小波变换与傅里叶变换的对比异同

小波变换与傅里叶变换的对比异同
小波变换与傅里叶变换的对比异同

小波变换与傅里叶变换

的对比异同

IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

小波变换与傅里叶变换的对比、异同

一、基的概念

两者都是基,信号都可以分成无穷多个他们的和(叠加)。而展开系数就是基与信号之间的内积,更通俗的说是投影。展开系数大的,说明信号和基是足够相似的。这也就是相似性检测的思想。但我们必须明确的是,傅里叶是0-2pi标准正交基,而小波是-inf到inf之间的基。因此,小波在实轴上是紧的。而傅里叶的基(正弦或余弦),与此相反。而小波能不能成为Reisz基,或标准稳定的正交基,还有其它的限制条件。此外,两者相似的还有就是PARSEVAL 定理。(时频能量守恒)。

二、离散化的处理

傅里叶变换,是一种数学的精妙描述。但计算机实现,却是一步步把时域和频域离散化而来的。第一步,时域离散化,我们得到离散时间傅里叶变换(DTFT),频谱被周期化;第二步,再将频域离散化,我们得到离散周期傅里叶级数(DFS),时域进一步被周期化。第三步,考虑到周期离散化的时域和频域,我们只取一个周期研究,也就是众所周知的离散傅里叶变换(DFT)。这里说一句,DFT是没有物理意义的,它只是我们研究的需要。借此,计算机的处理才成为可能。所有满足容许性条件(从-INF到+INF积分为零)的函数,都可以成为小波。小波作为尺度膨胀和空间移位的一组函数也就诞生了。但连续取值的尺度因子和平移因子,在时域计算量和频域的混叠来说,都是极为不便的。用更为专业的俗语,叫再生核。也就是,对于任何一个尺度a和平移因子b的小波,和原信号内积,所得到的小波系数,都可以表示成,在a,b附近生成的小波,投影后小波系数的线性组合。这就叫冗余性。这时的连续小波是与正交基毫无关系的东西,它顶多也只能作为一种积分变换或基。但它的显微镜特点和相似性检测能力,已经显现出来了。为了进一步更好的将连续小波变换离散化,以下步骤是一种有效方法。第一步,尺度离散化。一般只将a二进离散化,此时b 是任意的。这样小波被称为二进小波。第二步,离散b。怎么离散化呢b取多少才合适呢于是,叫小波采样定理的东西,就这样诞生了。也就是小波平移的最小距离(采样间隔),应该大于二倍小波基的最高频率(好像类似,记不清了)。所以b取尺度的整数倍就行了。也就是越胖的小波,对应频谱越窄,平移量应该越大,采样间隔越大。当然,第一二两步的频域理解,即在满足频域窗口中心是3倍的频域窗口半径的前提下,频域就在统计上是完美二分的。(但很多小波满足不了这个条件,而且频域窗口能量不,所以只是近似二分的).这时的小波变换,称为离散二进小波变换.第三步,引入稳定性条件.也就是经过变换后信号能量和原信号能量有什么不等式关系.满足稳定性条件后,也就是一个小波框架产生了可能.他是数值稳定性的保证.一个稍弱的稳定条件,就是

三、快速算法。

如果说现代数字信号处理革命的算法,甚至是很多快速算法的老始祖,或者是满矩阵向量乘法一个几乎不可抗拒的最小计算量NlogN,那就是令我不得不佩服的快速傅里叶变换(FFT)。这里我不想解释过多的基2算法,和所谓的三重循环,还有那经典的蝶形单元,或是分裂基之类,我想说的就是一种时频对应关系。也就是算法的来源。我们首先明确,时域的卷积对应频域的相乘,因此我们为了实现卷积,可以先做傅里叶变换,接着在频域相乘,最后再做反傅里叶变换。这里要注意,实际我们在玩DSP。因此,大家要记住,圆周卷积和离散傅里叶变换,是一家子。快速傅里叶是离散傅里叶的快速算法。因此,我们实现离散线性卷积,先要补零。然后使得它和圆周卷积相等。然后就是快速傅里叶变换,频域相乘,最后反快速傅里叶变换。当然,如果我们就需要的是圆周卷积,那我们也就不需要多此一举的补零。这里,我们可以把圆周卷积,写成矩阵形式。这点很重要。Y=AX。这里的A是循环矩阵。但不幸的是A仍然是满阵。小波的快速算法。MALLAT算法,是一个令人振奋的东西。它实质给了多分辨率分析(多尺度分析)一个变得一发而不可收的理由。它实质上,讲了这样一个意思。也就是。我在一个较高的尺度(细节)上作离散二进稳定的小波变换,得到了一个结果(小波系数),我若是想得到比它尺度低的小波系数(概貌),我不用再计算内积,只是把较高尺度的小波系数和低通或高通滤波器卷积再抽取即可。但是,所有这些证明的推导是在整个实轴上进行的。即把信号看成无限长的。但这仍不是我们想要的。还有,我们还必须在较高尺度上作一次内积,才可以使用此算法。因此,我们开始简

化,并扩展此理论。第一,我们把信号的采样,作为一个较高层的小波系数近似初始值。(这是可以的,因为小波很瘦时,和取样函数无异)。第二,我们把原来的卷积,换为圆周卷积。这和DSP何尝不一样呢?它的物理意义,就是把信号作周期延拖(边界处理的一种),使之在整个实轴上扩展。这种算法令我为之一贯坚持的是,它是完全正交的,也就是说是正交变换。正变换Y=AX;反变换X=A’Y;一般对于标准正交基,A’是A的共轭转置,对于双正交A’是A的对偶矩阵。但不管如何,我们可以大胆的写,AA’=A’A=I。这里I是单位矩阵。

那怎样操作才是最快的呢?我们来分析A的特点,首先A是正交阵,其次A是有循环矩阵特点,但此时A上半部分是由低通滤波器构成的循环子矩阵,下半部分是由高通滤波器构成的子矩阵,但却是以因子2为循环的。为什么,因为你做了2抽取。所以我们可以,实现小波变换用快速傅里叶变换。这时如果A是满阵的,则复杂度由O(N.^2)下降到O(NlogN)。但还有一点,我们忘了A是稀疏的,因为信号是很长的,而滤波器确实很短的,也就是这个矩阵是个近似对角阵。所以,快速傅里叶是不快的,除非你傻到含有零的元素,也作了乘法。因此,小波变换是O(N)复杂度的。这是它的优势。但要实现,却不是那么容易,第一个方法,稀疏矩阵存储和稀疏矩阵乘法。第二个方法,因子化。因子化,是一个杰出的贡献。它在原有的O(N)的复杂度基础上,对于长滤波器,又把复杂度降低一半。但量级仍然是O(N)。

四、时频分析

对于平稳信号,傅里叶再好不过了。它反映的是信号总体的整个时间段的特点。在频率上,是点频的。而对于非平稳信号,它就无能为力了。而小波恰好对此派上用场。小波是反映信号,某个时间段的特点的。在频域上,是某个频率段的表现。但小波,作为频谱分析确实存在很多问题。但我们确实可以做出很多的小波满足这个特点。大家可以看冉启文的《小波变换与分数傅里叶变换》书,这里我不再赘述。还有,我们老是说小波是近似频域二分的,这在DSP上是怎样的,最近我也在思考。

五、压缩、消噪、特征提取傅里叶变换的压缩,已经广泛应用了。它的简化版本就是DCT变换。而小波包的提出,也就使DCT有些相形见拙。首先,它提出代价函数,一般就是熵准则。其次,一个自适应树分解。再次,基于矩阵范数或较少位编码的稀疏化策略。这些使小波包的压缩近乎完美。小波包是从频域上实现的。从时域上,我们也可采用类似的分裂和并算法,来实现信号最优的表达,这种可变窗小波成为MALVAR小波。记住,压缩是小波最大的优势。消噪,一般的傅里叶算法,一般可以是IIR滤波和FIR滤波。两者各有优缺点。而小波的消噪,一般也是由多层分解和阈值策略组成。我们需要的是信号的特点,噪声的特点,然后确定用不用小波,或用什么小波。这点上,小波的优势并不是很明显。特征提取。这是小波的显微镜特点很好地运用。利用模极大值和LIPSCHITZ指数,我们可以对信号的突变点做分析。但这里面的问题也是很多。首先,在不同尺度上,噪声和信号的模极大值变化不同。再次,一般我们用求内积方法,求模极大值,而不用MALLET算法,或者改用叫多孔算法的东西来做。这点,我没任何体会,希望大家多讨论吧。这里,我不能谈应用很多的细节。但我们必须明确:1.你要对小波概念有着明确的理解。对诸如多分辨率,时频窗口与分析,框架,消失矩,模极大值,LIPSCHITZ指数等有着清醒地认识。2.你必须考虑小波在此问题上的可行性,这点尤为重要,小波不是万能的。3.你必须考虑什么样的小波是合适的。4.你必须给出一个评价的标准。(熵准则,模极小则等)5.你必须确定一种算法,是用小波还是小波包或是类小波。(MALLET,直接求内积,多孔,模极大值重构)。6.最后,你要把你做的效果还其他人的作比较,看看有没有优势。7.自己编写几乎所有程序,不依靠TOOLBOX里任何的函数。(一些常用的除外)。这样相信你会获益不少。

我个人的理解:

小波分析是傅立叶分析思想的发展与延拓,它自产生以来,就一直与傅立叶分析密切相关,他的存在性证明,小波基的构造以及结果分析都依赖于傅立叶分析,二者是相辅相成的,两者主要的不同点:

1、傅立叶变换实质是把能量有限信号f(t)分解到以{exp(jωt)}为正交基的空间上去;小

波变换的实质是把能量有限信号f(t)分解到W-j和V-j所构成的空间上去的。

2、傅立叶变换用到的基本函数只有sin(ωt),cos(ωt),exp(jωt),具有唯一性;小波分

析用到的函数(即小波函数)则具有多样性,同一个工程问题用不同的小波函数进行分析有时结果相差甚远。小波函数的选用是小波分析运用到实际中的一个难点问题(也是小波分析研究的一个热点问题),目前往往是通过经验或不断地试验(对结果进行对照分析)来选择小波函数。

3、在频域分析中,傅立叶变换具有良好的局部化能力,特别是对于那些频率成分比较简单的确定性信号,傅立叶变换很容易把信号表示成各频率成分的叠加和的形式,如sin(ω1t)+(ω2t)+(ω3t),但在时域中傅立叶变换没有局部化能

力,即无法从f(t)的傅立叶变换中看出f(t)在任一时间点附近的性态。事实上,F(w)dw是关于频率为w的谐波分量的振幅,在傅立叶展开式中,它是由f(t)的整体性态所决定的。

4、在小波分析中,尺度a的值越大相当于傅立叶变换中w的值越小。

5、在短时傅立叶变换中,变换系数S(ω,τ)主要依赖于信号在[τ-δ,τ+δ]片段中的情况,时间宽度是2δ(因为δ是由窗函数g(t)唯一确定的,所以2δ是一个定值)。在小

波变换中,变换系数Wf(a,b)主要依赖于信号在[b-aΔφ,b+aΔφ)片断中的情况,时

间宽度是2aΔφ,该时间的宽度是随尺度a变化而变化的,所以小波变换具有时间局部分析能力。

6、若用信号通过滤波器来解释,小波变换与短时傅立叶变换不容之处在于:对短时傅立叶变换来说,带通滤波器的带宽Δf与中心频率f无关;相反小波变换带通滤波器的带宽Δf则正比于中心频率f。

fourier变换是在全时域上的变换即从负无穷时间到正无穷时间,它具有最高的频率分辨率但是没有时间分辨率。

窗口fourier变化对时域加窗,因而能够同时具有时间分辨率和频率分辨率,但是由于加窗的影响,它的频率分辨率有损失,而时间分辨率取决于窗的大小。

小波变换是科恩类变换,其基本思想是将函数在核函数上展开,核函数具有时间与频率分辨率,因而小波变换也具有时间和频率分辨率。但是小波变换的频率并不是真正意义上的频率,只有具有相当于频率的一种比率。

(1)监督分类:

先取有代表性的训练区作为样本,通过选择特征参数(如像元亮度均值,方法等),确定判别函数,据此进行分类。过程:

1、选择训练区(代表性,完整性,多个样区)

2、提取统计信息(进行多元统计分析,训练样本的有效评价,样本纯化)

3、选择合适的监督分类算法(平行算法,最小距离法,最大似然法(至今应用最广),波谱角分类法)

4、计算机自动分类

5、分类精度评价(非位置精度,位置精度--混淆矩阵)

优点:

1、可充分利用分类地区的先验知识,预先确定分类的类别;

2、可控制训练样本的选择,并可通过反复检验训练样本,以提高分类精度,避免分类中的严重错误

3、避免了非监督分类中对光谱集群组的重新归类。

缺点:

1、人为主观因素较强;

2、训练样本的选取和评估需花费较多的人力时间;

3、只能识别训练样本中所定义的类别,从而影响分类结果。

(2)非监督分类(又称聚类分析或点群分析):

在没有先验类别作为样本的条件下,根据像元间相似度大小进行计算自动判别归类,无须人为干预,分类后需确定地面类别。

优点:

1、无需对分类区有较多的了解,仅需一定的知识来解释分类出现的集群组;

2、人为误差减少,需输入的初始参数较少;

3、可形成范围很小但有独特光谱特征的集群,所分的类别比监督分类的类别更均质;

4、独特的覆盖量小的类别均能够被识别

缺点:

1、对其结果需进行大量分析及后处理,才能得到可靠分类结果;

2、存在同物异谱及异物同谱现象,使集群组与类别的匹配难度大;

3、不同图像间的光谱集群组无法保持其连续性,难以对比。

传统的模板匹配算法的基本搜索策略是遍历性的,为了找到最优匹配点,传统方法均必须在搜索区域内的每一个像素点上进行区域相关匹配计算,图像相关匹配的数据量和计算量很大,匹配速度较慢.序贯相似性检测算法(SSDA)是针对传统模板匹配算法提出的一种高效的图像匹配算法.具体算法是先初步搜索,再精搜索,搜索的范围一步一步减小。SSDA通过人为设定一个固定阈值,及早地终止在不匹配位置上的计算,以此减小计算量,达到提高运算速度的目的。其步骤如下:(1)选取一个误差准则,作为终止不匹配点计算的标准,通常可选取绝对误差

(2)设定一个不变阈值

(3)在子图象中随机选取一点,计算它与模板中相应点的绝对误差值,将每一随机点对的误差累加起来,若累加到第r次时误差超过设定阈值,则停止累加,记下此时的累加次数r

(4)对于整幅图像计算误差e,可得到一个由r值构成的曲面,曲面最大值处对应的位置即为模板最佳匹配位置。这是因为该点需要多次累加误差才能超过阈值,因此相对于其它点,它最有可能是匹配位置。

我对傅里叶变换(DFT,FFT)的理解

我本身不是学通信专业的,相近专业+刻苦最终能够让我理解通信理论方面的一些知识,对此我坚信不移.看了一些天的书,总结一下,现代通信中,傅里叶变换是很重要的组成部分.现代的通讯基本都是数字通信,这里面就要对数字信号处理有很多的了解,而在学信号处理之前,是要学习信号与系统的,看了书后才知道这件事情的,所以非专业的人学习的路往往是弯曲前行的,但这个弯曲的过程却会给人对知识的更深刻的了解. 尤其是随着通讯技术的发展,更多的数学被运用到通讯中,这种数学知识的运用使得本来需要用复杂的硬件来实现的功能最终被软件轻松化解,这样带来的好处就是在产品的设计中硬件的比例会变小,成本也就自然会降低.4G时代的通讯协议中大量的运用了通讯数学方面的计算,而FFT在4G通讯中变得越来越重要,如果对FFT不了解或者不理解的话,想从事4G 相关产品的研究与开发会变得很艰难. 在学校傅里叶变换的时候,多种傅里叶变换让我经常把他们弄混,搞得我晕头转向.向一位学通信的同事询问一些知识,后来发现,哥们总是不往点上说,也就是说那些最关键,最容易混淆的东西,他都不愿意说出来.但这并不能阻碍我,因为我是不怕这种情况的,我就是在这种环境下成长起来的,只要我想学的东西,我从来没被难倒过,克服了太多的困难让我对自己很有信心.后来总结了一通才发现,其实那东西只要知道了要领,最终会绕过很多弯路的. 在通讯中,我们的傅里叶变换时间上是一种在时域上的周期离散信号到频域上的周期离散信号之间的变换,这样才是数字通信,如果变换中有连续的模拟量,那也就不是数字通信了.因此,在学习的使用一定要注意到这一点.有了这个方向,你就该知道应该记住什么,应该学习哪种傅里叶变换了. 学了东西几天不看就要忘记,前几天看的,现在又开始变得模糊了,看来学的东西还是要经常复习才是. 前一篇讲我们在数字通讯中用来进行计算的傅里叶变换一般是指时域和频域上都是周期性的离散信号来讲的.这里我们要明确一下周期信号,非周期信号,连续信号,离散信号到底是什么样的信号,明确这一点对理解DFT比较有好处. 首先,我们先知道一个惯例,在通讯中,时域上的变量一般使用小写字母来表示,而频域上的变量一般使用大写字母来表示. 连续信号,应该不用再说明了吧,也就是说时域上的连续信号是指幅度在时域上随时间连续变化的信号,用x(t)的形式来表达,同理频域上的连续信号就是指幅度在频域上随频率连续变化的信号,一般用类似X(jw)之类的形式来表达.而非连续信号不言而喻就是指有间断的信号,不连续的信号,离散的信号,在数字通信中一般指类似脉冲之类的信号.

小波变换与傅里叶变换的对比异同

小波变换与傅里叶变换的对比、异同 一、基的概念 两者都是基,信号都可以分成无穷多个他们的和(叠加)。而展开系数就是基与信号之间的内积,更通俗的说是投影。展开系数大的,说明信号和基是足够相似的。这也就是相似性检测的思想。但我们必须明确的是,傅里叶是0-2pi 标准正交基,而小波是-inf到inf之间的基。因此,小波在实轴上是紧的。而傅里叶的基(正弦或余弦),与此相反。而小波能不能成为Reisz基,或标准稳定的正交基,还有其它的限制条件。此外,两者相似的还有就是PARSEVAL定理。(时频能量守恒)。 二、离散化的处理 傅里叶变换,是一种数学的精妙描述。但计算机实现,却是一步步把时域和频域离散化而来的。第一步,时域离散化,我们得到离散时间傅里叶变换(DTFT),频谱被周期化;第二步,再将频域离散化,我们得到离散周期傅里叶级数(DFS),时域进一步被周期化。第三步,考虑到周期离散化的时域和频域,我们只取一个周期研究,也就是众所周知的离散傅里叶变换(DFT)。这里说一句,DFT是没有物理意义的,它只是我们研究的需要。借此,计算机的处理才成为可能。所有满足容许性条件(从-INF到+INF积分为零)的函数,都可以成为小波。小波作为尺度膨胀和空间移位的一组函数也就诞生了。但连续取值的尺度因子和平移因子,在时域计算量和频域的混叠来说,都是极为不便的。用更为专业的俗语,叫再生核。也就是,对于任何一个尺度a和平移因子b的小波,和原信号内积,所得到的小波系数,都可以表示成,在a,b附近生成的小波,投影后小波系数的线性组合。这就叫冗余性。这时的连续小波是与正交基毫无关系的东西,它顶多也只能作为一种积分变换或基。但它的显微镜特点和相似性检测能力,已经显现出来了。为了进一步更好的将连续小波变换离散化,以下步骤是一种有效方法。第一步,尺度离散化。一般只将a二进离散化,此时b是任意的。这样小波被称为二进小波。第二步,离散b。怎么离散化呢?b取多少才合适呢?于是,叫小波采样定理的东西,就这样诞生了。也就是小波平移的最小距离(采样间隔),应该大于二倍小波基的最高频率(好像类似,记不清了)。所以b取尺度的整数倍就行了。也就是越胖的小波,对应频谱越窄,平移量应该越大,采样间隔越大。当然,第一二两步的频域理解,即在满足频域窗口中心是3倍的频域窗口半径的前提下,频域就在统计上是完美二分的。(但很多小波满足不了这个条件,而且频域窗口能量不?,所以只是近似二分的).这时的小波变换,称为离散二进小波变换.第三步,引入稳定性条件.也就是经过变换后信号能量和原信号能量有什么不等式关系.满足稳定性条件?后,也就是一个小波框架产生了可能.他是数值稳定性的保证.一个稍弱的稳定条件???,就是?

傅里叶变换

傅里叶变换 傅里叶变换是一个概括的复杂的傅里叶级数在极限。代替离散与连续而让。然后改变一个求和积分和方程 (1) (2)在这里, (3) (4)被称为远期(傅里叶变换), (5) (6)被称为逆(傅里叶变换)。的符号介绍了Trott(2004,p .第23),然后呢和有时也用来表示傅里叶变换和傅里叶反变换,分别(“将军”1999年,p . 1999)。 注意,一些作者(特别是物理学家)更愿意编写转换角频率而不是振荡频率。然而,这破坏了对称,导致转换 (7) (8) (9) (10)恢复的对称变换,该公约 (11) (12) (13) (14)有时使用(马修斯和沃克1970,p . 102)。 一般来说,傅里叶变换可以定义使用两个任意常数和作为 (15) (16) 傅里叶变换的一个函数是实现了Wolfram语言作为FourierTransform(f,x,k),不同的选择和可以通过使用可选FourierParameters - >一个,b选择。默认情况下,Wolfram语言以FourierParameters为。不幸的是,许多其他约定在广泛使用。例如,在现代物理学中,使用使用在纯数学和系统工程,概率论中 使用的计算特征函数,在经典物理学,用于信号处理。在这工作,后Bracewell(1999年,页6 - 7),它总是假定和,除非另有说明。这种选择往往导致大大简化变换等常见功能1,等。 因为任何函数都可以分成甚至和奇怪的部分和 , (17) (18)傅里叶变换可以表达的傅里叶余弦变换和傅里叶正弦变换作为

(19)一个函数有一个向前和傅里叶反变换,这样吗 (20)前提是 1。的存在。 2。有有限数量的不连续性。 3所示。函数有界变差。一个足够的较弱的条件是满足的李普希兹条件 (拉米1985年,p . 29)。的一个函数(即更平稳。,连续的数量衍生品其傅里叶变换),更紧凑。 傅里叶变换是线性的,因为如果和有傅里叶变换和,然后 (21) (22)因此, (23) (24)傅里叶变换也是对称的意味着 . 让表示卷积,然后犹如函数的变换有特别漂亮的变换, (25) (26) (27) (28)第一个是推导如下: (29) (30) (31) (32)在哪里 . 还有一个有点令人惊讶和极其重要的关系自相关和傅里叶变换被称为Wiener-Khinchin定理。让,表示复共轭的,然后的傅里叶变换绝对的广场的 是由 (33)的傅里叶变换导数的一个函数只是相关变换的函数本身。考虑 (34)现在使用分部积分法 (35)

基于傅里叶变换和小波变换的图像稀疏表示

基于二维傅里叶变换和小波变换的图像稀疏表示 一、基于二维傅里叶变换的图像稀疏表示 傅里叶变换是数字图像处理技术的基础,其通过在时空域和频率域来回切换图像,对图像的信息特征进行提取和分析。一幅静止的数字图像可以看成是矩阵,因此,数字图像处理主要是对包含数据的矩阵进行处理。 经过对图像进行二维离散傅里叶变换可以得到它的频谱,进而得到我们所需要的特征。二维离散傅里叶变换及逆变换可以表示为: 其中u=0,1,2,...,M-1和v=0,1,2,...,N-1。其中变量u和v用于确定它们的频率,频域系统是由F(u,v)所张成的坐标系,其中u和v用做(频率)变量。空间域是由f(x,y)所张成的坐标系。 傅立叶频谱图上我们看到的明暗不一的亮点,其意义是指图像上某一点与邻域点差异的强弱,即梯度的大小,也即该点的频率的大小(可以这么理解,图像中的低频部分指低梯度的点,高频部分相反)。一般来讲,梯度大则该点的亮度强,否则该点亮度弱。下图为cameraman原图像及其频谱分布图: cameraman原图像大小为256*256,其傅里叶变换频谱图大小为256*256。 图像从频域到时域的变换过程称为重构过程,通过峰值信噪比(PSNR)对图像进行评价,公式如下: PSNR=10*log10((2^n-1)^2/MSE)

MSE是原图像与处理后图像之间均方误差,n是每个采样值的比特数。通过取不同的大系数个数观察图像变化,单独取第1个大系数时: N=1 PSNR=12.2353所取频谱系数对应图 单独取第9个系数时: N=1 PSNR=6.3108第9个频谱系数对应图

N=2 PSNR= 13.1553所取频谱系数对应图 N=10 PSNR=15.4961 所取频谱系数对应图 N=50 PSNR=17.1111 所取频谱系数对应图

拉氏变换和傅里叶变换的关系

拉氏变换和傅里叶变换的关系 一、拉氏变换 1、拉氏变换的定义: 如果有一个以时间t 为自变量的实变函数 ()t f ,它的定义域是 0≥t ,,那么()t f 的的拉普拉斯变换定义为 ()()()0e d st F s L f t f t t ∞ -=?????? (2.10) s 是复变数, ωσj +=s (σ、ω均为实数), ?∞-0e st 称为拉普拉斯积分; )(s F 是函数 )(t f 的拉普拉斯变换,它是一个复变函数,通常也称 )(s F 为 )(t f 的象函数,而称 )(t f 为 )(s F 的原函数;L 是表示进行拉普拉斯变换的符号。 式(2.10)表明:拉氏变换是这样一种变换,即在一定条件下,它能把一实数域中的实变函数变换为一个在复数域内与之等价的复变函数 )(s F 。 2、拉氏变换的意义 工程数学中常用的一种积分变换。它是为简化计算而建立的实变量函数和复变量函数间的一种函数变换。对一个实变量函数作拉普拉斯变换,并在复数域中作各种运算,再将运算结果作拉普拉斯反变换来求得实数域中的相应结果,往往比直接在实数域中求出同样的结果在计算上容易得多。拉普拉斯变换的这种运算步骤对于求解线性微分方程尤为有效,它可把微分方程化为容易求解的代数方程来处理,从而使计算简化。在经典控制理论中,对控制系统的分析和综合,都是建立在拉普拉斯变换的基础上的。 在工程学上,拉普拉斯变换的重大意义在于:将一个信号从时域上,转换为复频域(s 域)上来表示;在线性系统,控制自动化上都有广泛的应用 二、傅里叶变换 1、傅里叶变换的定义: f(t )是t 的函数,如果t 满足狄里赫莱条件:具有有限个间断点;具有有限个极值点;绝对可积。则有下图①式成立。称为积分运算f(t )的傅立叶变换, ②式的积分运算叫做F (ω)的傅立叶逆变换。F (ω)叫做f(t )的像函数,f(t )叫做 F (ω)的像原函数。F (ω)是f(t )的像。f(t )是F (ω)原像。 ① 傅里叶变换 ②

常用函数傅里叶变换

信号与系统的基本思想:把复杂的信号用简单的信号表示,再进行研究。 怎么样来分解信号?任何信号可以用Delta 函数的移位加权和表示。只有系统是线性时不变系统,才可以用单位冲激函数处理,主要讨论各个单位冲激函数移位加权的响应的叠加能得到总的响应。 线性系统(齐次性,叠加定理) 时不变系统 对一个系统输入单位冲激函数,得到的响应为h(t).表征线性时不变系统的非常重要的东西,只要知道了系统对单位冲击函数的响应,就知道了它对任何信号的响应,因为任何信号都可以表示为单位冲激函数的移位加权和。 例如:d(t)__h(t) 那么a*d(t-t0)__a*h(t-t0) -()= ()(t-)d f t f τδττ∝∝? 的响应为-y()=()(-)t f h t d τττ∝ ∝ ? 记为y(t)=f(t)*h(t),称为f(t)和h(t)的卷积 总结为两点:对于现行时不变系统,任何信号可以用单位冲激信号的移位加权和表示,任何信号的响应可以用输入函数和单位冲激函数响应的卷积来表示 连续时间信号和系统的频域分析 时域分析的重点是把信号分解为单位冲激函数的移位加权和,只讨论系统对单位冲激函数的响应。而频域的分析是把信号分解为各种不同频率的正弦函数的加权和,只讨论系统对sinwt 的响应。都是把信号分解为大量单一信号的组合。

周期函数可以展开为傅里叶级数,将矩形脉冲展开成傅里叶级数,得到傅里叶级数的系数 n A sin F = T x x τ 其中0=2 nw x τ。 取样函数sin ()=x S a x 。产生一种震荡,0点的值最大,然后渐渐衰减直至0 第一:对于傅里叶级数的系数,n 是离散的,所以频谱也是离散状的每条谱线都出现在基波频率的整数倍上,其包络是取样函数。 第二:谱线的间距是0w .。零点是0=2nw x τ,02w =T π是谱的基波频率。如果τ不变,T 增大,那么0w 减小,当T 非常大的时候,0w 非常小,谱线近似连续,越来越密,幅度越来越小。 傅里叶变换:非周期函数 正变换:--F jw)= ()iwt f t e dt ∝ ∝?( 反变换:-1()=()2jnwt f t F jw e dw π ∝∝ ? 常用函数的傅里叶变换(典型非周期信号的频谱)

详解傅里叶变换与小波变换

详解傅里叶变换与小波变化 希望能简单介绍一下小波变换,它和傅立叶变换的比较,以及它在移动平台做motion detection的应用。如果不做特殊说明,均以离散小波为例子。考虑到我以前看中文资料的痛苦程度,我会尽量用简单,但是直观的方式去介绍。有些必要的公式是不能少的,但我尽量少用公式,多用图。另外,我不是一个好的翻译者,所以对于某些实在翻译不清楚的术语,我就会直接用英语。我并不claim我会把整个小波变换讲清楚,这是不可能的事,我只能尽力去围绕要点展开,比如小波变换相对傅立叶变换的好处,这些好处的原因是什么,小波变换的几个根本性质是什么,背后的推导是什么。我希望达到的目的就是一个小波变换的初学者在看完这个系列之后,就能用matlab或者别的工具对信号做小波变换的基本分析并且知道这个分析大概是怎么回事。 要讲小波变换,我们必须了解傅立叶变换。要了解傅立叶变换,我们先要弄清楚什么是”变换“。很多处理,不管是压缩也好,滤波也好,图形处理也好,本质都是变换。变换的是什么东西呢?是基,也就是basis。如果你暂时有些遗忘了basis的定义,那么简单说,在线性代

数里,basis是指空间里一系列线性独立的向量,而这个空间里的任何其他向量,都可以由这些个向量的线性组合来表示。那basis在变换里面啥用呢?比如说吧,傅立叶展开的本质,就是把一个空间中的信号用该空间的某个basis的线性组合表示出来,要这样表示的原因,是因为傅立叶变换的本质,是。小波变换自然也不例外的和basis有关了。再比如你用Photoshop去处理图像,里面的图像拉伸,反转,等等一系列操作,都是和basis的改变有关。 既然这些变换都是在搞基,那我们自然就容易想到,这个basis的选取非常重要,因为basis的特点决定了具体的计算过程。一个空间中可能有很多种形式的basis,什么样的basis比较好,很大程度上取决于这个basis服务于什么应用。比如如果我们希望选取有利于压缩的话,那么就希望这个basis能用其中很少的向量来最大程度地表示信号,这样即使把别的向量给砍了,信号也不会损失很多。而如果是图形处理中常见的线性变换,最省计算量的完美basis就是eigenvector basis了,因为此时变换矩阵T对它们的作用等同于对角矩阵(Tv_n= av_n,a是eigenvalue)。总的来说,抛开具体的应用不谈,所有的basis,我们都希望它们有一个共同的特点,那就是,容易计算,用最简单的方式呈现最多的信号特性。 好,现在我们对变换有了基本的认识,知道他们其实就是在搞基。当然,搞基也是分形式的,不同的变换,搞基的妙处各有不同。接下来先看看,傅立叶变换是在干嘛。

小波变换与傅里叶变换的对比异同

小波变换与傅里叶变换 的对比异同 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

小波变换与傅里叶变换的对比、异同 一、基的概念 两者都是基,信号都可以分成无穷多个他们的和(叠加)。而展开系数就是基与信号之间的内积,更通俗的说是投影。展开系数大的,说明信号和基是足够相似的。这也就是相似性检测的思想。但我们必须明确的是,傅里叶是0-2pi标准正交基,而小波是-inf到inf之间的基。因此,小波在实轴上是紧的。而傅里叶的基(正弦或余弦),与此相反。而小波能不能成为Reisz基,或标准稳定的正交基,还有其它的限制条件。此外,两者相似的还有就是PARSEVAL 定理。(时频能量守恒)。 二、离散化的处理 傅里叶变换,是一种数学的精妙描述。但计算机实现,却是一步步把时域和频域离散化而来的。第一步,时域离散化,我们得到离散时间傅里叶变换(DTFT),频谱被周期化;第二步,再将频域离散化,我们得到离散周期傅里叶级数(DFS),时域进一步被周期化。第三步,考虑到周期离散化的时域和频域,我们只取一个周期研究,也就是众所周知的离散傅里叶变换(DFT)。这里说一句,DFT是没有物理意义的,它只是我们研究的需要。借此,计算机的处理才成为可能。所有满足容许性条件(从-INF到+INF积分为零)的函数,都可以成为小波。小波作为尺度膨胀和空间移位的一组函数也就诞生了。但连续取值的尺度因子和平移因子,在时域计算量和频域的混叠来说,都是极为不便的。用更为专业的俗语,叫再生核。也就是,对于任何一个尺度a和平移因子b的小波,和原信号内积,所得到的小波系数,都可以表示成,在a,b附近生成的小波,投影后小波系数的线性组合。这就叫冗余性。这时的连续小波是与正交基毫无关系的东西,它顶多也只能作为一种积分变换或基。但它的显微镜特点和相似性检测能力,已经显现出来了。为了进一步更好的将连续小波变换离散化,以下步骤是一种有效方法。第一步,尺度离散化。一般只将a二进离散化,此时b 是任意的。这样小波被称为二进小波。第二步,离散b。怎么离散化呢b取多少才合适呢于是,叫小波采样定理的东西,就这样诞生了。也就是小波平移的最小距离(采样间隔),应该大于二倍小波基的最高频率(好像类似,记不清了)。所以b取尺度的整数倍就行了。也就是越胖的小波,对应频谱越窄,平移量应该越大,采样间隔越大。当然,第一二两步的频域理解,即在满足频域窗口中心是3倍的频域窗口半径的前提下,频域就在统计上是完美二分的。(但很多小波满足不了这个条件,而且频域窗口能量不,所以只是近似二分的).这时的小波变换,称为离散二进小波变换.第三步,引入稳定性条件.也就是经过变换后信号能量和原信号能量有什么不等式关系.满足稳定性条件后,也就是一个小波框架产生了可能.他是数值稳定性的保证.一个稍弱的稳定条件,就是

傅里叶变换实验报告

南昌大学实验报告 学生姓名:学号:6100209228 班级:电子093班 实验类型:□验证□综合■设计□创新实验日期:2011-04-8 实验成绩: 傅里叶变换 (一)实验目的 1、掌握对不同的函数进行傅里叶变换的程序编写; 2、熟悉生成联系周期信号的方法; 3、练习matlab编程。 (二) 实验内容 1.请编写函数F=fsana(t,f,,N),计算周期信号f的前N个指数形式的傅立叶级数系数,t表示f对应的抽样时间(均为一个周期);再编写函数f=fssyn(F,t),由傅立叶级数系数F合成抽样时间t对应的函数。设计信号验证这两个是否正确。 定义F=fsana(t,f,N)。 function F=fsana(t,f,N) omg1=2*pi/(max(t)-min(t)); k=[0:N]'; F=1/length(t)*exp(-j*kron(k*omg1,t.'))*f 定义f=fssyn(F,t) function f=fssyn(F,t) omg1=2*pi/(max(t)-min(t)); N=floor(length(F)/2); k=[0:N]; f=exp(j*kron(t,k*omg1))*F; 运行所定义的函数 T1=2*pi; %一个周期时域范围 N1=300; %时域抽样点数

t=linspace(0,T1-T1/N1,N1)'; %生成抽样时间点 f=cos(t); %生成抽样函数值 subplot(2,2,1) plot(t,f); title ('原函数') N=10; F1=fsana(t,f,N); %调用fsana函数求解前N项傅立叶级数系数 subplot(2,2,2) stem(abs(F1),'s'); %绘制离散的幅度曲线 title('前N项傅立叶级数系数幅度曲线'); f2=fssyn(F1,t); %调用fssyn函数求原时域函数 subplot(2,2,3) plot(t,f2,'k'); title('傅立叶逆变换后时域函数'); 运行结果

几种时频分析综述1——傅里叶变换和小波变换

几种时频分析方法综述1——傅里叶变换和小波变换 夏巨伟 (浙江大学空间结构研究中心) 摘要:传统的信号理论,是建立在Fourier 分析基础上的,而Fourier 变换作为一种全局性的变化,其有一定的局限性。在实际应用中人们开始对Fourier 变换进行各种改进,小波分析由此产生了。小波变换与Fourier 变换相比,是一个时间和频域的局域变换因而能有效地从信号中提取信息,通过伸缩和平移等运算功能对函数或信号进行多尺度细化分析(Multiscale Analysis ),解决了Fourier 变换不能解决的许多困难问题。本文对傅里叶变换和小波变换进行了详细介绍,并用算例分析指出了两者的差别。 关键词:傅里叶变换;小波变换;时频分析技术; 1 傅里叶变换(Fourier Transform ) 1 2/201 22/0()()()()1()()()(::::)N j nk N ft N ft j nk N n H T h kT e H f h t e d DFT FT IFT IDFT t NT k h t H f e dt h nT H e N NT ππππ--∞ --∞∞--∞?=??=??????????→????=?=??? ∑??∑离散化(离散取样) 周期化(时频域截断) 2 小波变换(Wavelet Transform ) 2.1 由傅里叶变换到窗口傅里叶变换(Gabor Transform(Short Time Fourier Transform)/) 从傅里叶变换的定义可知,时域函数h(t)的傅里叶变换H(f )只能反映其在整个实轴的性态,不能反映h (t )在特定时间区段内的频率变化情况。如果要考察h(t)在特定时域区间(比如:t ∈[a,b])内的频率成分,很直观的做法是将h(t)在区间t ∈[a,b]与函数[][]11,t ,()0,t ,a b t a b χ?∈?=? ∈??,然后考察1()()h t t χ傅里叶变换。但是由 于1()t χ在t= a,b 处突然截断,导致中1()()h t t χ出现了原来h (t )中不存在的不连 续,这样会使得1()()h t t χ的傅里叶变化中附件新的高频成分。为克服这一缺点, D.Gabor 在1944年引入了“窗口”傅里叶变换的概念,他的做法是,取一个光滑的函数g(t),称为窗口函数,它在有限的区间外等于0或者很快地趋于0,然后将窗口函数与h(t)相乘得到的短时时域函数进行FT 变换以考察h(t)在特定时域内的频域情况。 22(,)()()()()(,)ft f ft f STFT ISTF G f h t g t e dt h t df g t G f e d T ππτττττ +∞ --∞ +∞+∞ -∞ -∞ =-=-??? ::

初学者-从信号与系统角度浅谈傅里叶变换,拉氏变换,Z变换三者之间的关系

初学者-从信号与系统角度浅谈傅里叶变换,拉氏变换,Z 变换三者之间的关系 一 傅里叶级数展开与傅里叶变换 之所以要将一个信号f(t)进行傅里叶级数展开或傅里叶变换是因为一般自然界信号都非常复杂,且表面上并不能直观的表现出频率与幅值的关系,而一个信号的大部分有效信息恰藏于其频谱上,即其幅频关系和相频关系上。通过傅里叶级数展开或傅里叶变换,可将自然界中复杂的信号分解成简单的,有规律的基本信号之和或积分的形式,并且可以明确表达出周期信号的离散频谱和非周期信号的连续频谱函数。 傅里叶级数展开是对于周期信号而言,如果该周期信号满足狄利克雷条件(在电子和通讯中大部分周期信号均满足),周期信号就能展开成一组正交函数的无穷级数之和,三角函数集在一个周期内是完备的正交函数集,使用三角函数集的周期函数展开就是傅里叶级数展开,而欧拉公式是将三角函数和复指数连接了起来,所以傅里叶级数可展开成三角函数或复指数两种形式,此时就可画出信号的频谱图,便可直观的看到频率与幅值和相位的关系。 既然是级数和展开,则上述频谱图中横轴表示n 倍的角频率,是一个离散频谱图,那么由离散频谱的间隔与周期的反比关系知当f(t)的周期T 趋近于无穷大时,周期信号变成了非周期信号,谱线间隔趋近于无穷小,谱线无限的密集而变成为连续频谱,该连续频谱即为频谱密度函数,简称频谱函数,该表达式即是我们熟悉的傅里叶变换,傅里叶变换将信号的时间函数变为频率函数,则其反变换是将频率函数变为时间函数,所以傅里叶变换建立了信号的时域与频域表示之间的关系,而傅里叶变换的性质则揭示了信号的时域变换相应地引起频域变换的关系。 二 傅里叶变换与拉氏变换 上述的傅里叶变换必须是在一个信号满足绝对可积的条件下才成立,那么对于不可积的信号,我们要将它从时域移到频域上,就要将原始信号乘上一个衰减信号将其变为绝对可积信号再做傅里叶变换,即为 f t e ?σt e ?j ωt ∞?∞dt = f(t)e ?(σ+j ω)t dt ∞?∞= f(t)e ?st ∞ ?∞ dt s=σ+j ω 变为拉氏变换,如令σ=0则拉氏变换就变成了傅里叶变换,所以傅里叶变换是S 域仅在虚轴上取值的拉氏变换,拉氏变换是傅里叶的推广,拉氏变换的收敛域就是f t e ?σt 满足绝对可积条件的σ值的范围,在收敛域内可积,拉氏变换存在,在收敛域外不可积,拉氏变换不存在。拉氏变换针对于连续时间信号,主要用于连续时间系统的分析中,对一个线性微分方程两边同时进行拉氏变换,可将微分方程转化成简单的代数运算,可方便求出系统的传递函数,简化了运算。

连续时间傅里叶变换

2 奇偶信号的FS: (i) 偶信号的FS: 2 a n f (t)cosn T] T 1 Fn 弘 1tdt ; bn 2 T1 f (t)sin n 1tdt c n d n a n (ii ) jbn an 2 2 偶的周期信号的 奇信号的FS: F n ( Fn 实, 偶对称);n FS 系数只有直流项和余弦项。 2 T f(t)sinn 1tdt ; 5 dn T| 11 1 Fn F n jbn ( Fn 纯虚,奇对称); a a n 0 ; b n b n 2jFn 第二章连续时间傅里叶变换 1周期信号的频谱分析 一一傅里叶级数FS (1) 狄义赫利条件:在同一个周期 T1内,间断点的个数有限;极大值和极小值的数目有限;信号绝 为T i ,角频率为 ,2 f ,—。 Ti (3)任何满足狄义赫利条件周期函数都可展成傅里叶级数。 ⑷三角形式的FS: (i) 展开式:f(t) a 0 (ancon it bn sin n ,t) n 1 (ii) 系数计算公式: (a) 直流分量: ao f (t)dt T 1 T 1 (b) n 次谐波余弦分量: a n - f (t) cosn 1tdt, n N T1 T 1 2 (c) n 次谐波的正弦分量: bn — f (t)sinn 1tdt, n N T1 T 1 (iii) 系数an 和bn 统称为三角形式的傅里叶级数系数,简称傅里叶系数。 (iv) 称f1 1/T1为信号的基波、基频; nf1为信号的n 次谐波。 (V) 合并同频率的正余弦项得: n 和n 分别对应合并后 门次谐波的余弦项和正弦项的初相位。 (vi) 傅里叶系数之间的关系: (5)复指数形式的FS: (i) 展开式:f (t) Fne jn 1t n (ii) 系数计算:Fn 丄 f(t)e jn 1t dt, n Z T] T 1 (iii) 系数之间的关系: (iv) Fn 关于 n 是共扼对称的,即它们关于原点互为共轭。 (v) 正负n (n 非零)处的Fn 的幅度和等于Cn 或dn 的幅度。 对可积 丁 f(t)dt 。 (2)傅里叶级数:正交函数线性组合。 正交函数集可以是三角函数集 {1,cosn *,sinn 1t :n N}或复指数函数集 {e jn 术:n Z},函数周期

傅里叶变换基础知识

傅里叶变换基础知识 1. 傅里叶级数展开 最简单有最常用的信号是谐波信号,一般周期信号利用傅里叶级数展开成多个乃至无穷多个不同频率的谐波信号,即一般周期信号是由多个乃至无穷多个不同频率的谐波信号线性叠加而成。 1.1 周期信号的傅里叶级数 在有限区间上,任何周期信号()x t 只要满足狄利克雷(dirichlet )条件,都可以展开成傅里叶级数。 1.1.1 狄利克雷(dirichlet )条件 狄利克雷(dirichlet )条件为: (1)信号()x t 在一个周期内只有有限个第一类间断点(当t 从左或右趋向于这个间断点时,函数有左极限值和右极限值); (2)信号()x t 在一周期内只有有限个极大值和极小值; (3)信号在一个周期内是绝对可积分的,即00 /2 /2()dt T T x t -?应为有限值。 1.1.2 间断点 在非连续函数()y f x =中某点处0x 处有中断现象,那么,0x 就称为函数的不连续点。 (1)第一类间断点(有限型间断点): a. 可去间断点:函数在该点左极限、右极限存在且相等,但不等于该点函数值或函数在该点无定义(0x 令分母为零时等情况); b. 跳跃间断点:函数在该点左极限、右极限存在,但不相等(0/y x x =在点0x =处等情况)。 (2)第二类间断点:除第一类间断点的间断点。 1.1.3 傅里叶级数三角函数表达式 傅里叶级数三角函数表达式为 0001()(cos sin )n n n x t a a n t b n t ωω∞ ==++∑ 式中:0a 为信号的常值分量;n a 为信号的余弦信号幅值;n b 为信号的正弦信号幅值。 0a 、n a 、n b 分别表示为: 000000 /20/20/20/20/2 0/201()2()cos 2()sin T T T n T T n T a x t dt T a x t n tdt T b x t n tdt T ωω---===????????? ??? 式中:0T 为信号的周期;0ω为信号的基频,即角频率,002/T ωπ=,1,2,3...n =。 合并同频项也可表示为 001 ()cos()n n n x t a A n t ωθ∞ ==++∑ 式中:信号的幅值n A 和初相位n θ分别为 arctan(/) n n n n A b a θ==-

和输出 y[n] 的傅里叶变换关系如下

马萨诸塞州技术学院 电气工程与计算机科学系 6.341:离散时间信号处理 开放课程课件 2006 第2讲 背景知识复习 相位、群延迟和广义线性相位 ——————————————————————————————————————— 阅读: Oppenheim ,Schafer & Buck (OSB )中的5.1,5.3和5.7部分。 ——————————————————————————————————————— 相位 一个 LTI 系统的频率响应 H (e )(z H j ω ) 可在单位圆 z = 1 上求得。 H (e j ω ) = ω j e z z H =)(系统输入x [n ] 和输出 y [n ] 的傅里叶变换关系如下 Y (e j ω ) = H (e j ω ) X (e j ω ) 通过观察幅度-相位表达式,可以更详细地理解输入-输出关系。 幅度/相位表示 例子: 在幅度/相位表示中,频率响应是实数不能充分意味着系统是零相位。 利用这个表达式, 且 则)(ωj e H 和 一般分别指系统增益和相移。

在幅度和相位图中,当ω通过单位圆上的零点时,幅度为零,相位跳变π,如下图所示。 椭圆型低通滤波器的幅度和相位响应 如果H(e jω )是实数且双极性的,经常更简单自然地用另一种表达式来移除相位图中π的 这些跳变。 振幅/相位表示 A(e jω ) 是实数但不一定是正数,这样θ2(ω) 不同于上面的θ1(ω)。A(e jω ) 存在符号的变 化,且在θ2(ω) 不存在π的跳变。 例子: 考虑下图给出的h[n]。 在幅度/相位表示中,θ1(ω) 在符号变化处有π的跳变。 在振幅/相位表示中,θ2(ω) = -ω(N-1)/2,斜率为-(N-1)/2的直线,而且在这个表达式中,无论A

傅里叶变换学习心得体会

傅里叶变换学习心得体会 篇一:《随机数字信号处理》学习心得体会 随机数字信号处理是由多种学科知识交叉渗透形成的,在通信、雷达、语音处理、图象处理、声学、地震学、地质勘探、气象学、遥感、生物医学工程、核工程、航天工程等领域中都离不开随机数字信号处理。随着计算机技术的进步,随机数字信号处理技术得到飞速发展。本门课主要研究了随机数字信号处理的两个主要问题:滤波器设计和频谱分析。 在数字信号处理中,滤波技术占有极其重要的地位。数字滤波是语音和图像处理、模式识别、频谱分析等应用中的一个基本处理算法。但在许多应用场合,常常要处理一些无法预知的信号、噪声或时变信号,如果采用具有固定滤波系数的数字滤波器则无法实现最优滤波。在这种情况下,必须设计自适应滤波器,以使得滤波器的动态特性随着信号和噪声的变化而变化,以达到最优的滤波效果。 自适应滤波器(adaptivefilter)是近几十年来发展起来的关于信号处理方法和技术的滤波器,其设计方法对滤波器的性能影响很大。自适应滤波器是相对固定滤波器而言的,它是一种能够自动调整本身参数的特殊维纳滤波器。自适应滤波算法的研究是自适应信号处理中最为活跃的研究课题之一,其中,两种最基本的线性滤波算法为:最小均方误差(lms)算法和最小二乘(rls)算法,由于lms算法具有初始收敛速度

较慢、执行稳定性差等缺点,本门课着重介绍了rls算法。rls算法的初始收敛速度比lms算法快一个数量级,执行稳定性好。 谱分析是随机数字信号处理另一重要内容,它在频域中研究信号的某些特性如幅值、能量或功率等随频率的分布。对通常的非时限信号做频谱分析,只能通过对其截取所获得的有限长度的样本来做计算,其结果是对其真实谱的近似即谱估计。现代谱估计算法除模型参量法之外,人们还提出了其它一些方法,如capon最大似然谱估计算法、pisarenk谐波分解法、music算法、esprit算法等利用矩阵的特征分解来实现的谱估计方法。在实际的谱估计过程中,无论是从样本数据出发(直接法),或是由样本的自协方差函数出发(间接法),窗函数的引入都是不可避免的,因为数据样本的简单截取本身就意味着通过了矩形窗。窗效应在谱分析或谱估计中的影响表现在降低谱的频率分辨力和产生能量的泄漏。本门课介绍了短时傅里叶变换以及由此引申出的一系列谱分析方法,并经验证得到了很好的效果。 综上所述,为我对本门课的理解和认知。通过本门课的学习,使我对随机数字信号处理的技术和方法有了进一步的了解,加深了对基本理论和概念的领悟程度,课程所涉及到的很多算法和思想对我个人的研究方向有很大的启发,我将继续钻研相关理论和算法,争取尽早与科研实际相结合,实现学有所用。最后,感谢老师孜孜不倦的讲解,为我们引入新的思想,帮助我们更快的成长。 篇二:算法学习心得 班级:物联网1201姓名:刘潇学号:1030612129

FFT 与小波变换的区别---FFT的缺陷

分段平稳信号 这两种波形的FFT完全一样!完全分不出信号出现的位置,说明傅里叶变换缺乏时间对频率的定位功能。小波则可以还原。经过傅里叶变换

之后得到的是频域的信息,时间信息完全丢失,很多人会问那为什么逆变换可以完全恢复原始信号?其实,这个可以理解为三维空间离得变换,这里涉及到泛函的一些知识,其通俗理解方法也将在下边进行解释。傅里叶逆变换同样可以理解为相关,只是此时需保证变换时t不变,也就是计算某时刻不同频率波形与傅里叶变换之后的频域信号之间的相关,积分后得到该时刻各频率分量在该时刻的总贡献。可以知道所有有关时间的信息都是由e^(ift)导出的。

傅里叶变换: 1)首先傅里叶变换是傅里叶级数(有限周期函数)向(无限周期函数)的扩展,将该函数展开成无限多个任意周期的正弦或余弦函数的和(或积分)。 2)傅里叶级数中各项系数例如cosx项系数是原函数与其在某一定义域内的积分,显然我们可以将该过程理解为对这两个函数进行相关,将相关系数作为该频率处的强度。 3)经过傅里叶变换之后得到的是频域的信息,时间信息完全丢失,很多人会问那为什么逆变换可以完全恢复原始信号?其实,这个可以理解为三维空间离得变换,这里涉及到泛函的一些知识,其通俗理解方法也将在下边进行解释。傅里叶逆变换同样可以理解为相关,只是此时需保证变换时t不变,也就是计算某时刻不同频率波形与傅里叶变换之后的频域信号之间的相关,积分后得到该时刻各频率分量在该时刻的总贡献。可以知道所有有关时间的信息都是由e^(ift)导出的。 4)从泛函的角度,我们可以把傅里叶级数中的三角函数 {1/sqrt(2π),sin(t)/sqrt(π),cos(t)/sqrt(π),...}看做一个线性函数空间的一个基,这里与线性代数里的线性空间有两点不同,第一该处是函数空间,每个元素都是一个函数而不是一个数,第二这里是无限维空间,基有无限多个元素。但是这并不影响我们的理解。我们可以像在有限维线性空间中那样将傅里叶变换理解为这个函数在以三角函数为基的空间的展开,而将傅

相关文档
最新文档