控制力矩

力矩电机控制系统设计

力矩电机控制系统 一、设计目的及任务 力矩电机分直流力矩电机和交流力矩电机,其工作原理和普通直流和交流电 机的工作原理是一样的。但是不同的是直流力矩电机的电枢绕组的电阻比普通直流电机的电枢绕组的电阻大,同样交流力矩电机转子的电阻比普通交流电机的转子电阻大。对于力矩电机我们注重它的技术参数主要是额定堵转电压,额定堵转电流和额定堵转电流下的堵转时间。 力矩电机的特点是具有软的机械特性,可以堵转。当负载转矩增大时能自动 降低转速,同时加大输出转矩。当负载转矩为一定值时改变电机端电压便可调速,但转速的调整率不好。因而在电机轴上加一测速装置,配上控制器,利用测速装置输出的电压和控制器给定的电压相比,来自动调节电机的端电压,使电机稳定。 设计任务就是要设计一个控制系统来控制力矩电机,使其产生满足要求的力矩。 1、能产生所要求的力矩,可用于一些地面模拟设备上,用来模拟设备运行时的干扰力矩; 2、可用于控制系统设计课程实验设备或是控制算法的验证。 二、设计要求 本系统为力矩电机的控制系统,设计要求如下: 1、可以产生三种固定的力矩波形; 2、可以根据要求任意设定力矩波形,这样可以大大增加系统的灵活性; 3、可以实现单片机和PC的相互传输; 4、控制精度高,响应快; 5、力求简单,实用。 三、设计方案 系统的装置由光电码盘,稀土永磁直流力矩电机和飞轮组成。 在控制器的设计上,为了做到简单、实用,选择了常用的PID控制;为了提高系统的控制精度,从软件上对系统进行误差补偿。 1、系统工作原理 通过控制向力矩电机施加的电流,向飞轮施加力矩,使飞轮加速后减速旋转,反作用力矩通过模拟器机械装置的底座同时施加到连接的转台上,达到向状态施加力矩的作用,全部过程再闭环控制下进行。系统总体框图如图1所示: 图1.系统总体框图 2、控制系统描述 电机转动的角度经光电码盘检测转化为脉冲输出,对脉冲信号进行计算就得 到角度转动的累计值,控制计算机将指令与光电码盘输出的角度信号相比较,得

直接转矩控制基本原理和仿真研究报告

直接转矩控制的基本原理和仿真研究 摘要:直接转矩控制技术是继矢量控制技术之后,在交流传动领域内发展迅速的一种高性能调速技 术,该控制方法以其思路新颖、结构简单及性能良好等优点引起了广泛关注和研究。与矢量控制技 术不同,直接转矩控制技术采用定子磁场定向,直接将磁通和电磁转矩作为控制量,对电磁转矩的 控制更加简捷快速,提高了系统的动态响应能力。由于直接转矩控制技术本身的固有优势,使直接 转矩控制的理论研究和技术开发越来越受到重视,进展的步伐也越来越快。本文将直接转矩控制技 术应用于异步电机中,从异步电机的数学模型出发,介绍了直接转矩控制技术的基本理论。在深入 剖析原理的基础上将直接转矩算法模块化,在Simulink环境下建立了异步电机直接转矩近似圆形 磁链控制系统仿真模型。仿真结果表明,直接转矩控制技术动态响应能力快,控制方法直接,但是 低速性能较差,低速状态下存在转矩脉动过大,定子电流畸变严重等缺点。 关键字:直接转矩控制,异步电机,simulink The Basic Principle and Simulation Study of Direct Torque Control Kong Fei,Ye Zhen,Shao Zhuyu technology is a high-speed technology in the field of AC drive following the technique of vector control and it has rapid development in recent years.This control strategy attracts wide attention and research for its novel idea, simple structure and good performance. Differ from the vector control technologies, DTC technology uses the stator flux orientation and directly makes the flux and electromagnetic torque as the control volume, therefore the control of the electromagnetic torque is simple and fast, the system dynamic response capability is improved. Due to the inherent advantages of DTC technology, its theoretical research and technological development is receiving increasing attention, also the pace of progress faster and faster.In this article, we make direct torque control techniques applied to asynchronous motors. From a mathematical model of induction motor starting, introduced the basic theory of DTC technology. Based on depth analysis of the basis and principles, we module the DTC algorithm. In the Simulink environment, the asynchronous motor direct torque control system of quasi-circular flux simulation model is established. Simulation results show that the DTC technologies has fast dynamic response capability and directly control method, but the low-speed performance is poor, such as torque ripple is too large in low speed state and the stator current distortion is serious. Key words:direct torque control (DTC>,asynchronous motor,simulink 1前言 直接转矩控制技术作为一种新颖的电机控制策略,基本思想就是直接将电磁转矩作为被控制量,与矢量控制相比,无需进行复杂的坐标变换,对电机的控制更加快捷迅速,控制系统的动态响应能力得到进一步提高。为了将直接转矩控制方法应用于异步电机中,我们在分析三相异步电机的数学模型基础上,详细阐述直接转矩控制的基本原理,并将各个部分模块化,在MATLAB/Smulink环境下建立了直接转矩控制仿真模型进行了仿真研究。 2直接转矩控制的基本原理和仿真模型 2.1 直接转矩控制的基本原理和仿真图 2.1.1直接转矩控制的基本原理

力矩计算

选择步进电机时,首先必须确保步进电机的输出功率大于负载所需的功率。选择动力步进电机时,应首先计算机械系统的负载转矩。电动机的转矩-频率特性可以满足机械负载并具有一定的裕度,以确保其可靠的运行。在实际工作过程中,各种频率的负载力矩必须在力矩-频率特性曲线的范围内。一般来说,静转矩Mjmax大的电动机具有大的负载转矩。 选择步进电机时,步进角应与机械系统匹配,以便获得机床所需的脉冲当量。在机械传动过程中,为了减小脉冲当量,一个可以改变丝杠的导程,另一个可以通过步进电机的细分驱动来实现。但是细分只能更改其分辨率,而不能更改其精度。精度取决于电机的固有特性。 在选择动力步进电机时,应估算机械负载的负载惯量和机床所需的启动频率,以使其与步进电机的惯量频率特性相匹配,并具有一定的余量,以便可以实现最高速度的连续工作频率。满足了机床快速运动的需求。 选择步进电机需要进行以下计算: (1)计算齿轮的减速比 根据所需的脉冲当量,齿轮减速比I计算如下: i =(φ.S)/(360.Δ)(1-1)

φ步进电机的步进角类型(o /脉冲) S ---螺距(mm) δ-(毫米/脉冲) (2)计算从工作台,螺杆和齿轮到电动机轴的惯量Jt。 Jt = J1 +(1 / i2)[(J2 + Js)+ W / g(S /2π)2](1-2) Jt的类型---转换为电动机轴上的惯性(Kg.cm.s2) J1,J2 ---齿轮惯性(Kg.cm.s2) 螺杆的JS惯性(Kg.cm.s2) W ---工作台重量(n) S ---螺距(cm) (3)计算电动机输出的总转矩m M = Ma + Mf + Mt(1-3) Ma =(Jm + Jt).n / T×1.02×10ˉ2(1-4) Ma ---电动机启动时的加速转矩(N.m) Jm,Jt ---电机本身的惯量和负载惯量(Kg.cm.s2) N ---电动机所需转速(r / min) T ---电机ACC时间(秒)

力矩电机控制器 工作原理

本控制器为代替三相自耦变压器,而专门设计的一种先进的全电子化控制装置,能工作在电阻、电感性负载。广泛适用于五金机械塑料、电线、电缆、绳网、印刷、造纸、纺织、印染、化疑纤、橡绞、电影胶皮等各种机械、机电行业。 与三相自藕调压器相比较,本控制器由于采用了电子调节,无触点磨损,电压调节平衡,起动性能好,本控制器具有体积小、重量轻、效率高、发热小、节约能源(经测定平均节能17%以上),使用寿命长、安装、维修方便。 二、工作条件: 1、环境温度:-25℃~+55℃。 2、空气相对湿度:≤85%(20℃±5℃)。 3、无显著冲击震动外。 4、工作电压:三相电压交流380V、220V(±10%)。 5、50~60HZ。 三、工作原理: 三相调压器调速控制器主回路采用进口双向可控硅,改变可控制硅的开放角大小,就能使电机或其它负载的工作电压从0至375V连续可调,也就实现了平衡地调压调速过程,以满足不同生产的工艺要求。 在可控硅控制电路中采用了三相同步集成模块,加入了电流正反馈,构成一个闭环控制系统。既提高了力矩电机的机械性硬度,又改善了力矩电机在低电压时的起动性能,同时还提高了力矩电机的过载能力,扩大了力矩电机的使用范围。为了使调速过程尽快进入稳定状态,在控制回路中还加入了电压反馈,以提高控制器的技术性能。 四、使用方法: 接线说明:请严格按以下接线示意图接线,D1、D2、D3三点为控制器的输出端,接力矩电机的电源线柱W1V1U1(Ⅱ型力矩电机必须为Y接法及星型接法,电机中性点W2V2U2必须严格接电源零线N,否则,本控制器无法正常工作或烧毁本装置。) 1、调速旋钮旋至零位。 2、接通总电源,打开控制器开关。(指示灯亮) 3、整好面板上反馈设定按键。(一般不需调节,出厂时已按常规设定好,可适用不同启动电压的力矩电机)。 4、调节调速电位器旋钮,使电机达到你所需的速度。

力矩控制通用技术标准(1)

力矩控制通用技术标准

前言 本标准根据环保动力公司的实际情况,结合国家及技术中心的产品技术要求,明确了力矩控制过程中的技术要求,工装、设备的使用规范 本标准由制造部工艺科提出、归口 本标准起草单位:制造部工艺科 本标准主要起草人:周陵 本标准所代替标准的历次版本的发布情况为:无

力矩控制通用技术标准 1 范围 本标准规定了发动机用螺纹直径4mm-20mm紧固件的力矩控制。 本标准适用于符合以下条件,以控制扭矩方式进行的紧固: —外螺纹件的机械性能符合GB/T 3098.1规定的8.8、10.9级; —内螺纹件的机械性能符合GB/T 3098.2或GB/T 3098.4,且具有充分发挥螺纹连接副承载能力的强度; —螺纹符合GB/T 196,螺纹精度不低于GB/T 197规定的6级; —内、外螺纹件的六角对边尺寸符合GB/T 3104规定的标准系列; —内、外螺纹件的表面为汽车工业通常采用的状态; —外螺纹件在紧固中受轴向拉伸载荷。 本标准不适用于外螺纹件在紧固中承受压缩力的紧定螺钉、由外螺纹件攻出螺纹的自攻螺钉及木螺钉。 当表面状态不同、支承面尺寸及形态与标准条件差异较大,以致预紧力不能满足要求以及对预紧力有特别要求时,应对紧固扭矩进行调整。 当产品对紧固扭矩有特殊要求时,根据产品要求调整控制要求。 2 引用标准 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注明日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的应用文件,其最新版本适用于本标准。 GB/T 196 普通螺纹基本尺寸(直径1mm-600mm) GB/T 197 普通螺纹公差与配合(直径1mm-355mm) GB/T 3098.1 紧固件机械性能螺栓、螺钉和螺柱 GB/T 3098.2 紧固件机械性能螺母 GB/T 3098.4 紧固件机械性能细牙螺母 GB/T 3104 紧固件机械性能六角产品的对边宽度 GB/T 16823.2 螺纹紧固件紧固通则

拧紧力矩的计算方法

拧紧力矩的计算方法-CAL-FENGHAI.-(YICAI)-Company One1

拧紧力矩的计算方法 1. 螺栓和螺母组成的螺纹副在紧固时,紧固力是通过旋转螺母或螺栓(通常是螺母)而获得的,紧固力与旋转螺母所用的扭矩(拧紧扭矩)成正比,为了保证达到设计所需的紧固力,就要在工艺文件中规定拧紧扭矩,并在实际施工中贯彻实施。 2. 机械设计中拧紧扭矩计算方法 M = KPD 式中: M — 拧紧扭矩,Nm K — 扭矩系数 P — 设计期望达到的紧固力,KN D — 螺栓公称螺纹直径,mm 3. 紧固力P 一般在设计上选取螺栓屈服强度σs 的60~80%,安全系数约为以上。 4. 扭矩系数K 是由内外螺纹之间的摩擦系数和螺栓或螺母支撑面与被紧固零件与紧固件接触的承压面的摩擦系数综合而成。它与紧固件的表面处理、强度、形位公差、螺纹精度、被紧固零件承压面粗糙度、刚度的许多因素有关,其中表面处理是一个关键的因素。不同的表面处理,其扭矩系数相差很大,有时相差近一倍。例如:同螺纹规格,同强度的螺纹副,表面处理为磷化时,扭矩系数约为~,而表面处理为发黑时,扭矩系数可达~。 5. 对于M10~M68的粗牙钢螺栓,当螺纹无润滑时,拧紧力矩粗略计算公式: 0.2M PD = 6.VDI 2230中的拧紧力矩计算方法 22(0.160.58)2 : :::::Km A M G K M G Km K D M F P d F P d D μμμμ=?+??+式中: 装配预紧力螺距 外螺纹基本中径 螺栓螺纹摩擦系数螺栓头部下面的摩擦直径 螺栓头支承面摩擦系数 ()()0s 2s 23310 :/4 :=+/2 /6 :=0.50.7 :s s s s s s P A A A d d d d d d d H H σπσσσ=?=?=-?也可以由下表查出 螺纹部分危险剖面的计算直径螺纹牙的公称工作高度 ~螺栓材料的屈服极限

力矩电机

当负载增加时,电动机的转速能自动的随之降低,而输出力矩增加,保持与负载平衡。力矩电机的堵转转矩高,堵转电流小,能承受一定时间的堵转运行。由于转子电阴高,损耗大,所产生的热量也大,特别在低速运行和堵转时更为严重,因此,电机在后端盖上装有独立的轴流或离心式风机(输出力矩较小100机座号及以下除外),作强迫通风冷却,力矩电机配以可控硅控制装置,可进行调压调速,调速范围可达1:4,转速变化率≤10%。本系列电机的特性使其适用于卷绕,开卷、堵转和调速等场合及其他用途,被广泛应用于纺织、电线电缆、金属加工、造纸、橡胶、塑料以及印刷机械等工业领域。 力矩电机的特点是具有软的机械特性,可以堵转.当负载转矩增大时能自动降低转速,同时加大输出转矩.当负载转矩为一定值时改变电机端电压便可调速.但转速的调整率不好!因而在电机轴上加一测速装置,配上控制器.利用测速装置输出的电压和控制器给定的电压相比,来自 动调节电机的端电压.使电机稳定!具有低转速、大扭矩、过载能力强、响应快、特性线性度好、力矩波动小等特点,可直接驱动负载省去减速传动齿轮,从而提高了系统的运行精度。为取得不同性能指标,该电机有小气隙、中气隙、大气隙三种不同结构形式,小气隙结构,可以满足一般使用精度要求,优点是成本较低;大气隙结构,由于气隙增大,消除了齿槽效应,减小了力矩波动,基本消除了磁阻的非线性变化,电机线性度更好,电磁气隙加大,电枢电感小,电气时间常数小,但是制造成本偏高;中气隙结构,其性能指标略低于大气隙结构电机,但远高于小气隙结构电机,而体积小于大气隙结构电机,制造成本低于大气隙结构电机。 在纺织、造纸、橡胶、塑料、金属线材和电线电缆等工业中,需要将产品卷绕在卷筒(盘)上。卷绕的直径从开始至末了是越卷越大,为保持被卷物张力均匀(即线速度不变),就要求卷筒转速越卷越小,卷绕力越卷越大. 一、卷绕: 力矩电机 在电线电缆、纺织、金属加工、造纸等加工时,卷绕是一个十分重要的工序。产品卷绕时卷筒的直径逐渐增大,在整个过程中保持被卷产品的张力不变十分重要,因为张力过大会将线材的线径拉细甚至拉断,或造成产品的厚薄不均匀,而张力过小则可造成卷绕松驰。为使在卷绕过程中张力保持不变,必须在产品卷绕到卷盘上的盘径增大时驱动卷筒的电机的输出力矩也增大,同时为保持卷绕产品线速度不变,须使卷盘的转速随之降低,力矩电动机的机械特性恰好能满足这一要求。

力矩电机调速控制器的设计

设计(论文)专用纸力矩电机调速控制器的设计 学校: 昆明理工大学 学院: 应用技术学院 姓名: 专业班级:电子信息工程081 指导教师单位: 应用技术学院 指导教师姓名:仉月仙 指导教师职称:讲师

设计(论文)专用纸Torque motor speed controller design University: Kunming University of Science and Technology Faculty: Faculty of Applied Technology Name: Wu Wen Ya Professional class: Electronic Information Engineering 081 Faculty Adviser Unit: Faculty of Applied Technology Faculty Adviser Name: Zhang Yue Xian Professional Title: Lecturer

设计(论文)专用纸 目录 摘要 (1) ABSTRACT (2) 前言 (3) 第一章绪论 (5) 1.1力矩电机 (5) 1.2调压调速 (6) 1.3课题研究的背景及其意义 (7) 1.4设计的主要目标任务 (7) 第二章设计方案及其论证 (9) 第三章系统硬件电路设计 (12) 3.1电源模块设计 (12) 3.1.1 电源的方案设计 (12) 3.1.2 元器件的选择 (12) 3.1.3 电源电路的电路图 (15) 3.1.4 元器件明细表 (15) 3.2主电路的模块设计 (16) 3.2.1 主电路方案设计 (16) 3.2.2 元器件的选择 (16) 3.2.3 主电路电路图 (19) 3.2.4 元器件明细表 (19) 3.3控制电路部分设计 (20) 3.3.1 控制电路方案设计 (20) 3.3.2 控制电路元件的选择 (20) 3.3.3 控制电路电路图 (30) 3.3.4 元件明细表 (31) 第四章调试与制作 (33) 4.1制作过程 (33) 4.2调试过程 (33) 结论 (36) 总结与体会 (37) 谢辞 (39)

力矩控制器原理与接线

力矩控制器 一.概述 力矩控制器为代替三相自耦变压器,而专门设计的一种先进的全电子化控制装置,能工作在电阻、电感性负载。此控制器广泛应用于五金机械塑料、电线、电缆、绳网、印刷、造纸、纺织、印染、化疑纤、橡绞、电影胶皮等各种机械、机电行业。 与三相自藕调压器相比较,本控制器由于采用了电子调节,无触点磨损,电压调节平衡,起动性能好,本控制器具有体积小、重量轻、效率高、发热小、节约能源(经测定平均节能17%以上),使用寿命长、安装、维修方便。 二.技术参数 1.输入电压:三相交流电压 380V±10% 2.输出电压:三相交流电压 0-380V 3.额定电流:标称电流(面板上标称的电流) 4.输出电压可以无极调节,从而使电机实现无极调速 5、频率50~60HZ。 三.工作环境 1、环境温度:-25℃~+55℃。 2、空气相对湿度:≤85%(20℃±5℃)。 3、无显著冲击震动。 四.工作原理 三相调压器调速控制器主回路采用进口双向可控硅,改变可控硅的开放角大小,就能使电机或其它负载的工作电压从0至380V连续可调,也就实现了平衡地调压调速过程,以满足不同生产的工艺要求。 在可控硅控制电路中采用了先进的集成电路,加入了电

流回馈, 构成一个循环控制系统。既提高了力矩电机的机械性硬度,又改善性能,同时还提高了力矩电机的超载能力,扩大了力矩电机的使用范围。为了使调速过程尽快进入稳定状态,在控制回路中还加入了电压回馈以提高控制器的技术性能。 五.使用方法 1. 接线说明:请严格按以下接线示意图接线:D1、D2、D3三点为 控制器的输出端,接力矩电机;A 、B 、C 、为输入端接三相380V 电源。 N 为零线接口,接零线。 2.旋钮旋至零位。 3.总电源。(指示灯亮) 4.控制开关,调节调速电位器旋钮,使电机达到你所需的速度。 5. 电位器为精密长寿电位器。 六.注意事项 1.严禁输出短路。 2.严禁使用中,负载电流超过过面板标称电流值。 3、严禁零线N 接入电机星点. 4、若控制器出现问题务必请专业人员检修,以免使故障范围扩大. 六.接线图 A B C D1D2D3A B C 输入 380V 输出 0~380V V 1 U1 W1 W2V 2U2力矩电机 A B C D1D2D3 A B C 输入 380V 输出 0~380V V 1 U1 W1 W2V 2U2力矩电机 N

位置 速度 转矩3种控制方式介绍

1从原理上理解3种控制方式 一般伺服都有三种控制方式:速度控制方式,转矩控制方式,位置控制方式。之所以有这三中控制方式,是因为伺服一般为三个环控制。所谓三环就是3个闭环负反馈PID调节系统。由伺服系统的三个控制回路来实现。 第1环是电流环,它是最内环。此环完全在伺服驱动器内部进行,通过霍尔装置检测驱动器给电机的各相的输出电流,负反馈给电流的设定进行PID调节,从而达到输出电流尽量接近等于设定电流,电流环就是控制电机转矩的,所以在转矩模式下驱动器的运算最小,动态响应最快。 第2环是速度环,它是次外环,通过检测的电机编码器的信号来进行负反馈PID调节,它的环内PID输出直接就是电流环的设定,所以速度环控制时就包含了速度环和电流环,换句话说任何模式都必须使用电流环,电流环是控制的根本,在速度和位置控制的同时系统实际也在进行电流(转矩)的控制以达到对速度和位置的相应控制。 第3环是位置环,它是最外环,可以在驱动器和电机编码器间构建也可以在外部控制器和电机编码器或最终负载间构建,要根据实际情况来定。由于位置控制环内部输出就是速度环的设定,位置控制模式下系统进行了所有3个环的运算,此时的系统运算量最大,动态响应速度也最慢。 2从使用上理解3种控制方式 1、转矩控制:转矩控制方式是通过外部模拟量的输入或直接的地址的赋值来设定 电机轴对外的输出转矩的大小,具体表现为例如10V对应5Nm的话,当外部 模拟量设定为5V时电机轴输出为2.5Nm:如果电机轴负载低于2.5Nm时电机正 转,外部负载等于2.5Nm时电机不转,大于2.5Nm时电机反转(通常在有重力 负载情况下产生)。可以通过即时的改变模拟量的设定来改变设定的力矩大小, 也可通过通讯方式改变对应的地址的数值来实现。应用主要在对材质的受力有 严格要求的缠绕和放卷的装置中,例如饶线装置或拉光纤设备,转矩的设定要

直接转矩控制

太原科技大学 题目:直接转矩控制 专业:电气工程 班级:研1403 姓名:安顺林 学号:S2*******

直接转矩控制 摘要直接转矩控制系统具有宽调速范围、高稳速精度、快动态响应控制等优点,是交流调速领域中一种新颖的控制算法。直接转矩控制技术采用空间矢量分析的方法,直接在定子坐标系下计算并控制交流电动机的转矩和磁链,计算所得的转矩和磁链分别与给定值进行施密特调节产生脉冲信号,对逆变器的开关状态进行最佳控制,以获得转矩的高动态性能。本文从异步机数学模型出发,系统阐述了异步机直接转矩控制基本理论,详细分析了空间电压矢量与定子磁链、电动机转矩的关系。针对异步机的特点,分析讨论了空间矢量调制的直接转矩控制及实现方法,包括参考矢量的生成及空间电压矢量调制的方法。 关键字直接转矩控制,异步电动机 一直接转矩控制系统介绍 1.1 异步电动机调速系统的发展状况 在异步电动机调速系统中变频调速技术是目前应用最广泛的调速技术,也是最有希望取代直流调速的调速方式。就变频调速而言,其形式也有很多。传统的变频调速方式是采用v/f控制。这种方式控制结构简单,但由于它是基于电动机的稳态方程实现的,系统的动态响应指标较差,还无法完全取代直流调速系统。 1971年,德国学者EBlaschke提出了交流电动机的磁场定向矢量控制理论,标志着交流调速理论有了重大突破。所谓矢量控制,就是交流电动机模拟成直流电动机来控制,通过坐标变换来实现电动机定子电流的励磁分量和转矩分量的解藕,然后分别独立调节,从而获得高性能的转矩特性和转速响应特性。 矢量控制主要有两种方式:磁场定向矢量控制和转差频率矢量控制。无论采用哪种方式,转子磁链的准确检测是实现矢量控制的关键,直接关系到矢量控制系统性能的好坏。一般地,转子磁链检测可以采用直接法或间接法来实现。 直接法就是通过在电动机内部埋设感应线圈以检测电动机的磁链,这种方式会使简单的交流电动机结构复杂化,降低了系统的可靠性,磁链的检测精度也不能得到长期的保证。因此,间接法是实际应用中实现转子磁链检测的常用方法。

力矩法控制螺栓预紧力的准确度分析

力矩法控制螺栓预紧力的准确度分析 郭卫凡 黄文建 (重庆工程职业技术学院 邮编;400037) [摘要] 本文分析了使用力矩法控制螺栓预紧力时螺母系数的变化及与主要影响参数间的关系。 [关键词] 螺栓、预紧力、分析计算 1. 引言 普通螺栓联接在装配时都必须拧紧,产生预紧力作用。螺栓预紧力的存在,除了使零件之间产生紧密联接之外,还会大幅度降低在动载荷作用下螺杆应力的变化幅度,提高螺栓联接的疲劳强度。如果预紧力过小,外载荷可能超过螺栓联接的预紧力,这会使螺栓联接体的刚度大幅下降,同时也使应力变化幅度增大而迅速降低螺栓联接的疲劳强度。 另外,在振动与冲击作用下,螺栓可能逐渐失去其设定的预紧力,产生螺栓振动松动。增大预紧力,能有效地减低振动与冲击力对螺栓联接的松动作用,提高螺栓联接的强度与可靠性。但若预紧力过大,则可能超过螺栓的静力强度,起到相反的效果。因此,螺栓预紧力的控制,是提高提高螺栓联接疲劳强度与可靠性的重要手段。 螺栓预紧力可以通过多种方法进行控制。其中力矩法控制是最简单易行,最常用的螺栓预紧力控制方法。但力矩法控制螺栓预紧力的准确度较差,发散性很大。本文就对影响力矩法控制预紧力准确度的几个重要参数进行分析讨论。 2. 分析计算 螺栓的拧紧力矩与预紧力的关系可用以下公式计算(2) : (2-1) 其中,T 为螺栓拧紧力矩,F i 为预紧力,d m 为螺纹的节园直径,近似等于螺纹的平均直径,λ为螺纹的升角,α为螺纹牙型斜角,L 为螺纹啮合段的工作高度,d c 为螺母或螺栓头接触面的平均工作直径,μ为螺纹接触面上的平均摩擦系数,μc 螺母或螺栓头接触面上的平均摩擦系数。 通常条件下可取 d c = (1+1.5) d/2 = 1.25 d ,其中d 是螺栓的公称直径。 由于螺纹的升角可由下式计算 tg λ = L /(π d m ) 则 式(2-1) 可简化成 (2-2) T F i d m ?2 tan λ()μsec α()?+L μtan λ()?sec α()?-? ??? ? ?F i μc ?d c ?2+:= T d m 2d ?tan α()μsec α()?+1μtan λ()?sec α()?-? ?????0.625μc ?+?? ?? ?? F i ?d ?:=

交流力矩电机控制器的电路原理与检修

交流力矩电机控制器的电路原理与检修 交流力矩电机控制器的电路原理与检修 一、交流力矩电动机性能简述 力矩电动机,又分为交流力矩电动机和直流力矩电动机,在电路结构上与一般的交、直流电动机相类似,但在性能上有所不同。本文以交流力矩电机控制器的原理和检修内容为重点。交流力矩电动机转子的电阻比变通交流电动机的转子电阻大,其机械特性比较软。对力矩电机的使用所注重的技术参数主要是额定堵转电压、额定堵转电流和额定堵转电流下的堵转时间等。 力矩电动机是一种具有软机械特性和宽调速范围的特种电机,允许较大的转差率,电机轴不是像变通电机一样以恒功率输出动力而是近似以恒定力矩输出动力。当负载增加时,电机转速能随之降低,而输出力矩增加;力矩电动机的堵转电流小,能承受一定时间的堵转运行。配以晶闸管控制装置,可进行调压调速,调整范围达1:4;力矩电动机适用于纺织、电线电缆、金属加工、造纸、橡胶塑料以及印刷机械等工业领域,其机械特性特别适用于卷绕、开卷、堵转和调速等工艺流程。 早期对力矩电动机的调速和出力控制,是采用大功率三相自耦变压器,来调节力矩电机的电源电压,电力电子技术相对成熟后,逐步过渡到采用晶闸管调速(调压)电路和变频器调速(调频),实施对力矩电动机的调速控制。交流力矩电动机的晶闸管调速控制器,与一般的三相晶闸管调压电路(主电路结构和控制电路)是相同的,只不过驱动负载有所不同而已。有的设备在控制环节引入电流或电压负反馈闭环控制,改善了起动和运行性能,也提高了机械特性硬度。 2 、一款最简单的力矩电动机控制器 _此主题相关图片如下,点击图片看大图: 图1 HDY-2型力矩电机控制器 这是一款适用于额定堵转电流12A以下小功率三相力矩电动机的控制器电路,整机电路安装于一个小型机壳内,机器留有6个接线端子,三个为电源进线端子,三个为电机接线端子。主电路采用双向晶闸管BT139(三端塑封元件),工作电流16A,耐压600V,触发电流≤50mA。两只双向晶闸管串接于L1、L2电源支路,L3直通,省去了一只双向晶闸管。因为三相电源经负载互成回路,只对两相电源进行移相调压控制,即改变了三相输出电压。移相触发电路和调光台灯的控制思路相同,用R、C积分电路与双向触发二极管相配合,提供双向晶闸管每个电网周期内正、负半波的两个触发电流,实现交流调压。470k电位器为双联电位器,调节时使两只双向晶闸管的控制角同步变化,使输出三相电压平衡。 〔故障实例1〕HDY-2型力矩电机控制器,工作不正常,检测为输出电压不平衡。U、W之间输出电压为380V。检查发现L1电源所接双向晶闸管BT139击穿损坏,失去调压功能,导致三相输出电压不平衡。 晶闸管调压电路中,发现1000V以下截止电压的器件,较易发生击穿损坏故障。BT139为截止电压600V的管子,处于交流电压峰值500V的边缘,虽然实际上有200V的截止电压余量(标定击穿电压值尚有100V富裕量),若用于优质电网(未被污染,电压呈较好的正弦波),一般没有问题。但问题是现在的电网,因非线性整流设备的大量安装和应用,好多地区电网波形畸变已相当严重,这使得晶闸管调压设备的运行(电气)环境变得恶劣,设备本身的应用,又反过来加剧了电网的劣变。用户和供应厂商,往往又出于成本的考虑,省掉了安装该类设备必须追加的输入电抗器!所以导致晶闸管调压设备的高故障率,表现为耐电压稍低的晶闸管模块屡被击穿! 遇有此类故障,须尽量更换反向耐压值高的管子。对于屡损晶闸管的场所,应追加输入电抗器,以改善电网供电质量。 更换损坏晶闸管器件,在三相供电回路中串入了3只由XD1-25扼流圈代作的三相电抗器,交付用户使用后,晶闸管击穿的故障率大为降低。

转矩控制、矢量控制

转矩控制、矢量控制和VF 控制解析 1. 变转矩就是负载转矩随电机转速增大而增大,是非线性变化的,如风机水泵 恒转矩就是负载转矩不随电机转速增大而增大,一般是相对于恒功率控制而言。如皮带运输机提升机等机械负载 2. VF 控制就是变频器输出频率与输出电压比值为恒定值或正比。例 如:50HZ时输出电压为380V,25HZ时输出电压为190V即恒磁通控制;转矩不可控,系统只是一个以转速物理量做闭环的单闭环控制系统,他只能控制电机的转速 根据电机原理可知,三相异步电机定子每相电动势的有效 值:E仁4.44f1N1①m 式中:E1--定子每相由气隙磁通感应的电动势的有效值,V ;f1 --定子频率,Hz;N 1 ——定子每相绕组有效匝数;①m-每极磁通量由式中可以看出,①m的值由E1/f1决定,但由于E1 难以直接控制,所以在电动势较高时,可忽略定子漏阻抗压降,而用定子相电压U1代替。那么要保证①m不变,只要U1/f1 始终为一定值即可。这是基频以下调时速的基本情况,为恒压频比(恒磁通)控制方式,属于恒转矩调速。 基准频率为恒转矩调速区的最高频率,基准频率所对应的电压为即为基准电压,是恒转矩调速区的最高电压,在基频以下调速时,电压会随频率而变化,但两者的比值不变。在基频以上调速时,频率从基频向上可以

调至上限频率值,但是由于电机定子不能超过电机额定电压,因此电压不再随频率变化,而保持基准电压值不变,这时电机主磁通必须随频率升高而减弱,转矩相应减小,功率基本保持不变,属于恒功率调速区。 3. 矢量控制,把输出电流分励磁和转矩电流并分别控制,转矩可控,系统是一个以转矩做内环,转速做外环的双闭环控制系统。它既可以控制电机的转速,也可以控制电机的扭矩。 矢量控制时的速度控制(ASR )通过操作转矩指令,使得速度指令和速度检出值(PG 的反馈或速度推定值)的偏差值为0。带PG 的V/f 控制时的速度控制通过操作输出频率,使得速度指令和速度检出值(PG 的反馈或速度推定值)的偏差值为0。 矢量控制原理是模仿直流电动机的控制原理, 根据异步电动机的动态数学模型,利用一系列坐标变换把定子电流矢量分解为励磁分量和转矩分量,对电机的转矩电流分量和励磁分量分别进行控制,在转子磁场定向后实现磁场和转矩的解耦,从而达到控制异步电动机转矩的目的,使异步电机得到接近他励直流电机的控制性能。 具体做法是将异步电动机的定子电流矢量分解为产生磁场的电流分量(励磁电流)和产生转矩的电流分量(转矩电流)分别加以控制,并同时控制两分量间的幅值和相位,即控制定子电流矢量,所以称这种控制方式称为矢量控制方式。 矢量控制分有速度传感器矢量控制和无速度传感器矢量控制两种, 前者精度高后者精度低。矢量控制系统的无速度传感器运行方式,首先必须解决电机转速和转子磁链位置角的在线辨识问题。常用的方法有基于检测定子

直接转矩控制原理

直接转矩控制原理 直接转矩控制原理比较简单,就是根据计算得出的反馈值(转速、电流)(没有实际值,因为在电机内部安装传感器并不实用,一般反馈量都是计算出来的)与给定值相比较,根据偏差(两种:磁链和转矩)大小,选择合适的电压矢量(开关状态)。电压矢量对定子磁链进行控制(幅值,相位),从而改变转矩。 传统直接转矩控制方法偏差分类: 磁链: 1,需要增大 2,需要减小 转矩: 1,需要增大 2,不变 3,需要减小 可见共有6中要求控制状态。在4个控制电压矢量和2个零电压矢量中选择合适的,即为滞环比较器的输出。仿真系统中这个功能由滞环比较单元与查表单元结合产生。 一、引言 电动机调速是各行各业中电动机应用系统的必需环节。直流电动机因其磁链与转矩电流各自独立,不存在耦合关系,能够获得很好的调速范围和调速精度,静、动态特性均比较好而获得广泛应用。 交流(异步)电动机结构简单却因其磁链与电流强耦合,而且是多变量非线性系统,调速难度大,长期以来在调速系统的应用受到限制。直到近三十年来,一系列新型的传动调速技术的出现才开始了交流传动的新篇章。 1.交流传动的发展简述 首先是变压变频调速系统(VVVF),后来出现了矢量控制(FOC)和直接 转矩控制(DTC)调速系统。由于VVVF系统只是维持电动机内的磁链恒定,

并没有解决磁链和电流强耦合的问题,其调速范围窄,调速性能也不佳。矢量控制是以转子磁场定向,采用矢量变换的方法,通过两次旋转坐标变换,实现异步电动机的转速和磁链控制的完全解耦。但实际上由于转子磁链很难准确观测,系统特性受电机参数的影响较大,且计算也比较复杂。 1985年,德国的M.Depenbrock和日本的I.Takahashi先后提出直接转矩控制理论。直接转矩控制在定子坐标系下,避开旋转坐标变换,直接控制转子磁链,采用转矩和磁链的bang-bang控制,不受转子参数随转速变化而变化的影响,简化了控制结构,动态响应快,对参数鲁棒性好,因而得到广泛的深入研究和应用。 2.矢量控制(FOC)和直接转矩控制(DTC)的简略对比 (1)控制原理:FOC是在转子磁通坐标系中,通过分别控制q轴和d轴定子电流分量,实现转速和磁链的解耦控制。其实质是通过坐标变换重建的电动机数学模型等效为直流电动机,从而象直流电动机那样进行快速的转矩和磁通控制。DTC是在定子坐标系下通过检测电动机定子电压和电流,采用空间矢量理论计算电动机的转矩和磁链,并根据与给定值比较所得差值,实现转矩和磁链的直接控制。 (2)控制性能:FOC的调速范围较宽(1:20~200),调速精度较高,低速特性连续,响应速度较快,但受参数变化影响较大,且计算复杂,控制相对繁琐。DTC的调速范围较窄(1:15~100),调速精度也较高,响应速度快,低速特性有脉动现象,但其不仅计算简便,而且控制思想新颖,控制结构简单,控制手段直接,信号处理的物理概念明确,动静态性能均佳,有广阔的应用前景。 图1异步电动机的空间矢量等效电路 直接转矩控制的基本思想是在准确观测定子磁链的空间位置和大小并保持其幅值基本恒定以及准确计算负载转矩的条件下,通过控制电动机的瞬时输入电压来控制电机定子磁链的瞬时旋转速度,来改变它对转子的瞬时转差率,达到直接控制电机输出的目的。 二、数学模型 1.异步电动机转矩的数学模型

《直流力矩电机》

永磁式直流力矩电动机 1.概述 永磁式直流力矩电动机是一种特殊的控制电机,是作为高精度伺服系统的执行元件,适应大扭矩、直接驱动系统,安装空间又很紧凑的场合而特殊设计的控制电机。 实际上,许多自动控制系统控制对象的运动速度相对是比较低的,比如:地面搜索雷达天线的控制系统;陀螺平台的稳定系统;单晶炉的旋转系统;精密拉丝系统等等,在这些控制系统中如果采用齿轮减速驱动,将会大大降低系统的精度,增加系统的惯量和反应时间,加大传动噪声。如果采用力矩电机组成的直接驱动系统,就能够在很宽的范围内达到低速平稳运行,大大提高系统的精度,降低系统的噪声。还有一些负载运行在很低的速度,接近堵转状态,或是负载轴端要加一定的制动反力矩,这些场合,都适合采用力矩电机。 2.性能特点 永磁式直流力矩电动机的性能有以下特点: 2.1高的转矩惯量比 一方面力矩电机设计成在一定体积下输出尽可能大的转矩,另一方面,实现无齿轮传动,从负载轴端看,折算到负载轴上转矩与惯量之比比齿轮传动大一个齿轮传动比的倍数,使系统加速能力大大增加。 2.2高的藕合刚度 力矩电机直接装置于负载轴或轮毂上,没有齿隙,没有弹性变形,传动链短,使系统伺服刚度得以提高。 2.3快的响应速度 力矩电机具有高转矩惯量比,使电机机械时间常数比较小,同时,电气时间常数也很小,保证了在宽广运行速度下都能快速响应,大大提高系统的硬度和品质。 2.4高的速度和位置分辩率 与齿轮或液压传动系统相比,没有齿隙引起的零点死区,减少了传动链 中传动部件的非线性因素,使系统的分辩率仅取决于误差检测元件的精度。 2.5高线性度

转矩的增长正比于输入电流,不随速度和角位置而变化,转矩~电流 特性基本通过零点,非线性死区很小。 2.6结构紧凑 典型的力矩电机设计成分装式的薄环形状(由定子、转子、电刷架三大 件组成),安装时占用较小的空间,尤其在对轴向尺寸、体积、重量要求严格的场合,具有较大的结构适应性和灵活性。 3. 性能指标说明 3.1峰值堵转转矩 电机受磁钢祛磁条件限制及设计中考虑最佳性能时,施加峰值电流电机处于瞬间堵转状态,此时输出的转矩为峰值堵转转矩。 3.2峰值堵转电流 对应峰值堵转转矩时输入的最大电流。 3.3峰值堵转电压 对应于产生峰值堵转电流时的电枢电压。 3.4连续堵转转矩 电机受发热、散热条件及电机绝缘等级条件限制,允许的长期堵转输出的转矩。 3.5连续堵转电流 对应连续堵转转矩时施加的电流。 3.6连续堵转电压 对应于产生连续堵转电流时的电枢电压。 3.7最大空载转速 力矩电机在空载时加以峰值堵转电压所达到的稳定速度。 4.电动机的工作特性 永磁式直流力矩电动机的工作特性见下图:

异步电动机的直接转矩控制系统

异步电动机直接转矩控制系统 1 直接转矩控制简介 直接转矩控制(Direct Torque Control—DTC),国外的原文有的也称为Direct self-control—DSC,直译为直接自控制,这种“直接自控制”的思想以转矩为中心来进行综合控制,不仅控制转矩,也用于磁链量的控制和磁链自控制。直接转矩控制与矢量控制的区别是,它不是通过控制电流、磁链等量间接控制转矩,而是把转矩直接作为被控量控制,其实质是用空间矢量的分析方法,以定子磁场定向方式,对定子磁链和电磁转矩进行直接控制的。这种方法不需要复杂的坐标变换,而是直接在电机定子坐标上计算磁链的模和转矩的大小,并通过磁链和转矩的直接跟踪实现PWM脉宽调制和系统的高动态性能。直接转矩控制系统的主要特点有: (1)直接转矩控制是直接在定子坐标系下分析交流电动机的数学模型,控制电动机的磁链和转矩。 (2)直接转矩控制的磁场定向采用的是定子磁链轴,只要知道定子电阻就可以把它观测出来。 (3)直接转矩控制采用空间矢量的概念来分析三相交流电动机的数学模型和控制各物理量,使问题变得简单明了。 (4)直接转矩控制强调的是转矩的直接控制效果。 直接转矩控制技术用空间矢量的分析方法,直接在定子坐标系下计算与控制电动机的转矩,采用定子磁场定向,借助于离散的两点式调节(Band-Band)产生PWM 波信号,直接对逆变器的开关状态进行最佳控制,以获得转矩的高动态性能。它省去了复杂的矢量变换与电动机的数学模型简化处理,没有通常的PWM 信号发生器。它的控制思想新颖,控制结构简单,控制手段直接,信号处理的物理概念明确。 为了让读者更好的理解直接转矩控制,在正式介绍三相异步电机的直接转矩控制系统前,先从直接转矩控制的基本物理概念讲起。 2 直接转矩控制的基本物理概念 2.1 直接转矩控制中磁通和转矩的测量 在几种用于控制感应电机的方法中,直接转矩控制(DTC)占有很重要的地位。DTC 将转矩和定子磁通分别控制在两个滞环内,这就意味着转矩和磁通各自被限制在最大值和最小值的范围内。

相关文档
最新文档