2019_2020学年高中生物第2部分酶的应用第4课时α_淀粉酶的固定化及淀粉水解作用的检测学案浙科版

2019_2020学年高中生物第2部分酶的应用第4课时α_淀粉酶的固定化及淀粉水解作用的检测学案浙科版
2019_2020学年高中生物第2部分酶的应用第4课时α_淀粉酶的固定化及淀粉水解作用的检测学案浙科版

第4课时α-淀粉酶的固定化及淀粉水解作用的检测

[学习目标] 1.尝试用吸附法制作固定化α-淀粉酶。2.运用固定化α-淀粉酶进行淀粉水解的测定。3.说明酶固定化的方法及制作原理。4.通过此实验探讨固定化酶的应用价值。

一、固定化技术的基础知识

1.酶

(1)作用:酶是生物体内各种化学反应的催化剂。

(2)特点:它有高度的专一性和高效性。

2.固定化酶

(1)概念:将水溶性的酶用物理或化学的方法固定在某种介质上,使之成为不溶于水而又有酶活性的制剂。

(2)方法:吸附法、共价偶联法、交联法和包埋法。教材实验中用的是吸附法。

特别提醒图示解读:酶固定化的方法

①是吸附法:是将酶吸附到载体表面。

②是共价偶联法:是将酶通过共价键结合到载体的表面。

③是交联法:通过把酶交互连接、相互结合而将酶固定。

④是包埋法:是将酶或者细胞包埋在细微的网格里。

3.将酶改造成固定化酶的原因:酶在水溶液中很不稳定,且不利于工业化使用。

4.固定化酶作用的机理:将固定化酶装柱,当底物经过该柱时,在酶的作用下转变为产物。归纳总结直接使用酶和固定化酶的比较

例1 (2019·嘉兴一中月考)下列不属于固定化酶在使用时的特点的是( )

A.有利于酶与产物分离

B.可以被反复利用

C.能自由出入依附的载体

D.一种固定化酶一般情况下不能催化一系列酶促反应

答案 C

解析 固定化酶由于酶被固定在不溶性的载体上,很容易与产物分离,同时酶也能反复使用,这是固定化酶的主要优点;通常固定化酶的种类单一,所以不能催化一系列酶促反应。 例2 下列与固定化酶相关的叙述中正确的是( )

A.固定化酶是将水不溶性酶固定于某种介质上,使之成为易溶于水,而又具酶活性的制剂

B.将固定化酶装柱,当酶流过该柱时,可催化柱内底物转变为产物

C.酶固定的方法有吸附法、共价偶联法、交联法和包埋法等

D.固定化酶的缺点是酶在水溶液中很不稳定,且易与产物混在一起不易分离

答案 C

解析 固定化酶就是将水溶性的酶用物理或化学方法固定在某种介质上,使之成为不溶于水而又有酶活性的制剂;与普通酶相比,固定化酶易与产物分离,且固定化酶反应柱中酶已被固定,不能从柱内流出;酶的固定化方法有吸附法、共价偶联法、交联法和包埋法等。

二、α-淀粉酶的固定化及淀粉水解作用的检测实验

1.枯草杆菌的α-淀粉酶的固定化

(1)枯草杆菌的α-淀粉酶作用的条件:最适pH 为5.5~7.5;最适温度为50~75_℃。

(2)固定化方法——用吸附法将α-淀粉酶固定在石英砂上。

在烧杯中将5mg α-淀粉酶溶于4mL 蒸馏水中,再加入5g 石英砂,不时搅拌,30min 后,装入1支下端接有气门心并用夹子封住的注射器中(石英砂体积约4mL)。用10倍体积的蒸馏水洗涤注射器以除去未吸附的游离淀粉酶。

(3)淀粉水解作用的检测原理

淀粉――――→α-――――β-――→糖化葡萄糖

遇碘显蓝色 遇碘显红色 遇碘不显色

2.α-淀粉酶固定化实验步骤

流出5mL淀粉溶液后接收0.5mL流出液

3.实验结果

归纳总结

1.图示解读:α-淀粉酶的固定化反应柱示意图(如图所示)

(1)α-淀粉酶的固定化的介质是石英砂,方法是吸附法。

(2)过程和原理:将α-淀粉酶固定在石英砂上,一定浓度的淀粉溶液经过固定化酶柱后,可使淀粉水解成糊精。

(3)用淀粉指示剂测试,若流出物呈红色,表明有糊精生成。

2.两次洗涤的作用

(1)α-淀粉酶的固定化及淀粉水解作用的检测实验过程中,涉及两次对固定化酶柱的洗涤,第一次是α-淀粉酶的固定化时,目的是洗去未吸附的游离的α-淀粉酶。

(2)第二次洗涤是在实验结束时,目的是清除未反应的淀粉和产物以便于下次固定化酶柱的继

续使用。两次洗涤都使用10倍柱体积的蒸馏水对固定化酶柱进行洗涤。

例3(2018·嘉兴高二检测)下列有关淀粉水解作用检测的叙述,错误的是( )

A.实验后,反应柱可常温保存

B.正常情况下,向流出液中滴加KI-I2溶液呈红色

C.实验后,用蒸馏水洗涤反应柱,可洗去未反应的淀粉和产物糊精

D.实验中,向反应柱中滴加淀粉溶液宜慢,使淀粉溶液以0.3mL/min的流速过柱

答案 A

解析实验后反应柱应低温(4℃)保存,以延长酶的寿命。

例4如图为固定化酶反应柱的示意图,请回答下列问题:

(1)将α-淀粉酶溶于水中,再加入石英砂,不时搅拌,这样α-淀粉酶就可以固定在石英砂上。这种固定化的方法称为________________。30min后,装入如图所示的反应器中,构成固定化酶反应柱,并用10倍柱体积的蒸馏水洗涤此反应柱,洗涤的目的是______________。洗涤时,蒸馏水流速______________(填“能”或“不能”)过快。

(2)实验时,将此反应柱固定在支架上,用滴管滴加可溶性淀粉溶液,并以0.3mL/min的流速过柱,控制流速的目的是__________________________________。在流出5mL后接收0.5mL 流出液,加入1~2滴___________________________________________________________,观察颜色。为了使观察到的颜色变化明显,可________后再观察。如果溶液呈红色,说明淀粉水解成为________。

(3)实验后,用10倍柱体积的蒸馏水洗涤此反应柱,洗涤的目的是_______________________。洗涤后,放置在4℃冰箱中保存。几天后,可重复使用。

(4)一段时间后,某同学从冰箱中取出此反应柱,重复上述实验,却没有得到相同的结果,试分析可能的原因:_______________________________________________________________ ________________________________________________________________________。

答案(1)吸附法除去未吸附的游离的酶不能

(2)保证酶与底物充分反应KI-I2溶液稀释1倍糊精(3)除去反应物及产物(4)酶已经失活或再次操作时相应的反应条件(如温度)不合适等

解析(1)酶的固定化方法有吸附法、共价偶联法、交联法和包埋法等,本题中为吸附法。构成固定化酶反应柱后,用蒸馏水洗涤是为了除去未吸附的一些游离的酶,在洗涤时蒸馏水流速不能过快,流速为1mL/min。(2)以相对较慢的速度使淀粉溶液流过反应柱,可以让吸附着

的酶与底物充分反应。根据KI-I2溶液与淀粉反应呈蓝色,与糊精反应呈红色的原理来鉴定反应情况。(3)实验完成后还需要对反应柱进行洗涤,以除去参与反应的反应物及生成的产物,以便重复使用。(4)一段时间后重复使用得不到相同的结果,排除反应物本身的问题,肯定是酶出了问题,可能这些酶已经失活或再次操作时相应的反应条件(如温度)不合适等。

1.判断正误:

(1)固定化酶可反复永久使用( )

(2)固定化酶技术所用的固定载体一般为液相的( )

(3)反应物对固定化酶的活性没有影响( )

(4)固定化酶既能与反应物接触,又能与产物分离,提高了产物品质( )

(5)不管是固定化酶柱还是固定化悬浮体,回收后,在一定条件下贮存,还可以利用( )

(6)固定化酶可反复多次利用,节约了经济成本( )

(7)向亲和层析洗脱液中加KI-I2溶液呈红色( )

(8)实验使用的α-淀粉酶的最适pH为5.5~7.5,最适温度为50~75℃()

(9)糊精遇碘显蓝色,淀粉遇碘显红色( )

答案(1)×(2)×(3)√(4)√(5)√(6)√(7)√(8)√(9)×

2.(2018·浙江吴越联盟联考)在合适条件下,将果胶酶与海藻酸钠混合后,滴加到一定浓度的钙离子溶液中,使液滴形成凝胶固体小球。该过程是对酶进行( )

A.吸附

B.包埋

C.装柱

D.洗涤

答案 B

解析分析题意可知,果胶酶在一定浓度的钙离子溶液中形成凝胶固体小球,说明凝胶固体小球对果胶酶进行了包埋,B项符合题意。

3.下列关于固定化酶和一般酶制剂应用效果的说法,错误的是( )

A.固定化酶生物活性强,可永久使用

B.一般酶制剂应用后和产物混在一起,产物的纯度不高

C.一般酶制剂参加反应后不能重复利用

D.固定化酶可以反复利用,降低生产成本,提高产量和质量

答案 A

解析固定化酶是将酶固定在不溶于水的载体上,使酶既能与底物接触,又能与产物分离。同时,固定在载体上的酶还可以反复利用,降低成本,产物中也不含酶,提高了产品的纯度;固定化酶虽可以多次利用,但不可永久使用。

4.淀粉在各种酶的作用下会依次水解,不同阶段的水解产物遇到指示剂会出现不同的显色反应,下列选项中属于α-淀粉酶的固定化实验中的反应产物和显色现象的是( )

A.淀粉遇碘显蓝色

B.糊精遇KI-I2溶液显红色

C.麦芽糖遇碘不显色

D.葡萄糖遇本尼迪特试剂显红黄色

答案 B

解析该过程所依据的原理是淀粉流经α-淀粉酶固定化酶柱时,淀粉被酶水解成了糊精,而糊精遇到KI-I2溶液显红色。所以A、C、D选项中的反应产物都是错误的,不是淀粉、麦芽糖、葡萄糖,而是糊精。只有选项B正确。

5.在20世纪50年代,酶已经大规模地应用于各个生产领域,到了70年代又发明了固定化酶技术。请回答下列相关问题:

(1)固定化酶技术将酶固定在________________上,使酶既能与__________接触,又能与__________分离,同时固定在载体上的酶还能__________。常用的固定方法有吸附法、共价偶联法、交联法和包埋法等。

(2)“α-淀粉酶的固定化及淀粉水解作用的检测”实验中:

①α-淀粉酶固定在____________上,使用了上图中的方法__________(填号码及名称)。

②实验中,用滴管滴加淀粉溶液时,使淀粉溶液以________的流速过固定化酶柱,目的是________________________________________________________________________。

③灌注了固定化酶的注射器在使用完后要__________________洗涤固定化柱,并放置在______________中保存。

答案(1)不溶于水的载体反应物产物反复利用

(2)①石英砂乙、吸附法②0.3mL/min使淀粉充分与酶接触③用10倍柱体积的蒸馏水4℃冰箱

解析(1)固定化酶技术将酶固定在不溶于水的载体上,使酶既能与反应物接触,又能与产物分离,同时固定在载体上的酶还能反复利用。

(2)①α-淀粉酶固定在石英砂上,使用了图乙——吸附法;②用滴管滴加淀粉溶液时,使淀粉溶液以0.3mL/min的流速通过固定化酶柱,目的是使淀粉充分与酶接触;③灌注了固定化酶的注射器在使用完后要用10倍柱体积的蒸馏水洗涤固定化柱,并放置在4℃冰箱中保存。

6.(2018·金华十校期末调研)回答与“α-淀粉酶的固定化及淀粉水解作用检测”有关的问题:

(1)在酶的固定化时,共价偶联法比吸附法对α-淀粉酶活性的影响更________(填“大”或“小”)。

(2)实验室常用枯草芽孢杆菌来制备α-淀粉酶,枯草芽孢杆菌的α-淀粉酶的最适pH范围是______________。

(3)在固定化α-淀粉酶水解淀粉作用的检测实验中,固相淀粉酶水解淀粉的鉴定实验结果为:①淀粉溶液加指示剂呈蓝色;②____________________加指示剂呈红色。

(4)枯草芽孢杆菌也是制备蛋白酶的良好原料,为筛选枯草芽孢杆菌的蛋白酶高产菌株,将分别浸过不同菌株(a~e)的分泌物提取液及无菌水(f)的无菌圆纸片置于含某种高浓度蛋白质的平板培养基表面;在37℃恒温箱中放置2~3天,结果如下图。若需要保存a菌株,可将其接种至斜面上,培养后置于________中保存。菌株b提取物周围没有形成明显清晰区的原因:

①________________________________________________________________________;

②________________________________________________________________________。

答案(1)大(2)5.5~7.5 (3)亲和层析洗脱液

(4)4℃冰箱①不能合成蛋白酶或合成的蛋白酶量不足

②合成的蛋白酶不分泌或分泌量不足③分泌的蛋白酶活性低(任意答出两点)

题组一固定化酶

1.(2018·学军中学期中)下列不属于酶的固定化方法的是( )

A.将酶包埋在细微网格中

B.将酶相互连接起来

C.将酶吸附在载体表面

D.将酶加上糖衣做成胶囊

答案 D

2.关于固定化酶技术的说法,正确的是( )

A.固定化酶技术就是固定反应物,并将酶依附着载体围绕反应物旋转的技术

B.固定化酶的优势在于能催化一系列的酶促反应

C.固定化酶中的酶无法重复利用

D.固定化酶是将酶固定在一定空间内的技术

答案 D

解析固定化酶技术就是将水溶性的酶利用物理或化学方法固定在某种介质上,使之成为不溶于水而又有酶活性的制剂,其优点是酶被固定在一定装置内可以重复利用,缺点是无法同时催化一系列酶促反应;在固定过程中,固定的是酶而不是反应物,因此A、B、C项均错误。

3.下列关于固定化酶的叙述,错误的是( )

A.既能与反应物接触,又能与产物分离

B.可催化一系列反应

C.固定在载体上的酶可被反复利用

D.酶的活性和稳定性受到限制

答案 B

解析固定化酶能催化一种或一类化学反应,不能催化一系列的化学反应。

4.下图所示的酶固定化技术中,属于包埋法的一组是( )

A.①②

B.①③④

C.①④

D.③④

答案 D

题组二α-淀粉酶的固定化及淀粉水解作用的检测实验

5.某校学生尝试用琼脂作载体,用包埋法固定α-淀粉酶来探究固定化酶的催化效果。实验结果见下表(假设加入试管中的固定化淀粉酶量与普通α-淀粉酶量相同)。实验表明1号试管中淀粉未被水解,最可能的原因是( )

注:“√”表示加入,“-”表示未加入。

A.实验中的温度过高,导致固定化淀粉酶失去活性

B.淀粉是大分子物质,难以通过琼脂与淀粉酶接触

C.水浴保温时间过短,固定化淀粉酶未将淀粉水解

D.实验程序出现错误,试管中应先加入KI-I2溶液后保温

答案 B

解析由于固定化酶是用包埋法固定的,而淀粉是大分子物质,它不能通过琼脂与淀粉酶充分接触,导致淀粉不能被水解而遇KI-I2溶液呈现蓝色。

6.下列有关教材中α-淀粉酶固定化实验的叙述,错误的是( )

A.酶的固定方法为吸附法

B.固定化酶既不溶于水又有酶活性

C.将石英砂加入α-淀粉酶溶液中后,需要充分地不时地搅拌

D.将α-淀粉酶和石英砂混合物装入注射器后,即可滴加淀粉溶液

答案 D

解析将α-淀粉酶和石英砂混合物装入注射器后,需用10倍体积的蒸馏水洗涤注射器,以除去未吸附的游离淀粉酶。

7.下列关于固定化酶实验的叙述,错误的是( )

A.固定化酶柱长度和淀粉溶液流速决定了酶柱中酶的含量

B.淀粉溶液流速过快会导致流出液中含有淀粉

C.各组实验所用的α-淀粉溶液浓度应相同

D.淀粉溶液的pH对实验结果有影响

答案 A

解析固定化酶柱的长度决定了酶的含量,反应是否充分与淀粉溶液的流速有关,从而决定了产物的浓度;如果淀粉溶液的流速过快,则淀粉与酶接触不充分,从而使淀粉不能被充分水解;各组淀粉溶液的浓度是实验的无关变量,故各组实验所用的淀粉溶液浓度应该相同;温度、pH会影响酶的活性,从而对实验结果造成影响。

8.下列关于固定化酶中用到的反应柱的理解,正确的是( )

A.反应物和酶都可以自由通过反应柱

B.反应物能通过,固定化酶的颗粒不能通过

C.反应物和酶都不能通过反应柱

D.反应物不能通过,酶能通过

答案 B

解析固定化酶的颗粒不能通过反应柱,否则就起不到对酶固定和反复利用的作用。反应物能通过反应柱,在反应物通过反应柱的过程中不断地被酶催化。

9.在果汁生产中使用固定化果胶酶具有很多优点,以下说法中不属于其优点的是( )

A.固定化果胶酶可以重复回收,多次利用

B.固定化果胶酶可以提高酶的稳定性和果汁的质量

C.便于果汁加工工艺操作的连续化、自动化

D.用于处理溃碎果实,可以提高出汁率,促进澄清

答案 D

解析固定化酶主要是让水溶性的酶固定在相应的介质上,使之成为不溶于水而又有酶活性的制剂,达到重复使用、反应物和产物容易分离等目的,可以提高产品的质量等,游离的果胶酶也可以提高出汁率和澄清度,不是固定化果胶酶的优点,故A、B、C项正确,D项错误。

10.下列关于酶和固定化酶的研究与应用的叙述,正确的是( )

A.酶的固定化技术因改变了酶的空间结构而提高了酶的催化效率

B.作为消化酶使用时,蛋白酶制剂以口服方式给药

C.尿糖试纸含有固定化的葡萄糖和过氧化氢酶而可以反复使用

D.通过包埋法固定的酶的活性不再受温度和pH等因素的影响

答案 B

解析酶的固定化技术没有改变酶的空间结构,A项错误;消化酶在消化道内起作用,则蛋白酶制剂以口服的方式给药,B项正确;尿糖试纸由于使用后不能将反应物和酶分开,所以不能再次使用,C项错误;通过包埋法固定的酶的活性也要受到温度和pH等因素的影响,D 项错误。

11.回答下列有关酶的问题:

(1)酶是生物体中生化反应的催化剂,在工业生产和食品加工中的应用日益广泛。为提高酶的利用率以及产品的纯度,一般需要对酶进行固定化处理,具体方法有吸附法、共价偶联法、________法和________法。

(2)如图为装有固定化酶a的实验装置。其中b是反应柱,c是催化底物。

①若装置中的固定化酶为α-淀粉酶,则通常是利用________法进行固定的,介质一般为石英砂。利用装置进行淀粉水解实验时,在漏斗中加入反应液后的操作是____________________ ___________________________________________________________,

以保证反应充分。对流出的液体用________溶液检测,若呈现________色反应,则说明淀粉被水解成糊精。

②若a是固定化酵母,要想得到较多的乙醇,加入反应液后的操作是________________。

答案(1)交联包埋

(2)①吸附打开活塞1和2,并控制流速KI-I2红

②关闭活塞1和2

解析(1)固定化酶常用的方法有吸附法、共价偶联法、交联法和包埋法。(2)①固定化α-淀粉酶通常用吸附法,开始实验后只需打开图示活塞1和2,并使淀粉溶液以0.3mL/min的流速过柱,不能过快,以保证反应充分。在流出5mL淀粉溶液后接收0.5mL流出液,加入1~2滴KI-I2溶液检测,若溶液呈现红色,说明有糊精生成。②要利用固定化酵母产生较多乙醇,需要创造无氧环境,所以要把活塞1和2关闭。

12.固定化酶是从20世纪60年代迅速发展起来的一种技术。东北农业大学科研人员利用双重固定法,即采用戊二醛作交联剂(使酶相互连接),海藻酸钠作为包埋剂来固定小麦酯酶,研究固定化酶的性质,并对其最佳固定条件进行了探究。下图显示的是部分研究结果(注:酶活力为固定化酶催化化学反应的总效率,包括酶活性和酶的数量),分析回答:

(1)从对温度变化适应性和应用范围的角度分析,甲图所示结果可以得出的结论是

________________________________________________________________________

________________________________________________________________________。

(2)乙图曲线表明浓度为______________的海藻酸钠包埋效果最好,当海藻酸钠浓度较低时,酶活力也较低的原因是___________________________________________________________。

(3)固定化酶的活力随使用次数的增多而下降,由丙图可知,固定化酶一般可重复使用

________次,以后酶活力明显下降。

(4)固定小麦酯酶不采用海藻酸钠直接包埋,同时用戊二醛作交联剂,这是因为

________________________________________________________________________。

答案(1)固定化酶比游离酶对温度变化适应性更强且应用范围较广(2)3% 海藻酸钠浓度较低时包埋不紧密,酶分子容易漏出,数量不足(3)3 (4)直接包埋不紧密,酶分子容易漏出

解析由题图甲可知,固定化酶比游离酶对温度变化适应性更强且应用范围较广。读题图乙

可知,海藻酸钠浓度为3%时,酶活力最好,说明该浓度时海藻酸钠包埋效果最好。观察题图丙可知,固定化酶一般可重复使用3次,使用了3次以后,曲线下降明显,说明酶活力下降很多。包埋不紧密,酶分子容易漏出,所以一般要用戊二醛作交联剂。

13.(2019·台州检测)酶经过固定化后,不仅能提高酶的稳定性,而且容易与产物分开,具有可反复使用等优点。下图为利用枯草杆菌生产α-淀粉酶及固定化实验流程图,回答下列有关问题:

(1)筛选高表达菌株的最简便方法之一是____________。一般通过____________、____________两种手段实现。筛选出的菌株在发酵生产前还需利用________培养基进行扩大培养。

(2)利用物理或化学的方法将α-淀粉酶固定在__________的介质上成为固定化酶。

(3)如图是实验室中α-淀粉酶的固定化装置示意图。实验过程涉及两次蒸馏水体积为装填体积的__________,第二次洗涤的目的是除去________________________________________。

(4)若图中的液体X为淀粉溶液,从反应柱下端接取少量流出液进行KI-I2颜色测试,结果未呈现红色。下列有关此现象的解释错误的是________。

A.反应柱中没有α-淀粉酶被固定

B.流速过快淀粉未被水解

C.接取的流出液是蒸馏水

D.流速过慢淀粉被水解成葡萄糖

答案(1)单菌落分离划线分离涂布分离LB液体

(2)非水溶性(3)10倍残留的淀粉溶液(4)D

解析(1)筛选高表达菌株的最简便方法之一是单菌落分离。一般通过划线分离和涂布分离两种手段实现。对筛选的菌种进行扩大培养,采用LB液体培养基。(2)固定化酶技术是指通过物理或化学的方法将水溶性的酶固定在某种介质上,使其具有酶活性而又不溶于水,因此利

用物理或化学的方法将α-淀粉酶固定在不溶于水(非水溶性)的介质上成为固定化酶。(3)固定化酶柱制作及催化淀粉水解过程中,涉及两次用10倍柱体积蒸馏水洗涤固定化酶柱,第一次洗涤是除去未吸附的α-淀粉酶,第二次洗涤是洗去未反应残留的淀粉溶液。(4)淀粉水解时,

淀粉溶液低速通过固定化酶柱,若流速过快可能导致淀粉未发生反应,检测流出液未呈红色,也可能是酶未被固定化;由于在淀粉溶液流经酶柱之前,用蒸馏水洗涤过酶柱,因此,可能刚开始时收集到的是蒸馏水,因此,A、B、C项均为可能的原因;淀粉被α-淀粉酶水解产生糊精,不可能产生葡萄糖,D项错误。

(整理)α-淀粉酶综述

α-淀粉酶综述 佚名2013-10-06 摘要:α-淀粉酶分布十分广泛,遍及微生物至高等植物。α-淀粉酶是一种十分重要的酶制剂,大量应用于粮食加工、食品工业、酿造、发酵、纺织品工业和医药行业等,是应用最为广泛的酶制剂之一。本文概述了α-淀粉酶的发现和应用发展史、分离纯化及结构的研究史、催化机制及其研究史、工业化生产和应用现状与发展趋势等。 关键词:α-淀粉酶发现应用分离纯化结构催化机制研究史发展趋势 α- 淀粉酶( α- 1,4- D- 葡萄糖- 葡萄糖苷水解酶) 普遍分布在动物、植物和微生物中, 是一种重要的淀粉水解酶。其作用于淀粉时从淀粉分子的内部随机切开α-1,4糖苷键,生成糊精和还原糖。由于产物的末端残基碳原子构型为α构型,故称α-淀粉酶。现在α-淀粉酶泛指能够从淀粉分子内部随机切开α-1,4糖苷键,起液化作用的一类酶。 1 α-淀粉酶的发现和应用史 1.1 α-淀粉酶的发现 啤酒是最古老的酒精饮料,发酵是其关键步骤,其中所包含的糖化过程就是把淀粉转化为糖。这个转化过程的机理一直都没有被弄清楚,直到淀粉的发现。 在19世纪早期,许多科学家都在研究谷物提取物中淀粉的消化机理。Nasse(1811年)发现,从生物体中提取的淀粉能过被转化为糖,而从被沸水杀死的植物细胞中提取的淀粉不能被转化为糖。Kirchhoff(1815年)做了一个巧妙的实验。他将4份的冷水加入到2份的淀粉中,并边加边搅拌。之后加入20份的沸水使其形成一层厚厚的淀粉糊。在淀粉糊还是余温的时候,加入被粉碎的麸质(或麦芽),然后在40-60°列式温度下水浴。1-2小时后发现,淀粉糊开始缓慢液化。8-10小时后,淀粉糊被转化为一种甜的溶液。之后,他将其通过过滤和蒸发浓缩得到了糖浆,品尝后发现,其和发酵液一样甜。在操作的过程中,他注明了实验过程中仅添加了非常少的麸质,并且得到的糖浆与淀粉的量成正比。此外,如果在加入麸质前加入几滴高浓度的硫磺酸,最终就没有糖生成。从这个实验中他得到结论1)麸质是一种能够使温水中的淀粉粉末转化为糖的物质。2)作为种子发芽的结果,相比种子内的物质而言,麸质能过将更多的淀粉转化为糖。至此,Kirchhoff奠定了发现谷物中一种能够将淀粉转化为糖的蛋白质的基础。

高中生物《酶的特性》教案 新人教版必修1

四川省射洪县高中生物《酶的特性》教案新人教版必修1 酶的特性 教学过程 酶是活细胞产生的具有催化作用的有机物,从物质本质来看它是有机物,不同于无机催化剂,但是它们又有共性,就是都具有催化功能,那么它们的功能是不是完全一样呢? [师生互动] 回顾:过氧化氢在不同的条件下的分解。 问:过氧化氢(H2O2)在Fe3+的催化下,可分解成H2O和O2,动物新鲜肝脏中含有的过氧化氢酶也能催化这个反应。如果现在我们想弄清楚Fe3+与过氧化氢酶,哪一种催化剂的催化效率高,那么,我们应该如何设计这个实验? 答:要比较Fe3+和过氧化氢酶的催化效率,设计实验中的其他条件应该相同,如两支试管中过氧化氢溶液的量应该相同,Fe3+和动物肝脏也应尽可能同时加入两支试管中。 问:上一节我们已经做过实验,试管3和试管4的现象有何不同?从这个实验你可以得出什么结论?[] 答:试管4(加了过氧化氢酶)放出的氧气比试管3(加了无机催化剂)多了许多,过氧化氢酶的催化能力强) 过氧化氢酶的催化效率和Fe3+相比,要高很多。事实上,酶的催化效率一般是无机催化剂的107~1013倍。上述实验说明了酶的一个特性——高效性。 酶还具有什么特性呢?让我们继续通过实验来探索。让学生根据自己的选择的材料来进行。 问:淀粉和蔗糖都是非还原性糖,淀粉在酶的催化下能水解为麦芽糖和葡萄糖,蔗糖在酶的催化下能水解为葡萄糖和果糖。麦芽糖、果糖、葡萄糖均属还原性糖。还原性糖能够与斐林试剂发生氧化还原反应,生成砖红色的沉淀。现在给你淀粉酶溶液,要观察淀粉酶能催化哪种糖水解,应该如何设计这个实验?你又怎么能知道淀粉酶催化了糖的水解呢?(可引导学生复习P17实验) 答:设计一个对照实验,分别取两支试管,加入等量的淀粉和蔗糖,然后加入同样的淀粉酶,放在同样的环境(60 ℃)。 实验过程总结如下表: 问:哪支试管加入斐林试剂后再加热会出现砖红色的沉淀? 答:在加入淀粉的试管中。 问:出现砖红色沉淀的原因是什么? 答:装有淀粉溶液的试管中出现了还原性糖。 问:装有蔗糖溶液的试管中有何现象?

高中生物第2部分酶的应用第4课时α_淀粉酶的固定化及淀粉水解作用的检测学案浙科版选修1

第4课时α-淀粉酶的固定化及淀粉水解作用的检测 [学习目标] 1.尝试用吸附法制作固定化α-淀粉酶。2.运用固定化α-淀粉酶进行淀粉水解的测定。3.说明酶固定化的方法及制作原理。4.通过此实验探讨固定化酶的应用价值。 一、固定化技术的基础知识 1.酶 (1)作用:酶是生物体内各种化学反应的催化剂。 (2)特点:它有高度的专一性和高效性。 2.固定化酶 (1)概念:将水溶性的酶用物理或化学的方法固定在某种介质上,使之成为不溶于水而又有酶活性的制剂。 (2)方法:吸附法、共价偶联法、交联法和包埋法。教材实验中用的是吸附法。 特别提醒图示解读:酶固定化的方法 ①是吸附法:是将酶吸附到载体表面。 ②是共价偶联法:是将酶通过共价键结合到载体的表面。 ③是交联法:通过把酶交互连接、相互结合而将酶固定。 ④是包埋法:是将酶或者细胞包埋在细微的网格里。 3.将酶改造成固定化酶的原因:酶在水溶液中很不稳定,且不利于工业化使用。 4.固定化酶作用的机理:将固定化酶装柱,当底物经过该柱时,在酶的作用下转变为产物。归纳总结直接使用酶和固定化酶的比较

例1 (2019·嘉兴一中月考)下列不属于固定化酶在使用时的特点的是( ) A.有利于酶与产物分离 B.可以被反复利用 C.能自由出入依附的载体 D.一种固定化酶一般情况下不能催化一系列酶促反应 答案 C 解析 固定化酶由于酶被固定在不溶性的载体上,很容易与产物分离,同时酶也能反复使用,这是固定化酶的主要优点;通常固定化酶的种类单一,所以不能催化一系列酶促反应。 例2 下列与固定化酶相关的叙述中正确的是( ) A.固定化酶是将水不溶性酶固定于某种介质上,使之成为易溶于水,而又具酶活性的制剂 B.将固定化酶装柱,当酶流过该柱时,可催化柱内底物转变为产物 C.酶固定的方法有吸附法、共价偶联法、交联法和包埋法等 D.固定化酶的缺点是酶在水溶液中很不稳定,且易与产物混在一起不易分离 答案 C 解析 固定化酶就是将水溶性的酶用物理或化学方法固定在某种介质上,使之成为不溶于水而又有酶活性的制剂;与普通酶相比,固定化酶易与产物分离,且固定化酶反应柱中酶已被固定,不能从柱内流出;酶的固定化方法有吸附法、共价偶联法、交联法和包埋法等。 二、α-淀粉酶的固定化及淀粉水解作用的检测实验 1.枯草杆菌的α-淀粉酶的固定化 (1)枯草杆菌的α-淀粉酶作用的条件:最适pH 为5.5~7.5;最适温度为50~75_℃。 (2)固定化方法——用吸附法将α-淀粉酶固定在石英砂上。 在烧杯中将5mg α-淀粉酶溶于4mL 蒸馏水中,再加入5g 石英砂,不时搅拌,30min 后,装入1支下端接有气门心并用夹子封住的注射器中(石英砂体积约4mL)。用10倍体积的蒸馏水洗涤注射器以除去未吸附的游离淀粉酶。 (3)淀粉水解作用的检测原理 淀粉――――→α-――――β-――→糖化葡萄糖 遇碘显蓝色 遇碘显红色 遇碘不显色 2.α-淀粉酶固定化实验步骤

脂肪酶、淀粉酶测定方法

脂肪酶测定——采用p-NPP法 取0.5g样品,加去离子水10mL,40℃水浴浸泡2h,过滤。取滤液1mL于试管中,加入pH8.0缓冲液3mL和1mmol/L p-NPP溶液0.1mL 于40℃下精确反应3min,迅速置于冰上终止反应。在波长405nm处测定吸光度值。对照管酶液用等体积去离子水代替,其余试剂相同。Npp标准曲线Y=0.287x+0.0861 (y:吸光度x:NPP浓度(umol/L)) 试剂配制: 1mmol/L p-NPP溶液:称取0.0378g pNPP,加入1mL曲拉通-100与5mL异丙醇,用Tris-HCL(pH8.0)定容至100mL。 pH8.0 Tris-HCl:50mL 0.1M tris碱溶液与29.2mL 0.1M HCl溶液混合,加蒸馏水定容至100mL。 淀粉酶测定 称取六神曲0.5g,研细,用20mL去离子水40℃浸泡1h,过滤。取2只250mL的碘瓶,各加入5%的淀粉液25mL,10mL醋酸钠缓冲液(pH4.5),10mL蒸馏水,摇匀,40℃水浴预热5min。A管中加入滤液5mL,准确反应1h,立即加2mol/L HCl 1mL终止反应,B管中先加入HCl,再加滤液5mL。2只碘瓶分别加入0.05mol/L碘液10mL,0.1mol/L氢氧化钠45mL,边滴边振摇,暗处放置20min,加入1mol/L 硫酸2mL,用0.1mol/L硫代硫酸钠滴定至无色。每份样品测定3次。记录消耗硫代硫酸钠的体积,计算得淀粉酶活力。

淀粉酶活力是指1g六神曲粉末在一定条件下(T=40℃,pH=5.0),1h 内催化可溶性淀粉水解生成葡萄糖的毫克数。计算公式: 淀粉酶活力=[c×(vB-vA)·M·N]/2×m·t 式中:c为硫代硫酸钠的浓度(mol/L),M为葡萄糖的摩尔质量(g/mol),N为酶液稀释倍数,V A为样品滴定值(mL),VB为空白滴定液(mL),m为六神曲的取样量(g),t为反应时间(h),淀粉酶活力单位为mg/(g·h) 。 试剂配制 pH4.5醋酸钠缓冲液:18g醋酸钠加9.8mL冰醋酸,定容至1000mL。1mol/L硫酸溶液:量取6mL浓硫酸,倒入适量水中,用水稀释至100mL。 0.1mol/L碘液:取碘13.0g,加碘化钾36g与水50ml溶解后,加盐酸3滴与水适量使成1000ml,摇匀,用垂熔玻璃滤器滤过。 蛋白酶活力测定 称取六神曲1g,研细,加蒸馏水20ml,于40℃水浴放置1h,间断搅拌,过滤,滤液以磷酸钠缓冲液稀释1倍。取1mL稀释液置离心管中,于40℃水浴预热5min,加入预热的酪蛋白1mL,保温10min,立即加入0.4 mol / L 三氯醋酸2 ml,终止反应,继续置水浴中保温20 min,使残余蛋白质沉淀后离心滤过。取1 mL滤液,加入0.4 mol/L 碳酸钠溶液5 mL,福林试液1 mL,蒸馏水2 mL,摇匀,置水浴锅中,40 ℃保温显色20 min。以试剂溶液为空白,于763 nm 波长处测定吸光度。 在40℃时每1min水解酪蛋白产生1g酪氨酸的酶量,定义为1个蛋白酶活力单位。

万吨α淀粉酶生产车间的设计

万吨α淀粉酶生产车间 的设计 公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

8万t/a α-淀粉酶生产车间的设计 摘要:本设计为年产80,000t α-淀粉酶的工厂设计,其通过枯草杆菌液体深层发酵、沉淀法提取达到分离纯化出菌体中α-淀粉酶的目的。本设计分别对α-淀粉酶的性质、用途、工艺流程及生产原理都做了相关的阐述,并对有关的物料和热量也作了相应的衡算,以及对标准设备的选型和计算,还对工艺指标、安全问题和环境保护都做了详细的阐述。通过设计得出结论:年产8万吨α-淀粉酶发酵工厂,共有18个500m3发酵罐,每月均放罐180罐,发酵周期为72小时,总提取率为82%,理论α-淀粉酶产量为吨/罐,实际α-淀粉酶产量为吨/罐。每月应投入生产总成本为3993万元,根据目前市场价格,年利润为万元。 关键词:α-淀粉酶;工厂设计;效益分析;发酵;发酵罐 Plant Design of Sixty thousand t/a α-Amylase Abstract:This project is designed by a factory which produces 60,000t α-Amylase a achieves the aim of filtration and purification of the α-Amylase by using the deep ferment of hay bacillus and settling design not only respectively illustrate the quality,use,technological process and production principle but also make a materials and heat balance,the type selection and calculation of the standard equipment,further more,illustrate the technic

高中生物酶优质课教案

酶 基本要求 1.描述酶的发现过程,认同科学是在不断的观察、实验、探索和争论中完善的观点。 2.说明酶的本质与特性以及在细胞代谢中的作用,认同生命活动的复杂性。3.举例说明酶的专一性和高效性,逐步形成运用所学知识解释日常生活中实际问题的能力。 4.在进行“活动:探究酶的专一性”时,尝试对假设中的重要变量下操作性定义,在教师指导下设计比较可行的实验方案,对探究的过程和结果进行简单的评估。 5.分析酶的催化作用受许多因素的影响。 说明 “小资料:辅酶”及“课外读:酶的应用”只作为背景资料供阅读,不要求记忆或掌握具体内容。 教学方法 “第三节酶”教学重点是酶的作用、本质和特性;教学难点是酶的催化作用原理以及控制变量的科学方法。学生对酶的认识有限,但对催化剂的作用比较熟悉,在教学中以学生已掌握的无机催化剂的知识作为切入点,通过进行过氧化氢在生物催化剂与无机催化剂作用下的反应速度的比较实验,证明“酶的催化效率”,引导学生进入新课学习。介绍了酶的概念和成分,使学生对酶有一个总体的印象,再举例说明影响酶活性的因素和机理,以及酶催化作用的特性。 教学过程 【引入】有时候我们书面骂人时,会说某某人饭桶,我们每天早上、中午、下午一日三餐吃下去,大部分营养物质被消化吸收了。 【提问】这里消化吸收必须依靠什么啊?消化酶 【承接】酶是怎么被发现的呢? 【提问】1.1773年意大利斯帕兰札尼实验,把肉装在金属丝制的笼子里的目的

是什么?避免发生物理性消化。 【提问】笼内的肉消失了这说明了什么?说明胃液中有一种能消化肉的物质,可以和肉发生化学反应。 【小结】这种能消化肉的物质后来被证实是消化酶。 【承接】消化酶最早被发现,我们再来看酿酒,酒精发酵要用到的酶。 【提问】科学家巴斯德与李比希对酒精发酵的争论焦点是什么? 酒精发酵需要的是酵母细胞还是只要酵母细胞中的某种物质。 【提问】之后谁设计实验验证,得出了什么结论?毕希纳发现利用无细胞的酵母汁就可以进行酒精发酵。毕希纳证明酒精发酵是酵母中的某种物质。 【承接】那么酶的本质是什么呢? 【提问】1926年萨母纳尔得到脲酶(分解尿素的酶)结晶,发现其本质是什么?蛋白质。 【讲述】绝大多数酶本质都是蛋白质 【承接】酶的本质都是蛋白质吗? 【提问】20世纪80年代,科学家发现一些RNA分子也有催化能力,这一事实说明什么? 极少数酶是RNA 【讲述】这些酶称为核酶 【表格小结】我们对酶的本质进行总结 【提问】那么酶在我们生物体内有什么作用呢?催化作用 【小结】所以我们给酶下个定义:酶是由活细胞产生的具有催化作用的有机物质。【提问】酶作为催化剂能使反应在什么条件下进行?常温下 【提问】为什么没有酶,氧化分解有机物需在高温下进行呢?降低了活化能。【呈现图片】 【提问】什么是活化能?反应物分子活化所需要的能量。 【承接】酶作为生物催化剂怎么实现它的催化作用呢? 【呈现图片】 【提问】哪个是酶?哪个是底物?如果底物是2个氨基酸,产物是什么?二肽【提问】你能描述这个过程吗?酶与底物结合,形成酶-底物复合体。酶-底物复合体形状发生改变。

a-淀粉酶发酵的生产工艺

武汉轻工大学 设计α-淀粉酶的发酵生产工艺 系部食品科学与工程学院 专业粮食工程 班级粮工1002 姓名郑开旭 学号100107502 指导教师易阳 2013年6月9日

设计α-淀粉酶发酵的生产工艺 摘要:α-淀粉酶广泛分布于动物、植物和微生物中,能水解淀粉产生糊精、麦芽糖、低聚糖和葡萄糖等,是工业生产中应用最为广泛的酶制剂之一。目前,α- 淀粉酶已广泛应用于变性淀粉及淀粉糖、焙烤工业、啤酒酿造、酒精工业、发酵以及纺织等许多行业。本次设计的淀粉酶发酵,分别以玉米粉为碳源,以豆饼为氮源,以BF-7658枯草芽孢杆菌为生产菌种,同时做出了生产工艺流程图,详细的介绍了α-淀粉酶的生产工艺。 关键词:α-淀粉酶;工艺设计;发酵 正文: α-淀粉酶的生产工艺 1 α-淀粉酶的生产方法 1.1生产方法的选择 枯草杆菌BF7658是我国应用广泛的液化型α-淀粉酶菌种,国内普遍采用深层发酵法生产工业粗酶。我们从BF7658出发,用紫外光及化学药品反复交替诱变,选育适用于固体发酵的新菌体BF7658—1。该菌为短杆状,革兰氏阳性,两端钝园,在肉汁表面可生成菌膜,在培养基上菌落呈乳白色,表面光滑、湿润、略有光泽,用碘液试之,菌落周围呈透明圈。 ?固体培养枯草杆菌BF7658—1生产α-淀粉酶 将菌种接种于马铃薯琼脂斜面,37℃培养三天,然后转接到种子液体培养基上(豆饼粉、玉米粉、酵母膏、蛋白胨火碱、水等),摇瓶培养一定时间,当菌体进入对数生长期时,以0. 5%接种量接入固体培养基(麸皮、米糠、豆饼粉、火碱、水;ph=7左右,常压汽蒸一小时,冷却到38~40℃)在厚层通风制曲箱内,通风保持37~42℃,培养48小时出曲风干。 麸曲用1%食盐水3~4倍浸泡,3小时后过滤,调节滤液pH=8,加硫酸铵溶液沉淀酶,经离心,用浓酒精洗涤脱水,40℃烘干、磨粉即为成品。 ?深层发酵法生产α-淀粉酶

α-淀粉酶的固定化以及淀粉水解作用的检测

《α-淀粉酶的固定化与淀粉水解作用的检测》 实 验 方 案 第二实验班一组 组长:张金昌 组员:胡建军、朱恩梅、石仙竹、谢娟丽、李昀奕、郭天天 2013.10.15

α-淀粉酶的固定化与淀粉水解作用的检测 一、实验背景资料: 1、酶:活细胞产生的具有催化作用的有机物,其中绝大多数酶是蛋白质;具有高效性、 专一性,同时,也有高度不稳定性,因为绝大多数酶的本质是蛋白质,凡是能使蛋白 质变性的因素,如高温、高压、强酸、强碱等都会使酶丧失活性。 2、酶促反应:指由酶作为催化剂进行催化的化学反应; 3、α-淀粉酶:为枯草杆菌的α-淀粉酶,其作用的最适PH为5.5~7.5,最适温度为50~70℃。 广泛分布于动物(唾液、胰脏等)、植物(麦芽、山萮菜)及微生物。此酶既作用于直 链淀粉,亦作用于支链淀粉,其特征是引起底物溶液粘度的急剧下降和碘反应的消失, 最终产物在分解直链淀粉时以麦芽糖为主,此外,还有麦芽三糖及少量葡萄糖;在分 解支链淀粉时,除麦芽糖、葡萄糖外,还生成分支部分具有α-1,6-键的α-极限糊精。 4、固定化酶:借助于物理和化学的方法把酶束缚在一定的空间内并仍具有催化活性的酶 制剂。酶更适合采用化学结合和物理吸附法固定化。吸附法是酶分子吸附于水不溶性 的载体上,它的优点是操作简便,条件温和,不会引起酶变性或失活,且载体廉价易 得,可以反复使用。 5、吸附剂:常用的吸附剂有活性炭、氧化铝、硅藻土、多孔陶瓷、多孔玻璃等。 活性炭:活性炭是一种多孔性的含炭物质, 它具有高度发达的孔隙构造, 是一种极优 良的吸附剂, 每克活性炭的吸附面积更相当于八个网球埸之多. 而其吸附作用是藉由 物理性吸附力与化学性吸附力达成. 其組成物质除了炭元素外,尚含有少量的氢、氮、 氧及灰份,其結构则为炭形成六环物堆积而成。由于六环炭的不规则排列,造成了活 性炭多微孔体积及高表面积的特性。 硅胶:硅胶是由硅酸凝胶mSiO2·nH2O适当脱水而成的颗粒大小不同的多孔物质。具 有开放的多孔结构,比表面(单位质量的表面积)很大,能吸附许多物质,是一种很 好的干燥剂、吸附剂和催化剂载体。硅胶的吸附作用主要是物理吸附,可以再生和反 复使用。在碱金属硅酸盐(如硅酸钠)溶液中加酸,使之酸化,再加入一定量的电解 质进行搅拌,即生成硅酸凝胶;或者在较浓的硅酸钠溶液中加酸或铵盐也能生成硅酸 凝胶。将硅酸凝胶静置几小时使之老化,然后用热水洗去可溶性盐类,在60~70℃下烘

高中生物常见酶

1. 淀粉酶:作用是催化淀粉水解为麦芽糖。按其产生部位分为唾液淀粉酶、胰淀粉酶、肠淀粉酶和植物淀粉酶。 2. 麦芽糖酶:作用是催化麦芽糖水解成葡萄糖,主要分布在发芽的大麦中。 3. 蔗糖酶:作用是催化蔗糖水解成葡萄糖和果糖,主要分布在甘蔗等生物体内。 4. 脂肪酶:作用是催化脂肪水解为脂肪酸和甘油。在动物体内分为胰脂肪酶和肠脂肪酶等。在动物的胰液、血浆和植物的种子中均有分布。 5. 蛋白酶:作用是催化蛋白质水解为短肽。在动物体内分为胰蛋白酶和胃蛋白酶等。在动物的胰液、胃液,植物组织和微生物中都有分布。 6. 纤维素酶:作用是催化纤维素水解成葡萄糖。在真菌、细菌和高等植物中含有。 7. 谷丙转氨酶:简称GPT,其主要作用是催化谷氨酸和内酮酸之间的氨基转换作用。它在肝脏中活力最大,常作为诊断是否患肝炎等疾病的一项重要指标。 8. 过氧化氢酶:广泛存在于动植物细胞及一些微生物中,主要作用是分解过氧化氢,防止过氧化氢积累而危害细胞。 9. 酪氨酸酶:存在于人体的皮肤、毛皮等处的细胞中,能将酪氨酸转变为黑色素。 10. 谷氨酸脱氢酶:催化谷氨酸氧化脱氢,生成酮戊二酸。存在于大多数细胞的线粒体中,主要参与氨基酸的脱氨基作用和氨基转换作用。 11. 解旋酶:在DNA复制时,首先要将两条链解开形成单链,此过程依赖于DNA 解旋酶。 12. 限制性内切酶:能识别双链DNA中特定的碱基序列的核酸剪切酶,常在DNA 两条链上交错切割产生黏性末端,是基因工程中的“剪刀”。

13. DNA连接酶:使相邻的脱氧核苷酸之间形成磷酸二酯键,以封闭DNA分子中的切口,是基因工程中的“针线”。 14. 逆转录酶:能以RNA为模板,合成DNA,存在于某些RNA病毒和癌细胞中。 15. 溶菌酶:广泛存在于动植物、微生物及其分泌物中,能溶解细菌细胞壁中的多糖,可使细菌失活。还可激活白细胞的吞噬功能,增强机体抵抗力。 16. 固氮酶:能使大气中的氮还原为氨,由两种含金属的蛋白质组成,一种为铁蛋白,另一种为钼铁蛋白。根瘤菌、蓝藻和土壤中各种固氮菌中都含有此酶。

急性胰腺炎患者的血清淀粉酶和脂肪酶的变化情况及临床价值分析

急性胰腺炎患者的血清淀粉酶和脂肪酶的变化情况及临床价 值分析 摘要:目的:探究急性胰腺炎患者的血清淀粉酶和脂肪酶的变化情况并分析其临床价值。方法:选取在我院接受急性胰腺炎治疗的146名患者,按照病因的不同将其分为三组:胆源性急性胰腺炎患者51例,酒精性急性胰腺炎患者28例,其他病因的急性胰腺炎患者67例。又按照病情的严重程度和CT检查结果将这些患者分为三组:轻度患者42例,中度患者73例,重度患者31例。通过分析患者的血清淀粉酶浓度、脂肪酶浓度以及脂肪酶浓度/血清淀粉酶浓度,得出实验结论。结果:酒精性急性胰腺炎患者的血清淀粉酶浓度明显低于胆源性和其他患者(P<0.05),三组患者的脂肪酶浓度相差不大,不具有统计学意义(P>0.05);轻度、中度、重度急性胰腺炎患者的血清淀粉酶浓度、脂肪酶浓度以及两种指标的比值均相差不大,不具有统计学意义(P>0.05)。结论:酒精性和非酒精性患者能够通过血清淀粉酶浓度来鉴别,而轻、中、重度患者则不能通过脂肪酶浓度/血清淀粉酶浓度来判定。 关键词:急性胰腺炎;血清淀粉酶;脂肪酶;临床价值 1.前言 急性胰腺炎(AP)是多种病因导致胰酶在胰腺内被激活后引起胰腺组织自身消化、水肿、出血甚至坏死的炎症反应。本次实验选取146例急性胰腺炎患者,将其按照病因(胆源性、酒精性、其他)分为三组,又按照病情程度(轻度、中度、重度)分为三组,然后分析各组患者的血清淀粉酶浓度、脂肪酶浓度、脂肪酶浓度/血清淀粉酶浓度,现报到如下。 2.资料与方法 2.1一般资料 此次实验选择2014年3月到2015年3月在我院进行过急性胰腺炎治疗的146例患者,从患者的记录资料可见,患者的年龄为20~76岁,平均年龄 47.23±0.69岁,其中男性患者有86例(58.9%),女性患者60例(41.1%)。按照《急性胰腺炎分类标准发展变迁与现状》所述的分类标准[2],按照病因将患者分为胆源性(51例)、酒精性(28例)、其他(67例)三组。另外按照病情严重情况和CT检查结果将患者分为轻度(42例)、中度(73例)、重度(31例)三组。 2.2方法 在患者入院当天,医护人员立即采集患者的筋脉血液,利用干化学法检测血液中含有的血清淀粉酶浓度(参考范围0~108U/L)、脂肪酶浓度(参考分为 23~300U/L),并分析两者的比值。 2.3观察指标 检测分析患者的血清淀粉酶浓度、脂肪酶浓度以及脂肪酶浓度/血清淀粉酶浓度。 2.4统计学分析 这次试验中,选择spss18.0对数据进行统计,采用均数±标准差( ±s)表示数据,采用t检验来比较均数,用χ2检验来比较计量资料。当P<0.05时,差异具有统计学意义。 3.结果 3.1不同病因患者的分析结果

高中生物各种酶的作用(精选.)

DNA连接酶连接DNA上黏性末端磷酸二酯键(扶手)基因工程拼接目的基因和运载体 DNA聚合酶把单个的脱氧核苷酸聚合成单链DNA 磷酸二酯键DNA复制 DNA解旋酶将双链DNA解旋为两单链氢键DNA复制、转录 RNA聚合酶把单个的核糖核苷酸聚合成RNA 磷酸二酯键转录 限制性内切酶识别特定的碱基序列并切割出黏性末端磷酸二酯键基因工程 DNA酶水解DNA(类似于蛋白酶) 蛋白质酶是指酶的成分是蛋白质的酶,和核酸酶相对应。 蛋白酶就是水解蛋白质肽键的一类酶的总称,就是可以水解蛋白质的酶。 (酶的两大类:蛋白质酶,核酸酶) Taq聚合酶一般适用于DNA片段的PCR扩增 DNA解旋酶 在DNA不连续复制过程中,结合于复制叉前面,催化DNA双链结构解链,并具有ATP酶活性的酶,两种活性相互偶联,通过水解ATP提供解链的能量。不同来源的DNA解旋酶的共同特性是通过水解ATP提供解链的能量,而复制叉结构的存在与否对活性的影响因酶而异。 在DNA不连续复制过程中,结合于复制叉前面,催化DNA双链结构解链,并具有ATP酶活性的酶。两种活性相互偶联,通过水解ATP提供解链的能量。不同来源的DNA解旋酶的共同特性是通过水解ATP提供解链的能量,而复制叉结构的存在与否对活性的影响因酶而异。 胰蛋白酶来自人的胰腺,胰腺在胃的中后部位,分泌的胰蛋白酶用来消化食物中的蛋白质,分解蛋白质成为肽,氨基酸等,再被人体肠道吸收到人体各组织中去,所以,胰蛋白酶在食物消化中起到至关重要的作用,是不可或缺的 胶原蛋白酶可以促进分解胶原蛋白 肠淀粉酶肠腺分泌的肠淀粉酶可以将什么水解成氨基酸 唾液淀粉酶可以促进淀粉的水解。 过氧化氢酶人体肝脏中的过氧化氢酶主要作用就是催化H2O2分解为H2O与O2,使得H2O2不致于与O2在铁螯合物作用下反应生成非常有害的-OH 木瓜蛋白酶它是一种含疏基(-SH)肽链内切酶,具有蛋白酶和酯酶的活性,有较广泛的特异性,对动植物蛋白、多肽、酯、酰胺等有较强的水解能力,同时,还具有合成功能,能把蛋白水解物合成为类蛋白质。溶于水和甘油,水溶液无色或淡黄色,有时呈乳白色;几乎不溶于乙醇、氯仿和乙醚等有机溶剂。最适合PH值5.7(一般3~9.5皆可),在中性或偏酸性时亦有作用,等电点18.75;最适合温度55~60℃(一般10~85℃皆可),耐热性强,在90℃时也不会完全失活;受氧化剂抑制,还原性物质激活。 顶体酶顶体酶存在于精子顶体内膜及赤道部膜上,通常以无活性形式存在,当精子头部进入卵透明带时,顶体酶原才被激活为顶体酶。此酶是受精过程中不可缺少的一种中性蛋白水解酶,其作用类似于胰蛋白酶,它能水解卵透明带糖蛋白,使精子穿过卵丘再穿过透明带,使精子与卵子融合;它还能促使生殖道中激肽释放,从而增强精子的活力和促进精子的运动。 最新文件仅供参考已改成word文本。方便更改 word.

脂肪酶与淀粉酶的临床意义

脂肪酶与淀粉酶的临床意义 (源于丁香园) 急性胰腺炎是一种常见且较为严重的急腹症,其发病迅猛,病死率高。急性期胰腺炎和其他急腹症较难鉴别,且重型胰腺炎发病率逐渐增多,因而急性胰腺炎的及时准确诊断尤为重要。 急性胰腺炎临床症状多有典型的腹痛、恶心、血清淀粉酶和脂肪酶水平升高。每一天都有很多的淀粉酶和脂肪酶测定用于评估腹痛患者,甚至是常规生化检查的一部分。 血清淀粉酶是临床应用最广泛的急性胰腺炎酶学诊断指标之一,优点是技术简单,容易获得,灵敏度高。脂肪酶存在于胰腺腺泡内,当患者发生胰腺炎时,腺泡出现损伤并致使脂肪酶进入血液循环从而导致血清中脂肪酶含量升高。脂肪酶作为胰腺组织分泌的消化酶,在胰腺疾病的特异性较淀粉酶高,可作为胰腺疾病的主要辅助诊断指标。 然而在平常实际工作中,我们经常会遇到急性胰腺炎患者,有的血清淀粉酶升高而脂肪酶活性不升高;有的脂肪酶活性升高而血清淀粉酶不升高;有的淀粉酶和/ 或脂肪酶升高却不被诊断为急性胰腺炎,所有这些叫检验人员和临床医师无所适从,因为解释这些测试结果可能非常困难。 血清淀粉酶和/ 或脂肪酶正常,能诊断急性胰腺炎吗?胰腺急性炎症和自身消化导致淀粉酶和脂肪酶的释放,血液中的水平升高。出于这个原因,在急性腹痛患者血清淀粉酶和脂肪水平正常通常会排除急性胰腺炎的诊断,诊断急性胰腺炎脂肪酶阴性预测值非常高(≥95%)。然而,由于多种原因,胰腺炎的诊断却可能极具挑战性。急性胰腺炎时,患者可表现为正常的血清淀粉酶和脂肪酶,实在是令人大跌眼镜。 根据一些学者研究发现,19%~32% 的急性胰腺炎患者有正常的血清淀粉酶。因此,单纯检测血清淀粉酶诊断急性胰腺炎的敏感度和特异性还是有一定的局限性。有报道指出,伴高甘油三酯急性胰腺炎患者的血尿淀粉酶水平不升高,其原因是不确定的,最有可能是某些血清因素抑制了酶的活性。急性酒精性胰腺炎也常常有正常的血清淀粉酶水平,单纯依靠高淀粉酶血症,对于急性酒精性胰腺炎的诊断是不合理的,应该放弃。在急性胰腺炎时正常血清淀粉酶可以见到,但正常血清脂肪酶是极其罕见的。Shafqet 等报告了首例氢氯噻嗪引起的急性胰腺炎患者正常脂肪酶。Shah 等认为,临床上对于急性胰腺炎的诊断,正常血清淀粉酶和脂肪酶应该被予以接受。急性胰腺炎时表现为正常的血清淀粉酶和脂肪酶可出现在高甘油三酯血症、大量胰腺坏死、胆石胰腺炎、酒精性胰腺炎及急性胰腺炎恢复期患者等疾病中。重症胰腺炎时由于胰腺组织大量坏死,胰腺腺泡严重破坏,淀粉酶生成很少,脂肪酶不能再分泌,导致血淀粉酶/ 脂肪酶反而可能不高。正如肝衰竭时转氨酶进行性下降一

葡萄糖淀粉酶生产工艺图

葡萄糖淀粉酶生产工艺图 淀粉糖是指以淀粉为原料经水解、精制或再经深加工而获得的糖制品。淀粉分子是由成千上万个葡萄糖分子(C6H12O6)连接而成,一个葡萄糖分子有6个碳原子,与下一个葡萄糖分子相连时有三种连法:一是第4个碳原子与下一个葡萄糖分子的第1个碳原子相连;二是第6个碳原子与下一个葡萄糖分子的第1个碳原子相连;三是第4个碳原子与下一个葡萄糖分子的第1个碳原子相连,同时第6个碳原子与另一个葡萄糖分子的第1个碳原子相连。全部葡萄糖分子都以第一种连法连接的是直链淀粉,自然界很少存在;全部葡萄糖分子都以第二种连法连接无法形成长链,形不成淀粉;葡萄糖分子以三种连法混合连成的淀粉分子是自然界存在的淀粉的主流,其中以第三种连法连接的部位形成支叉,所以叫支链淀粉。 果糖与葡萄糖一样都是单糖,果糖的分子式也是C6H12O6,属于葡萄糖的同分异构体,通过异构酶的作用,葡萄糖的醛基变成酮基即得到果糖。蔗糖、麦芽糖及异麦芽糖都属于双糖,一个葡萄糖的第4个碳原子另一个葡萄糖分子的第1个碳原子相连即为麦芽糖,一个葡萄糖的第6个碳原子另一个葡萄糖分子的第1个碳原子相连即为异麦芽糖,而蔗糖则由一个葡萄糖分子与一个果糖分子连接而成。三个葡萄糖分子相连而成的三糖有麦芽三糖和潘糖。4~8个葡萄糖连成的短链糖品叫低聚糖,9个以上葡萄糖连成的中分子物质叫做糊精,其甜味已经不明显,大量的葡萄糖连在一起就形成了淀粉或者形成更大分子量的纤维素。 以淀粉为原料选用不同的酶来水解或控制不同的水解程度可以得到不同的淀粉糖品。以诺维信酶制剂为例: 1、用耐温淀粉酶Termamyl Supra将淀粉乳液化至DE6~10,经精制和喷雾干燥后可以制得糊精制品; 2、用耐温淀粉酶Termamyl Supra将淀粉乳液化至DE13~15,选用葡萄糖淀粉酶Dextrozyme DX糖化到DE40~50,可以获得食品行业常用的葡萄糖浆; 3、用耐温淀粉酶Termamyl Supra将淀粉乳液化至DE13~15,选用葡萄糖淀粉酶Dextrozyme DX糖化到DE99.5~101,可以得到葡萄糖含量97%以上的糖液。经过精制后在50℃以下结晶可以制取一水结晶葡萄糖,在50℃以上结晶可以制取无水结晶葡萄糖; 4、用耐温淀粉酶Termamyl Supra将淀粉乳液化至DE10~11,选用真菌淀粉酶FUNGAMYL 800L糖化到DE45~48,可以获得麦芽糖含量50~55%的普通麦芽糖浆; 5、用耐温淀粉酶Termamyl Supra将淀粉乳液化至DE10~11,选用β-淀粉酶Novozym WBA和普鲁兰酶Promozyme(适于水解糖链的支叉部位)糖化到DE43~46,可以获得麦芽糖含量60%以上的高麦芽糖浆或芽糖含量70%以上的超高麦芽糖浆。 以葡萄糖为原料,经固定化异构酶Sweetzyme IT异构化可以获得糖分组成中果糖约占42%的F42果葡糖浆,F42果葡糖浆经色谱分离可以获得糖分组成中果糖最多约占90%的F90超高果糖浆,F90超高果糖浆还可以通过结晶制得结晶果糖。 以葡萄糖为原料,经高压加氢可以制得山梨醇,通过结晶可以制得结晶山梨醇。

高中生物涉及的酶

高中生物涉及的酶 1.各种水解酶 2.谷丙转氨酶:简称GPT,其主要作用是催化谷氨酸和丙酮酸之间的转氨基作用。它在肝脏中活力最大。属于转移酶。 3.过氧化氢酶:广泛存在于动植物细胞及一些微生物中,主要作用是分解过氧化氢,防止过氧化氢积累而危害细胞。属于裂解酶。 4.酪氨酸酶:存在于人体的皮肤、毛发等处的细胞中,能将酪氨酸转变为黑色素。属于异构酶。 5.PEP羧化酶:能催化磷酸烯醇式丙酮酸发生羧化作用形成草酰乙酸,这是C4植物固定CO2过程中的反应。属于合成酶。 6.谷氨酸脱氢酶:催化谷氨酸氧化脱氢,生成α-酮戊二酸;存在于大多数细胞的线粒体中,主要参与氨基酸的脱氨基作用和氨基转移作用。属于氧化还原酶。此外,在“遗传及基因工程”内容中还有。 7.解旋酶:在DNA不连续复制过程中结合于复制叉前面并能催化螺旋的双链解开。

8.限制性内切酶:能识别双链DNA中特定碱基排列顺序的核酸剪切酶,常在DNA两条链上交错切割产生黏性末端。是基因工程中的“剪刀”。 9.DNA连接酶:在具有游离5'磷酸基团和3'羟基的相邻核苷酸之间形成磷酸二酯键,以封闭DNA分子中的切口。是基因工程中的“针线”。 10.逆转录酶:能以RNA为模板,合成DNA,存在于某些RNA病毒和癌细胞中。在“免疫”内容中还有。 11.溶菌酶:广泛存在于动植物,微生物及其分泌物中,因能溶解细菌细胞壁多糖上的糖苷键而得名。在医药上,它是—个消炎酶,可使细菌失活,还可激活白细胞的吞噬功能,增强机体抵抗力。 在生物固氮部分还有: 12.固氮酶:能使大气中的氮还原为氨,由两种含金属的蛋白质组成,一为铁蛋白,一为钼铁蛋白。根瘤菌、蓝藻和土壤中各种固氮菌中都有此酶。 13.蔗糖酶:作用是催化蔗糖水解成葡萄糖和果糖,主要分布在甘蔗等生物体内。14.RNA聚合酶:结合DNA双链,延长RNA链,用于转录RNA。DNA聚合酶只能将单个核苷酸加到已有的核酸片段的3′末端的羟基上,形成磷酸二酯键。 16.DNA酶:脱氧核糖核酸酶广泛存在于生物体内,它在脱氧核糖核酸代谢中起着重要的作用。该酶作用于DNA分子中核糖上3’-碳原子上的羟基与磷酸之间形成的二酯键,其降解产物为5’-脱氧核苷酸。 要得到上述某种酶,我们可以从动物、植物、微生物等各种活细胞中提取,目前工业上大多采用微生物发酵法来获得大量的酶制剂。

急性胰腺炎淀粉酶脂肪酶检测的意义

文章来源:医学网发表时间:2007-05-24 10:39:00 关键字:胰腺炎 淀粉酶(amylase' AMS)、脂肪酶(Lipase' LPS)测定均可作为急性胰腺炎(acute pancreatitis' AP)的实验室诊断指标. 但由于AMS存在于多种器官内,故诊断的特异性受到一定限制[1],而LPS在AP时出现较晚[2],影响早期诊断的敏感度,如同时检测AMS'LPS,则诊断AP的价值明显提高. 1对象和方法 1.1对象选择1994-07~1997-07连续3 a出现上腹剧痛而怀 疑为AP的急诊住院患者,以临床综合诊断(临床表现、实验室检查、影像学检查、手术证实等)为金标准,同时测定AMS和LPS.金标准确诊的患者为患病组(Ap组),金标准排除胰腺炎的患者为对照组(非Ap组).患病组48(男40,女8)例,年龄21岁~65岁,平均48岁. 对照组50(男43,女7)例,年龄21岁~69岁,平均43岁. 1.2诊断标准按1991年中华医学会外科学会制订的全国统一诊 断标准.排除标准:消化性溃疡、急性胃肠炎、慢性胰腺炎等. 1.3标本收集入院当天测定血、尿AMS和LPS,以后每天早晨 抽血、留尿送检,连续测定至结果转阴.标本当日检验,核对后记录结果. 1.4测定方法AMS用酶法动态法,LPS用酶法消浊法.试剂由上 海长征公司提供,操作按说明书进行,用美国博乐公司生产的定值质控血清作质量监控.检测所用仪器为美国Beckmam―700型自动生化分析仪.

1.5真实性指标计算方法灵敏度:Se=a/(a+c);特异度 Sp=d/(b+d);准确度=(a+d)/(a+b+c+d).其中a为真阳性例数,b为假阳性例数,c为假阴性例数,d为真阴性例数. 2结果 2.1正常参考值测定测定了120名献血员AMS和LPS,AMS 为正态分布,男女之间无差别,以X±2s作正常参考值范围,则血AMS 为13 iU/L~67 IU/L'尿AMS为110 IU/L~470 IU/L;LPS为偏态分布,男女之间无差异,以95.0%位点确定上限为163 iU/L,参考范围0~163 IU/L. 2.2截断点选择以尤登指数法确定[3],尤登指 数:YI=Se+Sp-1'即尤登指数等于灵敏度加特异度减1得到.由此选定血AMS截断点498 IU/L,尿AMS截断点为1 150 IU/L.患者血尿AMS 任意1项达到和超过截断点即为AMS测定阳性. LPS截断点为280 iU/L,达到和超过截断点为LPS阳性. 2.3AMS和LPS诊断AP的价值患者AMS和LPS任意1项达到和超过截断点即为阳性,否则为阴性. 2.4AMS'LPS联合诊断价值AMS'LPS其中任意1项或2项均阳性列为阳性,AMS'LPS2项均阴性列为阴性,则联合诊断的价值最大,灵敏度100%,特异度98.0%,准确度99.0%.其次为LPS'AMS诊断价值最低. 2.5急性胰腺炎发病时间与敏感度的关系48例患者在住院期间每天抽血、留尿作AMS和LPS,经统计发病时间与敏感度之间的关系.

高一生物酶的特性综合测试题

人教新课标基础达标测试 基础·巩固·达标 1.下图中表示某种动物消化酶的消化反应速度与温度之间关系的曲线是…( A.① B.② C.③ D. 思路解析:酶的活性温度的影响比较大,并且酶具有最适的温度,也 答案:B 2.关于酶的叙述,下列表述中错误的一项是( A. B. C. D. 思路解析:本题在于考查酶的活性,A、B、C三项不难理解,D项容易迷惑人,但联想到唾液淀粉酶消化淀粉的实验,酶不仅离开了活细

胞,而且离开了口腔,在试管中就能把淀粉消化成麦芽糖,所以D是 答案:D 3.在煮过的和没煮过的土豆片上分别滴几滴过氧化氢。在土豆片X上出现泡沫,在土豆片Y上没有泡沫,以下哪一项是正确的解释()A.土豆片X B.土豆片X是煮过的,因为在没煮过的土豆片中的酶使过氧化氢不起 C.土豆片X是没煮过的,因为细胞中含有过氧化氢酶,促使H2O2的分 D.土豆片X 思路解析:土豆中含有过氧化氢酶,而酶的活性很容易受到温度的影响,温度过高、过低都会使酶的催化效率下降,但是高温会使酶失活 答案:C 4.对细胞的各项生命活动有重要作用的酶,主要产生于( A.细胞核内 B. C.线粒体、叶绿体内 D.核糖体中 思路解析:酶的化学本质主要是蛋白质,极少数是RNA,而核糖体是

答案:D 5.现在,市场上经常见到加酶洗衣粉,有时,它的洗涤效果明显地优 (1) ______________________________ (2) ______________________________。 思路解析:衣物上的奶渍和血渍中含有蛋白质,使用加酶的洗衣粉能催化蛋白质的水解,从而达到除去奶渍和血渍的目的。酶除专一性、高效性外,其催化作用还受温度和酸碱度的影响,温度过低,催化效率低,甚至不起作用,温度过高,会使酶失去活性,因而,加酶洗衣 答案:(1)血渍、奶渍中含有蛋白质,加酶的洗衣粉中含有蛋白酶, (2)因为酶的催化效率与温度有关,温度过高或过低,都影响酶的催 综合·应用·创新 6.在一块淀粉—琼脂块上的5个圆点位置,分别用不同方法处理,如下图所示:

年产400t中性淀粉酶的生产工艺设计

年产400吨中性淀粉酶生产工艺设计 摘要:α-淀粉酶广泛分布于动物、植物和微生物中,能水解淀粉产生糊精、麦芽糖、低聚糖和葡萄糖等,是工业生产中应用最为广泛的酶制剂之一。目前,α-淀粉酶已广泛应用于变性淀粉及淀粉糖、焙烤工业、啤酒酿造、酒精工业、发酵以及纺织等许多行业。本次设计的淀粉酶发酵厂,分别以玉米粉为碳源,以豆饼为氮源,以BF-7658枯草芽孢杆菌为生产菌种,采用深层发酵法,提取工艺采用盐析法,年产400吨淀粉酶。做出了生产工艺流程图,进行了物料衡算,设计了发酵罐和种子罐的尺寸和车间的布置和结构,同时绘制了该厂区的总平面布置图、带控制点的工艺流程图、工艺管道及仪表流程图图例。 关键词:α-淀粉酶;生产工艺设计;深层发酵法 1 绪论 淀粉酶简述 淀粉酶广泛存在于动物、植物和微生物中,在食品、发酵、纺织和造纸等工业中均有应用,尤其在淀粉加工业中,微生物淀粉酶更是应用广泛并已成功取代了化学降解法;同时,它们也可以应用于制药和精细化工等行业。 α-淀粉酶是淀粉及以淀粉为材料的工业生产中最重要的一种水解酶。现在,α-淀粉酶已广泛应用于食品、清洁剂、啤酒酿造、酒精工业、纺织退浆和造纸工业,对缩短生产周期,提高产品得率和原料的利用率,提高产品质量和节约粮食资源,都有着极其重要的作用。α-淀粉酶来源广泛,主要存在发芽谷物的糊粉细胞中,当然,从微生物到高等动、植物均可分离到,是一种重要的淀粉水解酶,也是工业生产中应用最为广泛的酶制剂之一。它可以由微生物发酵制备,也可以从动植物中提取。不同来源的α-淀粉酶的性质有一定的区别,工业中主要应用的是真菌和细菌α-淀粉酶。目前,α-淀粉酶已广泛应用于变性淀粉及淀粉糖、焙烤工业、啤酒酿造、酒精工业、发酵以及纺织等许多行业,是一种重要工业用酶。有报道表明,α-淀粉酶可以帮助改善糖尿病患者的耐糖量。这一领域研究自2O世纪8O年代和9O年代十分活跃,但目前α-淀粉酶抑制剂的研究工作仍处于基础阶段,至今仍未得到有效合理的开发应用。但是随着科技的发展、研究的深入,α-淀粉酶将会得到更加广泛的应用。 2 α-淀粉酶的性质 α-淀粉酶的结构 目前,已对很多不同种类和来源的α-淀粉酶(黑曲霉、米根霉、人和猪胰腺、人唾液腺、大麦种子和地衣芽孢杆菌)的晶体结构进行了X-射线衍射研究,并得到了高分辨率的晶体结构图。研究表明所有α-淀粉酶均为分子量在50ku左右的单体,由经典的三个区域(A、B、C)组成:中心区域A由一个(β/α)8圆筒构成;区域B由一个小的β-折叠突出于β3和α3之间构成;而C-末端球型区域C则由一个Greek-key基序组成,为该酶的活性部位,负责正确识别底物并与之结合。为保持α-淀粉酶的结构完整性和活性,至少需要一个能与之紧密结合的Ca2+,而Cl-往往是α-淀粉酶的变构激活因子,并且在所有Cl-依赖性的α-淀粉酶中,组成催化三联体的残基都是严格保守的[10]。 α-淀粉酶的性质 早在1967年,Jones 和Varner就对小麦中α-淀粉酶的活性进行了研究[11]。不同来源的α-淀粉酶的酶学和理化性质有一定的区别,它们的性质对在其工业应用中的应用影响也较大,在工业生产中要根据需要使用合适来源的酶,因此对淀粉酶性质的研究也显得比较重

相关文档
最新文档