α-淀粉酶的固定化以及淀粉水解作用的检测

α-淀粉酶的固定化以及淀粉水解作用的检测
α-淀粉酶的固定化以及淀粉水解作用的检测

《α-淀粉酶的固定化与淀粉水解作用的检测》

第二实验班一组

组长:张金昌

组员:胡建军、朱恩梅、石仙竹、谢娟丽、李昀奕、郭天天

2013.10.15

α-淀粉酶的固定化与淀粉水解作用的检测

一、实验背景资料:

1、酶:活细胞产生的具有催化作用的有机物,其中绝大多数酶是蛋白质;具有高效性、

专一性,同时,也有高度不稳定性,因为绝大多数酶的本质是蛋白质,凡是能使蛋白

质变性的因素,如高温、高压、强酸、强碱等都会使酶丧失活性。

2、酶促反应:指由酶作为催化剂进行催化的化学反应;

3、α-淀粉酶:为枯草杆菌的α-淀粉酶,其作用的最适PH为5.5~7.5,最适温度为50~70℃。

广泛分布于动物(唾液、胰脏等)、植物(麦芽、山萮菜)及微生物。此酶既作用于直

链淀粉,亦作用于支链淀粉,其特征是引起底物溶液粘度的急剧下降和碘反应的消失,

最终产物在分解直链淀粉时以麦芽糖为主,此外,还有麦芽三糖及少量葡萄糖;在分

解支链淀粉时,除麦芽糖、葡萄糖外,还生成分支部分具有α-1,6-键的α-极限糊精。

4、固定化酶:借助于物理和化学的方法把酶束缚在一定的空间内并仍具有催化活性的酶

制剂。酶更适合采用化学结合和物理吸附法固定化。吸附法是酶分子吸附于水不溶性

的载体上,它的优点是操作简便,条件温和,不会引起酶变性或失活,且载体廉价易

得,可以反复使用。

5、吸附剂:常用的吸附剂有活性炭、氧化铝、硅藻土、多孔陶瓷、多孔玻璃等。

活性炭:活性炭是一种多孔性的含炭物质, 它具有高度发达的孔隙构造, 是一种极优

良的吸附剂, 每克活性炭的吸附面积更相当于八个网球埸之多. 而其吸附作用是藉由

物理性吸附力与化学性吸附力达成. 其組成物质除了炭元素外,尚含有少量的氢、氮、

氧及灰份,其結构则为炭形成六环物堆积而成。由于六环炭的不规则排列,造成了活

性炭多微孔体积及高表面积的特性。

硅胶:硅胶是由硅酸凝胶mSiO2·nH2O适当脱水而成的颗粒大小不同的多孔物质。具

有开放的多孔结构,比表面(单位质量的表面积)很大,能吸附许多物质,是一种很

好的干燥剂、吸附剂和催化剂载体。硅胶的吸附作用主要是物理吸附,可以再生和反

复使用。在碱金属硅酸盐(如硅酸钠)溶液中加酸,使之酸化,再加入一定量的电解

质进行搅拌,即生成硅酸凝胶;或者在较浓的硅酸钠溶液中加酸或铵盐也能生成硅酸

凝胶。将硅酸凝胶静置几小时使之老化,然后用热水洗去可溶性盐类,在60~70℃下烘

干并在约300℃时活化,即可得硅胶。

氧化铝:影响活性氧化铝吸附性能的主要因素包括以下几方面:(1)颗粒粒径:粒径越小,吸附容量越高,但粒径越小,颗粒强度越低,影响其使用寿命。(2)原水PH值:当PH值大于5时,PH值越低,活性氧化铝吸附容量越高。⑶原水初始氟浓度:初始氟浓度越高,吸附容量较大。(3)原水碱度:原水中重碳酸根浓度高,吸附容量将降低。

(4)氯离子和硫酸根离子。(5)砷的影响:活性氧化铝对水中的砷有吸附作用,砷在活性氧化铝上的积聚造成对氟离子吸附容量的下降,且使再生时洗脱砷离子比较困难。

6、石英砂:是石英石经破碎加工而成的石英颗粒,石英石是一种非金属矿物质,是一种

坚硬、耐磨、化学性能稳定的硅酸盐矿物,其主要矿物成分是SiO2,石英砂的颜色为乳白色、或无色半透明状,硬度7,石英砂是重要的工业矿物原料,非化学危险品,广泛用于玻璃、铸造、陶瓷及耐火材料、冶炼硅铁、冶金熔剂、冶金、建筑、化工、塑料、橡胶、磨料等工业。因为其性质稳定、能耐酸、耐碱、耐磨,腐蚀性小,不易燃烧,廉价,所以选择石英砂作为酶的吸附剂。

7、为何选用石英砂?石英砂作为酶的吸附剂的优缺点:

固定化酶有许多方法,本实验中采用的是吸附法。吸附法有物理交换法和离子交换法两种。其中本实验采用的又是物理交换法。该方法是将酶蛋白的分子吸附在惰性载体上,但要选择不引起变性且能保持一定酶活力的载体,且对蛋白质要有高度吸附能力。

自然界中有机硅胶、活性炭和石英砂等都可以被用于做载体。现已了解其中石英砂对固定化α-淀粉酶、胰蛋白酶作用较好。

优点:石英砂表面带正电荷,蛋白质为两性物质,在大于其等电点的条件下,蛋白质带负电荷,由此能吸附在石英砂表面,α-淀粉酶被石英砂吸附属于物理吸附法,将蛋白质分子吸附在惰性载体(石英砂)上,酶不会引起变性,且能保持一定酶活力,对蛋白质有高度吸附能力。

缺点:是非金属矿物质,不具有多孔结构,在吸附性上稍差,同时,石英砂质脆,坚硬,易磨细,不利于过滤。吸附剂一般有孔结构,对吸附质有强烈吸附能力,一般不与吸附质和介质发生化学反应,有良好机械强度等,如活性炭、氧化铝、硅藻土、多孔陶瓷、多孔玻璃等。

8、固定化酶与游离酶的比较:

9、淀粉遇碘变蓝:直链淀粉遇碘呈蓝色,支链淀粉遇碘呈紫红色,糊精遇碘呈蓝紫、紫、

橙等颜色。这些显色反应的灵敏度很高,可以用作鉴别淀粉的定量和定性的方法,也可以用它来分析碘的含量。纺织工业上用它来衡量布匹退浆的完全度。

10、碘遇淀粉和糊精显不同的颜色:以前认为,淀粉能吸附碘,使碘吸收的可见光的

波长向短的波长方向移动,棕色的碘液就变成蓝色。同理,支链淀粉和糊精也能吸附碘,不过吸附的程度不同,因此呈现的颜色不同。这种解释的有力根据是碘的淀粉液在加热时蓝色消失。这就被认为是加热后分子动能增大,引起解吸的缘故。

近年来用先进的分析技术(如X射线、红外光谱等)研究碘跟淀粉生成的蓝色物,证明碘和淀粉的显色除吸附原因外,主要是由于生成包合物的缘故。

直链淀粉是由α-葡萄糖分子缩合而成螺旋状的长长的螺旋体,每个葡萄糖单元都仍有羟基暴露在螺旋外。碘分子跟这些羟基作用,使碘分子嵌入淀粉螺旋体的轴心部位。碘跟淀粉的这种作用叫做包合作用,生成物叫做包合物。

在淀粉跟碘生成的包合物中,每个碘分子跟6个葡萄糖单元配合,淀粉链以直径

0.13 pm绕成螺旋状,碘分子处在螺旋的轴心部位。

淀粉跟碘生成的包合物的颜色,跟淀粉的聚合度或相对分子质量有关。在一定的聚合度或相对分子质量范围内,随聚合度或相对分子质量的增加,包合物的颜色的变化由无色、橙色、淡红、紫色到蓝色。例如,直链淀粉的聚合度是200~980或相对分子质量范围是32 000~160 000时,包合物的颜色是蓝色。分支很多的支链淀粉,在支链上的直链平均聚合度20~28,这样形成的包合物是紫色的。糊精的聚合度更低,显棕红色、红色、淡红色等。

11、对比中学课本上的这个实验步骤,和我们实验指导上的有何不同?

中学课本在该实验的第六步添加了

与样品2 做对比,课本没有这一步。

注意:加入“稀释1倍的流出液”这一步,目的是防止所取的流出液,由于流速没有控制好的原因,会导致所取的溶液中掺有淀粉,稀释一倍后,加入KI-I2,使更加偏红色,使其与对照组的颜色差异更明显。

二、实验目的

1、中学中,在必修一中学习了“酶的作用和本质、酶的特性”,而此实验在选修一《生物

技术实践》中出现,为了让同学通过实验来具体的了解酶的作用,化抽象为具象,对酶的作用加深理解;

2、了解制备固定化酶的方法—吸附法,让中学生理解固定化酶对淀粉水解的作用;

3、理解并掌握实验室中淀粉水解的测定方法;

4、进一步掌握运用对照来观察实验结果。

三、实验原理

1、淀粉(遇碘显蓝色)→【α-淀粉酶】→糊精(遇碘显红色)→【?-淀粉酶】→麦芽糖

(遇碘不显色)→【糖化淀粉酶】→葡萄糖(遇碘不显色)

2、运用吸附法将α-淀粉酶固定在石英砂上。一定浓度的淀粉溶液经过固定化的α-淀粉

酶催化后,生成糊精,使流出液加入KI-I2指示液后呈红色,表明水解产物糊精生成。

3、固定化装置—层析柱

四、实验器具和试剂

1、α-淀粉酶的固定化及淀粉水解作用的检测试剂盒(α-淀粉酶、石英砂、可溶性淀粉、

5mmol/L KI-I2溶液),固定化酶装柱(层析柱),滤布,电炉,水浴锅,50ml烧杯,5ml 试管4支,5ml量筒,胶头滴管,玻璃棒,电子天平,支架。

2、5mol/L KI-I2溶液的配置方法:碘化钾0.83g;蒸馏水100ml;碘0.127g。先将碘化

钾溶于蒸馏水中,待全部溶解后再加碘,振荡溶解。(注:将此液保存在棕色玻璃瓶内。)【注意:配置时KI的作用:在三种可溶于水中的卤素单质中碘的溶解度是最小的,不过由于在第四层有空的七个f轨道,这些轨道可以用来容纳其它能够为碘提供电子的原子、离子或原子团,而恰好,碘原子就是那个可以为碘提供电子的供体,每个碘原子可以为一个碘的阴离子提供一个电子,而每个碘的阴离子可以接受两个碘原子的两个电子,形成了一种I3-的原子团,而这种原子团和很多阴离子或酸根一样是可溶于水的,所以间接增加了碘单质在水中的溶解度。

稳定的碘化物(只要能电离出碘离子就可以和碘形成配合物——I3-离子)可以作为碘在水中的助溶剂,而且碘与碘离子不会因为形成I3-离子而使碘失去原有性质与功能是因为碘与碘离子的反应是可逆的(当碘在消耗过程中减少时,I3-离子就会逆过来变成碘离子和碘单质了,碘又变回来,并且随着碘的不断消耗,I3-离子会不断逆向进行直至接近完全分解成碘单质和碘离子,这样碘就不怕因反应而消耗掉了)所以增加碘化钾这类可以提供碘离子的可溶于水的溶质可以增大碘单质在水中的溶解度,否则试验配置的碘溶液浓度即便很小,但对于碘来说可能早就过饱和了,所以增加适量的像碘化钾这样的助溶剂才可得到试验要求的浓度的。】

五、实验步骤

【配置→固定→洗→吸附→装柱→洗柱→溶解淀粉过柱→检测】

1、配置可溶性淀粉溶液。(已完成)

取可溶性淀粉溶于沸水。(可溶性淀粉先用冷水调成糊状,再加入沸水中。这样溶解才会形成澄清的溶液)将配置好的淀粉溶液放置在60℃(酶的最适温度50℃~70℃,使后期淀粉酶经过时能达到酶的最高催化活性)的水浴锅(水浴锅中添加去离子水)中备用。【此处淀粉浓度配置过低,有待预实验期间调试。】

调试方法:设置淀粉浓度梯度

2、α-淀粉酶的固定化。(材料已称量好,固定15min )

在50ml 烧杯中将5mg α-淀粉酶溶于4ml 蒸馏水中。(注意:由于酶不纯,可能有些不溶物。)再加入5g 石英砂,不时搅拌(搅拌切忌太用力),固定15min 。(使酶能吸附到石英砂表面)

3、检验未吸附的游离淀粉酶。(5min )

小心倒掉上清液后(未吸附的游离淀粉酶应该在上清液中),用10~15ml 的蒸馏水小心清洗石英砂2~3次,每次取其上清液0.5ml 于试管中,同时滴加淀粉溶液充分混匀。再加入1滴KI-I2溶液,若溶液变为蓝色,说明上清液中已无游离α-淀粉酶,如果溶液为红色,继续用蒸馏水清洗,直至淀粉溶液变为蓝色为止。

(检验未吸附的游离淀粉酶是否洗涤干净,每次蒸馏水洗涤都可以使未吸附的游离淀粉酶溶于上清液,而游离淀粉酶可以与加入的淀粉溶液反应,产生的糊精遇碘变红。单纯的淀粉溶液与碘反应会变蓝色。)

4、先把滤布(可以考虑滤纸片,使石英砂不从注射器中漏出)放于

固定化酶柱中,再装入有α-淀粉酶的石英砂约4ml ,装柱过程中可

在装有石英砂的烧杯中加入少量蒸馏水(便于石英砂流入层析柱),

同时适当打开层析柱的调节装置(使多余的液体流出)。(3min )

5、把灌注了固定化酶的层析柱放在支架上,用滴管加淀粉溶液,使淀粉溶液约以0.3ml/min (6滴/min )的流速过柱,在流出1~2ml 反应液后(让塑料管中的水流出),转动关闭层析柱的调节装置,放置5min 。(充分的反应时间,使后面检测效果明显。)(10min )

6、打开调节装置,以0.3ml/min (6

滴/min )的流速过柱,流出1~2ml 反应液后(让塑料管中的溶液流出),用两支试管分别接收0.5ml 流出液,其中一支加入蒸馏水稀释1倍,按以下表格在试管中加入相应试剂,观察结果。(10min )

7、固定后的α-淀粉酶可以重复利用,实验后用10倍柱体积的蒸馏水洗涤固定化酶柱,

然后放置在4℃冰箱中保存。(不做)

六、实验结果预测:

1、对照组:0.5ml水+1~2滴KI-I2溶液(淡黄色)

2、样品1:0.5ml淀粉液+1~2滴KI-I2溶液(蓝色)

3、样品2:0.5ml淀粉滤液+1~2滴KI-I2溶液(红色)

4、样品3:0.5ml淀粉滤液+1~2滴KI-I2溶液+稀释1倍(浅红色)

七、实验注意事项

1、在α-淀粉酶固定化的过程中,搅拌石英砂时,用力过猛或搅拌时间过长,石英砂会磨细,容易穿过滤布,带入到流出液中;

2、控制滴灌流速。0.3ml/min的流速,我们就可以控制每分钟滴管流出量为每分钟6滴。这样做的目的是控制流速让淀粉和淀粉酶充分接触,反应;

3、在层析柱中加入溶液不要过快,避免由于水的冲力,使石英砂表面不平整;

4、显色。在流出1~2ml后接取1ml过滤液,然后向试管中加入1~2滴KI-I2溶液。切记,KI-I2溶液不要加入太多,以免碘液颜色覆盖糊精淀粉反应后的颜色;

5、保证洗涤固定化酶柱的流出液中没有淀粉酶。

八、思考

1、如何证明洗涤固定化酶柱的流出液中没有淀粉酶?(见实验步骤第三步)

2、为什么石英砂可以作为酶的吸附剂?作为吸附剂它具有哪些优缺点?(见实验背景资料7)

3、固定化酶与游离酶相比催化效率会发生变化么?为什么?

固定化酶与游离酶相比催化效率会增高。固定化酶由于与底物的接触存在空间位阻,再加上酶被固定化后其流动性降低,所以与底物的接触就受到了限制,活性降低。但是酶的活性降低,不完全以为这酶的催化效率降低,因为一般固定化的酶在温度和酸碱度方面更加区域稳定,

而酶的催化效率又跟温度和酸碱度有极大关系。酶特定法固定后,将酶活性位点展示到同一个方向,那么这些酶的效率大大提高,如果处于游离状态,活性位点处于不同的方向,去和底物反应的效率就降低。

4、还有哪些制备固定化酶的方法?

固定化酶的制备方法有物理法和化学法两大类。物理方法包括物理吸附法、包埋法等。

物理法固定酶的优点在于酶不参加化学反应,整体结构保持不变,酶的催化活性得到保留。但是,由于包埋物或半透膜具有一定的空间或立体阻碍作用,因此对一些反应不适用。

化学法包括结合法、交联法。结合法又分为离子结合法和共价结合法。是将酶通过化学键连接到天然的或合成的高分子载体上,使用偶联剂通过酶表面的基团将酶交联起来,而形成相对分子量更大、不溶性的固定化酶的方法。

其中吸附法和共价键法又可统称为载体结合法。

(1)吸附法:利用各种吸附剂将酶或含酶菌体吸附在其表面上而使酶固定的方法。通常有物理吸附法和离子吸附法。

常用吸附剂有活性炭、氧化铝、硅藻土、多孔陶瓷、多孔玻璃等。

采用吸附法固定酶,其操作简便、条件温和,不会引起酶变性或失活,且载体廉价易得,可反复使用。

该方法最显著的优点是操作简便,但酶与载体结合不牢,极易脱落,所以它的使用受到一定的限制。因此,人们不断尝试使用新的载体来解决这易脱落的问题。通常,吸附法分为物理吸附法和离子吸附法。

物理吸附法:酶被载体吸附而固定的方法称为物理吸附法。从载体对酶的适应性来看,

这个方法效果是好的,酶蛋白的活性中心不易受破坏,酶的高级结构变化也不明显,但其缺点是酶与载体的相互作用较弱,被吸附的酶极易从载体表面上脱落下来,不能获得较高活力的固定化酶。该方法常用的载体有活性炭、多孔陶瓷、纤维素及其衍生物、甲壳素及其衍生物等。

离子吸附法:将酶与含有离子交换基团的水不溶性载体以静电作用力相结合的固定化方法。该方法的处理条件温和,且酶的高级结构和活性中心的氨基酸很少发生变化,因而可以得到较高活性的固定化酶。采用此法固定的酶有葡萄糖异构酶、糖化酶、B一淀粉酶、纤维素酶等。(2)载体结合法

最常用的是共价结合法,即酶蛋白的非必需基团通过共价键和载体形成不可逆的连接。在温和的条件下能偶联的蛋白质基团包括:氨基、羧基、半胱氨酸的巯基、组氨酸的咪唑基、

酪氨酸的酚基、丝氨酸和苏氨酸的羟基。参加和载体共价结合的基团,不能是酶表现活力所必需的基团。以中国首先采用的双功能团试剂“对位-β-硫酸酯乙砜基苯胺”偶联载体和酶为例,载体结合的步骤如下页反应式。

此法曾先后用于3′-核糖核酸酶、5′-磷酸二酯酶和葡萄糖淀粉酶等的固定化。此外酶通过物理吸附或离子吸附于载体制备固定化酶也是常用的方法。

共价键结合法:共价键结合法是将酶与水不溶性载体以共价键结合的一种方法。此法研究较为成熟,其优点是酶与载体问连接牢固,即使用高浓度底物或离子强度的溶液进行反应,也不会导致酶和载体的分离,因此具有良好的稳定性及重复使用性。缺点是反应条件比较苛刻,常常会引起酶蛋白高级结构发生改变,导致酶的活性中心受损。

(3)交联法

依靠双功能团试剂使酶分子之间发生交联凝集成网状结构,使之不溶于水从而形成固定化酶。常采用的双功能团试剂有戊二醛、顺丁烯二酸酐等。酶蛋白的游离氨基、酚基、咪唑基及巯基均可参与交联反应。

常用的交联剂是戊二醛,但单用戊二醛等试剂交联制备的固定化酶活力较低,因此常将此法与吸附法、包埋法结合使用,可以达到既提高固定化酶的活力,又起到加固的效果.酶蛋白的游离氨基、酚基、咪唑基及巯基均可参与交联反应。

(4)包埋法

酶被裹在凝胶的细格子中或被半透性的聚合物膜包围而成为格子型和微胶囊型两种。包埋法制备固定化酶除包埋水溶性酶外还常包埋细胞,制成固定化细胞,例如可用明胶及戊二醛包埋具有青霉素酰化酶活力的菌体,可连续水解帤基青霉素,工业生产6-氨基青霉烷酸。

酶经过固定化后,比较能耐受温度及pH的变化,最适pH往往稍有移位,对底物专一性没有任何改变,实际使用效率提高几十倍(如5′-磷酸二酯酶的工业应用)甚至几百倍(如青霉素酰化酶的工业应用)。

测定α淀粉酶活力的方法

实验五激活剂、抑制剂、温度及PH对酶活性的影响 一、目的要求通过实验加深对酶性质的认识,了解测定α-淀粉酶活力的方法。 二、实验原理 酶是生物体内具有催化作用的蛋白质,通常称为生物催化剂。酶催化的反应称为酶促反应。生物催化剂催化生化反应时具有:催化效率好、有高度的专一性、反应条件温和、催化活力与辅基,辅酶,金属离子有关等特点。 能提高酶活力的物质,称为激活剂。激活剂对酶的作用有一定的选择性,其种类多为无机离子和简单的有机化合物。使酶的活力中心的化学性质发生变化,导致酶的催化作用受抑制或丧失的物质称为酶抑制剂。氯离子为唾液淀粉酶的激活剂,铜离子为其抑制剂。应注意的是激活剂和抑制剂不是绝对的,有些物质在低浓度时为某种酶的激活剂,而在高浓度时则为该酶的抑制剂。如氯化钠达到约30%浓度时可抑制唾液淀粉酶的活性。 酶促反应中,反应速度达到最大值时的温度和PH值称为某种酶作用时的最适温度和PH值。温度对酶反应的影响是双重的:一方面随着温度的增加,反应速度也增加,直至最大反应速度为止;另一方面随着温度的不断升高,而使酶逐步变性从而使反应速度降低。同样,反应中某一PH范围内酶活力可达最高,在最适PH的两侧活性骤然下降,其变化趋势呈钟形曲线变化。 食品级α-淀粉酶是一种由微生物发酵生产而制备的微生物酶制剂,主要由枯草芽孢杆菌、黑曲霉、米曲霉等微生物产生。但不同菌株产生的酶在耐热性、酶促反应的最适温度、PH、对淀粉的水解程度,以及产物的性质等均有差异。α-淀粉酶属水解酶,作为生物催化剂可随机作用于直链淀粉分子内部的α-1,4糖苷键,迅速地将直链淀粉分子切割为短链的糊精或寡糖,使淀粉的粘度迅速下降,淀粉与碘的反应逐渐消失,这种作用称为液化作用,生产上又称α-淀粉酶为液化淀粉酶。α-淀粉酶不能水解淀粉支链的α-1,6糖苷键,因此最终水解产物是麦芽糖、葡萄糖和α-1,6键的寡糖。 本实验通过淀粉遇碘显蓝色,糊精按其分子量的大小遇碘显紫蓝、紫红、红棕色,较小的糊精(少于6个葡萄糖单位)遇碘不显色的呈色反应,来追踪α-淀粉酶作用于淀粉基质的水解过程,从而了解酶的性质以及动力学参数。 三、激活剂和抑制剂对唾液淀粉酶活力的影响

C肽的测定和临床意义

C肽的测定和临床意义 LIA正常值:空腹:1.0±0.23ng/ml;当口服葡萄糖后,60分中出现高峰血值: 3.1ng/ml 所谓C肽是指胰岛素原(由86个āā组成,分子量9000道尔顿,它的结构是由Ins及连接肽两部分组成,连接肽有35个āā组成)它在胰岛素原转化酶作用于分解时,与Ins的AB 两链相接的CA1赖、CA2精、Bc1精及Bc2精等四个氨基酸分离形成的31个氨基酸的多肽。 正常人24小时尿中排出C肽为36±4ug。幼年型糖尿病者为 1.1±0.5ug.;成年型糖尿病者为24±7ug。C肽清除率与肌酐清除率无明显关系。C肽的清除滤较Ins微高。C肽为 5.1±0.6ml/min,后者为 1.1±0.2ml/min.每日C肽排出量相当于胰岛分泌量的5%,占Ins 总量的0.1%,因此C肽的测定可应用于临床。 C肽具有如下特点:(1)在胰岛的?细胞的分泌中,Ins与C肽总克分子量相等。(2)胰岛素半衰期为 4.8min,而C肽为11分钟胰岛素原为17.5分钟。 (3) 胰岛素在肝肾内分解 而C肽不被分解是完整链从肾脏排出。(4) C肽无生物学活性,但具有很强的种属特异性,与抗胰岛素无交叉免疫反应。.由于胰岛素原的浓度还不到C肽的十分之一,故一般测得C肽(总C肽)可代表血中的游离C肽. C肽测定的临床意义: (1)可反映机体胰岛?细胞的分泌功能,特别是对外源性胰岛素治疗的病人,可测定C肽,因为外源性胰岛素制剂中不含C肽,以及?-细胞分泌时胰岛素和C肽分子数相等.经临床上同时测定血清胰岛素和C肽浓度是平行相关的.由此可推断内源性胰岛素分泌情况. 胰岛素和C肽是等摩尔浓度由胰岛?-细胞分泌.在达到体循环前途径肝脏,肝对C肽的摄取量很少,而对胰岛素的摄取约20-40%。C肽在外周血的降解较胰岛素慢,于是外周血中C肽和胰岛素相比C肽要高数倍。故C肽更能反映?-细胞的分泌功能。 (2)C肽测定对糖尿病患者的分型和低血糖症的鉴别有指导意义 成年型糖尿病患者内源性胰岛素分泌量比常人稍高,葡萄糖浓度也高,胰岛素和C肽浓度也上升。在幼年型糖尿病引起胰岛素绝对分泌不足,故血清C肽浓度明显降低。 幼年型糖尿病根据病情可分为易变和稳定二类亚型。有的幼年型糖尿病抗-胰岛素效价升 高,而C肽浓度不升高,给与糖负荷后,58%的稳定性幼年型糖尿病患者C肽浓度升高,而易变型患者不升高。可见稳定性幼年型患者虽然在基础情况下内源性胰岛素分泌不足,但胰岛的?-细胞上有一定的储备能力.这些患者在治疗时可给予适量的口服降糖药. 在成年型糖尿病患者血循环中C肽浓度与是否需用胰岛素治疗有关.需用胰岛素治疗患者,在负荷试验后,C肽浓度未见升高,而能为口服药物控制患者,C肽浓度升高.所以对成年型患者测定C肽 ,可为患者选择胰岛素或口服降糖药提供有力的参考.

七年级生物:探究唾液对淀粉的消化作用(附教学反思)

初中生物新课程标准教材 生物教案( 2019 — 2020学年度第二学期 ) 学校: 年级: 任课教师: 生物教案 / 初中生物 / 七年级生物教案 编订:XX文讯教育机构

探究唾液对淀粉的消化作用(附教学反思) 教材简介:本教材主要用途为通过学习生物这门课程,可以让学生打开对世界的认识,提高自身的见识,本教学设计资料适用于初中七年级生物科目, 学习后学生能得到全面的发展和提高。本内容是按照教材的内容进行的编写,可以放心修改调整或直接进行教学使用。 〖教学目标〗 1.知识: 通过探究唾液对淀粉的消化作用,说明淀粉在口腔中已经开始被消化。 2.能力: 通过探究活动使学生掌握科学研究的基本方法,让学生针对实际现象做出合理的解释和验证,以培养学生解决实际问题的能力和决策能力,培养创新精神。 3.情感态度与价值观: 通过探究活动培养学生的团结协作精神;通过收集唾液等操作活动培养学生严谨求实的科学态度。 〖设计思路〗 本节探究活动以“分组探究”模式开展,因为探究唾液对淀粉的消化作用关键有三步:一是制备淀粉糊并取定量;二是收集唾液;三是水温调节控制。所以我把学生分成三人一组,

每人做一步,这样既可保证每个环节都得到探究又可节省时间。该模式突出以学生为主体的原则,使每个学生都有参与的机会,都能掌握一些科学研究的方法。淀粉糊的制备、唾液的收集方法由教师提供并指导学生完成。教学中应注意的问题是淀粉糊的浓度不宜太大,以免消化不完全。还应给学生解释不同人的唾液中唾液淀粉酶的含量不等,为确保淀粉消化完全,收集的唾液应尽可能纯一些,这样就要求学生在收集唾液之前要漱口。 〖学校及学生状况分析〗 我校地处太行山脚下,教学条件与城市相比较为简陋,但我校为重点中学,教学设施与本县其他学校相比又较为优越,但还不能满足每个学生的探究需求,只能以小组探究模式展开,由于教学资源有限,探究的内容也要受到限制,不能一课多探。 学生大多来自农村,求知欲望强烈,学习态度积极,回答问题踊跃,但学习方法相对比较传统,缺乏创新意识,质疑能力差,在教学过程中需要教师引导才能发现问题。 〖教学设计(课堂实录)〗 〖教学反思〗 通过这次探究活动,锻炼了学生的探究技能,提高了组织能力,并激发了学生的创造性思维,培养交流协作精神。假设的提出、方案设计和验证假设等是教师引导的结果,也是学生利用科学研究方法主动探究的结果。学生们掌握了这种方法后,就能够利用这种方法和已

高中生物第2部分酶的应用第4课时α_淀粉酶的固定化及淀粉水解作用的检测学案浙科版选修1

第4课时α-淀粉酶的固定化及淀粉水解作用的检测 [学习目标] 1.尝试用吸附法制作固定化α-淀粉酶。2.运用固定化α-淀粉酶进行淀粉水解的测定。3.说明酶固定化的方法及制作原理。4.通过此实验探讨固定化酶的应用价值。 一、固定化技术的基础知识 1.酶 (1)作用:酶是生物体内各种化学反应的催化剂。 (2)特点:它有高度的专一性和高效性。 2.固定化酶 (1)概念:将水溶性的酶用物理或化学的方法固定在某种介质上,使之成为不溶于水而又有酶活性的制剂。 (2)方法:吸附法、共价偶联法、交联法和包埋法。教材实验中用的是吸附法。 特别提醒图示解读:酶固定化的方法 ①是吸附法:是将酶吸附到载体表面。 ②是共价偶联法:是将酶通过共价键结合到载体的表面。 ③是交联法:通过把酶交互连接、相互结合而将酶固定。 ④是包埋法:是将酶或者细胞包埋在细微的网格里。 3.将酶改造成固定化酶的原因:酶在水溶液中很不稳定,且不利于工业化使用。 4.固定化酶作用的机理:将固定化酶装柱,当底物经过该柱时,在酶的作用下转变为产物。归纳总结直接使用酶和固定化酶的比较

例1 (2019·嘉兴一中月考)下列不属于固定化酶在使用时的特点的是( ) A.有利于酶与产物分离 B.可以被反复利用 C.能自由出入依附的载体 D.一种固定化酶一般情况下不能催化一系列酶促反应 答案 C 解析 固定化酶由于酶被固定在不溶性的载体上,很容易与产物分离,同时酶也能反复使用,这是固定化酶的主要优点;通常固定化酶的种类单一,所以不能催化一系列酶促反应。 例2 下列与固定化酶相关的叙述中正确的是( ) A.固定化酶是将水不溶性酶固定于某种介质上,使之成为易溶于水,而又具酶活性的制剂 B.将固定化酶装柱,当酶流过该柱时,可催化柱内底物转变为产物 C.酶固定的方法有吸附法、共价偶联法、交联法和包埋法等 D.固定化酶的缺点是酶在水溶液中很不稳定,且易与产物混在一起不易分离 答案 C 解析 固定化酶就是将水溶性的酶用物理或化学方法固定在某种介质上,使之成为不溶于水而又有酶活性的制剂;与普通酶相比,固定化酶易与产物分离,且固定化酶反应柱中酶已被固定,不能从柱内流出;酶的固定化方法有吸附法、共价偶联法、交联法和包埋法等。 二、α-淀粉酶的固定化及淀粉水解作用的检测实验 1.枯草杆菌的α-淀粉酶的固定化 (1)枯草杆菌的α-淀粉酶作用的条件:最适pH 为5.5~7.5;最适温度为50~75_℃。 (2)固定化方法——用吸附法将α-淀粉酶固定在石英砂上。 在烧杯中将5mg α-淀粉酶溶于4mL 蒸馏水中,再加入5g 石英砂,不时搅拌,30min 后,装入1支下端接有气门心并用夹子封住的注射器中(石英砂体积约4mL)。用10倍体积的蒸馏水洗涤注射器以除去未吸附的游离淀粉酶。 (3)淀粉水解作用的检测原理 淀粉――――→α-――――β-――→糖化葡萄糖 遇碘显蓝色 遇碘显红色 遇碘不显色 2.α-淀粉酶固定化实验步骤

(整理)α-淀粉酶综述

α-淀粉酶综述 佚名2013-10-06 摘要:α-淀粉酶分布十分广泛,遍及微生物至高等植物。α-淀粉酶是一种十分重要的酶制剂,大量应用于粮食加工、食品工业、酿造、发酵、纺织品工业和医药行业等,是应用最为广泛的酶制剂之一。本文概述了α-淀粉酶的发现和应用发展史、分离纯化及结构的研究史、催化机制及其研究史、工业化生产和应用现状与发展趋势等。 关键词:α-淀粉酶发现应用分离纯化结构催化机制研究史发展趋势 α- 淀粉酶( α- 1,4- D- 葡萄糖- 葡萄糖苷水解酶) 普遍分布在动物、植物和微生物中, 是一种重要的淀粉水解酶。其作用于淀粉时从淀粉分子的内部随机切开α-1,4糖苷键,生成糊精和还原糖。由于产物的末端残基碳原子构型为α构型,故称α-淀粉酶。现在α-淀粉酶泛指能够从淀粉分子内部随机切开α-1,4糖苷键,起液化作用的一类酶。 1 α-淀粉酶的发现和应用史 1.1 α-淀粉酶的发现 啤酒是最古老的酒精饮料,发酵是其关键步骤,其中所包含的糖化过程就是把淀粉转化为糖。这个转化过程的机理一直都没有被弄清楚,直到淀粉的发现。 在19世纪早期,许多科学家都在研究谷物提取物中淀粉的消化机理。Nasse(1811年)发现,从生物体中提取的淀粉能过被转化为糖,而从被沸水杀死的植物细胞中提取的淀粉不能被转化为糖。Kirchhoff(1815年)做了一个巧妙的实验。他将4份的冷水加入到2份的淀粉中,并边加边搅拌。之后加入20份的沸水使其形成一层厚厚的淀粉糊。在淀粉糊还是余温的时候,加入被粉碎的麸质(或麦芽),然后在40-60°列式温度下水浴。1-2小时后发现,淀粉糊开始缓慢液化。8-10小时后,淀粉糊被转化为一种甜的溶液。之后,他将其通过过滤和蒸发浓缩得到了糖浆,品尝后发现,其和发酵液一样甜。在操作的过程中,他注明了实验过程中仅添加了非常少的麸质,并且得到的糖浆与淀粉的量成正比。此外,如果在加入麸质前加入几滴高浓度的硫磺酸,最终就没有糖生成。从这个实验中他得到结论1)麸质是一种能够使温水中的淀粉粉末转化为糖的物质。2)作为种子发芽的结果,相比种子内的物质而言,麸质能过将更多的淀粉转化为糖。至此,Kirchhoff奠定了发现谷物中一种能够将淀粉转化为糖的蛋白质的基础。

胰岛素检测的临床意义

胰岛素检测的临床意义集团标准化工作小组 #Q8QGGQT-GX8G08Q8-GNQGJ8-MHHGN#

胰岛素检测的临床意义 一、血胰岛素检查 血胰岛素检查,可以判定糖尿病患者是1型患者还是2型患者。主要适合于没有使用胰岛素治疗的患者,可在空腹及餐后2小时抽血进行测定,正常情况下空腹胰岛素水平应该为5~30μu/ml,而餐后水平应比空腹高出4~5倍。如果病友的胰岛素水平明显降低,就称之为绝对缺乏,可见于1型糖尿病;如果并没有明显减少,而表现为血糖升高,就称为相对缺乏,是因为胰岛素发挥作用的环节出现故障,常见于存在胰岛素抵抗的2型糖尿病病友。 二、糖尿病是由于人体胰岛素的绝对或相对缺乏引起的。也许糖尿病病友们很想知道自己到底能生产多少胰岛素,是绝对缺乏胰岛素还是相对缺乏胰岛素,很想知道自己患的是1型糖尿病还是2型糖尿病怎样才能知道就非常有必要接受血胰岛素检查或C肽检查。 一般说来,血胰岛素检测,主要适合于没有使用胰岛素治疗的患者,可在空腹及餐后2小时抽血进行测定,正常情况下空腹胰岛素水平应该为10-25mU/dL,而餐后水平应比空腹高出4-5倍。如果病友的胰岛素水平明显降低,就称之为绝对缺乏,可见于1型糖尿病;如果并没有明显减少,而表现为血糖升高,就称为相对缺乏,是因为胰岛素发挥作用的环节出现故障,常见于存在胰岛素抵抗的2型糖尿病病友。

C肽检测:即使在糖尿病病友接受外来胰岛素治疗的情况下,也不影响C 肽检测结果。此时如果通过检查血中的胰岛素水平来评价机体产生胰岛素的能力,显然就要受到注射胰岛素的影响,结果肯定不准确。而通过C肽检查则仍能准确的反映机体自己产生胰岛素的量,不会受外来胰岛素的影响。C肽检测测定方法与胰岛素检测相同,也是在空腹及餐后某时刻抽血。正常情况下,餐后C肽比空腹C肽水平要高4-5倍。 总的说,胰岛素测定,可评定尚未用胰岛素治疗病友的胰岛功能;而C肽测定,可评定已用胰岛素治疗病友的胰岛功能。

淀粉酶及其应用

淀粉酶及其应用 0 引言 淀粉酶分布非常广泛,是人们经常研究的一种酶。从纺织工业到废水处理,这些酶都有不同规模的应用。 淀粉酶是淀粉降解酶。它们广泛存在于微生物、植物和动物体中。它们将淀粉及相关的聚合物分解为带有具体淀粉分解酶特征的产品。最初,淀粉酶一词用来指可以水解直链淀粉、支链淀粉、肝糖及其降解产品中α-1,4-糖苷键的酶(本菲尔德(Bernfeld),1955年;费希尔(Fisher)和斯坦(Stein),1960年;迈拜克(Myrback)和纽慕勒(Neumuller),1950年)。它们水解相邻葡萄糖单体之间的键,产生带有具体用酶特征的产品。 近年来,人们发现了很多与淀粉及相关多糖结构降解有关的新型酶,并对其进行了研究(鲍伊(Boyer)和英格尔(Ingle),1972年;博诺考尔(Buonocore)等人,1976年;格里芬(Griffin)和福格蒂(Fogarty),1973年;福格蒂(Fogarty)和格里芬(Griffin),1975年)。 (1)有一些微生物源可以劈开这些结构中的α-1,4或α-1,4和/或α-1,6键,人们将现在已经或将来可能对这些微生物源工业化生产有重大影响的酶分为六种(福格蒂(Fogarty)和凯利(Kelly),1979年)。 (2)水解α-1,4键和绕过α-1,6键的酶,比如α-淀粉酶(内作用淀粉酶)。 (3)水解α-1,4键,但不能绕过α-1,6键的酶,比如β-淀粉酶(把麦芽糖当作一个重要的终端产品来生产的外作用淀粉酶)。 (4)水解α-1,4和α-1,6键的酶,比如淀粉葡糖苷酶(葡萄糖淀粉酶)和外作用淀粉酶。 (5)仅水解α-1,6键的酶,比如支链淀粉酶和其它一些脱支酶。 (6)优先水解其它酶对直链淀粉和支链淀粉所起的作用产生的短链低聚糖中α-1,4键的酶,比如α-葡萄糖苷酶。 (7)将淀粉水解为一连串非还原环状口葡糖基聚合物,称为环糊精或塞查丁格(Sachardinger)糊精的酶,比如浸麻芽孢杆菌(Bacillus macerans)淀粉酶(环糊精生成酶)。 1 淀粉 在描述淀粉分解酶的作用方式和性质前,有必要来讨论一下这种天然基一一淀粉的特性。淀粉是所有高等植物中主要储备碳水化合物的。在有些植物中,淀粉占整个未干植物的70%。淀粉是不溶于水的细小颗粒。这些颗粒的大小和形状常常由植物母体决定,具有植物品种的特征。当把淀粉颗粒置于水中加热时,颗粒中的连接氢键变弱,颗粒开始膨胀、凝胶化。最终,它们根据多糖的浓度或形成糊状物或形成弥散现象。淀粉来自于植物,比如玉米、小麦、高梁、稻米的种子,或木薯、马铃薯、竹芋的茎根,或来自于西谷椰子的木髓。玉 米是淀粉的主要商业原料,通过湿磨生产工艺便可获得商品淀粉(博考特(Berkhout),1976年)。直链淀粉和支链淀粉的特性见表1。 表1直链淀粉和支链淀粉的比较 性质 直链淀粉 支链淀粉 基本结构 基本直线 分岔 在水溶液中稳定性 回生 稳定 聚合度 C.103 C.104~105 平均链长 C.103 C.20~25 β淀粉酶水解 87% 54%

淀粉酶

一、淀粉 ?1、淀粉的性状及组成 ?淀粉为白色无定形结晶粉末 ?形状有圆形、椭圆形和多角形三种 ?一般含水分高、蛋白质少的植物的淀粉颗粒比较大些,多成圆形或椭圆形,如马铃薯、木薯等。 淀粉的性状及组成 ?碳44.4%,氢6.2%,氧49.4% ?分为直链淀粉和支链淀粉 ?普通谷类和薯类淀粉含直链淀粉17%~27%,其余为支链淀粉; ?而粘高粱和糯米等则不合直链淀粉,全部为支链淀粉。 ?直链淀粉聚合度约100~6000之间 ?遇碘反应是纯蓝色 淀粉的性状及组成 ?支链淀粉是由多个较短的α-1,4糖苷键直链结合而成。每2个短直链之间的连接为α-1,6糖苷键。 ?聚合度约1000~3000,000之间,一般在6000以上。 ?遇碘呈紫红色反应。 2、淀粉的特性 ?糊化:淀粉在热水中能吸收水分而膨胀,最后淀粉粒破裂,淀粉分子溶解于水中形成带有粘性的淀粉糊。 ?第一阶段:淀粉缓慢地可逆地吸收水分 ?第二阶段:当温度升到大约65℃时,淀粉颗粒经过不可逆地突然很快地吸收大量水分后膨胀,粘度增加很大。 ?第三阶段:当温度继续升高,淀粉颗粒变成无形空囊,可溶性淀粉浸出,成为半透明的均质胶体。 3、酶解法 酶解法是利用专一性很强的淀粉酶及糖化酶将淀粉水解为葡萄糖的方法。 酶解法可分为两步: 第一步,利用α-淀粉酶将淀粉液化; 第二步,利用糖化酶将糊精或低聚糖进一步水解转化为葡萄糖。生产上这两步分别称为液化和糖化。由于在该过程中淀粉的液化和糖化都是在酶的作用下进行的。因此酶解法又称为双酶法或多酶法。 ?优点:1、酶解法是在酶的作用下进行的,反应条件较温和,不需要耐高温高压或酸腐蚀的设备; ?2、酶作为催化剂的特点是专一性强,副反应少,故水解糖液纯度高,淀粉转化率高; ?3、可在较高的淀粉乳浓度下水解。 ?4、酸解法一般使用10-12Bx(含18%--20%淀粉)的淀粉乳,而酶解法可用20—23Bx (含34%--40%淀粉)的淀粉乳,并且可以采用粗原料。 ?5、用酶解法制得的糖液较纯净、颜色浅、无苦味、质量高,有利于糖液的充分利用。 ?6、双酶法工艺同样适用于大米或粗淀粉原料,可避免淀粉在加工过程中的大量流失,减少粮食消耗。 缺点:酶解法反应时间较长,设备要求较多,且酶是蛋白质,易引起糖液过滤困难。当然,随着酶制剂生产及应用技术的提高,酶解法制糖将逐渐取代酸解法制糖。 葡萄糖的分解反应 葡萄糖(失水)5`-羟甲基糠醛+甲酸

胰岛素释放的测试

胰岛素释放的测试 Final revision on November 26, 2020

胰岛素释放的测试 本试验做法与注意事项均与葡萄糖耐量试验相同。已确诊为可吃含面粉100克的馒头,未确诊者用75克葡萄糖。 正常人口服葡萄糖后,随血糖的上升,血浆胰岛素水平也迅速上升,高峰一般在服糖后1小时出现且为空腹值的5-10倍,然后逐渐下降,至3小时应接近空腹水平,即胰岛素释放试验与糖耐量试验同步。 1、糖尿病病人的胰岛素释放试验曲线可分三种类型: (1)胰岛素分泌减少型。患者空腹血浆胰岛素水平很低,口服100克馒头后,仍然很低,无高峰出现,说时患者胰岛素分泌绝对不足,β细胞的功能衰竭,见于胰岛素2型糖尿病病人或2糖尿病病人的晚期,提示必需采用胰岛素治疗。 (2)胰岛素分泌增多型。患者空腹血浆胰岛素水平正常或高于正常,刺激后曲线上升迟缓,高峰在2小时或3小时,其峰值高于正常(但仍低于无糖尿病而体重相似的单纯肥胖者),提示患者胰岛素相对不足,多见于非胰岛素依赖型的肥胖者,应严格控制饮食,增加运动,积极减轻体重。

(3)胰岛素释放障碍型。患者空腹血浆胰岛素可高可低,但刺激后曲线上升延缓,且峰值低于正常人,此型应用磺脲类药物治疗有效。 2、参与正常值及参考病理值(x±SD)μu/ml 葡萄糖-C肽释放试验的参考值和临床意义 参考值: 空腹C肽/L(±/ml)。 峰时在30~60min,峰值达基础值的5~6倍以上。临床意义: C肽释放试验的做法与注意事项与葡萄糖耐量试验,胰岛素释放试验相同,它的临床意义是:(1)测定C肽,有助于糖尿病的临床分型,有助于了解患者的胰岛功能。 (2)因为C肽不受胰岛素抗体干扰,对接受胰岛素治疗的患者,可直接测定C肽浓度,以判定患者的胰岛β细胞功能。

唾液淀粉酶对淀粉的消化作用要点

“唾液淀粉酶对淀粉的消化作用”的实验改进 北京市八角中学刘馥花 前言: 北京版初中生物教材(第一册)第四章生物的营养,第二节人和动物的营养中的[实验]唾液的消化作用。要求学生分组实验,人人动手。但是由于上课时间有限,且学生在取唾液时有一定的难度,需要教师上课时做思想工作;再有本次实验所需的实验用具过多,教师在准备时也有很大的难度。于是,我们针对学生的实际情况,根据学校的设备进行了实验改进。保证了学生实验的顺利进行并达到了预期的实验结果。 1.进行实验改进的原因: 1.1 做这个实验所需的仪器很多: 本实验需要的仪器有:大、小烧杯、试管、酒精灯、温度计、三脚架。我校初一每班平均近40人,那么所需的仪器如下:(以人教版教材为例计算) 仪器名称酒精灯试管温度计大烧杯小烧杯三脚架总计 需要数量(个)20 40 20 20 20 20 140 从表中可以很清楚地看到酒精灯、试管、温度计、烧杯总计有140件。对于实验设备齐全地学校来说,是不成问题的,对于我们普通学校,就有一定的难度,而且教师准备实验也要花去很多时间。 1.2 制备淀粉浆糊与取唾液需要一定的教学时间。 实验步骤的第一步是:将淀粉煮成浆糊,需要6——10分钟,之后还要取唾液,时间也需要6——8分钟。即便两步同时做,也需要10分钟左右。这样就占了一节课近1/4的时间。后边的步骤还很多,一节课下来根本就做不完实验,常常是同学们没看到结果就下课了,不能进行实验分析,不能达到实验目的。 1.3取唾液的过程中,学生的纪律不易保证。 取唾液的过程,要做好学生的思想工作和指导。有的学生觉得有趣,互相取笑,有的同学觉得恶心、不愿意做,不能保证实验的顺利进行。教师要在课前拿出一定的时间来进行学生的思想教育工作,组织教学。 2.实验的改进: 2.1 用淀粉纸代替淀粉浆糊效果比较好。 选择淀粉纸的标准:吸水性强、有韧性、洁白。通过多次实验比较了白报纸、过滤纸后发现用过滤纸做淀粉纸效果最好。

α-淀粉酶的固定化以及淀粉水解作用的检测

《α-淀粉酶的固定化与淀粉水解作用的检测》 实 验 方 案 第二实验班一组 组长:张金昌 组员:胡建军、朱恩梅、石仙竹、谢娟丽、李昀奕、郭天天 2013.10.15

α-淀粉酶的固定化与淀粉水解作用的检测 一、实验背景资料: 1、酶:活细胞产生的具有催化作用的有机物,其中绝大多数酶是蛋白质;具有高效性、 专一性,同时,也有高度不稳定性,因为绝大多数酶的本质是蛋白质,凡是能使蛋白 质变性的因素,如高温、高压、强酸、强碱等都会使酶丧失活性。 2、酶促反应:指由酶作为催化剂进行催化的化学反应; 3、α-淀粉酶:为枯草杆菌的α-淀粉酶,其作用的最适PH为5.5~7.5,最适温度为50~70℃。 广泛分布于动物(唾液、胰脏等)、植物(麦芽、山萮菜)及微生物。此酶既作用于直 链淀粉,亦作用于支链淀粉,其特征是引起底物溶液粘度的急剧下降和碘反应的消失, 最终产物在分解直链淀粉时以麦芽糖为主,此外,还有麦芽三糖及少量葡萄糖;在分 解支链淀粉时,除麦芽糖、葡萄糖外,还生成分支部分具有α-1,6-键的α-极限糊精。 4、固定化酶:借助于物理和化学的方法把酶束缚在一定的空间内并仍具有催化活性的酶 制剂。酶更适合采用化学结合和物理吸附法固定化。吸附法是酶分子吸附于水不溶性 的载体上,它的优点是操作简便,条件温和,不会引起酶变性或失活,且载体廉价易 得,可以反复使用。 5、吸附剂:常用的吸附剂有活性炭、氧化铝、硅藻土、多孔陶瓷、多孔玻璃等。 活性炭:活性炭是一种多孔性的含炭物质, 它具有高度发达的孔隙构造, 是一种极优 良的吸附剂, 每克活性炭的吸附面积更相当于八个网球埸之多. 而其吸附作用是藉由 物理性吸附力与化学性吸附力达成. 其組成物质除了炭元素外,尚含有少量的氢、氮、 氧及灰份,其結构则为炭形成六环物堆积而成。由于六环炭的不规则排列,造成了活 性炭多微孔体积及高表面积的特性。 硅胶:硅胶是由硅酸凝胶mSiO2·nH2O适当脱水而成的颗粒大小不同的多孔物质。具 有开放的多孔结构,比表面(单位质量的表面积)很大,能吸附许多物质,是一种很 好的干燥剂、吸附剂和催化剂载体。硅胶的吸附作用主要是物理吸附,可以再生和反 复使用。在碱金属硅酸盐(如硅酸钠)溶液中加酸,使之酸化,再加入一定量的电解 质进行搅拌,即生成硅酸凝胶;或者在较浓的硅酸钠溶液中加酸或铵盐也能生成硅酸 凝胶。将硅酸凝胶静置几小时使之老化,然后用热水洗去可溶性盐类,在60~70℃下烘

影响淀粉酶酶活性的因素

影响淀粉酶酶活性的因素 一、目的 了解淀粉在水解过程中遇碘后溶液颜色的变化。观察温度、pH、激活剂与抑制剂对淀粉酶活性的影响。 二、原理 人唾液中淀粉酶为α—淀粉,在唾液腺细胞中合成。在唾液淀粉酶的作用下,淀粉水解,经过一系列被称为糊精的中间产物,最后生成麦芽糖和葡萄糖。 淀粉→紫色糊精→红色糊精→麦芽糖、葡萄糖 淀粉、紫色糊精、红色糊精遇碘后分别呈蓝色、紫色与红色,麦芽糖、葡萄糖遇碘不变色。 唾液淀粉酶的最适温度为37-40℃,最适pH为。偏离此最适环境时,酶的活性减弱。 低浓度的氯离子能增加淀粉酶的活性,是它的激活剂。铜离子等金属离子能降低该酶的活性,是它的抑制剂。 三、试剂和仪器 1.碘液:称取2g碘化钾溶于5ml蒸馏水中,再加1g碘。待碘完全溶解后,加蒸馏水295ml,混合均匀后贮存于棕色瓶内。 2.1%淀粉溶液:称取1克可溶性淀粉放入小烧杯中,加少量蒸馏水做成悬浮液。然后在搅拌下注入沸腾的蒸馏水中,继续煮沸1分钟,冷后再加蒸馏水定容至100ml。 3.%的盐酸溶液 4.%的乳酸溶液。 5.1%的碳酸钠溶液。 6.%的氯化钠溶液。 7.%的硫酸铜溶液。 8.仪器:试管试管架吸管玻璃棒白磁板烧杯漏斗恒温水浴量筒冰浴四、操作步骤 1.淀粉酶液的制备:实验者先用蒸馏水嗽口,然后含一口蒸馏水于口中,轻嗽一、二

分钟,吐入小烧杯中,用脱脂棉过滤,除去稀释液中可能含有的食物残渣。最后将数人的稀释液混合在一起,再进行过滤,以避免个体差异。 2.pH对酶活性的影响 取4支试管,分别加入%盐酸(pH=1),%乳酸(pH=5),蒸馏水(pH=7),与1%碳酸钠(pH=9)各2毫升,再向以上四支试管中各加入2毫升淀粉溶液及淀粉酶液。混合摇匀后置于37℃水浴中保温。2分钟后,从蒸馏水试管中取出一滴溶液,置于白磁板上,用碘液检查淀粉的水解程度,待蒸馏水试管内的溶液遇碘不再变色后,取出所有的试管,各加碘液2滴,观察溶液颜色的变化。根据观察结果说明pH对酶活性的影响。 3.温度对酶活性的影响 取3支试管各加入3毫升2%淀粉溶液,另取三支试管,各加入1毫升淀粉酶液。将6支试管分为三组,每组中盛放淀粉溶液与淀粉酶液的试管各1支。三组试管分别置于0℃、37℃、70℃的水浴中,5分钟后将各组中的淀粉溶液到入淀粉酶液中,继续保温。2分钟后从37℃试管中取出一滴溶液,置于白磁板上,用碘液检查淀粉的水解程度,待37℃试管内的溶液遇碘不再变色后,取出所有的试管,各加碘液2滴,观察溶液颜色的变化。根据观察结果说明温度对酶活性的影响。 4.激活剂与抑制剂对酶活性的影响 取3支试管按下表的规定加入各种试剂。混匀后置于37℃的水浴中保温,1分钟后从1号试管中取出一滴溶液,置于白磁板上,用碘液检查淀粉的水解程度,待一号试管内的溶液遇碘不再变色后,取出所有的试管,各加碘液2滴,观察溶液颜色的变化。根据观察结果说明激活剂与抑制剂对酶活性的影响。

血糖监测的临床意义

血糖监测的临床意义 血糖监测在时间安排上并不是随意的,这里面很有讲究。那么,临床上通常选择哪些时间点检测血糖?这些时点的血糖又分别代表什么意义呢?血糖高低是反映糖尿病患者病情控制及治疗效果的可靠指标。把血糖监测简单地理解为定期查空腹血糖,这是非常片面的。理想的血糖监测应当是全天候实时监测,但在动态血糖仪(CGMS)临床尚未普及的情况下,我们只能通过选择一天中具有特殊意义的若干时点进行血糖检测,来反映患者一天当中血糖变化的全貌。血糖监测在时间安排上并不是随意的,这里面很有讲究。那么,临床上通常选择哪些时间点检测血糖?这些时点的血糖又分别代表什么意义呢?1.空腹血糖 1.1 严格地讲,空腹血糖是指隔夜禁食(饮水除外)8~12小时之后于次日早餐前所测的血糖(通常不超过早晨8点),午餐前和晚餐前的血糖不在此列。 1.2 检测空腹血糖的意义: 主要是为了了解基础状态(即非进餐状态)下的清晨血糖水平,用以评估头天晚上降糖药用量是否合适?此外,空腹血糖还可以间接反映患者基础胰岛素的分泌水平。另外,空腹血糖也可作为糖尿病的诊断标准之一。 1.3 空腹血糖升高有三种常见情况: ①药量不足:特点是睡前血糖高于空腹或与空腹血糖相差无几。原因是晚间胰岛素(或口服降糖药)用量不足或进食过多;

②黎明现象:与凌晨生长激素分泌增加有关,后者可加重肝脏和肌肉的胰岛素抵抗,导致清晨高血糖。"黎明现象"的特点是:患者凌晨4点到8点之间血糖突然明显升高,而之前未曾发生低血糖; ③苏木杰反应:是由于夜间发生低血糖以后引起空腹血糖反跳性升高,特点是凌晨3:00左右血糖低于3.9mmol/L,而空腹血糖较高。 1.4 注意:测空腹血糖最好在清晨6:00~8:00取血,采血前不用降糖药、不吃早餐、不运动。如果空腹抽血的时间太晚,所测的血糖值很难反映患者的真实情况,其结果可能偏高或偏低。偏高者主要见于"黎明现象"比较明显的糖尿病人;偏低者一般认为与空腹时间过久、肝糖元储备不足有关。 2.餐后2小时血糖 2.1 "餐后2小时血糖"是指从吃第一口饭开始计时,2小时后准时采血所测得的血糖值。如果是正在治疗的糖尿病人,查餐后2小时血糖时要跟平时一样进餐、用药。 2.2 "餐后2小时血糖"的意义: ①可以反映患者进食及降糖药用量是否合适; ②可以反映患者胰岛细胞的储备功能(即进食后食物刺激胰岛细胞追加分泌胰岛素的能力); ③有助于2型糖尿病的早期诊断,这是因为许多早期糖尿病患者空腹血糖正常,而首先表现为餐后血糖升高; ④餐后高血糖还是导致糖尿病慢性并发症的重要因素。

淀粉酶对淀粉和蔗糖的水解作用

淀粉酶对淀粉和蔗糖的水解作用 一、教学目的 l.初步学会探索酶催化特定化学反应的方法。 2.探索是否只能催化特定的化学反应。 二、教学建议 在本实验的教学中,教师应注意以下几点。 1.实验课前,教师应当布置学生预习实验指导。学生通过预习,可以理解实验原理,了解实验的目的要求和方法步骤,避免实验时边看书边做实验的情况发生。 2.实验过程中,教师应提醒学生注意以下几点。 (1)制备的可溶性淀粉溶液,必须完全冷却后才能使用,如果用刚煮沸的可溶性淀粉溶液进行实验,就会因温度过高而破坏淀粉酶的活性。 (2)两支试管保温时,应控制在60℃左右,低于50℃或高于75℃,都会降低化学反应的速度。 (3)如果2号试管也产生了砖红色沉淀,可以考虑以下原因。 ①蔗糖溶液放置的时间是否过长。因为蔗糖溶液放置时间过长,蔗糖容易被溶液中的微生物分解成还原性糖,影响实验的结果。这时应改用现配制的蔗糖溶液。 ②试管是否干净。如果上一个班的同学做完实验后未能将试管清洗干净,这次实验又接着用,就可能出现这种情况。为此,教师必须要求学生在实验结束后,一定要将试管洗刷干净,并倒置控干。教师在实验前应对试管统一进行检查,以杜绝上述情况的发生。 ③蔗糖本身是否纯净。如果蔗糖不纯,就可能出现产生砖红色沉淀的现象。为保证蔗糖纯净,实验前教师可先配制少量的蔗糖溶液,并用斐林试剂检验一下,确无砖红色沉淀产生,则为纯净蔗糖。 三、参考资料 淀粉溶液的配制取2g淀粉酶(粉剂),放入烧杯中,边搅拌边加入98mL蒸馏水,搅拌均匀后备用。

淀粉酶简介本实验为定性实验,因此,不必使用纯的淀粉酶。淀粉酶在一般的化学试剂商店就可以买到,有的酿酒厂也有出售,买回后放在冰箱冷藏室中可保存几年。 替换材料容易购买到菊糖的学校,最好用菊糖代替蔗糖。这是因为菊糖是由多个果糖分子缩合而成的,与淀粉同属于多糖。用菊糖与淀粉进行对比实验,更具有说服力。 1、实验目的 (1)初步学会探索酶催化特定化学反应的方法。 (2)探索淀粉酶是否只能催化特定的化学反应。 2、实验原理 淀粉和蔗糖都没有还原性,也就是都不能使斐林试剂还原,所以都不能与斐林试剂发生反应。唾液淀粉酶将淀粉水解成的麦芽糖则具有还原性,能够使斐林试剂还原,生成砖红色的沉淀。蔗糖水解产生的葡萄糖和果糖都具有还原性,但唾液淀粉酶不能将蔗糖水解。 试验中可以用菊糖代替蔗糖。这是因为菊糖是由多个果糖分子缩合而成的,与淀粉同属于多糖,用菊糖与淀粉进行对比实验,更具有说服力。 3、实验材料 质量分数分别为3%的可溶性淀粉溶液和蔗糖溶液;质量分数为2%的新鲜淀粉酶(化学试剂商店有售)溶液。 4、试剂与仪器 斐林试剂(也可以用班氏试剂)试管、大烧杯、量筒、滴管、温度计、试管夹、三脚架、石棉网、酒精灯、火柴。 5、实验方法与步骤 (1)取两支洁净的试管,编上号,然后向1号注入2mL可溶性淀粉溶液和2mL新鲜淀粉酶溶液。向2号注入2mL蔗糖溶液和2mL新鲜淀粉酶溶液。 (2)轻轻振荡这两支试管,使试管内的液体混合均匀,然后将试管的下半部浸到60℃左右的热水中,保温5min。 (3)取出试管,各加入2mL斐林试剂(边加入斐林试剂,边轻轻振荡这两支试管,以便使试管内的物质混合均匀)。 (4)将两支试管的下半部放进盛有热水的大烧杯中,用酒精灯加热,煮沸并保持1min。 (5)观察并记录两支试管内的变化。

淀粉酶,糖化酶

糖化酶 糖化酶Gluco-Amylase 又称葡萄糖淀粉酶(EC3.2.1.3),是以黑曲霉变异菌株经发酵制得的高效生物催化剂。糖化酶能在常温条件下将淀粉分子的a-1.4和a-1.6糖苷键切开,而使淀粉转化为葡萄糖。凡是以淀粉为原料又需糖化的生产过程,均可使用糖化酶以其提高淀粉糖化收率。不含转苷酶将具有极高的转化率。其系列产品有固体和液体两种类型,适用于淀粉糖、酒精、酿造、味精、葡萄糖、有机酸和抗菌素等工业. 一、产品特性:1、作用方式:糖化酶又称葡萄糖淀粉酶,它能从淀粉分子的非还原性末端水解a—1,4葡萄糖苷糖,生产葡萄糖,也能缓慢水解a—1,6葡萄糖苷键,转化为葡萄糖. 2、热稳定性:在60℃下较为稳定,最适作用温度58—60℃. 3、最适作用:PH4.0—4.5 4、产品质量符合QB1805.2—93标准. 二、产品规格. 项目指标固体糖化酶液体糖化酶外观黄褐色粉末褐色液体酶活力5万、10万、15万10万、15万水份(%)≤8 细度(目)80%通过40目酶存活率半年不低于标定酶活三个月不低于标定酶活 三、酶活力定义:1克酶粉或1ml酶液于40℃PH4.6条件下,1小时分解可溶性淀粉产生1mg 葡萄糖的酶量为1个酶活单位。 四、应用参考 酒精工业:原料经中温蒸煮冷却到58—60℃,加糖化酶,参考用量为80—200单位/克原料,保温30—60分钟,冷却至30℃左右发酵。 淀粉糖工业:原料经液化后,调PH到4.2—4.5,冷却到58—60℃,加糖化酶,参考用量为100—300单位/克原料,保温糖化24—48小时。 啤酒行业:生产“干啤酒”时,在糖化或发酵前加入糖化酶,可以提高发酵度。 酿造工业:在白酒、黄酒、曲酒等酒类生产中,以酶代曲,可以提高出酒率,也普遍用于食醋工业。其他工业:在味精、抗菌素等其他工业应用时,淀粉液化后冷却到60℃,调PH4.2—4.5,加糖化酶。参考用量100—300单位/克原料。 淀粉酶 生物学 中文名称:淀粉酶

胰岛素检测对糖尿病患者的临床意义

胰岛素检测对糖尿病患者的临床意义 摘要】目前,糖尿病的主要治疗方法就是使用胰岛素,糖尿病患者进行胰岛素 的检测能够区别其患病的类型。在应用胰岛素治疗的过程中,容易产生胰岛素抗体,对其抗体的检测能够确定患者自身的并发症状。本文通过对胰岛素及其抗体 的检测,探讨其在临床应用中的价值。 【关键词】胰岛素抗体类型 糖尿病属于一种发病原因及机理都没有完全明确的内分泌代谢病症,在临床 中主要分成两种类型,一种是1型糖尿病,其是胰岛素依赖型(IDDM),另一种是 2型糖尿病,其是非胰岛素依赖型(NIDDM)。IDDM 属于自身免疫性病症,其是因 为起到免疫介导作用的胰岛β细胞受到破坏所导致的,疾病机理的主要特点为: 在胰岛的周围或者是在胰岛内出现慢性炎症细胞浸润情况,也就是免疫系统攻击 胰岛β细胞,并使其受到损伤,致使胰岛素合成及分泌水平下降,甚至完全失去 此功能。目前IDDM在多数情况下认为其病症出现的基础性因素是胰岛素抵抗, 也就是说胰岛素所作用的靶细胞、器官组织无法迅速的对胰岛素引发的生物学效 应产生反应,甚至完全丧失。 1、血清胰岛值决定患者糖尿病类型 对血清胰岛素进行相应的检测,并检测空腹状态以及餐后胰岛素分泌能力。 通常需要和糖耐量试验(OGTT)一起完成检测。对血清胰岛素的分泌水平进行检测,能够有效了解糖尿病患者发病后病症严重状况,而且能够帮助其进行预后判断,并根据此检测结果采取相应的治疗方法。检查血清胰岛素主要有以下作用。 1.1确定患者是1型或2型糖尿病 对血清胰岛素检测,能够确定糖尿病患者属于1型或为2型患者,此种方法 主要适用在没有采用胰岛素进行治疗过的患者,在空腹状态和餐后2小时进行抽 血检测,正常空腹状态下,血清胰岛素含量水平应是5~30μu/ml,通常餐后其水 平会比空腹状态高出4~5倍。若患者餐后血清胰岛素水平没有明显升高,也就 是绝对缺乏,通常都属于1型糖尿病;若血清胰岛素并没有出现显著降低的情况,但其临床表现有血糖上升现象,可称作相对缺乏,其征象的出现通常都是由于胰 岛素无法正常发挥作用,而且有效环节发生故障,此种情况通常存在于胰岛素抵 抗的2型糖尿病患者中。 1.2糖尿病的分型 胰岛素抵抗型(分泌增高型):此种类型的表现主要是在空腹状态下胰岛素 水平处于正常值或者是比正常值偏高,在饮食之后胰岛素峰值发生明显变化,比 正常值要高出很多。此情况显示胰岛素具有较为正常的分泌作用或者是有偏高倾向,显示身体中存有胰岛素抵抗现象。此种类型大多出现在比较肥胖的糖尿患者中。其治疗方法主要调节饮食结构,加强自身的有效运动量,通常不需要使用药 物进行治疗,也可稍微使用胰岛素增敏剂进行治疗,最大限度来降低胰岛的负荷,对血糖控制所具有的长期稳定性有良好的促进作用。 胰岛素释放障碍型:此种症状主要是胰岛素所表现出来的反应曲线具有缓慢 升高的形态,其高峰值有后移情况,患者大部分是消瘦型或者是超过40岁的中 年人,胰岛出现的病变征象通常都很轻微,属于β细胞功能障碍类型,此种类型 的患者在治疗中需要调节饮食结构,加强自身运动,而且在应用胰岛素增敏剂作 为主要治疗药物的同时,要适量加入能够使胰岛分泌受到刺激效果的药物,增加 胰岛素分泌量,能够将胰岛素峰值提前,确保胰岛素释放的正常化[1]。

胰岛素抵抗的检验方法

胰岛素抵抗的检验方法 胰岛素抵抗的检测方法很多,按设计原理大致分为三类:1.开环法:即阻断内源性葡萄糖与胰岛素反馈环法,如正常葡萄糖高胰岛素钳夹技术、胰岛素抑制试验。2.闭环法:即激发葡萄糖与胰岛素反馈环法,如最小模型技术、口服葡萄糖耐量试验、胰岛素耐量试验、胰高血糖素试验和持续输注葡萄糖模型分析法 3.基础状态法:用基础状态下的空腹血糖(FPG)和空腹胰岛素浓度(FBI)两个指标评估胰岛素抵抗,如FBG/FBI,1/FBG×FBI和稳态模型评价(HOMA)等。正常血糖高胰岛素钳夹技术(EICT)被公认为评价胰岛素的金标准;最小模型法与EICT相关性好,被认为是准确性较高的检测方法但两种方法操作繁琐,不适合大样本人群胰岛素抵抗的普查。胰岛素敏感指数、稳态模型法以及空腹胰岛素水平等方法简便易行,以被广泛应用于胰岛素抵抗的普查。 正常血糖胰岛素钳夹技术(EICT) EICT是目前公认的检测胰岛素抵抗的方法,被认为是IR检测的金标准。本方法是测定组织对外源性胰岛素敏感性的方法,快速连续胰岛素灌注使血浆胰岛素浓度迅速升高并维持在一定水平,改变葡萄糖灌注率使血糖稳定在基线水平。在这种水平下可通过抑制肝糖输出和内源性胰岛素的分泌,即阻断内源性葡萄糖-胰岛素反馈,这时葡萄糖灌注率等于外源性胰岛素介导的机体葡萄糖代谢率。 具体方法为:空腹12h,抽血测基础血糖、胰岛素的值,静滴胰岛素,使血胰岛素维持在100mU/L,保持此速率不变,然后静滴2%葡萄糖(2mg/),每隔5min监测血糖一次,并用Harvard泵调整葡萄糖的输注速率(GIR),以外源性胰岛素钳制血糖于正常水平(+L)持续60min。血胰岛素浓度在50mU/L 以上能抑制90%肝脏内源性葡萄糖生成,因此外源注入葡萄糖量减去机体所有组织摄取量,即为胰岛素介导的葡萄糖代谢率和单位胰岛素所代谢葡萄糖量,这就是胰岛素敏感性指标,应用较普遍。GIR越小,机体胰岛素抵抗越严重。与胰岛素耐量试验(ITT)相比,具有不产生低血糖和伴随的复杂神经内分泌反应等优点,因为以每5min间隔计算葡萄糖代谢率,可测组织对胰岛素敏感的时间曲线,对阐明疾病的发病机制有帮助。该试验排除了体内许多难以控制的干扰因素对评价IR的影响。但该试验时葡萄糖可受胰岛素水平改变时周围血流变动的影响;并与输入胰岛素量而非胰岛素浓度相关。但是完成试验需要床边血糖自动分析议和Harvard泵等特殊设备,每5min调整GIR,费用昂贵,限制了此技术的推广。 胰岛素抑制试验(IST) 方法:受试者静脉注射普萘洛尔5mg,5min后用输液泵恒定输入由普萘洛尔、肾上腺素、葡萄糖和胰岛素组成的混和液,以抑制肝糖输出和内源性胰岛素分泌。在这种稳定状态下,血浆葡萄糖浓度直接反映组织对外源性胰岛素的敏感性。 改进方法:用生长抑素代替普萘洛尔和肾上腺素,理由是普萘洛尔和肾上腺素可以引起受试者心率减慢、血压升高、和血液重新分布等副作用,且肾上腺素可使脂肪分解,对胰高血糖素和生长激素的分泌的抑制并不充分;而生长抑素可以充分抑制糖原分解,抑制胰岛素、胰高血糖素和生长激素的分泌,对脂肪代谢没有直接的影响,不引起心血管反应。故生长抑素更安全。IST是一种简单易行的方法,但结果不如钳夹法精确。 微小模型法(MMT) MMT是利用计算机模拟机体血糖与胰岛素动力代谢的关系,而同步计算出标书胰岛素抵抗程度的胰岛素敏感性指数(ISI)和不依赖胰岛素作用的葡萄糖自身代谢效能(SG),也被称为频繁采血的静脉葡萄糖耐量试验(FSIVGTT)。根据葡萄糖和胰岛素的动力学关系求得ISI。如果受试者β细胞功能过低,则需在注射葡萄糖前注射一次D860或胰岛素,否则胰岛素曲线太低,计算将出现误差。 具体方法:早晨空腹(禁食10h后),平卧休息30min,左右肘腕部各保留一个静脉通道,一侧用于葡萄糖,另一侧用于采血。注射葡萄糖按0.3g/kg计算,β细胞功能反映较差者在给葡萄糖20min 后注射0.3克甲苯磺丁脲钠,对完全没有β细胞功能者注射外源性胰岛素75mU/kg。采血时间最初为3h 采30个血样,后来改为12或14个,经对照分析,减少样本不影响测定结果。SG是指机体不依赖胰岛

相关文档
最新文档