的材料之一,有着极其重要和特殊的地位。随着科学技术的进一步发展,发光材料广泛运用于化工、医药食品、电力、公用工程、宇航、海洋船舶等各个领域。各种新型高科技在运用于人类日常生活中,势必都需要用到部分不同成分和性质的发光材料。 从20世纪70年代起,科学家们发现将稀土元素掺入发光材料,可以大大提高材料的光效值、流明数和显色性等性能,从此开启了发光材料发展的又一个主要阶段。世界己经离不开人造光源,荧光灯作为最普遍的人造光源之一己在全世界范围内开始应用,据统计全世界60%以上的人工造光是由荧光灯提供的,而大部分荧光灯就是利用稀土三基色荧光粉发光的。 二、发光现象及其原理 不同发光材料的发光原理不尽相同,但是其基本物理机制是一致的:物质原子外的电子一般具有多个能级,电子处于能量最低能级时称为基态,处于能量较高的能级时称为激发态;当有入射光子的能量恰好等于两个能级的能量差时,低能级的电子就会吸收这个光子的能量,并跃迁到高能级,处于激发态;电子在激发态不稳定,会向低能级跃迁,并同时发射光子;电子跃迁到不同的低能级,就会发出不同的光子,但是发出的光子能量肯定不会比吸收的光子能量大。 2.1荧光现象 荧光发光的主要原理:紫外线的光子的能量比可见光的能量大;当荧光物质被紫外线照射时,其基态电子就会吸收紫外线的光子被激发而跃迁至激发态;当它向基态跃迁时,由于激发态与基态间还有其他能级,所以此时释放的光子能量就会低于紫外线的能量,而刚好在可见光的范围内,于是荧光物质就会发出可见光,这种光就叫做荧光。常见的日光灯发 1

DNA电致化学发光分析方法研究

DNA电致化学发光分析方法研究 电致化学发光(ECL)是在化学发光基础上发展起来的一种新的分析方法,它 是化学发光与电化学相结合的产物,兼具化学发光和电化学分析的优点,同时又 延伸出一些独特的优势,例如灵敏度高、抗干扰能力强、重现性好、可进行原位现场分析、动态范围宽等。自2002年有关Si纳米粒子的ECL研究被报道以来,半导体纳米晶(SNCs)作为新型的ECL材料近年来备受关注。与传统的分子发射物相比,半导体纳米晶有着独特的优点,例如尺寸/表面缺陷控制的发光、无光漂白、稳定性好。 因此,基于半导体纳米晶的ECL已经被广泛地应用于生物传感和生物分析中。本论文研究了多种SNCs的ECL性能,并以这些物质为ECL发光体,结合DNA杂交技术、界面能量转移技术和酶的循环放大技术,实现了 DNA的序列识别及含量测定,为新型DNA传感器的开发提供了新的思路和方法。1.基于金纳米粒子和等温循环双重放大的超灵敏ECL法检测DNA将具有等温放大效应的“DNA机器”与Au 纳米粒子对CdS半导体纳米晶膜ECL距离可控的猝灭与增强现象相结合,发展了一种新型超灵敏的ECL DNA传感界面。 ECL体系中的这种界面能量转移给生物识别元件的转换提供了一种新的方法,且等温DNA放大反应可以在室温条件下进行,因此避免了热循环的一些要求。此研究结果不仅为超低浓度DNA检测提供了一种新的方法,还给DNA生物传感器对其他分析物的检测带来广阔的应用前景。2.基于等温循环放大和双纳米粒子标记的三茎式探针的超灵敏单核苷酸多态性ECL检测方法基于等温循环协助的标 记有Au和CdTe两种纳米粒子(NPs)的三茎式探针,我们研发了一种新型的电致化学发光(ECL)检测单核昔酸多态性的方法。

电致发光及原理

电致发光及原理 电致发光ElectroluminescenceEL是物质在一定的电场作用下被相应的电能所激发而产生的发光现象。电致发光EL是一种直接将电能转化为光能的现象。早在20世纪初虞瑟福就发现了SiC晶体在电场作用下的发光。电致发光作为一种平面光源引起了人们的极大爱好。人们企图实现照明光源从点光源、线光源到面光源的革命。自从无机发光板硫化锌和磷砷化镓化合物发明以来电致发光已被广泛应用在很多领域取得了令人瞩目的成就。尽管粉末电致发光现象早在1937年就被发现但直到50年代将硫化锌和有机介质涂敷在透明导电玻璃上再做上第二电极加上交流电压才实现稳定的电致发光。人们逐渐把目光投向了性能更为优良的新一代平板显示器件工艺更简单的新型有机电致发光器件OLED。 1.电致发光材料从发光材料角度可将电致发光分为无机电致发光和有机电致发光。无机电致发光材料一般为等半导体材料。有机电致发光材料依占有机发光材料的分子量的不同可以区分为小分子和高分子两大类。小分子OLED材料以有机染料或颜料为发光材料高分子OLED材料以共轭或者非共轭高分子聚合物为发光材料典型的高分子发光材料为PPV及其衍生物。有机电致发光材料依据在OLED器件中的功能及器件结构的不同又可以区分为空穴注进层HIL、空穴传输层HTL、发光层EML、电子传输层ETL、电子注进层EIL等材料。其中有些发光材料本身具有空穴传输层或者电子传输层的功能这样的发光材料也通常被称为主发光体发光材料层中少量掺杂的有机荧光或者磷光染料可以接受来自主发光体的能量转移和经过载流子捕捉carriertrap的机制而发出不同颜色的光这样的掺杂发光材料通常也称为客发光体或者掺杂发光体英文用Dopant表示。从发光原理角度电致发光可以分为高场电致发光和低场电致发光。 2.电致发光的原理和器件结构从发光原理电致发光可以分为高场电致发光和低场电致发光。高场电致发光是一种体内发光效应。发光材料是一种半导体化合物掺杂适当的杂质引进发光中心或形成某种介电状

电致发光高分子功能材料的应用..

电致发光高分子材料及其应用进展 孙东亚*,1,何丽雯2 (1 厦门理工学院材料科学与工程学院福建厦门361024) (2华侨大学材料科学与工程学院福建厦门361021) 摘要:主要介绍了导电高分子的一个重要门类-电致发光(有机EL,也称作OLED)聚合物材料的发光机理、制备工艺及应用现状。结合有机OLED相比于传统显示材料及器件具有发光效率高、波长易调节、寿命长、机械加工性能好等优势,综述了OLED材料及器件在环保照明及平板显示领域取得进展和未来的发展方向。 关键词:电致发光;高分子材料;平板显示; Abstract:An important category of conductive polymer-electroluminescent (organic EL, also known as OLED) luminescence mechanism, preparation process and application status of polymer materials has been introduced. Compared to traditional display materials and devices, the organic combination of OLED has high luminous efficiency, long life, easy to adjust the wavelength, good machining performance and other advantages. At the same time, we summarized the progresses and future development of OLED materials and devices in the green lighting and panel display. 0 前言 有机高分子光电材料由于其诱人的应用前景而得到了人们的广泛关注和研究[1-10]。近年来,导电高分子的研究取得了较大的进展,科学家对其合成、结构、导电机理、性能、应用等方面经过多年的研究,已使其成为一门相对独立的学科。目前,有机电致发光平面显示器(OLED)在一些领域里已经取代了液晶显示器占有平面显示器的主要市场。与液晶平面显示器相比, 有机电致发光平面显示器以及高效率的节能照明设备具有主动发光、轻薄、色彩绚丽、全角度可视、能耗低等显著特点,吸引很多国内外研究机构和国际知名大电子、化学公司都投入了巨大的人力财力研究这一领域[11-15]。虽然在应用研究领域已经取得了巨大的成功,但是无论从综合发光效率、发光波长的调整、稳定性和寿命等方面还有待更进一步的发展。本文综述了近年来OLED材料与器件在制备工艺及品质质量方面所取得的进展及需要解决的主要问题。 1 有机电致发光器件及原理 由电能直接激发产生的发光现象称为电致发光。如图1所示,电致发光材料是通过电极向材料注入空穴和电子,两者通过在材料内部的相对迁移在材料内部发生复合形成激子(激发态分子),然后激子导带中的电子跃迁到价带的空穴中,多余的能量以光的形式放出,产生发光现象。 福建省中青年教师教育科研项目(JB14077) Education Scientific Project of Young Teacher of Fujian Province(JB14077) 作者简介:孙东亚(1982-),男,硕士,工程师,从事光电功能材料制备与表征,E-Mail:

纳米粒子参与的电致化学发光研究进展

第28卷 第1期新乡学院学报:自然科学版 2011年2月V ol. 28 No. 1 Journal of Xinxiang University: Natural Science Edition Feb. 2011 纳米粒子参与的电致化学发光研究进展 董永平,张净 (安徽工业大学化学与化工学院,安徽马鞍山 243002) 摘 要:综述了近几年纳米粒子参与的以及纳米粒子修饰电极上的电致化学发光研究的进展情况,评述了 金纳米粒子参与的液相电致化学发光与化学发光以及金纳米粒子修饰电极上的电致化学发光的研究进展, 展望了纳米粒子参与的电致化学发光的发展前景。 关键词:纳米粒子;电致化学发光;液相电致化学发光;金纳米粒子修饰电极 中图分类号:O657.1;O657.3文献标志码:A文章编号:1674–3326(2011)01–0033–05 Research Progress in Nanoparticle-involved Electrogenerated Chemiluminescence DONG Yong-ping, ZHANG Jing (College of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan 243002, China) Abstract: The research progresses in nanoparticle-involved electrogenerated chemiluminescence and electrogenerated chemiluminescence based on nanoparticle modified electrode, especially the development of gold nanoparticle-involved liquid phase chemiluminescence and electrogenerated chemiluminescence and electrogenerated chemiluminescence based on gold nanoparticle modified electrode, have been reviewed. The prospect of the development of nanoparticle-involved electrogenerated chemiluminescence was also discussed. Key words: nanoparticle; electrogenerated chemiluminescence; liquid phase electrochemiluminescence; gold nanoparticles modified electrode 0引言 化学发光现象是在化学反应过程中产生的光发射,几年来在多个领域中得到了广泛的应用。电致化学发光分析法(ECL)是在电极上加一定的电压或电流信号进行电解,反应产物相互之间或产物与体系中的共存组分间发生化学发光反应,通过测量发光光谱或发光强度,分析研究体系中的物质组成、形状、反应历程的一种方法。电致化学发光是由电化学和化学发光(CL)相互渗透形成的,因此,具有荧光分析和化学发光分析的性质,同时,还具有电化学的一些性质。电致化学发光的优点主要有:具有高的灵敏度、宽的线性范围、强抗干扰能力,设备简单、操作简便,可同色谱和电泳技术联用检测分离物,可进行原位现场分析,对发光反应机理的研究有着独特的优越性;某些分析物能通过电化学过程再生循环参与发光反应,从而大大提高灵敏度;对于不稳定的化学发光试剂以及ECL所需的活性物种,可以在电极表面现场产生,可以通过改变电极电位来控制CL反应的发生、进行的速率甚至反应历程;通过改变电极电位可实现对发光反应的“开关”等[1]。虽然电致化学发光具有众多优点,但由于电致化学发光中产生激励电信号所用的传统电极如金、铂和玻碳电极的表面容易吸附溶液中的反应物,对分析的灵敏度和重现性带来很大的影响,从而限制了电致化学发光分析法在分析检测中的应用。为了消除这一缺陷,很多研究人员开展了许多尝试性工作,其中最为普遍的工作是对电极进行预极化处理[2-5]。尽管如此,仍不能保证每次实验结果的重现性,在这种情况下,化学修饰电极成了一种非常有吸引力的技术。因为化学修饰电极突破了传统电化学只限于 收稿日期:2010-11-18 修回日期:2011-01-10 作者简介:董永平(1973-),男,安徽寿县人。副教授,博士,研究方向:电分析化学。E-mail: dongyp@https://www.360docs.net/doc/3816897554.html,。

有机电致发光材料的新进展

有机电致发光材料的新进展 唐杰 (湖南工程学院化学化工学院,湘潭,411101) 摘要:介绍了有机电致发光材料的最新进展,对有机电致发光材料进行分类和评述,重点介绍载流子传输材料和发光材料(小分子发光材料,金属配合物发光材料和聚合物发光材料)的国内外研究现状,并对有机电致发光材料的应用前景进行评述。 关键词:有机电致发光;发光材料;有机小分子;金属配合物;聚合物 Abstract:The recent progress of organic electroluminescent materials was introduced. Various kinds of organic molecular materials and polymer materials used for organic electroluminescence at present were mainly described. The future application of the materials was described. Key words:organic electroluminescence;luminescent material;small organic molecule;organometallic complex;polymer 前言 有机电致发光(organic electro-luminescence ),也叫有机发光二极管(organic light-emitting diode),简称为OLED[1],是指有机物在电场作用下,受到电流电压的激发而发光的现象,是一种直接将电能转化光能的过程。该类材料具有低成本、制作简单、驱动电压低、体积小、响应时间短、重量轻、高导电性、良好的成膜性、视角宽、可大面积使用、柔韧性及可塑性好、自身可发光等显著优点,能够满足照明和显示技术高的需求,已经吸引了科学界和商业界的高度关注。目前国内外对OLED的研究主要集中在发光材料的研究,器件的制作和产品研发上。 在20世纪30年代的时候,人类就开始对有机电致发光材料进行研究了。最初的是1936年Destriau发现的,他将化合物不集中在聚合物中制备了薄膜。1963年,Pope、Lohmann、Helfrich和Willams等人都接连研究了稠环芳香族的蒽、萘等化合物,但大都由于诸多因素而使其发展受到限制。1982年,美国柯达集团的Vincett[2]等人,用真空沉积有机薄膜的这样方法得到有机电致发光材料。从此,对有机发光材料研究的帷幕拉开了。1987年,C.W.Tang[2,3]利用超薄薄膜技术,得到了有机电致发光的材料这一进展对有机发光材料研究的影响很大,全世界都

高分子发光材料

高分子发光材料 有机发光材料与无机发光材料相比,以其易合成、易加工、成本低、质轻、发光颜色全等特点越来越受到关注。近几年以有机发光材料制备的发光器件已临近应用阶段,成为当前流行的液晶显示器件的强力竞争对手。目前研究比较活跃的有聚噻吩、聚苯胺、聚吡咯、聚芴【7】等。 2.1高分子光致发光材料 2.1.1简介 高分子光致发光材料是将荧光物质(芳香稠环、电荷转移络合物或金属)引入高分子骨架的功能高分子材料。高分子光致发材料均为含有共轭结构的高聚物材料。 2.1.2发光机理 高分子在受到可见光、紫外光、X一射线等照射后吸收光能,高分子电子壳层内的电子向较高能级跃迁或电子基体完全脱离,形成空穴和电子.空穴可能沿高分子移动,并被束缚在各个发光中心上,辐射是由于电子返回较低能量级或电子和空穴在结合所致。高分子把吸收的大部分能量以辐射的形式耗散,从而可以产生发光现象[8]。 2.1.3分类 按照引入荧光物质而分为三类 2.1.3.1高分子骨架上连接了芳香稠环结构的荧光材料,应稠环芳烃具有较大的共轭体系和平面刚性结构,从而具有较高的荧光量子效率。其中广泛应用的是芘的衍生物,如图1。 图1 芘的衍生物 2.1.3.2共轭结构的分子内电荷转移化合物有以下几类 2.1. 3.2.1两个苯环之间以一C=C一相连的共轭结构的衍生物[9]如图2。吸收光能激发至激发态时,分子内原有的电荷密度分布发生了变化。这类化合物是荧光增白剂中用量最大的荧光材料,常被用于太阳能收集和染料着色。 图2 共轭结构的衍生物 2 .1.3.2 .2香豆素衍生物[10-12]如图3。在香豆素母体上引入胺基类取代基

可调节荧光的颜色,它们可发射出蓝绿岛红色的荧光,已用作有机电致发光材料。但是,香豆索类衍 生物往往只在溶液中有高的量子效率,而在固态容易发生荧光猝灭,故常以混合掺杂形式使用。 图3 香豆素衍生物 2.1.3.3高分子金属配合物发光材料,许多配体分子在自由状态下并不发光,但与金属离子形成配合物后却能转变成强的发光物质。8一羟基喹啉与Al、Be、Ga、In、Sc、Yb、Zn、Zr等金属离子形成发光配合物[13]。 2.1.3.3.1掺杂 目前,掺杂小分子的高分光致发光材料被广泛应用于PELD中。常见用于掺杂的小分子有:发蓝光的吡唑磷衍生物、发黄光的萘酰亚胺衍生物以及发红光的DCM 等。把有机小分子稀土络合物通过溶剂溶解或熔融共混的方式掺杂到高分子体系中,一方面可以提高络合物稳定性.另一方面可以改善稀土的荧光性能。 2.1.3.3.2化学键合法 汪联辉等人先后研究了烷氧基钕,烷氧基钐单体与甲基丙烯酸甲酯、苯乙烯等共聚及其荧光性质。发现在共聚物中三价钕离子的荧光特性受其基质影响很小,且其荧光强度随钕含量增加而线性增大,在钕含量高达8%时仍未出现荧光浓度淬灭现象。 2.2电致发光高分子材料 2.2.1简介 有机半导体的电致发光现象早就被人们所熟知。电致发光高分子材料是指电流通过材料时能导致发光现象的一类功能材料。目前,有机高分子电致发光器件(PLED)材料以其独特的光电性能和易加工性吸引了众多学者的研究兴趣。 2.2.2发光机理 与光致发光的电子跃迁机理不同,电致发光是通过正负电极向发光层的最高占有轨道(HOMO)和最低空轨道(LUMO)分别注入空穴和电子,这些在电极附近生成的空

有机电致发光综述

有机电致发光综述 本文对有机电致发光显示器件的发展历史,器件结构、工作特征、获得彩色显示的方法以及所具有的优缺点、发展现状和趋势等都做了简要的概括。详细比较了小分子OLED与聚合物PLED、OLED与LCD性质上的比较,对OLED显示的发光机理进行了详细的综述。此外,对获得彩色显示的无源驱动电路和有源驱动电路的结构进行了总结,认为有源驱动将是最终发展趋势。最后总结了国内外OLED技术的发展状况。 关键词:小分子有机电致发光有机聚合物电致发光无源驱动有源驱动 (作者:姚华文,上海华嘉光电技术有限公司,上海市嘉定区招贤路928号,201821) 有机电致发光显示(organic electroluminesence Display)技术被誉为具有梦幻般显示特征的平面显示技术,因其发光机理与发光二极管(LED)相似,所以又称之为OLED(organic light emitting diode)。2000年以来,OLED受到了业界的极大关注,开始步入产业化阶段。 1.发展历史 1936年,Destriau将有机荧光化合物分散在聚合物中制成薄膜,得到最早的电致发光器件。 20 世纪50年代人们就开始用有机材料制作电致发光器件的探索,A. Bernanose等人在蒽单晶片的两侧加上400V的直流电压观测到发光现象,单晶厚10mm~20mm,所以驱动电压较高。1963年M. Pope等人也获得了蒽单晶的电致发光。70年代宾夕法尼亚大学的Heeger 探索了合成金属[1]。1987年Kodak公司的邓青云首次研制出具有实用价值的低驱动电压(<10V,>1000cd/m2)OLED器件(Alq作为发光层)[2]。1990年,Burroughes及其合作者研究成功第一个高分子EL(PLED)(PPV作为发光层),更为有机电致发光显示器件实用化进一步奠定了基础。1997年单色有机电致发光显示器件首先在日本产品化,1999年月,日本先锋公司率先推出了为汽车音视通信设备而设计的多彩有机电致发光显示器面板,并开始量产,同年9月,使用了先锋公司多色有机电致发光显示器件的摩托罗拉手机大批量上市[3]。这一切都表明,OLED技术正在逐步实用化,显示技术又将面临新的革命[4]。 2.器件分类 按照组件所使用的载流子传输层和发光层有机薄膜材料的不同,OLED可区分为两种不同的技术类型。 一是以有机染料和颜料等为发光材料的小分子基OLED,典型的小分子发光材料为Alq(8-羟基喹啉铝);另一种是以共轭高分子为发光材料的高分子基OLED,简称为PLED,典型的高分子发光材料为PPV(聚苯撑乙烯及其衍生物[5]。 3.基本结构和发光机理 OLED是基于有机材料的一种电流型半导体发光器件。其典型结构是在ITO玻璃上制作一层几十纳米厚的有机发光材料作发光层,发光层上方有一层低功函数的金属电极。当电极上

上转换发光机理与发光材料整理

上转换发光机理与发光材料 一、背景 早在1959年就出现了上转换发光的报道,Bloemberge在Physical Review Letter上发表的一篇文章提出,用960nm的红外光激发多晶ZnS,观察到了525nm绿色发光。1966年,Auzel在研究钨酸镱钠玻璃时,意外发现,当基质材料中掺入Yb3+离子时,Er3+、H03+和Tm3+离子在红外光激发时,可见发光几乎提高了两个数量级,由此正式提出了“上转换发光”的观点。 二、上转换发光机理 上转换材料的发光机理是基于双光子或者多光子过程。发光中心相继吸收两个或多个光子,再经过无辐射弛豫达到发光能级,由此跃迁到基态放出一可见光子。为了有效实现双光子或者多光子效应,发光中心的亚稳态需要有较长的能及寿命。稀土离子能级之间的跃迁属于禁戒的f-f 跃迁,因此有长的寿命,符合此条件。迄今为止,所有上转换材料只限于稀土化合物。 三、上转换材料 上转换材料是一种红外光激发下能发出可见光的发光材料,即将红外光转换为可见光的材料。其特点是所吸收的光子能量低于发射的光子能量。这种现象违背了Stokes定律,因此又称反Stokes定律发光材料。 1、掺杂Yb3+和Er3+的材料Yb3+(2F7/2→2F5/2)吸收近红外辐射,并将其传

递给Er3+,因为Er3+的4I11/2能级上的离子被积累,在4I11/2能级的寿命为内,又一个光子被Yb3+吸收,并将其能量传递给Er3+,使Er3+离子从4I11/2能级跃迁到4F7/2能级。快速衰减,无辐射跃迁到4S3/2,然后由 4S 3/2能级产生绿色发射( 4S 3/2 → 4I 15/2 ) ,实现以近红外光激发得到绿 色发射。 2、掺杂Yb3+和Tm3+的材料 通过三光子上转换过程,可以将红外辐射转换为蓝光发射。第一步传递之后,Tm3+的3H5能级上的粒子数被积累,他又迅速衰减到3F4能级。在第二部传递过程中,Tm3+从3F4能级跃迁到3F2能级,并又快速衰减到3H4。紧接着,在第三步传递中,Tm3+从3H4能几月前到1G4能级,并最终由此产生蓝色发射。 3、掺杂Er3+或Tm3+的材料 仅掺杂有一种离子的材料,是通过两步或者更多不的光子吸收实现上转换过程。单掺Er3+的材料,吸收800nm的辐射,跃迁至可产生绿色发射的4S3/2能级。单掺Tm3+的材料吸收650nm的辐射,被激发到可产生蓝色发射的1D2能级和1G4能级。 四、优点 上转换发光具有如下优点:①可以有效降低光致电离作用引起基质材料的衰退;②不需要严格的相位匹配,对激发波长的稳定性要求不高;③输出波长具有一定的可调谐性。 五、稀土上转换材料的应用 随着频率上转换材料研究的深入和激光技术的发展,人们在考虑

电致化学发光研究的新材料和新方法-厦门大学

第23卷第12期2011年12月 化 学 进 展 PROGRESS IN CHEMISTRY Vol.23No.12 Dec.2011 收稿:2011年3月,收修改稿:2011年5月  ?国家自然科学基金面上项目(No.21175112)资助??Corresponding author e?mail:xichen@https://www.360docs.net/doc/3816897554.html, 电致化学发光研究的新材料和新方法? 罗 峰1 林志杰2 陈 曦2?? (1.福建省计量科学研究院 福州350003; 2.厦门大学化学化工学院化学系 厦门361005) 摘 要 由于方法的使用范围广、光学系统简单和操作容易,电致化学发光(ECL )得到人们的广泛重视。随着对ECL 研究的深入,ECL 研究所涉及的领域和层面已有很大的扩展,特别是近十年来,ECL 研究发展更为迅猛。除ECL 理论研究外,为了适应分析检测的应用的需求,ECL 在新材料、新实验技术和方法方面出现了许多的研究报道。本文综述最近几年来ECL 研究在新材料应用和新实验技术的开发方面的一些进展,包括纳微米材料和量子点材料在ECL 方面的研究,同时对固态ECL 和基于三原色(RGB )机理的可视化ECL 研究进展,进行了一些讨论。最后,综述展望纳米和量子点材料修饰电极ECL 的研究和应用的前景。 关键词 电致化学发光 新材料 新方法 中图分类号:O667.39 文献标识码:A 文章编号:1005?281X(2011)12?2588?10 Novel Materials and Approaches for Electrochemiluminescence Studies Luo Feng 1 Lin Zhijie 2 Chen Xi 2?? (1.Fujian Research Institute of Metric Science,Fuzhou 350003,China; 2.Department of Chemistry,College of Chemistry and Chemical Engineering, Xiamen University,Xiamen 361005,China) Abstract Electrochemiluminescence (ECL)approaches have been received great attention due to their versatility,simplified optical setup,and good temporal and spatial control.With the extension of ECL study,ECL has been applied in a lot of fields,and got great development in recent ten years.Besides their theory studies,to meet the ECL analytical applications,there have been many reports on new materials and approaches for ECL study.In this review,we focus on the ECL applications of new materials and techniques and summary the recent development of ECL,including nano?micro and quantum dot materials for ECL studies.In addition,solid?state ECL and visible ECL approaches based on red?green?blue(RGB)tri?color system are also discussed.Finally,the prospect of ECL studies and applications using nano or quantum dot modified electrodes is presented. Key words electrochemiluminescence;new materials;new approaches Contents 1 Introduction 2 New ECL materials 2.1 Metal complexes 2.2 Nano?micro materials based on Ru complexes 2.3 Quantum dot materials for ECL 3 New development of ECL techniques 3.1 Solid?state ECL 3.2 New approaches of ECL for bio?analysis 3.3 Visible ECL technique 4 Conclusions and outlook

粉末电致发光材料晶体生长和发光特性(精)

粉末电致发光材料晶体生长和发光特性 本论文研究了Cu~+对ZnS:Cu电致发光材料发光特性的影响;讨论了晶体生长过程中灼烧温度、助熔剂的作用及对发光材料结构、粒度、发光特性的影响;采取相变技术和采用掺入两种激活剂的方法较大地提高了粉末电致发光材料的发光性能。研究表明,随着Cu+掺入量的增加,材料发光亮度随之增加,Cu+掺入浓度为0.15%时,发光材料的亮度达到最大,但发光亮度并不会随着Cu+掺杂浓度的增加一直增大。同时借助光致发光光谱进一步研究了ZnS:Cu的发光机理及发光特性,Cu+浓度小于0.15%时,光致发光光谱的峰值随Cu+浓度增加而逐渐增大,当Cu+浓度为0.15%时,光致发光光谱的峰值达到最大, Cu+浓度大于0.15%时,光致发光光谱的峰值开始迅速下降。通过改变灼烧温度及灼烧气氛达到改变晶体粒度的大小,随着焙烧温度的提高,ZnS:Cu的平均粒度增大,在800℃到1250℃之间可以获得平均粒度在5/μm-22/μm的发光材料,发光材料的亮度也呈增大的趋势。虽然助熔剂Br-、Cl-的加入对发光材料的粒度影响较小,但Br-、C1-起电荷补偿作用,可增加Cu+在晶体中的溶解度。我们采用晶体相变技术,获得了以立方相结构为主、结晶好、亮度高的绿色发光材料。本文提出在ZnS基质材料中同时掺入Cu+、Au+两种激活剂,通过改变掺杂比例来探索提高粉末电致发光材料发光性能的方法,在ZnS晶体中它们以一价阳离子形式进入ZnS晶格中,形成更多的发光中心。通过在基质ZnS材料中掺入Cu+和Au+两种不同浓度的激活剂,在不影响材料颜色的前提下,较大地提高了电致发光材料的亮度。论文的完成对改善绿色交流粉末电致发光材料ZnS:Cu的发光特性,获得优质的ZnS:Cu绿色发光材料及拓宽材料的应用领域有着重要的经济和现实意义。 同主题文章 [1]. Aron ,Vecht ,朱自熙. 八十年代粉末电致发光(EL)技术' [J]. 发光学报. 1981.(03) [2]. 近期外文资料索引' [J]. 液晶与显示. 1986.(06) [3]. 周连祥. 一种研究粉末电致发光(EL)器件频率特性的新方法' [J]. 发光学报. 1992.(01) [4]. 王金忠,杜国同,王新强,闫玮,马燕,姜秀英,杨树人,高鼎 三,Chang ,R ,P ,H. 退火对ZnO薄膜结构及发光特性的影响' [J]. 光学学报. 2002.(02) [5]. 谢伦军,陈光德,竹有章,汪,屿. ZnO薄膜表面和边缘的发光特性(英文)' [J]. 发光学报. 2006.(06)

电致发光显示

论文:电致发光显示(LED) 学院:理学院 班级:物理12 姓名:骆宾祥 学号:120123802038

电致发光电显示(LED) 姓名:骆宾祥学号:120123802038 引言:随着行业的继续发展,技术的飞跃突破,应用的大力推广,LED的光效也在不断提高,价格不断走低。新的组合式管芯的出现,也让单个LED管(模块)的功率不断提高。通过同业的不断努力研发,新型光学设计的突破,新灯种的开发,产品单一的局面也有望在进一步扭转。控制软件的改进,也使得LED照明使用更加便利。这些逐步的改变,都体现出了LED发光二极管在照明应用的前景广阔。LED产品在世界各个领域都有很好的应用前景,主要在:LED电子显示屏,交通信号灯,汽车用灯,液晶屏背光源,灯饰,照明光源等六大领域应用。 关键词:LED,电致发光材料,应用 目录: 一.电致发光材料介绍 ----------------------------------------------------------------------------------------- 3 1.电致发光的定义: --------------------------------------------------------------------------------------- 3 2.电致发光的种类 ------------------------------------------------------------------------------------------ 3 3.电致发光材料分类 --------------------------------------------------------------------------------------- 3 二.无机电致发光材料的的发展及展望 ------------------------------------------------------------------ 3 三.无机电致发光显示(LED) ------------------------------------------------------------------------------- 3 1.发光二极管------------------------------------------------------------------------------------------------- 3 2.LED构造 --------------------------------------------------------------------------------------------------- 4 3.LED材料 --------------------------------------------------------------------------------------------------- 5 4.LED光源原理--------------------------------------------------------------------------------------------- 6 5.LED发光原理--------------------------------------------------------------------------------------------- 6 6.LED工作原理--------------------------------------------------------------------------------------------- 7 7.LED光源的特点------------------------------------------------------------------------------------------ 8 四.单色光LED和白光LED --------------------------------------------------------------------------------- 8 1.单色光LED---------------------------------------------------------------------------------------------7 2.白光LED --------------------------------------------------------------------------------------------------- 8 五.电致发光显示(LED)的应用领域------------------------------------------------------------------- 10 1. LED显示屏 ---------------------------------------------------------------------------------------------- 10 2. 交通信号灯 ---------------------------------------------------------------------------------------------- 10 3.汽车用灯--------------------------------------------------------------------------------------------------- 11 4.液晶屏背光源 -------------------------------------------------------------------------------------------- 11 5.灯饰--------------------------------------------------------------------------------------------------------- 11 6.照明光源--------------------------------------------------------------------------------------------------- 11

有机电致发光材料研究现状

<有机化学进展>结课论文 题目:有机电致发光材料的研究现状 院系: 专业: 班级: 学号: 姓名:

有机电致发光材料的研究现状 摘要:本文对有机电致发光显示器件的发展历史,器件结构、工作特征、发光器件(OLED)的优点、发展现状和趋势等都做了简要的概括。详细介绍了有机发光材料的研究状况,包括小分子发光材料、高分子(聚合物)发光材料,以及新材料的开发。最后总结了国内外OLED 技术的发展状况。 关键词:小分子有机电致发光有机高分子聚合物电致发光 Research and development of organic electroluminescent materials Abstract Organic light-emitting diodes (OLEDs), having excellent properties of low driving voltage and brightemission, have been extensively studied due to their possible applications for flat panel color displays.At the same time, or-ganic electroluminescent materials have been made with an outstanding progress.And thestatus of organic electrolumi-nescent materials(including evaporated molecules and polymers)were reported in this paper. Key words OLED, organic luminescent materials, evaporated molecules and polymers 有机电致发光显示(organic electroluminesence Display)技术被誉为具有梦幻般显示特征的平面显示技术,因其发光机理与发光二极管(LED)相似,所以又称之为OLED(organic light emitting diode)。2000年以来,OLED受到了业界的极大关注,开始步入产业化阶段。 一、发展历史 1936年,Destriau将有机荧光化合物分散在聚合物中制成薄膜,得到最早的电致发光器件。20 世纪50年代人们就开始用有机材料制作电致发光器件的探索,A. Bernanose等人在蒽单晶片的两侧加上400V的直流电压观测到发光现象,单晶厚10mm~20mm,所以驱动电压较高。1963年M. Pope等人也获得了蒽单晶的电致发光。70年代宾夕法尼亚大学的Heeger探索了合成金属[1]。1987年Kodak 公司的邓青云首次研制出具有实用价值的低驱动电压(<10V,>1000cd/m2)OLED 器件(Alq作为发光层)[2]。1990年,Burroughes及其合作者研究成功第一个

相关文档
最新文档