固定管板式换热器压力容器计算书

固定管板式换热器压力容器计算书
固定管板式换热器压力容器计算书

软件批准号:CSBTS/TC40/SC5-D01-1999

DATA SHEET OF PROCESS EQUIPMENT DESIGN

工程名:

PROJECT

设备位号:

ITEM

设备名称: 021000

EQUIPMENT

图号: 00000000000001

DWG NO。

设计单位:神雕是的发放神雕爱疯阿斯蒂芬艾丝凡

DESIGNER

设计计算条件

壳程管程

设计压力p

4 MPa设计压力p t 1 MPa

s

设计温度t

120 ?C设计温度t t70 ?C s

壳程圆筒外径Do 325 mm 管箱圆筒外径Do 325 mm 材料名称20(GB8163) 材料名称20(GB8163)

简图

计算内容

壳程圆筒校核计算

前端管箱圆筒校核计算

前端管箱封头(平盖)校核计算

后端管箱圆筒校核计算

后端管箱封头(平盖)校核计算

管箱法兰校核计算

开孔补强设计计算

管板校核计算

计算所依据的标准

GB 150.3-2011 计算条件

椭圆封头简图

计算压力 P c 1.00 MPa

设计温度 t 70.00 ? C 外径 D o 325.00 mm 曲面深度 h o 83.00

mm 材料

Q235-B (板材) 设计温度许用应力 [σ]t

114.12 MPa 试验温度许用应力 [σ] 116.00 MPa 钢板负偏差 C 1 0.30 mm 腐蚀裕量 C 2 1.00 mm

焊接接头系数 φ 1.00

压力试验时应力校核

压力试验类型 液压试验

试验压力值

P T = 1.25P c t ]

[][σσ= 1.0000 (或由用户输入)

MPa 压力试验允许通过的应力[σ]t

[σ]T ≤ 0.90 σs = 211.50

MPa 试验压力下封头的应力 σT = φδδ.2))5.02(.(e e o T K KD p --= 24.45

MPa

校核条件 σT ≤ [σ]T 校核结果

合格

厚度及重量计算

形状系数 K = ???

?

???????? ?

?--+2

o )(22261nh o h n h D δδ = 1.0406 计算厚度 δh = ()c

t o

c 5.02][2P K D KP -+φσ = 1.47

mm 有效厚度 δeh =δn - C 1- C 2= 6.70 mm 最小厚度 δmin = 3.00 mm 名义厚度 δnh = 8.00 mm 结论 满足最小厚度要求 重量

8.16

Kg

压 力 计 算

最大允许工作压力 [P w ]= ()e o e

t 5.02][2δφδσ--K KD = 4.66810

MPa

结论 合格

计算所依据的标准

GB 150.3-2011 计算条件

椭圆封头简图

计算压力 P c 1.00 MPa

设计温度 t 70.00 ? C 外径 D o 325.00 mm 曲面深度 h o 83.00

mm 材料

Q235-B (板材) 设计温度许用应力 [σ]t

114.12 MPa 试验温度许用应力 [σ] 116.00 MPa 钢板负偏差 C 1 0.30 mm 腐蚀裕量 C 2 1.00 mm

焊接接头系数 φ 1.00

压力试验时应力校核

压力试验类型 液压试验

试验压力值

P T = 1.25P c t ]

[][σσ= 1.0000 (或由用户输入)

MPa 压力试验允许通过的应力[σ]t

[σ]T ≤ 0.90 σs = 211.50

MPa 试验压力下封头的应力 σT = φδδ.2))5.02(.(e e o T K KD p --= 24.45

MPa

校核条件 σT ≤ [σ]T 校核结果

合格

厚度及重量计算

形状系数 K = ???

?

???????? ?

?--+2

o )(22261nh o h n h D δδ = 1.0406 计算厚度 δh = ()c

t o

c 5.02][2P K D KP -+φσ = 1.47

mm 有效厚度 δeh =δn - C 1- C 2= 6.70 mm 最小厚度 δmin = 3.00 mm 名义厚度 δnh = 8.00 mm 结论 满足最小厚度要求 重量

8.16

Kg

压 力 计 算

最大允许工作压力 [P w ]= ()e o e

t 5.02][2δφδσ--K KD = 4.66810

MPa

结论 合格

内压圆筒校核 计算单位 神雕是的发放 神雕爱疯阿斯蒂芬艾丝凡

计算所依据的标准

GB 150.3-2011

计算条件

筒体简图

计算压力 P c 4.00 MPa

设计温度 t 120.00 ? C 外径 D o 309.00 mm 材料 20(GB8163) ( 管材 ) 试验温度许用应力 [σ] 152.00 MPa

设计温度许用应力 [σ]t

144.20 MPa 试验温度下屈服点 σs 245.00 MPa 钢板负偏差 C 1 1.20 mm 腐蚀裕量 C 2 1.00 mm 焊接接头系数 φ 1.00

厚度及重量计算

计算厚度 δ = c t o

c ][2P D P +φσ = 4.23

mm 有效厚度 δe =δn - C 1- C 2= 5.80 mm 名义厚度 δn = 8.00 mm 重量

71.50

Kg

压力试验时应力校核

压力试验类型 液压试验

试验压力值 P T = 1.25P [][]

σσt = 5.0000 (或由用户输入)

MPa 压力试验允许通过 的应力水平 [σ]T [σ]T ≤ 0.90 σs = 220.50

MPa 试验压力下 圆筒的应力 σT = φδδ.2).(e e o T -D p = 130.69

MPa

校核条件 σT ≤ [σ]T 校核结果

合格

压力及应力计算

最大允许工作压力 [P w ]= )(][2e o t e δφ

σδ-D = 5.51689

MPa 设计温度下计算应力 σt

= e

e o c 2)

(δδ-D P = 104.55 MPa [σ]t

φ 144.20 MPa

校核条件 [σ]t

φ ≥σt

结论 合格

延长部分兼作法兰固定式管板设计单位神雕是的发放神雕爱疯阿斯蒂芬艾丝凡设计计算条件简图设计压力p s 4 MPa

设计温度T s120 C?

平均金属温度 t s 0 ?C

装配温度t o 15 ?C

壳材料名称20(GB8163)

设计温度下许用应力[σ]t144.2 Mpa

程平均金属温度下弹性模量E s 2.023e+0

5

Mpa

平均金属温度下热膨胀系数αs 1.076e-0

5

mm/mm?C

圆壳程圆筒内径D i309 mm 壳程圆筒名义厚度δs8 mm 壳程圆筒有效厚度δse 5.8 mm

筒壳体法兰设计温度下弹性模量E f’ 1.958e+05 MPa 壳程圆筒内直径横截面积 A=0.25πD i27.499e+04 mm2 壳程圆筒金属横截面积 A s=πδs (D i+δs) 5736 mm2

管设计压力p t 1 MPa

箱设计温度T t 70 ?C

圆材料名称20(GB8163)

筒设计温度下弹性模量E h 2.01e+05 MPa 管箱圆筒名义厚度(管箱为高颈法兰取法兰颈部大小端平均值)δh 8 mm 管箱圆筒有效厚度δhe 7 mm 管箱法兰设计温度下弹性模量E t” 1.985e+05 MPa 材料名称BFe10-1-1

换管子平均温度 t t 0 ?C 设计温度下管子材料许用应力[σ]t t 62.2 MPa 设计温度下管子材料屈服应力σs t92.8 MPa

热设计温度下管子材料弹性模量E t t 1.203e+05 MPa 平均金属温度下管子材料弹性模量E t 1.249e+05 MPa 平均金属温度下管子材料热膨胀系数αt 1.167e-05 mm/mm?C 管管子外径d12 mm 管子壁厚δt 1 mm

计算条件换热管简图计算压力P c 1.00 MPa

设计温度 t 120.00 ? C

内径D i 10.00 mm

材料 BFe10-1-1 ( 管材)

试验温度许用应力[σ] 67.00 MPa

设计温度许用应力[σ]t 62.20 MPa

钢板负偏差C1 0.00 mm

腐蚀裕量C2 0.00 mm

焊接接头系数φ 1.00

厚度及重量计算

计算厚度δ =

P D

P

c i

t

c

2[]

σφ- = 0.08mm

有效厚度δe =δn - C1- C2= 1.00mm 名义厚度δn = 1.00mm 重量 0.39 Kg

压力及应力计算

最大允许工作压力[P w]= 2δσφ

δ

e

t

i e

[]

()

D+= 11.30909 MPa

设计温度下计算应力σt = P D

c i e

e

()

δ2= 5.50 MPa

[σ]tφ 62.20 MPa 校核条件[σ]tφ≥σt

结论换热管内压计算合格

计算条件换热管简图

计算压力P c -4.00MPa

设计温度 t120.00? C

内径D i10.00mm

材料名称 BFe10-1-1 (管材)

试验温度许用应力[σ] 67.00 MPa

设计温度许用应力[σ]t 62.20 MPa

钢板负偏差C1 0.00 mm

腐蚀裕量C2 0.00 mm

焊接接头系数φ 1.00

厚度及重量计算

计算厚度δ = 0.89mm 有效厚度δe =δn - C1- C2= 1.00mm 名义厚度δn = 1.00mm 外压计算长度 L L=1252.00mm 外径 D o D o= D i+2δn = 12.00mm L/D o 4.33

D o/δe 12.00

A值 A= 0.0084027

B值 B= 49.54

重量0.39 kg

压力计算

= $$155MPa 许用外压力 [P]= B

D o e

结论换热管外压计算合格

设 计 条 件

简 图

设计压力 p 1.000 MPa

计算压力 p c 1.000 MPa 设计温度 t 70.0 ? C 法兰输入厚度δf 20.0 mm 法 材料名称 Q345R 许用 f []σ 185.0 MPa 兰 应力 f t []σ 189.0 MPa 材料名称 40Cr 螺 许用 b []σ 196.0 MPa 应力 b t []σ 183.5 MPa 栓 公称直径 d B 20.0 mm 螺栓根径 d d 17.3 mm 数量 n 12 个

b b ''=40

25.30 m 2.00 垫 2b " 5

y (MPa)

11.0

D 415.0

结构尺寸 D i 310.0 D D d b G b b '(")=-+2

片 mm D b 375.0 = 347.0

d b

23.0

δ1 16.0 螺 栓 受 力 计 算 预紧状态下需要的最小螺栓载荷W a W a = πb 'D b y =327841.1

N 操作状态下需要的最小螺栓载荷W p W p = F '+F 'p + F R = 308190.5

N 实际使用螺栓总截面积 A b

A b =24

d

d n π= 2818.8 mm 2

弯 矩 计 算

F D = 0.785D i 2p c

= 74952.6

N 整体: L D D D b i 1=--05.()δ

活套: L D D D b i =-05.()

L D = 33.0 mm T b b c D 0.785'()F D d p F =--2

= 22312.1

N T L D d b D '.(")=++-0252b b i = 23.5

mm p G c ''

."F D m p b =???628

= 10901.3

N p b '.(")L d b =+052 = 14.0

mm F F L F L F L L R D D P P T T

R

=

++'''' = 200024.6

N

L D D d d R b b b =

-++

()

4

2

= 15.8 mm 计算用弯矩 M 0 = F R L R = 3150387.0

N .

mm

螺 栓 间 距 校 核

实际间距 L D n

==πb 98.2

mm 最小间距

L min =46.0 (查GB150.3-2011表7-3)

mm 最大间距

L d max =+=32B f δ100.0

mm

计 算 结 果

按弯曲应力确定的法兰厚度 δσπfn 0

f

t b b =

-=6M D nd []()

10.5

mm 校核合格

固定管板式换热器课程设计

一 列管换热器工艺设计 1、根据已知条件,确定换热管数目和管程数: 选用.5225?φ的换热管 则换热管数目:5.737019 .014.35.2110 A 0≈??== d l n p π根 故738=n 根 管程数:对于固定板式换热器,可选单管程或双管程,为成本计,本设计采用单管程。 2、管子排列方式的选择 (1)采用正三角形排列 (2)选择强度焊接,由表1.1查的管心距t=25mm 。 表1.1 常用管心距 管外径/mm 管心距/mm 各程相邻管的管心距/mm 19 25 38 25 32 44 32 40 52 38 48 60 (3)采用正三角形排列,当传热管数超过127根,即正六边形的个数a>6时,最外层六边形和壳体间的弓形部分空间较大,也应该配置传热管。不同的a 值时,可排的管数目见表1.2。具体排列方式如图1,管子总数为779根。 表1.2 排管数目 正六角形的数目a 正三角形排列 六角形对角线上的管数b 六角形内的管数 每个弓形部分的管数 第一列 第二列 第三列 弓形部分的管数 管子总数 1 3 7 7 2 5 19 19 3 7 37 37 4 9 61 61 5 11 91 91 6 13 12 7 127 7 15 169 3 1 8 187 8 17 217 4 24 241 9 19 271 5 30 10 21

301 11 23 397 7 42 439 12 25 469 8 48 517 13 27 547 9 2 66 613 14 29 631 10 5 90 721 15 31 721 11 6 102 823 16 33 817 12 7 114 931 17 35 919 13 8 126 1045 18 37 1027 14 9 138 1165 19 39 1411 15 12 162 1303 20 41 1261 16 13 4 198 1459 21 43 1387 17 14 7 228 1616 22 45 1519 18 15 8 246 1765 23 47 1657 19 16 9 264 1921 图1.1折流板的管孔及换热管及拉杆分布 3、壳程选择 壳程的选择:简单起见,采用单壳程。 4、壳体内径的确定 换热器壳体内径与传热管数目、管心距和传热管的排列方式有关。壳体的内径需要圆整成标准尺寸。以400mm为基数,以100mm为进级档,必要时可以50mm为进级档。 对于单管程换热器,壳体内径公式0 b t+ - D d = ~ )3 2( )1 (

压力容器标准全解

压力容器法规、标准介绍 一、压力容器法.规、标准体系 我国的特种设备法规体系主要分以下五个层次 法律—行政法规—部门规章—安全技术规范—引用标准”。 第一层次:法律 根据宪法和立法法的规定,由全国人民代表大会及其常委会制定法律。 如《安全生产法》、《劳动法》、《产品质量法》、《计量法》、《标准化法》、《行政许可法》等; 2012年8月,十一届全国人大常委会第二十八次会议初次审议了《中华人民共和国特种设备安全法(草案)》。 第二层次:行政法规 由国家最高行政机关—由国务院制定的行政法规 《特种设备安全监察条例》(第373号国务院令),2003年3月公布,自2003年6月1日起施行。 2009年1月14日《国务院关于修改(特种设备安监察条例)的决定》(第549号国务院令)公布。 第三层次:行政规章 由国务院各部门制定的部门规章,如: 《锅炉压力容器制造监督管理办法》(总局令第22号)自2003年1月1日起施行; 《特种设备作业人员监督管理办法》(总局令第140号)自2011年7月1日起施行; 第四层次:安全技术规范(规范性文件) 是政府对特种设备的安全性能和相应的设计、制造、安装、改造、维修、使用和检验检测等所作出的一系列规定,是必须强制执行的文件,安全技术规范是特种设备法规标准体系的主体,是在世界经济一体化中各国贸易性保护措施在安全方面的体现形式,其作用是把法律、法规和行政规章的原则规定具体化。 TSG Z0004-2007特种设备制造、安装、改造、维修质量保证体系基本要求 TSG Z0004-2007特种设备制造、安装、改造、维修许可鉴定评审细则 TSG R1001-2008压力容器压力管道设计许可规则 TSG R0004-2009 固定式压力容器安全技术监察规程 TSG R0002-2005 超高压容器安全技术监察规程 TSG R7001-2004 压力容器定期检验规则 TSG R6001-2008压力容器安全管理人员和操作人员考核大纲 TSG R3001-2006压力容器安装改造维修许可规则

板式换热器选型与计算方法(DOC)

板式换热器选型与计算方法 板式换热器的选型与计算方法 板式换热器的计算方法 板式换热器的计算是一个比较复杂的过程,目前比较流行的方法是对数平均温差法和NTU法。在计算机没有普及的时候,各个厂家大多采用计算参数近似估算和流速-总传热系数曲线估算方法。目前,越来越多的厂家采用计算机计算,这样,板式换热器的工艺计算变得快捷、方便、准确。以下简要说明无相变时板式换热器的一般计算方法,该方法是以传热和压降准则关联式为基础的设计计算方法。 以下五个参数在板式换热器的选型计算中是必须的: 总传热量(单位:kW). 一次侧、二次侧的进出口温度 一次侧、二次侧的允许压力降 最高工作温度 最大工作压力 如果已知传热介质的流量,比热容以及进出口的温度差,总传热量即可计算得出。 温度 T1 = 热侧进口温度 T2 = 热侧出口温度 t1 = 冷侧进口温度 t2= 冷侧出口温度 热负荷 热流量衡算式反映两流体在换热过程中温度变化的相互关系,在换热器保温良好,无热损失的情况下,对于稳态传热过程,其热流量衡算关系为: (热流体放出的热流量)=(冷流体吸收的热流量)

在进行热衡算时,对有、无相变化的传热过程其表达式又有所区别。 (1)无相变化传热过程 式中 Q----冷流体吸收或热流体放出的热流量,W; mh,mc-----热、冷流体的质量流量,kg/s; Cph,Cpc------热、冷流体的比定压热容,kJ/(kg·K); T1,t1 ------热、冷流体的进口温度,K; T2,t2------热、冷流体的出口温度,K。 (2)有相变化传热过程 两物流在换热过程中,其中一侧物流发生相变化,如蒸汽冷凝或液体沸腾,其热流量衡算式为: 一侧有相变化 两侧物流均发生相变化,如一侧冷凝另一侧沸腾的传热过程 式中 r,r1,r2--------物流相变热,J/kg; D,D1,D2--------相变物流量,kg/s。 对于过冷或过热物流发生相变时的热流量衡算,则应按以上方法分段进行加和计算。 对数平均温差(LMTD) 对数平均温差是换热器传热的动力,对数平均温差的大小直接关系到换热器传热难易程度.在某些特殊情况下无法计算对数平均温差,此时用算术平均温差代替对数平均温差,介质在逆流情况和在并流情况下的对数平均温差的计算方式是不同的。在一些特殊情况下,用算术平均温差代替对数平均温差。 逆流时: 并流时:

压力容器设计

《过程设备设计基础》 教案 4—压力容器设计 课程名称:过程设备设计基础 专业:过程装备与控制工程 任课教师:

第4章压力容器设计 本章主要介绍压力容器设计准则、常规设计方法和分析设计方法,重点是常规设计的基本原理和设计方法。 §4-1 概述 4.1概述 教学重点:压力容器设计的基本概念、设计要求 教学难点:无 压力容器发展趋势越来越大型化、高参数、选用高强度材料,本章着重介绍压力容器设计思想、常规设计方法和分析设计方法。 什么是压力容器的设计? 压力容器设计是指根据给定的工艺设计条件,遵循现行规范标准的规定,在确保安全的前提下,经济正确地选取材料,并进行结构、强(刚)度和密封设计。 结构设计--------确定合理、经济的结构形式,满足制造、检验、装配和维修等要求。 强(刚)度设计--------- 确定结构尺寸,满足强度、刚度和稳定性要求,以确保容器安全、可靠地运行。 密封设计--------选择合适的密封结构和材料保证密封性能良好。 4.1.1设计要求 设计的基本要求是安全性和经济性的统一,安全是前提,经济是目标,在充分保证安全的前提下尽可能做到经济,经济性包括材料的节约、经济的制造过程和经济的安装维修。 4.1.2设计文件

压力容器的设计文件包括:设计图样 技术条件 设计计算书 必要时包括设计或安装使用说明书. 分析设计还应提供应力分析报告 强度计算书包括: ★设计条件、所用的规范和标准、材料、腐蚀裕量、计算厚度、名义厚度、计算应力等。 ★装设安全泄放装置的压力容器,还应计算压力容器安全泄放量安全阀排量和爆破片泄放面积。 ★当采用计算机软件进行计算时,软件必须经“压力容器标准化技术委员会”评审鉴定,并在国家质量技术监督局认证备案,打印结果中应有软件程序编号、输入数据和 计算结果等内容。 设计图样包括:总图和零部件图 总图包括压力容器名称、类别、设计条件; 主要受压元件设计材料牌号及材料要求; 主要受压元件材料牌号及材料要求; 主要特性参数(如容积、换热器换热面积和程数) 制造要求;热处理要求;防腐蚀要求;无损检测要求;耐压试验和气密性试验要求 ;安全附件的规格;压力容器铭牌位置; 包装、运输、现场组焊和安装要求;以及其他特殊要求。 4.1.3设计条件 设计条件可用设计条件图表示(设计任务所提供的原始数据和工艺要求) 设计条件图包含设计要求、简图、接管表等 简图------- 示意性的画出容器本体、主要内件部分结构尺寸、接管位置、支座形式及其他需要表达的内容。 设计要求-------工作介质、压力和温度、操作方式与要求和其他。 为便于填写,设计条件图又分为 一般设计条件图 换热器条件图:应注明换热管规格、管长及根数、排列形式、换热面积与程数等 塔器条件图:应注明塔型、塔板数量及间距、基本风压和地震设计烈度和场地土类别 搅拌容器条件图:应注明搅拌器形式及转向、轴功率等。

板式换热器的计算方法

板式换热器的计算方法 板式换热器的计算是一个比较复杂的过程,目前比较流行的方法是对数平均温差法和NTU法。在计算机没有普及的时候,各个厂家大多采用计算参数近似估算和流速-总传热系数 曲线估算方法。目前,越来越多的厂家采用计算机计算,这样,板式换热器的工艺计算变得 快捷、方便、准确。以下简要说明无相变时板式换热器的一般计算方法,该方法是以传热和 压降准则关联式为基础的设计计算方法。 以下五个参数在板式换热器的选型计算中是必须的: 总传热量(单位:kW). 一次侧、二次侧的进出口温度 一次侧、二次侧的允许压力降 最高工作温度 最大工作压力 如果已知传热介质的流量,比热容以及进出口的温度差,总传热量即可计算得出。 温度 T1 = 热侧进口温度* A3 F7 y& G7 S+ Q T2 = 热侧出口温度3 s' _% s5 s. T" D0 q4 b t1 = 冷侧进口温度& L8 ~: |; B: t2 M2 w$ z t2= 冷侧出口温度 热负荷 热流量衡算式反映两流体在换热过程中温度变化的相互关系,在换热器保温良好,无热损失的情况下,对于稳态传热过程,其热流量衡算关系为:0 B N/ I" A+ m0 z' H9 ~ (热流体放出的热流量)=(冷流体吸收的热流量) 在进行热衡算时,对有、无相变化的传热过程其表达式又有所区别。 (1)无相变化传热过程 式中 Q----冷流体吸收或热流体放出的热流量,W;# Q/ p3 p: I4 ~0 N' I) W mh,mc-----热、冷流体的质量流量,kg/s;+ Z: I9 b- h9 h" r3 P) {/ ^ Cph,Cpc------热、冷流体的比定压热容,kJ/(kg·K);6 L8 t6 b3 o& m/ n T1,t1 ------热、冷流体的进口温度,K; T2,t2------热、冷流体的出口温度,K。 (2)有相变化传热过程 两物流在换热过程中,其中一侧物流发生相变化,如蒸汽冷凝或液体沸腾,其热流量衡 算式为:& w3 v) j4 I4 R 一侧有相变化1 Y# e$ B6 c& z% C3 W- W* J 两侧物流均发生相变化,如一侧冷凝另一侧沸腾的传热过程 式中

压力容器设计必须掌握的知识问答

第一章法规与标准 1--1压力容器设计必须哪些主要法规和规程? 答:1.《特种设备安全监察条例》国务院 2003.6.1 2.《压力容器安全技术监察规程》质检局 2000.1.1 3.《压力容器、压力管道设计单位资格许可与管理规则》质检局 2003.1.1 4.《锅炉压力容器制造监督管理办法》质检局 2003.1.1 5.GB150《钢制压力容器》 6.JB4732《钢制压力容器-分析设计标准》 7.JB/T4735《钢制焊接常压容器》 8.GB151《管壳式换热器》。 1—2 压力容器设计单位的职责是什么? 答:1.应对设计文件的准确性和完整性负责。 2.容器的设计文件至少应包括设计计算书和设计图样。 3.容器设计总图应盖有压力容器设计单位批准书标志。 1—3 GB150-1998《钢制压力容器》的适用和不适用范围是什么? 答: 适用范围: 1.设计压力不大于35Mpa的钢制压力容器。 2.设计温度范围根据钢材允需的使用温度确定。 不适用范围: 1.直接火焰加热的容器。 2.核能装置中的容器。 3.经常搬运的容器。 4.诸如泵、压缩机、涡轮机或液压缸等旋转式或往复式机械设备中自成整体或作为组成部件 的受压容器。 5.设计压力低于0.1Mpa的容器。 6.真空度低于0.02Mpa的容器。 7.内直径小于150mm的容器。 8.要求做疲劳分析的容器。 9.已有其它行业标准管辖的压力容器,如制冷、制糖、造纸、饮料等行业中的某些专用压力 容器和搪玻璃容器。 1—4 《压力容器安全技术监察规程》的适用与不适用范围是什么? 答:使用范围:(同时具备以下条件) 1.最高工件压力(P W)大于等于0.1Mpa(不含液体压力)的容器。 2.内直径(非圆形截面指断面最大尺寸)大于0.15m,且容积V大于等于0.25m3的容器; 3.盛装介质为气体、液化气体、或最高工作温度高于等于标准沸点的液体的容器。 不适用范围: 1.超高压容器。 2.各类气瓶。 3.非金属材料制造的压力容器。 4.核压力容器、船舶和铁路机车上的附属压力容器、国防或军事装备用的压力容器、锅炉安 全技术监察适用范围内的直接受火焰加热的设备(如烟道式余热锅炉等)。 5.正常运行最高工件压力小于0.1Mpa的压力容器(包括在进料或出料过程中需瞬时承受压力 大于等于0.1Mpa的压力容器,不包括消毒、冷却等工艺过程中需要短时承受压力大于等于 0.1 Mpa的压力容器)。 6.机器上非独立的承压部件(如压缩机、发电机、泵、柴油机的承压壳或气缸,但不含造纸、 纺织机械的烘缸、压缩机的辅助压力容器)。 7.无壳体的套管换热器、波纹管换热器、空冷换热器、冷却排管。

压力容器计算说明书

**** 储罐C-2013001-JS 强度计算书 第 1 页共 9 页 强度计算按GB150-1998 《钢制压力容器》、《固定式压力容器安全技术监察规程》及质检特函〔2010〕86 号函<关于《固定式压力容器安全技术监察规程》的实施意见 >进行计算。 目录 一、技术参数????????????????????2 二、筒体强度计算??????????????????2 三、筒体开孔及开孔补强计算?????????????3 四、封头强度计算??????????????????6 资料来源编制 校核 标准化 提出部门审核 标记处数更改文件号签字日期批准文号批准 序 目符 计算公式数据单位 项计算依据号号

一、技术参数 1.最高工作压力 2. 3.设计压力 4.最高工作温度 5.设计温度 6.介质 7.选用材料 8.许用应力 9.许用应力 10.许用应力 二、筒体强度计算 **** 储罐C-2013001-JS 强度计算书 第 2 页共 9 页 符 计算依据计算公式数据单位号 P e给定 1.25Mpa GB150.1-2011 Pc Pc=(1.05~1.1)Pe =1.25 × 1.1=1.375 1.375MPa P19 te任务书给定193℃t c193+(15~30)210℃饱和水蒸气任务书给定 GB150-2011Q345R/GB713 、 20/GB8163、 P4720/NB47008 t 根据 GB150.2-2011 GB713 B-1碳素钢和低合金 钢钢板许用应力,筒体材料 Q345R,板厚< 16mm,184.2MPa 温度 193℃所得应力值 t 根据 GB150.2-2011 GB713 B-3碳素钢和低合金 钢钢板许用应力,人孔圈及接管材料184.2MPa 20/GB8163 ,板厚< 16,温度 193℃所得应力值 t 根据 GB150.2-2011 GB/6479 B-6碳素钢和低 合金钢钢管许用应力,接管材料20 钢,板厚184.2MPa 15mm,温度 193℃所得应力值 1.筒体内直径D n1400mm 2.S S=δ+C+ =6.17+1.8+2.03=10 10mm 筒体壁厚 为除去负偏差的圆整量 3.筒体壁厚附加量C C1=0.8 ; C2=1 ; C=C1+C2=1.8 1.8mm GB150- 4.焊缝系数2011局部无损检测0.85 P13

压力容器强度计算(20210201112022)

压力容器强度计算 第一节设计参数的确定 1我国压力容器标准与适用范围 我国现执行GB150 - 98钢制压力容器”国家标准。该标准为规则设计,采用弹性失效准则和稳定失效准则, 应用解析法进行应力计算,比较简便。 JB4732-1995《钢制压力容器一分析设计标准》,其允许采用高的设计强度,相同设计条件下,厚度可以相应地减少,重量减轻。其采用塑性失效准则、失稳失效准则和疲劳失效准则,计算比较复杂,和美国的 ASME标准思路相似。 2、容器直径(diameter of vessel 考虑压制封头胎具的规格及标准件配套选用的需要,容器筒体和封头的直径都有规定。对于用钢板卷制的筒体,以内径作为其公称直径。 如果筒体是使用无缝钢管直接截取的,规定使用钢管的外径作为筒体的公称直径。 表2无缝钢管制作筒体时容器的公称直径(mm) 3、设计压力(design pressure (1)相关的基本概念(除了特殊注明的,压力均指表压力) 工作压力P W:在正常的工作情况下,容器顶部可能达到的最高压力。 ①由于最大工作压力是容器顶部的压力,所以对于塔类直立容器,直立进行水压试验的压力和卧置时不同; ②工作压力是根据工艺条件决定的,容器顶部的压力和底部可能不同,许多塔器顶部的压力并不是其实际 最高工作压力(the maximum allowable working pressure )。 ③标准中的最大工作压力,最高工作压力和工作压力概念相同。 设计压力指设定的容器顶部的最高压力,与相应的设计温度一起作为设计载荷条件,其值不低于工作压力。 ①对最大工作压力小于0.1Mpa的内压容器,设计压力取为0.1Mpa; ②当容器上装有超压泄放装置时,应按超压泄放装置”的计算方法规定。 ③对于盛装液化气体的装置,在规定的充满系数范围内,设计压力由工作条件下,可能达到的最高金属温 度确定。(详细内容,参考GB150-1998,附录B (标准的附录),超压泄放装置。)

压力容器设计要点

压力容器设计要点 第十章压力容器设计参数的选取 10.1 设计压力 在压力容器的设计中,除注明者外压力均值表压力。 设计压力为压力容器的设计载荷之一,其值不低于正常工况下容器顶部最高工作压力。 设计压力与相应的设计温度一起作为设计载荷。 各种厚度的关系示意图2-10-1 10.2 设计温度 对于0℃以下的金属温度,设计温度不得高于元件金属在工作状态可能达到的最高温度。在任何情况下金属温度不得超过钢材的允许使用温度。 安装在室外无保温的容器,按以下规定选取: (1)盛装压缩气体的贮罐,最低设计温度取环境温度减3℃。 (2)盛装液体体积占容器1/4以上的贮罐,最低设计温度取环境温度。10.4 设计中应考虑的载荷 不同的工艺条件和工况时,设计中还应考虑以下载荷: (1)内压、外压或最大压差; (2)液体静压力; (3)容器的自重,以及正常工作下或压力试验状态下内装填料的重力载荷;

(4)附属设备及隔热材料、衬里、管道、扶梯、平台等的重力载荷; (5)风载荷、地震载荷、雪载荷。 (6)支座、底座圈、支耳及其他形式支撑件的反作用力; (7)连接管道和其他部件的作用力; (8)温度梯度或膨胀量不同引起的作用力; (9)包括压力急剧波动的冲击载荷; (10)冲击反力; (11)运输或吊装时的作用力。 10.6 焊接接头分类和焊接接头系数 为弥补焊缝对容器整体强度的消弱,在强度计算中引入焊接接头系数。 第十一章压力容器零部件的结构和计算 11.1 圆筒和球壳 1、概述 圆筒和球壳是压力容器最基本的组成部分,也是压力容器主要受压元件。

2 内压计算 (1)圆筒厚度计算 1)圆筒中径公式[1] 2)圆筒中径公式适用范围。K《1.5。 3)多层圆筒的计算 4)焊接接头系数 (2)球壳的厚度计算 1)球壳中径公式[1] 2)球壳中径公式的适用范围 3 外压计算 容器承受内压时,壳壁内为拉应力;而容器承受外压时,壳壁内为外压力。内压容器失效时强度问题,而外压容器往往其压应力尚未达到屈服时就会出现扁塌现象,这就是外压容器的弹性失稳。 4 外压圆筒加强圈设计 当原有结构不能满足要求时,需要外设加强圈。 11.2 封头 1 封头型式及选用 2 凸形封头设计 1 椭圆形封头 1)应力状况 2)内压作用下厚度计算 3)外压作用下计算 2 蝶形封头 1)应力状况 2)内压和外压作用下厚度计算 (3)球罐形封头 (4)带法兰的凸形封头

基于ANSYS的固定管板式换热器的热应力分析及评定_陈满儒

基于ANS YS的固定管板式 换热器的热应力分析及评定 陈满儒,孙文迪 (陕西科技大学设计与艺术学院,陕西西安 710021) 摘要:应用ANS YS有限元分析软件对固定管板式换热器进行热应力分析及评定。由应力强度云图可知最大应力强度发生在管板锻件的管程侧过渡圆角处。设定3条应力评定路径,进行线性化处理,在内压与热载荷作用下,对各路径上的一次加二次应力进行评定,得到应力评定结果。关键词:ANS YS;换热器;应力分析;应力评定 中图分类号:TH222 文献标识码:A 文章编号:1672-1616(2011)05-0040-03 换热器是石油、化工、冶金、电力、轻工、食品等行业普遍应用的一种换热工艺设备[1]。换热器设计的好坏直接影响其工艺过程,为了有效地利用能源,对换热器性能进行分析和研究是非常有意义的。 固定管板式换热器是由管箱、壳体、管板、管子等零部件组成的。管板与壳体通过焊接固定在一起,而管板与管子要通过胀接、焊接或胀焊结合连接在一起。由于管内流体与壳程流体存在温差,因此换热器中必定存在温差应力,这种温差应力将与管壳程流体压力造成的机械应力叠加。当应力较高时则会在换热器的不同部位造成不同形式的失效,如壳体强度或稳定性破坏、管子的强度或稳定性破坏、管子与管板之间拉脱、管板与壳体连接部位的破坏、管板强度破坏等,当温差应力太大时还应考虑使用膨胀节[2]。因此,换热器应力分析应包括不同危险工况并对不同部位进行分析与评定,才能保证其安全可靠的运行。 1 固定管板式换热器参数及热应力分析模型 1.1 工作条件及结构参数 某固定管板式换热器结构示意图如图1所示,管板为带凸肩的整锻件,凸肩高度为35mm,壳程侧凸肩计算壁厚为17mm,管程侧凸肩计算壁厚为18mm,凸肩与管板连接处锻造圆角半径为15m m,管板外直径为840mm,管板计算厚度为100mm。壳程金属设计温度下的设计应力强度S m= 183M Pa,管程金属设计温度下的设计应力强度S m=118MPa,壳程设计压力为0.58MPa,管程设计压力为2.00MPa,壳程操作温度为140.5℃,管程操作温度为250.0℃,空气环境温度设为20.0 ℃。 图1 固定管板式换热器结构简图 1.2 热应力分析模型 建立如图2所示的热应力分析模型,其中与管板锻件连接的壳程筒体及管程筒体的长度足够长,远大于2.5倍的边缘应力衰减长度,一般而言,当不必考虑两侧管板轴向差异时,才可利用轴向对称性建模,而壳程分析长度应为壳程总长度的一半。由于主要讨论管板及其与两端筒体连接区的应力分布规律,因而忽略开孔接管、管箱封头及支座等。考虑到结构和载荷的对称性,沿换热器的纵向对称面切开取其1/4作为分析模型体。结构纵向对称面约束了法向位移,壳程筒体横截面约束了轴向位移,管箱筒体端面施加相应的轴向平衡力。 收稿日期:2011-01-08 作者介绍:陈满儒(1957-),男,陕西西安人,陕西科技大学教授,硕士,主要研究方向为包装工程。 402011年3月 中国制造业信息化 第40卷 第5期

压力容器的强度计算.

第11章压力容器的强度计算 本章重点要讲解内容: (1)理解内压容器设计时主要设计参数(容器内径、设计压力、设计温度、许用应力、焊缝系数等)的意义及其确定原则; (2)掌握五种厚度(计算壁厚、设计壁厚、名义壁厚、有效壁厚、最小壁厚)的概念、相互关系以及计算方法;能熟练地确定腐蚀裕度和钢板负偏差; (3)掌握内压圆筒的厚度设计; (4)掌握椭圆封头、锥形封头、半球形封头以及平板封头厚度的计算。 (5)熟悉内压容器强度校核的思路和过程。 第一节设计参数的确定 1、我国压力容器标准与适用范围 我国现执行GB150-98 “钢制压力容器”国家标准。该标准为规则设计,采用弹性失效准则和稳定失效准则,应用解析法进行应力计算,比较简便。 JB4732-1995《钢制压力容器—分析设计标准》,其允许采用高的设计强度,相同设计条件下,厚度可以相应地减少,重量减轻。其采用塑性失效准则、失稳失效准则和疲劳失效准则,计算比较复杂,和美国的ASME标准思路相似。 2、容器直径(diameter of vessel) 考虑压制封头胎具的规格及标准件配套选用的需要,容器筒体和封头的直径都有规定。对于用钢板卷制的筒体,以内径作为其公称直径。 表1 压力容器的公称直径(mm) 如果筒体是使用无缝钢管直接截取的,规定使用钢管的外径作为筒体的公称直径。 表2 无缝钢管制作筒体时容器的公称直径(mm)

3、设计压力(design pressure) (1)相关的基本概念(除了特殊注明的,压力均指表压力) ?工作压力P W:在正常的工作情况下,容器顶部可能达到的最高压力。 ①由于最大工作压力是容器顶部的压力,所以对于塔类直立容器,直立进行水压 试验的压力和卧置时不同; ②工作压力是根据工艺条件决定的,容器顶部的压力和底部可能不同,许多塔器顶 部的压力并不是其实际最高工作压力(the maximum allowable working pressure)。 ③标准中的最大工作压力,最高工作压力和工作压力概念相同。 ?设计压力指设定的容器顶部的最高压力,与相应的设计温度一起作为设计载荷条 件,其值不低于工作压力。 ①对最大工作压力小于0.1Mpa 的内压容器,设计压力取为0.1Mpa; ②当容器上装有超压泄放装置时,应按“超压泄放装置”的计算方法规定。 ③对于盛装液化气体的装置,在规定的充满系数范围内,设计压力由工作条件下, 可能达到的最高金属温度确定。(详细内容,参考GB150-1998,附录B(标准的附 录),超压泄放装置。) ?计算压力P C是GB150-1998 新增加的内容,是指在相应设计温度下,用以确定元 件厚度的压力,其中包括液柱静压力,当静压力值小于5%的设计压力时,可略去 静压力。 ①注意与GB150-1989 对设计压力规定的区别; 《钢制压力容器》规定设计压力是指在相应设计温度下,用以确定容器壳壁计算厚度的压力,亦是标注在铭牌上的设计压力,取略高或等于最高工作压力。当容器受静压力值大于5%设计压力时,应取设计压力与液柱静压力之和进行元件的厚度计算。 使许多设计人员误将设计压力和液柱静压力之和作为容器的设计压力。 ②一台设备的设计压力只有一个,但受压元件的计算压力在不同部位可能有所变化。 ③计算压力在压力容器总图的技术特性中不出现,只在计算书中出现。 4、设计温度(Design temperature) 设计温度是指容器在正常工作情况下,在相应的设计压力下,设定的受压元件的金属温度。主要用于确定受压元件的材料选用、强度计算中材料的力学性能和许用应力,以及热应力计算时设计到的材料物理性能参数。 ●设计温度不得低于元件金属在工作状态可能达到的最高温度; ●当设计温度在0℃以下时,不得高于元件金属可能达到的最低温度; ●当容器在各部分工作状态下有不同温度时,可分别设定每一部分的设计温度; 5、许用应力(Maximum allowable stress values) 许用应力是以材料的极限应力除以适当的安全系数,在设计温度下的许用应力的大小,直接决定容器的强度,GB150-1998 对钢板、锻件、紧固件均规定了材料的许用应力。 表3 钢制压力容器中使用的钢材安全系数

固定管板式换热器课设

江汉大学课题名称:固定管板式换热器设计 系别:化学与环境工程学院 专业:过控121班 学号: 姓名:库勇智 指导教师:杨继军 时间: 2016年元月 课程设计任务书 设计题目:固定管板式换热器设计 一、设计目的: 1.实用国家最新压力容器标准、规范进行设计,掌握典型的过程装 备设计的全过程。 2.掌握查阅和综合分析文献资料的能力,进行设计方法和设计方案 的可行性研究和论证。 3.掌握软件强度设计计算,要求设计思路清晰,计算数据准确可靠, 正确掌握计算机操作和专业软件的实用。 4.掌握图纸的计算机绘图。 二、设计条件: 设计条件单 名称管程壳程 物料名称循环水甲醇

工作压力0.45Mpa 0.05Mpa 操作温度40℃70℃ 推荐钢材10,Q235-A,16MnR 换热面积60㎡ 推荐管长Φ=25 32-39㎡40-75㎡76-135㎡ 2m 2.5 3m 管口表 符号公称直径用途 a 200 冷却水金口 b 200 甲醇蒸汽进口 c 20 放气口 d 70 甲醇物料出口 e 20 排净物 f 200 冷却水出口 三、设计要求: 1.换热器机械设计计算及整体结构设计 2.绘制固定管板式换热器装配图(一张一号图纸) 3.管长与壳体内径之比在3-20之间 四、主要参考文献 1.国家质量监督检验检疫总局,GB150-2011《压力容器》,中国标准出版社,2011.

2.国家质量监督检验检疫总局,TSG R0004-2009《固定式压力容器安全技术监察规程》,新华出版社,2009. 3.国家质量监督检验检疫总局,GB151-1999《管壳式换热器》,中国标准出版社,1999. 4.天津大学化工原理教研室,《化工原理》上册,姚玉英主编,天津科学技术出版社,2012. 5.郑津样,董其伍,桑芝富主编,《过程装备设计》,化学工业出版社,2010. 6.赵惠清,蔡纪宁主编,《化工制图》,化学工业出版社,2008。 7.潘红良,郝俊文主编,《过程装备机械设计》,华东理工大学出版社,2006。 8.E.U.施林德尔主编,《换热器设计手册》第四卷,机械工业出版社,1989. 前言 换热设备是用于两种或两种以上流体间、一种流体一种固体间、固体粒子间或者热接触且具有不同温度的同一种流体间热量(或焓)传递的装置。 换热器是化工、石油、动力、冶金、交通、国防等工业部门重要工艺设备之一,其正确的设置,性能的改善关系各部门有关工艺的合理性、经济性以及能源的有效利用与节约,对国民经济有着十分重要的影响。在炼油、化工装置中换热器占总设备数量的40%左右,占总投资的30%-45%。随着节能技术的发展,应用领域不断扩大,利用换

压力容器的强度计算]

压力容器的强度计算 本章重点要讲解内容: (1)理解内压容器设计时主要设计参数(容器内径、设计压力、设计温度、许用应力、焊缝系数等)的意义及其确定原则; (2)掌握五种厚度(计算壁厚、设计壁厚、名义壁厚、有效壁厚、最小壁厚)的概念、相互关系以及计算方法;能熟练地确定腐蚀裕度和钢板负偏差; (3)掌握内压圆筒的厚度设计; (4)掌握椭圆封头、锥形封头、半球形封头以及平板封头厚度的计算。 (5)熟悉内压容器强度校核的思路和过程。 第一节设计参数的确定 1、我国压力容器标准与适用范围 我国现执行GB150-98 “钢制压力容器”国家标准。该标准为规则设计,采用弹性失效准则和稳定失效准则,应用解析法进行应力计算,比较简便。 JB4732-1995《钢制压力容器—分析设计标准》,其允许采用高的设计强度,相同设计条件下,厚度可以相应地减少,重量减轻。其采用塑性失效准则、失稳失效准则和疲劳失效准则,计算比较复杂,和美国的ASME标准思路相似。 2、容器直径(diameter of vessel) 考虑压制封头胎具的规格及标准件配套选用的需要,容器筒体和封头的直径都有规定。对于用钢板卷制的筒体,以内径作为其公称直径。 表1 压力容器的公称直径(mm) 如果筒体是使用无缝钢管直接截取的,规定使用钢管的外径作为筒体的公称直径。 表2 无缝钢管制作筒体时容器的公称直径(mm)

3、设计压力(design pressure) (1)相关的基本概念(除了特殊注明的,压力均指表压力) ?工作压力P W:在正常的工作情况下,容器顶部可能达到的最高压力。 ①由于最大工作压力是容器顶部的压力,所以对于塔类直立容器,直立进行水压 试验的压力和卧置时不同; ②工作压力是根据工艺条件决定的,容器顶部的压力和底部可能不同,许多塔器顶 部的压力并不是其实际最高工作压力(the maximum allowable working pressure)。 ③标准中的最大工作压力,最高工作压力和工作压力概念相同。 ?设计压力指设定的容器顶部的最高压力,与相应的设计温度一起作为设计载荷条 件,其值不低于工作压力。 ①对最大工作压力小于0.1Mpa 的内压容器,设计压力取为0.1Mpa; ②当容器上装有超压泄放装置时,应按“超压泄放装置”的计算方法规定。 ③对于盛装液化气体的装置,在规定的充满系数范围内,设计压力由工作条件下, 可能达到的最高金属温度确定。(详细内容,参考GB150-1998,附录B(标准的附 录),超压泄放装置。) ?计算压力P C是GB150-1998 新增加的内容,是指在相应设计温度下,用以确定元 件厚度的压力,其中包括液柱静压力,当静压力值小于5%的设计压力时,可略去 静压力。 ①注意与GB150-1989 对设计压力规定的区别; 《钢制压力容器》规定设计压力是指在相应设计温度下,用以确定容器壳壁计算厚度的压力,亦是标注在铭牌上的设计压力,取略高或等于最高工作压力。当容器受静压力值大于5%设计压力时,应取设计压力与液柱静压力之和进行元件的厚度计算。 使许多设计人员误将设计压力和液柱静压力之和作为容器的设计压力。 ②一台设备的设计压力只有一个,但受压元件的计算压力在不同部位可能有所变化。 ③计算压力在压力容器总图的技术特性中不出现,只在计算书中出现。 4、设计温度(Design temperature) 设计温度是指容器在正常工作情况下,在相应的设计压力下,设定的受压元件的金属温度。主要用于确定受压元件的材料选用、强度计算中材料的力学性能和许用应力,以及热应力计算时设计到的材料物理性能参数。 ●设计温度不得低于元件金属在工作状态可能达到的最高温度; ●当设计温度在0℃以下时,不得高于元件金属可能达到的最低温度; ●当容器在各部分工作状态下有不同温度时,可分别设定每一部分的设计温度; 5、许用应力(Maximum allowable stress values) 许用应力是以材料的极限应力除以适当的安全系数,在设计温度下的许用应力的大小,直接决定容器的强度,GB150-1998 对钢板、锻件、紧固件均规定了材料的许用应力。 表3 钢制压力容器中使用的钢材安全系数

板式换热器选型计算

板式换热器选型计算 板式换热器是一种高效紧凑型热交换设备,它具有传热效率高、阻力损失小、结构紧凑、拆 装方便、操作灵活等优点,目前广泛应用于冶金、机械、电力、石油、化工、制药、纺织、 造纸、食品、城镇小区集中供热等各个行业和领域,因此掌握板式换热器的选型计算对每个 工程设计人员都是非常重要的。目前板式换热器的选型计算一般分为手工简易算法、手工标准算法及计算机算法三种,以下就三种算法的特点进行简要的说明。 一、手工简易算法 计算公式:F=Wq/(K* △ T) 式中F —换热面积m2 Wq —换热量W K —传热系数W/m 2「C △T—平均对数温差C 根据选定换热系统的有关参数,计算换热量、平均对数温差,设定传热系数,求出 换热面积。选定厂家及换热器型号,计算板间流速,通过厂家样本提供的传热特性曲线及流 阻特性曲线,查出实际传热系数及压降。若实际传热系数小于设定传热系数,则应降低设 定传热系数,重新计算。若实际传热系数大于设定传热系数,而实际压降大于设定压降, 则应进一步降低设定传热系数,增大换热面积,重新计算。经过反复校核,直到计算结果 满足换热系统的要求,最终确定换热器型号及换热面积大小。这种算法的优点是计算简单, 步骤少,时间短;缺点是结果不准确,应用范围窄。造成结果不准确的原因主要是样本所提 供的传热特性曲线及流阻特性曲线是一定工况条件下的曲线,而设计工况可能与之不符。此外样本所提供的传热特性曲线及流阻特性曲线仅为水一水换热系统,在使用中有很大的局限性。 以下给出佛山显像管厂总装厂房低温冷却水及40C热水两套换热系统实例加以说明 采用手工简易算法得出的计算结果与实测结果的差别: 2

压力容器强度计算公式及说明

压力容器壁厚计算及说明 一、压力容器的概念 同时满足以下三个条件的为压力容器,否则为常压容器。 1、最高工作压力P :9.8×104Pa ≤P ≤9.8×106Pa ,不包括液体静压力; 2、容积V ≥25L ,且P ×V ≥1960×104L Pa; 3、介质:气体,液化气体或最高工作温度高于标准沸点的液体。 二、强度计算公式 1、受内压的薄壁圆筒 当K=1.1~1.2,压力容器筒体可按薄壁圆筒进行强度计算,认为筒体为二向应力状态,且各受力面应力均匀分布,径向应力σr =0,环向应力σt =PD/4s ,σz = PD/2s ,最大主应力σ1=PD/2s ,根据第一强度理论,筒体壁厚理论计算公式, δ理= P PD -σ][2 考虑实际因素, δ=P PD φ-σ][2+C 式中,δ—圆筒的壁厚(包括壁厚附加量),㎜; D — 圆筒内径,㎜; P — 设计压力,㎜; [σ] — 材料的许用拉应力,值为σs /n ,MPa ; φ— 焊缝系数,0.6~1.0; C — 壁厚附加量,㎜。 2、受内压P 的厚壁圆筒 ①K >1.2,压力容器筒体按厚壁容器进行强度计算,筒体处于三向应力状态,且各受力面应力非均匀分布(轴向应力除外)。 径向应力σr =--1(2 22a b Pa 22 r b ) 环向应力σθ=+-1(222a b Pa 22 r b ) 轴向应力σz =2 22 a b Pa - 式中,a —筒体内半径,㎜;b —筒体外半径,㎜; ②承受内压的厚壁圆筒应力最大的危险点在内壁,内壁处三个主应力分别为: σ1=σθ=P K K 1 122-+ σ2=σz =P K 11 2-

固定管板式换热器设计

固定管板式换热器设计

固定管板式换热器 中文摘要 换热器是工业生产中最常用的设备,在不同工作条件下对换热器性能要求不同,它是冷热流体间传递热量的设备。 本次设计为固定管板式换热器,固定管板式换热器主要由管箱、管板、壳体、换热管、折流板、拉杆、定距管、封头等组成。固定管板式换热器由两端管板和壳体构成。由于其结构简单,运用比较广泛。固定管板式换热器管程和壳程中,流过不同温度的流体,通过热交换完成换热。当两流体的温度差较大时,为了避免较高的温差应力,通常在壳程的适当位置上,增加一个补偿圈(膨胀节)。当壳体和管束热膨胀不同时,补偿圈发生缓慢的弹性变形来补偿因温差应力引起的热膨胀。 在传热计算工艺中,包括传热面积计算,传热量、传热系数的确定和换热器内径及换热管型号的选择,以及传热系数、压降及壁温的验算等问题。在强度计算中主要讨论的是筒体、管箱、封头、管板厚度计算以及折流板、法兰、垫片和接管、支座、等零部件的设计,还要进行一些强度校核。本设计是按照GB151《管壳式换热器》和GB150《钢制压力容器》设计的。 换热器在工、农业的各个领域应用十分广泛,在日常生活中传热设备也随处见,是不可缺少的工艺设备之一。随着研究的深入,工业应用取得了令人瞩目的成果。

关键词:换热器;设计;校核;固定管板式 Abstract Heat exchanger is the most commonly used equipment in industrial production, the requirements of different heat exchanger performance under different working conditions, it is the equipment of heat transfer between cold and hot fluids. The design for the fixed tube plate heat exchanger, fixed tube plate heat exchanger is mainly composed of a tube box, tube plate, shell, heat pipe, baffle plate, rod, tube, head distance etc.. Fixed tube plate heat exchanger by the two ends of tube plate and the shell. Because of its simple structure, more extensive use of. Fixed tube plate heat exchanger tube side and shell, through the fluid of different temperature, through the heat exchange heat. When the two fluid temperature difference is larger, in order to avoid high temperature stress, usually in the shell in the appropriate location, adding a compensation coil (expansion). When the shell and tube heat expansion compensation ring is not at the same time, the slow elastic deformation to compensate for the thermal stress caused by thermal. In the calculation of the heat transfer process, including heat transfer area calculation, heat transfer, the determination of heat

相关文档
最新文档