涡虫:具有再生能力的模式生物

涡虫:具有再生能力的模式生物
涡虫:具有再生能力的模式生物

涡虫:具有再生能力的模式生物

涡虫:具有再生能力的模式生物

□本报记者许琦敏

《西游记》里的孙悟空真是厉害,头砍掉了立马又冒出一个来。其实,有一类叫涡虫的动物,跟孙大圣的本领也不相上下——头切掉能新长个头出来,尾巴切掉重新长尾巴,就算将它粉身碎骨成279块,每一块都还能长出完整个体。

涡虫之所以具有如此强大的再生能力,主要原因是其体内有一种类似于人类干细胞的细胞,而且这种细胞占涡虫细胞总数的25%。涡虫具有几乎无限的再生能力,在未受损伤的情况下,它能保持自己身体健康而不会死亡。这使得它成为科学家开展再生研究的一个非常难得的模型。

近年来,一系列涡虫相关的研究工具被陆续开发出来,同时国际上多个顶级科研单位均建立了以涡虫为模式生物

的实验室。相关成果也已登上《自然》、《科学》等国际权威杂志。中国科学家也已从涡虫中发现了近50个参与到再生过程中的基因。

残体再生、长生不老,是人类自远古以来的愿望。或许找到这一门径的钥匙,就在涡虫身上。

惊人无限的再生能力

涡虫能在一周内,重新长出切割掉的肌肉、皮肤、肠道、生殖系统,甚至整个大脑。而在适宜的生长条件下且未受到损伤的情况下,它能一直保持自身健康而不会死亡。

涡虫是涡虫纲动物的总称,是扁形动物门中营自由生活(不需要寄生在其它生物体内)的一类。它的进化地位并不怎么高级,介于水螅(腔肠动物门)和蚯蚓(环节动物门)之间。

涡虫的体表一般具有纤毛,并有典型的皮肤肌肉囊,以强化运动机能,表皮中的杆状体有利于捕食和防御敌害。

它的感觉器官和神经系统一般比较发达,能对外界环境如光线、水流及食物等迅速发生反应。感觉器官包括眼、耳突等等。自由生活涡虫的体表特别是耳突处分布有丰富的触觉感受器、化学感受器及水流感受器,它们分别感受触觉、化学及水流的刺激。

涡虫具有2条发达的腹神经索,与“脑”形成了原始的中枢神经系统。涡虫类具有消化系统,有口无肛门,三角涡虫消化管分为3支(一支向前2支向后)。涡虫通过体表从水中获得氧,并将二氧化碳排至水中。原始的排泄系统为具焰细胞的原肾管系统,具有渗透调节和排泄作用。生殖方式上,涡虫是雌雄同体,异体交配。

最令科学家惊奇的是,这种广泛生活在洁净水质的池塘

和溪流中的扁形动物门生物具有近于无限的再生能力,再生过程也非常迅速——涡虫能在一周内,重新长出切割掉的肌肉、皮肤、肠道、生殖系统,甚至整个大脑。而在适宜的生长条件下且未受到损伤的情况下,它能一直保持自己身体健康而不会死亡——这简直就是传说中的长生不老。

涡虫具备这种超级再生能力的主要原因是其体内有一

种类似于人类干细胞的细胞。这种细胞占涡虫细胞总数的25%,一旦涡虫受到损伤,这些细胞可以增殖,进而分化成为涡虫体内大约40余种类型的细胞,再生出有功能的全新的组织、器官直至一个完整的涡虫。

这种惊人的再生能力,使涡虫成为再生医学研究模式生物的不二之选。

物种间最基本的生物学过程都是高度保守的。由于进化的原因,细胞生命在发育的基本模式方面具有相当大的同一性,所以利用位于生物复杂性阶梯较低级位置上的物种来研究发育共通规律是可能的。因为对这些生物的研究具有帮助我们理解生命世界一般规律的意义,所以它们被称为“模式生物”。在遗传与发育生物学常见的模式生物有线虫、果蝇、非洲爪蟾、蝾螈、小鼠等。

因此,在实验室里,模式生物通常代替人类接受疾病机理、药物筛选等一系列实验和研究。正是得益于对不同生物的研究,才使得人类在生物和医学领域不断取得新的突破。

人们最为耳熟能详的模式生物莫过于小白鼠。小鼠来源于野生鼷鼠,从17世纪开始用于解剖学研究及动物实验,经长期人工饲养选择培育,已育成多达千余个独立的远交群和近交系。由于小鼠繁殖快,饲养管理费用低,并且遗传物质与人类具有高度的保守性,所以成为生物医学研究中广泛使用的模式生物,也是当今世界上研究最详尽的哺乳类实验动物。目前全世界每天约有2500万只小鼠被用于生物医学研究。迄今为止,至少有30项诺贝尔生理学或医学奖颁发给了以小鼠作为模式生物研究的科学家。

从生命科学发展历史来看,重大生物学现象和规律的发现都是从选择一种合适的模式生物开始的,早在150多年前,在奥地利布隆城的一所修道院中,孟德尔开始了他的豌豆杂交试验,在苦心经营8年之后,孟德尔发表了他的研究论文,并提出了遗传学中两个至关重要的遗传定律——分离定律

和自由组合定律,现在统称为孟德尔定律。除了夜以继日的努力工作以及天才般的思考方式,孟德尔获得成功的一个极其重要的因素是他选择了合适的模式生物——豌豆。

在豌豆实验之后,遗传学中另一位举足轻重的科学家摩尔根选择了黑腹果蝇作为模式生物进行研究。他不仅仅发现了染色体在遗传中的作用,更重要的是创造了果蝇这一优秀的遗传学模式生物。摩尔根与其弟子米勒均因果蝇遗传学研究获得了诺贝尔奖。

实际上,早在19世纪末,摩尔根在专注于果蝇研究之前,涡虫就进入了他的视野。他之所以对涡虫感兴趣,就是因为它具有极其强大的再生能力。

生物体的整体或器官因创伤而发生部分丢失,在剩余部分的基础上又生长出与丢失部分在形态和功能上相同的结构,这一系列复杂的生物学过程称为再生。

在再生的研究历史上有着各种各样的模式生物,水螅、海星、蜗牛以及蜥蜴、娃娃鱼等都具有一定的再生能力,然而在涡虫面前,这些模式生物的再生能力只能用“小巫见大巫”来形容——摩尔根发现将涡虫切割到身体大小的279分之一时,涡虫仍具有再生能力,可以重新再生出一个完整的个体。这种超强的再生能力在自然界是无与伦比的。

在细致的研究的基础上,摩尔根发表了数十篇论文介绍涡虫的再生现象。但是由于技术手段的限制,涡虫再生机制的研究进展非常缓慢。近年来随着涡虫整体原位杂交技术和RNAi敲低基因技术的出现,及地中海涡虫基因组测序的完成,使得涡虫再生机制的研究走向具体化和系统化。

如今,科学家们则迫切地希望通过分析涡虫替换衰老的或者受损的组织和细胞的能力,来帮助理解再生和长寿的奥秘。相信在全球众多科研工作者的共同努力下,人类必能解开涡虫再生的秘密,进一步对人体组织甚至器官的再生提供指导作用。而涡虫也有可能在诺贝尔奖牌榜上留名。

研究组织再生的理想模型

涡虫具备超级再生能力的主要原因,是其体内有一种类似于人类干细胞的细胞。而在人类体内虽然也存在着干细胞,却没有办法像涡虫一样再生出受伤、缺失的器官。这就是涡虫的再生能力吸引无数生物学家注意的主要原因。

近十几年,干细胞研究迅速崛起,再生医学研究不断升温,成为当今生物和医学领域的热点和前沿。科学家发现,在人类体内也存在着干细胞,然而却没有办法像涡虫一样再生出受伤、缺失的器官。

由于已有模式生物普遍缺乏比较强大的再生能力,发展新的用于研究干细胞调控机制及再生机理的模式生物就成

为迫切需求,于是淡水涡虫再次吸引了科学家的注意。科研人员希望利用涡虫这种相对简单的动物作为一把“钥匙”,试

图打开人类干细胞宝库的大门,调动人体内的干细胞资源,为人类健康事业作一份贡献。

过去一个世纪,涡虫的再生能力尽管吸引了无数生物学家的注意,但是由于分子生物学和细胞生物学工具的缺乏,学术界对其再生的机理知之甚少。10年前,美国卡耐基研究所的桑切斯及其同事成功建立了淡水涡虫的一种——地中

海涡虫的单克隆品系,结合当时发现的dsRNA介导的基因

沉默技术,使得涡虫领域重新焕发生机。

就在这十年间,国际上多个顶级科研单位均建立了以涡虫为模式生物的科研实验室,例如美国Stowers研究所、Whitehead研究所、伊利诺伊大学香槟分校等。日本、英国、德国、印度等国家研究组也开展了涡虫的再生研究。中国国内则有中科院上海生科院健康所、清华大学、郑州大学、山东理工大学等多个院所,也都开始开展与涡虫相关的研究。

近年来,一系列涡虫相关的研究工具被陆续开发出来:例如转录组、基因组测序工作的陆续开展,生物信息学平台不断完善,为涡虫作为模式生物奠定了基础;双链RNA介导的基因沉默方法可以敲低涡虫中任何一个基因来探索缺

失这些基因后对组织再生过程的影响;免疫荧光、原位杂交等技术则可以用来将涡虫成体干细胞与其它终末分化细胞

在体内进行区分;而流式细胞分选技术则可以将涡虫成体干细胞纯化出来进行体外的研究。借助这些工具,以涡虫为模型研究再生的机制在短短的十年间取得了令人瞩目的进展。

作为科学研究的模式动物,除了具有超强的再生能力,涡虫还具有许多其他模式生物难以望其项背的优点。

首先,相对于其他用于再生研究的模式生物,涡虫再生能力强、周期短。实验室使用的涡虫大小在0.5~2厘米之间,即使最小的涡虫切成3段仍可以完成再生。通常,从切割到再生完成只需要一个星期左右,这大大缩短了实验周期,可以在短时间内得到实验结果,为科研工作者节省了大量的等

待时间。

第二,实验室用涡虫容易大规模饲养繁殖。实验使用的涡虫通常饲养在塑料饭盒内,一个1L的塑料饭盒可以饲养

大约100~200只涡虫,而一个2平方米的饲养架大约可以

饲养200缸涡虫。这就允许科研人员即使在有限的空间里也可以有足够多的涡虫供实验使用,方便进行大规模的筛选试验,从大量功能未知的基因中寻找原创性的、新颖的影响涡虫再生的基因。

第三,涡虫中被称为Neoblast的成体干细胞数量丰富。据文献报道,有增殖能力的干细胞占到涡虫虫体细胞的25%。由于这些干细胞的数目庞大,研究过程中容易利用生物化学的方法进行显示,并且这个基数上的变化(比如干细胞类群数目增加或减少)比较容易观察、统计,这对于科学研究提供了极大的便利。

第四,涡虫是最简单的具有三胚层分化的模式生物,其大部分基因和高等生物高度保守,并且具有较低的冗余性。科学研究表明,涡虫的基因超过80%和人类同源,涡虫干细胞在损伤后早期的反应与人类等高等生物,也有惊人的相似。在涡虫中发现的再生机制,极有可能与高等生物中的机制是相似的,理解这些基因的功能有利于理解高等生物成体干细胞在再生中的调节方式,进而指导科研人员操作高等生物中的干细胞。

最后,目前涡虫系统的分子生物学手段比较健全,已具备特异的分子标志便于科研人员识别鉴定,遗传操作简单,研究基因表达和功能的方法技术日趋完善,这些特点都允许科研人员方便地进行在体的多能性研究,减少对离体的细胞培养系统的依赖。

科研人员研究再生使用的涡虫属于涡虫纲中三肠目。目前使用的涡虫主要有两种,分别是欧美国家普遍使用的地中海涡虫和东亚三角涡虫。

养在实验室里的涡虫,还挺娇贵——它要住在常年恒温的涡虫房中,水温保持17~21度之间;它所用的水,必须用无菌的纯水配制成含有一定浓度的钠钾钙镁等离子的盐溶液;它的食物更是美味考究,每天喂食的是匀浆过的新鲜小牛肝,或煮熟的鸡蛋蛋黄和摇蚊幼虫。

20年间令人瞩目的研究进展

涡虫真的是完全地再生吗?再生出来的组织和原来的

组织完全一样吗?在再生过程中它怎么知道哪个地方要长头,哪个地方要长尾巴?这么强的再生能力,难道再生中不会出错吗?它会长肿瘤吗?人能不能像涡虫那样再生呢?……如此多的疑问,使全球科学家们的兴趣不断发酵,并直接推动了涡虫再生相关研究的飞速发展。

科学研究表明,涡虫的基因超过80%和人类同源,涡虫

干细胞在损伤后早期的反应与人类等高等生物,也有惊人的相似。近年来,越来越多的基因及信号通路被发现在组织再生中具有重要的功能,科学家正在尝试操纵高等生物中类似的基因来研究其是否同样具有相似的功能。理解涡虫基因如何协作调控再生,或许将有利于我们寻找人体器官再生、延缓衰老过程的方法。

涡虫再生的秘密在于它体内存在一群丰富的干细胞,能够通过不断的自我复制,产生与自己类似的细胞,并且在需要的时候能变成其他任何类型的细胞。其实,人体也存在类似的细胞,但与涡虫不同的是,人类只有少数器官具有非常有限的修复能力,并且这种能力随着年龄的增加而削弱。科学家希望通过分析涡虫利用这些细胞修复衰老的或者受损的组织和细胞的能力,来寻找治疗因意外伤害而导致的身体缺陷或者老年性疾病的方法。

科学家的最终目标是想通过操作人类身体内源存在的干细胞,来修复受伤或者衰老的组织,进而解决许多长期困扰人类健康的难题——这样可能比外部注射干细胞要更安全、更有效。这些难题包括意外性组织损伤或缺失、神经退行性疾病、癌症,以及先天性疾病等。

为此,早在上世纪末,一群痴迷于再生的科学家,对涡虫进行了大量研究,直接推动了相关研究的飞速前进。

涡虫真的是完全地再生吗?再生出来的组织和原来的

组织是完全的一样吗?在再生过程中它怎么知道哪个地方

要长头,哪个地方要长尾巴?这么强的再生能力,难道再生中不会出错吗?它会长肿瘤吗?人能不能像涡虫那样再生呢?……

日本的Kiyokazu Agata教授,使用日本三角涡虫为模型,着眼于涡虫大脑的再生过程,并率先通过芯片和表达谱筛选的方法鉴定出了几十个在涡虫脑部特异性表达的基因。他首次发现,Nou-darake这个基因能够控制涡虫脑再生,敲低

这个基因,涡虫会出现浑身长脑的表型。进一步研究发现,Nou-darake特异性地表达在涡虫的脑部,并且发现

Nou-darake是通过抑制FGF信号通路来限制涡虫大脑只能长在涡虫的头部。这是首次、并且是迄今唯一一次,在国际权威杂志《自然》上发表的与涡虫相关的工作。

当然,Kiyokazu Agata教授对涡虫再生研究的贡献远远不止这些。他第一次发明了涡虫特异的流式细胞技术,专门用来分选涡虫的成体干细胞。还首次鉴定出涡虫神经系统中起重要作用的6种神经元及它们相应的分子标记。

与Kiyokazu Agata教授同一时期的Alejandro

SánchezAlvarado教授,同样对涡虫再生的研究起着重要的推动作用。他推动的地中海涡虫全基因组测序项目,使得涡虫再生的研究更加系统化,并把涡虫再生研究带进了研究再生分子机制的新时代。

这位教授第一次将双链RNA喂食敲低基因的方法引入到涡虫领域,使得涡虫再生机制的研究进入了一个更深的层次。他首次大规模地筛选了1200多个在其它物种中高度保守的基因,发现其中243个基因对涡虫的再生或稳态的维持有重要的作用。这一结果无疑对后来再生机制的研究有重要的铺垫和提示作用。

此外,他还通过基因芯片技术,率先筛选出了一批干细胞特异表达并且对涡虫再生有重要作用的基因,并首次提出了涡虫成体干细胞谱系假说。他于2012年在国际著名杂志《科学》上发表文章,发现涡虫成体干细胞分裂过程中无中心体的形成,并且通过生物信息学的方法分析,发现中心体组分家族基因在涡虫中缺失。

PhilNewmark教授开展涡虫相关的研究稍晚一些,他的主要研究方向在涡虫生殖系统再生方面。他通过对有性和无性两种品系cDNA文库的比较,发现了一批在有性涡虫中特异表达的基因。他的发现对高等生物生殖系统发育调控有重要的指导作用。同时他们实验室的另一个方向是关注涡虫神经系统的发育,他们通过质谱分析的方法发现涡虫中存在许多神经肽,为后续使用涡虫研究神经退行性疾病作了很好的铺垫。

近些年在涡虫再生领域很活跃的另一位科学家PeterReddien教授,在涡虫再生研究中有不可磨灭的贡献,

他发现了是什么让涡虫能够“头缺长头,尾缺生尾”,以及涡

虫的成体干细胞中存在一类具有全能性的细胞,能够产生涡虫再生所需的所有类型的细胞。他还发现了调控涡虫眼睛再生的关键基因。他的工作多次发表在《科学》上。

中国科学家对涡虫的研究开始得比较早,但社会关注不足,进展不是很快。早期的工作主要还是集中在生物学的分类研究方面。近年来,中国科学院上海生命科学研究院/上海交通大学医学院健康科学研究所荆清研究员及清华大学吴

畏教授等人率先在国内展开相关工作,并且已经有了一定的科研成果。

例如,荆清研究员的科研团队经过7年多努力,从一个培养皿中的十几只涡虫养起,到现在已经拥有一个现代化的涡虫房,培养了数万只涡虫。他们成功克隆并筛选了近千个基因,制备了十余个涡虫特异性抗体,自主设计并完成基因芯片,建立了染色质免疫沉淀等技术手段,逐步完善了实验体系。在此基础上,他们探索到了不少微小RNA信号通路

和染色质调控因子在组织再生中的功能。

从2008年起,他们开始关注再生过程中调控基因在特

定时间、位置表达的过程,这当时在世界上还少有人关注。组织器官的再生过程包括伤口愈合、细胞迁移、细胞增殖、细胞分化、细胞交流及形态建成等一系列复杂的生物学过程,再生得以正常进行需要细胞内的基因在受到损伤等刺激后,

能够按照再生的需要在特定的时间和特定的位置表达。微小RNA在基因转录后水平的调控以及染色质调控因子在基因转录水平上的调控,这两点是调节基因表达的时间和空间的重要因素。

首先,荆清团队通过敲低微小RNA信号通路的重要蛋白来解析其在组织再生中的功能,揭示了微小RNA在成体干细胞增殖及再生过程中的重要作用。紧接着,他们对染色质调控因子在涡虫组织再生中的功能进行了探索,系统性地鉴定了涡虫再生相关的关键染色质因子。通过涡虫基因系列比对分析,他们鉴定了210个潜在的染色质蛋白编码基因,其中205个基因被成功克隆,而12个基因的敲低明显抑制了再生。

有趣的是,他们发现的许多再生基因在涡虫中的功能,与其在哺乳动物干细胞中的角色非常类似。通过整合筛选获得的结果,他们构建了一个涡虫成体干细胞内的表观调控网路,更重要的是,这些重要的染色质调节复合体都参与了哺乳动物干细胞的调控,这提示涡虫的成体干细胞使用了与高等哺乳动物干细胞高度保守的染色质调控机制,这些结果对于高等生物的干细胞研究有着借鉴意义。

链接常见的模式生物

细数历年的诺贝尔生理学或医学奖,以线虫、果蝇、非

洲爪蟾蜍和小鼠为模式生物的相关研究分别有3项、5项、13项和30项。这些模式生物对于人类理解生物和医学的基本规律做出了不可替代的贡献。

关于组织为何以及如何再生的问题,一直以来吸引着无数的生物学家、生物医学工程师以及临床医生。再生能力在同一生物的不同器官特别是不同生物之间存在着巨大的差异,不同的生物之间也利用不同的再生策略来完成再生过程。表一列举了目前生物学研究中常用的具有完全或部分再生

能力的模式生物。(见下表)

在无脊椎动物中再生能力比较强大的动物有水螅和涡

虫两种,其中水螅的再生实际上是其出芽生殖方式的一种。

目前脊椎动物再生研究比较集中于两类:斑马鱼及两栖动物(分为有尾目和无尾目)。斑马鱼的再生研究主要集中

于两个方面:鱼鳍和心脏。当斑马鱼鱼鳍受伤时,伤口周围的上皮细胞可以迁移到伤口处,形成伤口上皮,随后未受伤组织细胞“无序化”,间充质内的细胞进行增值,经历12~48小时后最终形成一个芽基,随后芽基继续生长并进一步分化来重建缺失的组织。而斑马鱼心脏受伤后,普遍认为是启动了心肌细胞的去分化,随即这些去分化形成的前体细胞增殖分化来弥补受伤的部分。两栖动物中的再生现象比较普遍,有尾目中的动物像蜥蜴、蝾螈等,它们的尾巴、四肢受到损伤时可以类似于斑马鱼鱼鳍受伤一样首先形成伤口上皮、芽

基,随后通过芽基内细胞的增殖分化来重建缺失的身体。无尾目的青蛙、蟾蜍的再生研究主要集中于蝌蚪形态时的尾巴和四肢,而机制也不尽相同。

2020公需科目《当代科学技术前沿知识》考试(共50题,共100分)4

2020公需科目当代科学技术前沿知识考试(共50题,共100分) 一.单项选择题(共20题 ,共40分) (D) 是国际上首个独立掌握火星着陆巡视探测技术的国家。[2分] A前苏联 B美国 C日本 D中国 2.无人遥控潜水器最早出现在(A),主要用于考古方面的研究。[2分]。 A 1953年 B 1973年 C 1993年 D 2003年 3在生命起源的理论中, (B)主张从物质的运动变化规律来研究生命的起源,认为在原始地球的条件下,无机物可以转变为有机物,有机物可以发展为生物大分子和多分子体系,直到最后出现原始的生命体。[2分 A特创论 B生源论 C泛胚种论 D化学进化论 4.海洋立体观测监视系统是利用多种技术手段,进行海洋综台、立体观测监视的组合系统,下列不属于海洋立体观测监视系统的技术手段的是(B)。[2分] A调查船观测 B深海生物资源 C浮标监测 D卫星遥感 5.载人潜水器, 特别是载人深潜器是当代海洋科技的制高点之一。下列属于我国载人深潜器的是(D)。[2分] A“双鱼座”4号 B“深海6500"号 C”和平I”号 D“蛟龙”号 6.(B)年,前苏联成功发射人类第一颗人造地球卫星,开创了空间科技的新纪元,人类从此进入空间时代。 [2分] A 1947 B 1957

C 1967 D 1977 7.(A)由一层石墨层片卷曲而成,是结构最简单的碳纳米管。 [2分] A单壁碳纳米管 B多壁碳纳米管 C石墨烯 D富勒烯 8.海岸带生境具有独特的生物群落和极高的生态价值,下列不属于海岸带生境的是 (A )。[2分] A热液口 B珊瑚礁 C湿地 D三角洲 9.相比传统燃油车,以下哪点不属于纯电动汽车的缺点: (C)。[2分] A续航里程短 B充电时间长 C车辆能耗高 D仅适用于市区内通勤 10.1948年,(B) 物理学家伽莫夫等提出了大爆炸宇宙模型,该模型取得巨大的成功。[2分] A前苏联 B美国 C德国 D英国 11.近年来, -系列信息技术的发展及其在设施农业中的结合应用,颠覆了传统农业生产方式,发展出了智能高效的设施农业。以下哪项信息技术与设施农业的智能化发展无关: (D)。(2分] A物联网 B云计算 C人工智能 D集成电路 12.载人潜水器,特别是载人深潜器是当代海洋科技的制高点之一。下列不属于载人深潜器的是(A)。[2分] A“海翼”号 B“蛟龙”号 C“深海勇士”号 D“鹦鹉螺”号

新版实验报告册答案(八上)

生物(八上)实验报告册答案 P___1 观察与思考:水螅的形态与捕食 思考与联想:不能可以感知和捕捉来自各个方向的猎物。 思考与联想:水螅用刺细胞捕食水蚤,在内胚层消化。 P___3 实验:观察蚯蚓 材料用具:糙纸放大镜 方法步骤: 1(1)前端有环带。背面颜色比腹面深。 13 (2)粗糙刚毛后方 2.肌肉的收缩。 3. 粘滑 讨论:1.蚯蚓的身体呈两侧对称,可分出前后、左右、背腹。 2. 使运动灵活、自如。 3. 支撑身体、辅助运动。 4. 因为蚯蚓靠湿润的体壁呼吸,如果蚯蚓体表干燥,蚯蚓将窒息死亡。 P___6 观察与思考:双壳类动物的特点 思考与联想:保护 思考与联想:足鳃入水管获取水中的食物颗粒,出水管排出食物残渣。 P___7 观察与思考:节肢动物的特点 思考与联想: 2. 蝗虫和七星瓢虫的形态结构比较相似,体表较硬;身体分节,不同体节有差异;触角和足 都分节;有翅。 3. 体表较硬身体分节,不同体节有差异有分节的足 P___9观察与思考:鲫鱼的外形与运动 思考与联想:是流线形有利于减少鱼在水中运动时的阻力有 体验与联想:抓过粘滑粘液 再观察:交替张合水从鱼口流入,从鳃盖后缘流出。 思考:呼吸鳃丝中有血管 扩大了与水的接触面积,鱼在水中呼吸。 思考与联想:入鳃的水含氧较多,出鳃的水二氧化碳较多 当鱼离开水时,鱼不能从空气中得到足够的氧而窒息死亡。

讨论: 1. 鱼体呈流线形,有利于克服在水中运动时的阻力。 2.不全面。鱼在游泳时,主要靠躯干部和尾鳍的摆动进行运动,其他鳍起协调作用。 P___11观察与思考:青蛙的外形与运动 思考与联想:绿色有利于青蛙的生存。 体验与联想:湿滑 青蛙的前肢短小,可支撑身体;。后肢发达,趾间有蹼,便于跳跃和划水。P___12观察与思考:多种多样的鸟 思考与联想: 思考: 鸟喙的特征与鸟的食性相适应。如,啄木鸟的喙强直,尖锐,适于啄食树干中的昆虫。 鸟足的特征与鸟的生活环境相适应。如,丹顶鹤的腿细长,适于在浅水中行走、觅食。 体表覆盖羽毛,有翼、喙等结构。 P___14 探究:鸟类适于飞行的形态结构特点 第一组假设:鸟的体型和翼适于飞行 第二组假设:鸟的肌肉和骨骼适于飞行 第三组假设:鸟的消化系统和循环系统适于飞行 第四组假设:鸟的呼吸和视觉适于飞行 第一组结论:流线型的体型和翼适于鸟的飞行 第二组结论:发达的胸肌和薄、轻的骨骼适于鸟的飞行 第三组结论:强大的消化能力和循环系统适于鸟的飞行 第四组结论:旺盛的呼吸和发达视觉适于鸟的飞行 P___17观察与思考:哺乳动物的牙齿 思考与联想: 都有门齿和臼齿狼有犬齿,兔没有 狼是肉食动物,犬齿尖锐撕咬猎物。兔是草食动物,门齿切断食物,臼齿磨碎食物。 提高了动物摄取食物的能力,增强了对食物的消化能力。

《生物医用材料》论文

《生物医用材料》课程论文生物医用材料的发展与应用 姓名 学院 专业 学号 指导教师 2015年5月16日

生物医用材料的发展与应用 摘要:随着社会文明进步、经济发展和生活水平日益提高,人类对自身的医疗康复事业格外重视。生物医用材料是近年来发展迅速的新型高科技材料,生物医用材料的应用对挽救生命和提高人民健康水平做出了重大贡献,随着现代医学飞速发展不断获得关注,发展前景广阔。本文主要介绍了近年生物医用材料的发展状况、分类以及在医学上的一些应用。 关键词:生物医用材料;发展;应用 The development and application of biomedical materials Abstract: With the progress of social civilization,economic development and the improvement of the living level,the cause of human medical rehabilitation for their attention.Biomedical materials is a new high-tech material developed rapidly in recent years,the application of biomedical materials has made great contribution to save lives and improve people's health level,along with the rapid development of modern medicine has gained attention,broad prospects for development.This paper mainly introduces the status and development of biomedical materials,classification and application in medicine. Keyword:Biomedical materials; Development; Application

有关再生医学学习的感想

有关再生医学学习的感想 再生医学是21世纪生物学和医学科学研究的重要发展方向,并将成为临床转化医学发展的重点,它的概念有广义和狭义之分。广义上讲,再生医学可以认为是一门研究如何促进创伤与组织器官缺损生理性修复以及如何进行组织器官再生与功能重建的新兴学科,可以理解为通过研究机体的正常组织特征与功能、创伤修复与再生机制及干细胞分化机理,寻找有效的生物治疗方法,促进机体自我修复与再生,或构建新的组织与器官以维持、修复、再生或改善损伤组织和器官功能。狭义上讲是指利用生命科学、材料科学、计算机科学和工程学等学科的原理与方法,研究和开发用于替代、修复、改善或再生人体各种组织器官的定义和信息技术,其技术和产品可用于因疾病、创伤、衰老或遗传因素所造成的组织器官缺损或功能障碍的再生治疗。 再生医学的内涵已不断扩大,包括组织工程、细胞和细胞因子治疗、基因治疗、微生态治疗等,国际再生医学基金会(IFRM)已明确把组织工程定为再生医学的分支学科。第一位提出“组织工程学”术语的是美籍华裔科学家冯元桢教授。组织工程学的基本原理是,从机体获取少量活组织的功能细胞,与可降解或吸收的三维支架材料按一定比例混合,植入人体内病损部位,最后形成所需要的组织混器官,以达到创伤修复和功能重建的目的。王正国认为,组织工程的科学意义不仅在于提出了一个新的治疗手段,

更主要的是提出了复制组织、器官的新理念,使再生医学面临重大机遇与挑战。王正国说,一般情况下,组织工程学和再生医学没有严格区分。现在学术界认为,凡是能引导组织再生的各种方法和技术均被列入组织工程范畴内,如干细胞治疗、细胞因子和基因治疗。从外科学的发展历程来看,在先后经历了三个“R”阶段,即“切除(Resection)、诊疗(Repair)和替代(Replacement)”之后,组织工程学的出现,意味着外科学已经进入“再生医学”的新阶段,即第四个“R”。 目前机体损伤和疾病康复过程中受损组织和器官的修复与重建,仍然是生物学和临床医学面临的重大难题。借助于现代科学技术的发展,使受损的组织器官获得完全再生,或在体外复制出所需要的组织或器官进行替代性治疗,已经成为生物学、基础医学和临床医学关注的焦点。据报道,全世界每年约有上千万人遭受各种形式的创伤,有数百万人因在疾病康复过程中重要器官发生纤维化而导致功能丧失,有数十万人迫切希望进行各种器官移植。但令人遗憾的是,一方面,目前的组织器官修复无论是体表还是内脏,仍然停留在瘢痕愈合的解剖修复层面上,离人们所希望的“再生出一个完整的受损器官”差距甚远;另一方面,器官移植作为一种替代治疗方法尽管有其巨大的治疗作用,但它仍然是一种“拆东墙补西墙”的有损伤和有代价的治疗方法,而且由于受到伦理以及机体免疫排斥等方面的限制,很难满足临床救治的需要。而再生医学的出现,就可以解决这一系列的问题。

干细胞与再生医学

需要重点看的概念 1 embryonic stem cells, ES 胚胎干细胞 2 Stem cells 干细胞 3 hematopoietic stem cell 造血干细胞 4 Neural stem cells (NSCs) 神经干细胞are initially present in a single layer of pseudostratified epithelium spanning the entire distance from the central canal to the external limiting membrane. NSCs continue to proliferate, and are patterned over several days in vivo to generate mature neurons, oligodendrocytes, and astrocytes. 神经干细胞起先呈现为单层假复层上皮,覆盖于整个中央管到外部的限制性膜。神经干细胞能增殖,并在数天内产生成熟的神经元、星形胶质细胞和少突胶质细胞。 5 plasticity 可塑性一种成体干细胞具有生成另一个组织的特化细胞的能力,即成体干细胞具有一定跨系、甚至跨胚层分化的特性,称其为干细胞的可塑性,也称为成体干细胞的横向分化。Transdifferentiation (plasticity of stem cell): means the adult stem cell from one embryonic layer can differentiate into cells derives from other layer. 6 Human mesenchymal stem cells 人间充质干细胞 7.fate mapping 干细胞命运图:在正常环境下受各种稳态因素调节的分化趋势。这些趋势包括干细胞对机体正常发育活动的参与,以及干细胞对各种生物学危险诸如组织损伤、器官衰老以及疾病的反应。 判断 7 There must be stem cells that divide and generate neurons in the adult mammalian brain. (T) 在成年的哺乳类动物体内一定有能够分裂并产生神经元得干细胞存在 填空 8 (adult) stem cells have been identified in the brain, particularly in a region important in memory, known as the hippocampus. 研究者已经证实脑中含有成体干细胞,特别是在对记忆尤为重要的海马区 9 NEP cells continue to proliferate, and are patterned over several days in vivo to generate mature (neurons) , oligodendrocytes, and astrocytes in a characteristic spatial and temporal pattern. 神经上皮干细胞持续增殖,并在数天内被模式化,以特有的时空模式产生成熟的神经元、星形胶质细胞和少突胶质细胞。 问答 10 neuronal precursors can be isolated from 神经前体细胞可从哪些部位分离 1) the developing human brain, 发育中的人脑 2) adult human hippocampus, 成人的海马

诱导性多能干细胞的研究进展及其在再生医学上的应用

文献综述 诱导性多能干细胞的研究进展及其在再生医学上的应用 摘要:通过特定转录因子的过表达使体细胞重编程为诱导性多能干细胞(induced pluripotent stem cells, iPS 细胞),这一成果引起了整个生命科学领域的广泛关注. 由于 iPS 细胞不仅具有与人类胚胎干细胞(embryonic stem cell, ES 细胞)相似的基本特征,而且与 ES 细胞相比,不存在免疫排斥和伦理道德问题,因此,具有重要的临床应用潜能. 目前, iPS 细胞主要用于细胞分化和移植,并可提供体外的疾病模型,以便于研究疾病形成的机制、筛选新药以及开发新的治疗方法. 从 iPS 细胞的产生、诱导方法、生物学特征和在再生医学中的应用作以研究! 关键词:诱导性多能干细胞;胚胎干细胞;重编程;再生医学 正文 1iPS 细胞的产生 主要经历了 3 个大的阶段. 1981 年,小鼠胚胎干细胞(embryonic stem cell,ES 细胞)建系干细胞是近 30 年来生物学发展最快的领域(Evans 和 Kaufman),这些具有全能性的细胞在体外可以诱导分化为不同类型的细胞,为组织修复开辟了新途径. 尽管这些细胞来源于囊胚内细胞团,基本不存在去分化和重编程的问题,但自诞生之日起,就一直深受伦理道德和异体排斥等问题的困扰. 随着克隆羊“多利”的诞生,开创了体细胞在卵母细胞中去分化和重编程的先河. 2000 年,Munsie等从小鼠体细胞核移植囊胚中分离得到了小鼠 ES 细胞,从而拉开了治疗性克隆研究的序幕,使利用病人的健康体细胞对自身的病变组织进行修复成为了可能,尽管这一技术可以避免异体移植所造成的排斥反应,但仍然深陷伦理道德争论的漩涡之中.2006 年,Yamanaka 等将 4 个转录因子导入已分化的小鼠皮肤成纤维细胞,进而获得了类似于 ES 细胞的多能性干细胞,即“诱导性多能干细胞”(induced pluripotent stem cells,iPS 细胞). 2007 年,Yu 等和 Takahashi 等又分别采用相同的基因改造的方法将人的体细胞逆转为类 ES 细胞,这些划时代的成果不仅解决了利用干细胞进行组织修复所面临的免疫排斥和伦理学问题,在利用病人正常细胞进行组织自我修复方面具有巨大的应用前景,而且是用来研究细胞去分化和基因组重编程的重要途径(不需要胚胎或卵母细胞). 这个具有里程碑意义的发现揭开了再生医学领域的新篇章. 2iPS 细胞的诱导方法 迄今为止,短短几年的时间内 iPS 细胞的研究取得了突飞猛进的发展,仅诱导方式而言,从病毒方法如逆转录病毒、慢病毒和腺病毒,到非病毒的转座子载体和蛋白质均能介导外源转录因子诱导产生 iPS 细胞. 利用逆转录病毒和慢病毒载体诱导生成 iPS 细胞时,可能会引起外源基因整合到体细胞基因组,引起插入突变,如果将这些 iPS 细胞应用于临床治疗,会存在安全隐患. 因此,Aoi 等利用不与宿主细胞整合的腺病毒、质粒为表达载体瞬时转染靶细胞可以获得 iPS

再生医学

再生医学 再生医学的概念与范畴 有位专家认为,再生医学是通过研究机体的正常组织特征与功能、创伤修复与再生机制及干细胞分化机理,寻找有效的生物治疗方法,促进机体自我修复与再生,或构建新的组织与器官,以改善或恢复损伤组织和器官的功能的科学。他提出移植干细胞可优势分布于损伤局部,但数量有限(<3%),将基因克隆到腺病毒表达载体能加强定向,转染干细胞使之增加基因表达,增强了促愈合作用。同时还发现了3个来源于大鼠、5个来源于人的真皮干细胞克隆、体外长期连续培养过程中全部发生恶性转化。不同干细胞克隆转化时间从5 0代至80代不等,建议在临床实际应用中不要用培养很多代的干细胞。 有的专家指出,再生医学是指利用生物学及工程学的理论方法创造丢失或功能损害的组织和器官,使其具备正常组织和器官的机构和功能。卢世璧院士还介绍了软骨组织工程方面的进展。 还有专家认为,再生医学的概念应有广义和狭义之分。广义上讲,再生医学可以认为是一门研究如何促进创伤与组织器官缺损生理性修复以及如何进行组织器官再生与功能重建的新兴学科,可以理解为通过研究机体的正常组织特征与功能、创伤修复与再生机制及干细胞分化机理,寻找有效的生物治疗方法,促进机体自我修复与再生,或构建新的组织与器官以维持、修复、再生或改善损伤组织和器官功能。狭义上讲是指利用生命科学、材料科学、计算机科学和工程学等学科的原理与方法,研究和开发用于替代、修复、改善或再生人体各种组织器官的定义和信息技术,其技术和产品可用于因疾病、创伤、衰老或遗传因素所造成的组织器官缺损或功能障碍的再生治疗。 英国《再生医学》杂志1月刊登了一份由加拿大麦克劳克林—罗特曼全球卫生中心完成的关于中国再生医学研究现状的报告。该报告认为,进入21世纪以来,中国再生医学领域的研究迅速发展,在国际学术期刊上发表的相关论文数量位居世界第五,一些研究成果处于世界领先地位。 所谓再生医学,是指利用生物学及工程学的理论方法,促进机体自我修复与再生,或构建新的组织与器官,以修复、再生和替代受损的组织和器官的医学技术。这一技术领域涵盖了干细胞技术、组织工程和基因工程等多项现代生物工程技术,力图从各个层面寻求组织和器官再生修复和功能重建的可能性。 “再生医学”这一名词的提出还不到20年时间。这是在生命科学、材料科学、工程学、计算机技术等多学科的飞速发展和日益交融的基础上发展起来的一门新兴学科,是人类医学发展的一次飞跃。再生医学的发展同时也带动了上述各学科向应用领域的发展以及交叉合作。 干细胞具有再生各种组织器官的潜在功能,干细胞技术因而成为再生医学的基础。干细胞是一群尚未完全分化的细胞,它就像是万能细胞,在特定条件下可以向各种组织细胞分化,在生命体的胚胎发育、组织更新和修复过程中扮演着关键的角色。1968年,美国明尼苏达大学医学中心首次采用骨髓造血干细胞移植,成功治疗了一例先天性联合免疫缺陷病。干细胞移植技术现已用于多种疾病的临床治疗和相关基础研究,几乎涉及人体所有的组织和器官。 组织工程是指采用各种种子细胞和生物材料在体外进行组织构建,再造各种人工组织或器官,它涉及生命科学、材料学和工程学等多个领域。目前,多种生物材料已经成功应用于人工骨和关节、人工晶体、医用导管、人工心脏瓣膜以及血管支架,人造肺、心脏、肝、肾和角膜等各种人工器官也在大力研究开发。 基因工程技术是再生医学中必不可少的手段。对干细胞甚至已经分化的体细胞进行基因重新编程,可以用于治疗各种基因缺陷造成的遗传性疾病或恶性肿瘤。人工器官中的种子细胞往往也需要通过基因重新构建向特定方向分化。结合基因打靶技术以及干细胞克隆技术可以改变异种组织和器官的表型,使得异种移植有望成为可能。 再生医学的核心和终极目标是修复或再生各种组织和器官,解决因疾病、创伤、衰老或遗传因素造成的组织器官缺损和功能障碍。可以想象,如果将来人类有能力对任何细胞都进行编程和干细胞诱导分化,生产制造出任何一种人工器官,那么,绝大多数疾病就能治愈,人类可实现延长寿命之梦。

动物标本实验报告

动物标本实验报告 篇一:动物剥制标本的制作 动物剥制标本的制作 一、实验目的 动物剥制标本是一种利用动物皮张制成的标本,适用于大部分脊椎动物,尤其是鸟类和哺乳类,在动物学教学和科研中有着广泛的应用。 剥制标本分为真剥制和假剥制两类。真剥制就是将动物皮张还原为生活姿态加以展示。所谓假剥制就是不再将皮张还原为原来动物的姿态,而是简单的展示皮张上体现的特征。本实验为动物剥制实验中的真剥制。 二、实验用品 1. 工具:解剖刀,镊子,棉花,铁丝,剪刀,针线,解剖盘等。 2. 材料:家兔 3. 药品:樟脑粉 三、实验方法 1. 杀死家兔:利用折颈法 2. 清洁标本:如有血污沾染,用棉花醮少许冷水,细心将血污擦拭干净。 3. 剥皮:将家兔头朝左侧腹面向上放在实验台上,自胸部中线处将毛分开,向后到肛门处纵向切开皮肤,切时不

能过深,以见到肌肉为止,不要割开肌肉或腹腔,以防内脏和血污染毛皮。再继续将腹部两侧,背部及后腿部的肌肉与皮肤分离,并从股骨近端处剪断,再将生殖器、直肠与皮肤连接处剪断,清除尾基部的结缔组织,用手轻轻捻搓尾部,使皮与肌肉松动,然后一手握住尾根,另一手用拇指和食指卡住尾根,然后用力拉出尾椎骨。剥头部时,需特别注意,将毛皮继续上剥,用解剖刀边划割边上拉毛皮。眼耳处要翻剥,千万不能割破皮肤,耳朵的软骨小心剪断,否则兔子的耳朵竖不起来。沿着眼睑边缘细心地剖割,切勿割破眼睑和眼球。眼球剥离后,继续剥到上下嘴唇的前端为止,保留少许上、下唇皮跟头骨相连。随后用骨剪截断颈椎,使躯干和头骨分离。前后肢要小心翻剥,后肢翻剥到脚踝处,留腓骨,剥净趾骨基部的肌肉(留下趾骨,便于生态整形),将皮上附着的脂肪和肌肉除净。头骨放入水中煮熟,仔细的将脑髓,肉等都清理干净。剥皮要特别小心,总体上是先剥身体再剥四肢,头部要特别小心。 4. 涂防腐剂:涂时要均匀,特别是颅腔内要多涂些,涂时要注意尽量勿碰脏毛皮,要都涂遍不能有漏除的地方。 5. 做支架:取三根合适长度的铁丝,头部脊柱、四肢共用三根铁丝(左前肢与右前肢,左 后肢与右后肢,头部脊柱连通尾各一根),要设计好各部分的长短比例,三者拧在一起。

2019甘肃省 中考专题训练语文试卷:阅读理解 附答案.

优质大题 说明文 2 篇 (一)(2019 抚本铁辽葫黑白卷改编)阅读下面的文章,完成1~4 题。(13 分) 用“面粉”修复牙齿 ①俗话说“牙痛不是病,痛起来真要命”,随着生活水平的提高和饮食结构的变化,牙病的发病率不断上升,主要的牙齿疾病就是牙齿缺损。造成牙齿缺损的原因有很多,主要是龋齿,其次为外伤、磨蚀、酸蚀等。修复方法可根据牙体缺损情况和使用材料情况,选用树脂修复、全瓷修复、烤瓷修复等。可以采取的方法也有很多,如拔牙、补牙、种植假牙等方式,但这些方法不仅给患者带来痛苦,还耗时费力、花费不菲。有没有更简便的办法治疗牙病? ②最近,一项获得中国专利银奖的再生医学材料展示出美好的应用前景。所谓再生医学,是指利用生命科学、材料科学、计算机科学和工程学等学科的原理与方法,研究和开发用于替代、修复、改善或再生人体各种组织器官技术,其技

术和产品可用于因疾病、创伤、衰老或遗传因素所造成的组织器官缺损或功能障碍的再生治疗。基于这种研究方向研究出的用于牙齿修复的再生医学材料,会给现在传统的口腔疾病治疗方法,打开一片新的天地。 ③这种再生医学材料外貌朴实,长得像我们平时司空见惯的“面粉”。可这面粉来头不小,可别小看它,它是由纳米级的颗粒组成。研发团队成员仇越秀博士告诉记者,人体的软硬组织其实是三维网状结构,组织受损后如何恢复是一个世界难题。她所带领的团队瞄准这个方向,历经上万次实验,研制成功这种高科技再生医学材料。在显微镜下,这些再生医学材料颗粒表面看起来就像马蜂窝状的孔洞,其内部也布满密密麻麻但大小均匀的孔洞。孔洞虽小,它们的表面积加在一起却非常巨大,100 克材料的孔洞面积相当于 5 个足球场大小。 ④这些细小颗粒的基础材料是硅、钙、磷:硅元素通过植酸改变前驱分子结构,将硅键有序排序,形成和人体组织接近的三维网状细胞支架,诱导细胞的键合、修复、再生,形成和原来一样的组织。这些细小颗粒材料进入牙齿表面缺

生物材料小论文

生物材料是用于与生命系统接触和发生相互作用的,并能对其细胞、组织和器官进行诊断,治疗,替换,修复,诱导再生的一类天然或人工合成的特殊功能材料。整体来看,生物材料学是一门高度综合性的学科,涉及到化学、物理、生物化学、等等各方问题。例如在天然生物材料方面,涉及到了生物的相关知识,天然生物材料包括结构蛋白质,结构多糖,生物矿物,生物复合材料。在结构蛋白和多糖方面涉及到了一些高中时学过的生物知识,像蛋白质的结构特征,多样性等等。还有像生物材料中存在的氢键等化学键有涉及到无机化学方面的相关知识。 学习过程中给我印象最深的是有一个很形象的比喻,人的身体像机器一样,机器的零件会随时间的推移而老化,人体的器官也是一样会老化,机器的零件很容易换,人体的器官也会很容易换吗?想的这个比喻就会想到生物医用材料,以前生物医用材料不发达的时候,人体器官的短缺造成很多人生活很不方便,也有的人因此失去生命,现在有很多人造器官应用成功的例子。比如课上看的视频中旅馆的老板安装的人造手臂,开始时肯定是很不适应新手臂,动作上会很不协调,但是随着磨合,人造手臂肯定会带来一定的方便之处。还有美国的一男子用尸体的手臂代替了原来自己被爆竹炸毁的手臂的案例都让我感到生物医用材料减缓了人体残疾的痛苦。 生物材料又有很多种,像生物医用材料,生物无机材料,生物高分子材料,以及生物金属材料等等。每种材料都存在各自的优缺点。生物医用金属材料:优点:良好的化学和力学性质而得到较广泛的应用。主要用于骨骼、关节、牙齿等硬组织的修复和替换。主要缺点是不具有生物活性,难于和生物组织形成牢固的结合;长期植入人体后由于化学稳定性下降,会有杂质离子析出,对周围组织造成危害;而且金属材料的弹性模量要比人骨大得多,这会造成局部应力屏蔽现象,使材料易断裂和人体不适。生物陶瓷材料:主要用于人工肩关节、膝关节、肘关节、足关节以及能够负重骨杆和椎体人工骨。优点是能在生理环境中具有高的强度和耐腐蚀性,化学稳定性好;缺点:它们不具有生物活性,与生物组织间的结合基本是机械嵌连。生物高分子材料:广泛用于人工皮肤、角膜、肌腱、韧带、血管、人工脏器等组织和器官的修复与制造;缺点是大多不具有生物活性优点是植入人体后,被降解为对人体无害的小分子产物,可通过新陈代谢途径排出体外,不影响人体组织的正常生长。 生物材料正在逐渐走入人们的生活,尤其是在医用方面,早期的生物材料的发展完全依附于材料科学的发展;现代的生物材料是相对独立的一门学科和研究领域,不断开发新型生物材料,应用领域的逐渐扩大,对生命现象的再认识,材料与生物体相互作用的理论研究,仿生材料与结构(原位诱导再生),高速增长的市场和经济效益无一不告诉我们生物材料的发展在逐渐趋向于成熟,以前人们对生物医用材料了解很少,比如人造器官等,但是现在人造器官不再是触不可及,甚至已经有人提出用动物心脏解决人体心脏的短缺。在未来20~30年内,生物医用材料和植入器械科学和产业将发生革命性变化:一个为再生医学提供可诱导组织或器官再生或重建的生物医用材料和植入器械新产业将成为生物医用材料产业的主体;表面改性的常规材料和植入器械作为其重要的补充。保守估计,2030 年左右两者可能导致世界高技术生物材料市场增长至≈US.5万余亿元,与此相应,带动相关产业新增间接经济效益可达US.5万余亿元。①数字来源于中国生物技术信息网。 生物医用金属材料 生物医用金属材料是指一类用作生物材料的金属或合金,又称外科用金属材料。它是一类生物惰性材料。通常用于整形外科、牙科等领域,具有治疗、修复固定和置换人体硬组织系统的功能。在生物医学材料中,金属材料应用最早,已有数百年的历史。人类在古代就已经尝试使用外界材料来替换修补缺损的人体组织。与生物陶瓷及生物高分子材料相比,生物医用金属材料,如不锈钢、钴基合金、钛和钛合金以及贵金属等具有高的强度、良好的韧性及抗弯曲疲劳强度、优异的加工性能等许多其它医用材料不可替代的优良性能。 生物医用金属材料的研究和发展要严格满足如下的生物学要求:良好的组织相容性 ,包括无毒性、无热源反应、不致畸、不致癌、不引起过敏反应或干扰机体的免疫机理、不破坏临近组织,也不发生材料表面的钙化沉着等;良好的物理、化学稳定性,包括强度、弹性、尺寸稳定性、耐腐蚀性、耐磨性

精准与再生医学在防控心血管疾病方面的应用

精准与再生医学在防控心血管疾病方面的应用 精准与再生医学正在成为打开心血管疾病防治大门的金钥匙,肾素受体、代谢调控机制与干预、创新药物研发等或成为心血管疾病精准干预的利剑,心血管疾病新靶点环节将引领大家一探究竟。血管再生、细胞重编程及表型转化、血管微环境等,这些研究或改写心血管防控的历史。心脏间充质细胞与心肌修复、多能干细胞治疗心衰、心脏再生、血管干/祖细胞与血管损伤性重构等,这些研究或许是再生医学传唱新(心)声的开始,精彩不容错过。 精准医学兼顾特色、错位发展 医疗偏差以及无效治疗成为困扰全球医药卫生界的一大挑战,给人类的生命及财产带来重大损失。以心血管疾病防控为例,当前我国心血管疾病发病率、死亡率居高不下且仍在攀升,医疗偏差以及无效治疗难辞其咎。精准医学自2015年问世,现已成为极具前景的发展方向之一。中国拥有世界上最丰富的临床资源,这正在成为精准医学在我国落地生根、长期稳定快速发展打下良好的基础。 精准医学在心血管疾病防控方面也是取得了一定的成绩,比如: (1)当前已能识别出肥厚型心肌病相关致病基因。(2)冠心病和高血压属于多基因疾病,研究证实结合遗传风险评估具有良好的临床预测价值,这也将成为精准干预的突破口。(3)心律失常分子遗传学领域的成就突出,除基于离子通道机制的治疗外,新的干预靶点包括亚细胞器、胞内运输系统、转录后调控体系及生物治疗等。特别是遗传性心律失常取得了里程碑式进展,遗传性心律失常精准医疗时代已来临,精准医疗将在该领域率先寻求突破。(4)面对如此庞大的患者群体,精准医学势在必行,让我们一起拥抱精准医学,发掘更多新的精准干预靶点。 再生医学,助力心脏焕发新(心)声 再生医学标志着21世纪医学发展方向,以心肌细胞再生为例指出,当前,医药界尚缺乏有益于心肌死亡后再生的药物,而心肌细胞再生技术或可从根本上实现心脏病治疗的革命性突破,期待在该领域取得突破性进展。与此同时,作为冠心病干预研究的战略方向——细胞治疗可以替补坏死的心肌细胞,亟需启动冠心病细胞治疗相关研究工作。

八年级生物新人教版涡虫

涡虫 涡虫采集 涡虫喜淡水生活,特别喜欢生活在阴凉的溪流中,常常隐蔽在水底石块或树叶下面,以捕食水中的小型甲壳类、轮虫、线虫和昆虫幼虫为主。 采集时,应选择林下或背阴处的溪流,翻动水底石块和树叶,常常可以找到涡虫。由于涡虫身体背部具有黑褐色的保护色,采集中要仔细寻找。如果寻找不到,可选择鱼鳃、鱼肠和牛肉等动物性食物作为诱饵,放在水中,用石块压好,过几小时或半天以后,检查诱饵,往往可以见到有涡虫在诱饵上取食。这时,可用毛笔将诱饵上的涡虫刷下,放到盛有溪水的容器中。诱饵可以重新压好,继续进行诱捕。 涡虫的观察 1.观察外形 可将涡虫从水中取出,放在载玻片上,仔细观察它的身体形状、体型大小、各部分体色变化、头端和尾端的区别以及口的位置等特点,尤其要了解眼点和嗅觉器官在头端上的位置,因为头端是涡虫身体最活跃的部位。 2.观察运动 可利用涡虫取食的机会,观察它的运动。涡虫能在水中物体上作游泳状爬行。如果用放大镜观察它的身体腹面,可以清楚地看到密生着许多纤毛。正是纤毛不停地摆动,才产生了涡虫的爬行运动。 3.观察摄食 当涡虫取食时,可以看到它将肌肉质的咽从口中伸出,插进食物中,不断吸吮,将食物颗粒吸入体内。涡虫非常贪吃,吃饱后还会呆在食物上,久久不肯离开。 应将上述观察内容及时进行记录。 采集涡虫做实验 七八月份正是旅游的好季节。如果你有机会到山区去旅游,在欣赏祖国大好风光的同时,建议你不要忘记带一只干净瓶子去采集点涡虫。 涡虫是扁形动物门的代表动物。它生活在山间小溪或流水的河底。 涡虫特别喜爱干净,当水质遭到污染时,它就受不了,会死去。因此,我们要找涡虫一定要到无污染的水域中去找。如果水流中看不到一条涡虫,这条水流很可能已经被污染了。 涡虫很怕光,因此都扒在水中的石块底下。采涡虫时要不断翻开河底的石头察看。 涡虫喜欢群居,因此在一块石头上常能找到几条涡虫集在一起。 从水中捞起石头,若发现石头底面扒着几条灰黑色的,长约1厘米~2厘米,宽0.5厘米,头呈三角形,扁扁的软软的动物,那就是涡虫了。这时,我们可以用毛笔轻轻地把它刷在瓶中,瓶中要注入较多的溪水,最好瓶中再加些水绵或水中的小虫,作为它的食物。 把涡虫带回家后,可放养在大水槽、鱼缸或大碗中,要求所用的水的水质一定要好,自来水中溶有较多氯气,不适于培养涡虫,最好是井水或泉水。温度要适宜,保持在20~26℃之间,大于30℃涡虫就要死亡,低于10℃涡虫生长迟缓,0℃就停止生长了。培养的环境也很重要,一要避光,二要干净。最好在水槽中也放几块石头,给涡虫创造一个近似自然的生态环境。涡虫的食物除水绵、水草或水中的小虫外,也可喂些新鲜的瘦肉末。注意,每周都必须更换一些新鲜的水。 养涡虫是为了观察和实验。 你是否注意涡虫是怎么取食的?请注意观察它腹面有一个吻,这是取食器官。 你是否注意涡虫的眼?它没有真正的眼睛,但在头部背面中央有一对黑点,具有感光作用。 你把扒有涡虫的石块翻过来,让涡虫见到光亮,请注意,涡虫会慢慢爬到石头底下躲藏。涡虫行动迟缓,主要通过身体的收缩与伸长向前进。

关于生物材料的一些思考

关于生物材料的一些思考 在课堂上,老师向我们介绍了生物材料,尤其是其对于未来前景的展望让我心驰神往,抛开迂腐的道学家的偏见,生物材料的发展对人类百利而无一害。 尤其是老师进一步向我们介绍的生物再生,并由此而引发的关于人类器官再生乃至器官超市的构想让我心向往之,所以收集资料,写下这篇不能称之为论文的一点思考吧。 (一)关于生物材料 根据老师上课所讲,生物材料替代人体器官或增进功能方面起着重要作用。近年来,随着科学技术的发展,器官移植正由保证生存向提高生活质量的方向发展。因而,生物材料迅速成为高新技术产业的新生长点而发展极快。在生物材料的应用初期,由于对生物材料与机体反应的认识不足所导致的医疗事故,也不断警示人们重视生物材料有效性及安全性评价,尤其是长期随访和后效评价的重要性。 2.问题: (1).生物相容性 指生物材料有效和长期在生物体内或体表行使其功能的能力。用于表征生物材料在生物体内与有机体相互作用的生物学行为。 根据材料与生物体接触部位分为: 血液相容性,与心血管外的组织和器官接触,力学相容性。考察力学性能与生物体的一致性. 材料要有合适的强度、硬度、韧性、塑性等力学性能以满足耐磨、耐压、抗冲击、抗疲劳、弯曲等医用要求。生物相容性主要包括血液相容性、组织相容性。材料在人体内要求无不良反应,不引起凝血、溶血现象,活体组织不发生炎症、排拒、致癌等。耐生物老化性能。材料在活体内要有较好的化学稳定性,能够长期使用,即在发挥其医疗功能的同时要耐生物腐蚀、耐生物老化。成形加工性能。容易成形和加工,价格适中。生物材料植入人体内后,可对局部组织和全身产生作用和影响。主要包括局部的组织反应和全身的免疫反应。 (二)关于再生 1.自然界的再生 (1)基本特点 生物界普遍存在再生现象.广义的再生包括分子水平,细胞水平,组织与器官水平及整体水平的再生. 一般再生是指生物体缺失部分的重建过程.

第三代生命科学论之——干细胞再生医学的理论存在严重缺陷

《第三代生命科学论》之 ——干细胞再生医学的理论存在严重缺陷 作者:颜丙强张涛 单纯的向人体内输入大量的干细胞,虽然患者会感觉像是被“打了鸡血”一样兴奋,短期内会出现某些症状的改善,但是长期看来会造成整体机体的代谢负担,引发代谢系统的进一步失调。 目前,干细胞再生医学遇到发展瓶颈与科研困难的根本,是因为他们有一个基础性的认知是有缺陷的。在科学研究中,确实观察到了人体细胞在新旧代谢的过程中,人体内的干细胞不断的进行多种转化与分化,在组织器官的新旧更替中起到至关重要的作用。于是就想当然的认为,人体内受损的组织器官不能被修复与再生的根源是人体中的干细胞数量不足所导致。于是,就开始在体外培养与富集大量的自体的或异体的干细胞,然后把他们再注射到人体中去。他们认为,只要是补充了足够数量的干细胞,那些损伤的组织与器官就会获得修复与再生。 他们这种思想认知的根源,是由于还原论思维的定式造成的,把人体看作是一个机械式的组合式整体。他们认为人体出现问题的根源是因为这个组合整体的一个要素缺少了、不足了,只要通过外援补充这个要素,就是可以起到恢复组合整体的效果。 但是,其实人体是从一个单细胞原始整体开始分化的分化式整体,是一个元整体,是一个无比复杂的巨系统。人体组织器官损伤后不能被修复的根源,不仅仅是一个干细胞数量多少的要素,还与许许多多的的其他要素共同相关。只有众多的要素都具备了,机体才能对被损伤的组织器官进行修复与再生。而让众多要素都具备的最佳方式,一定不是一味地补充注射干细胞,而是要想方设法的启动起人体本自具足的自组织机制。只有人体的自组织机制,才能把众多的要素备齐,并能进行有机的调度与分配。因此,研究如何依靠和推动机体进行自主调理,发挥机体的自组织机制和能力,才是再生医学的第一基本原理。 美国哈佛大学心脏干细胞研究的丑闻事件,即证实了心脏中根本不存在心脏干细胞,也证实了并不是直接向心脏里注射干细胞就会起到修复与再生的作用。2019年12美国辛辛那提儿童医院在《自然》杂志发表的那片论文称“干细胞心脏疗法”的背后机制或与“干细胞”无直接联系,而是由注射时导致了伤口或损伤,是由伤口愈合反应诱导引起的心脏向好反应。因此,事实已经一再证明,研究如何诱导人体的自组织系统启动,才是回归真正再生医学的必由之路。 作者简介: 颜丙强,男,山东省济南人,中国共产党党员,《第三代生命科学论》作者。2007年博士毕业于山东大学生命科学学院,2009年9月份得到国家主席党总书记胡锦涛同志的亲切接见与勉励,并在中央电视台《新闻联播》节目中播出,一直致力于坚持利用钱学森先生的人体复杂系统论思想,思考与重建当代生命科学技术体系,总结分析了人体生命系统的六大基本原理。 颜丙强博士领导的团队在系统论思想与理论的指导下,充分论证了“癌症是一种代谢性疾病”,应主要遵循代谢调理的治疗思路,并研究出了一套综合调理方案;在利用中草药提取成份诱导人体组织器官原位再生领域取得巨大突破,实现了人体多组织器官的原位修复与

试验十四涡虫的形态结构与生命活动

实验十四涡虫的形态结构与生命活动 继腔肠动物之后,动物界发展演变中重大关键性变化的主要标志是由水生过渡到陆生,由固着或漂浮生活过渡到自由爬行生活,并相应出现形态结构的一系列重大变化。扁形动物首次出现了两侧对称体制和中胚层;与此关联,,身体结构出现了器官系统的初步分化,从而标志着动物界系统发育进入了一个新的阶段。 涡虫是扁形动物中自由生活的蠕形动物。涡虫的形态结构和生命活动反映了扁形动物的基本特征,而且有助于理解扁形动物进化特征的出现为动物由水生进化到陆生提供了重要的基本条件。 一、目的与要求: 1. 学习对低等蠕形动物进行活体观察和实验的一般方法。 2. 了解扁形动物的基本特征,进步性特征及其生物学意义。 二、材料与用品: 活涡虫、涡虫示神经系统整体装片和涡虫示生殖系统整体装片玻片标、涡虫横切面标本;显微镜、体视显微镜、放大镜、解剖针、镊子、载玻片、盖玻片、培养皿、10ml烧杯、滴管、毛笔、吸水纸、黑纸、精密pH试纸(pH值范围0.5-5.0和5.0-7.0);食盐、硫酸镁结晶、洋红粉末、0.02%、0.04%、0.1%醋酸、熟蛋黄 三、操作与观察: 用毛笔在培养缸内挑选一条活涡虫,置载玻片上的水滴中。 1. 外部形态:用放大镜或在体视显微镜下观察。可见涡虫体扁长,背部微凸,灰褐色;体前端呈三角形,两侧略突起称耳突,前端背面、耳突内侧有一对黑色眼点;体后端稍尖。用解剖针将虫体翻至腹面向上,可见其腹面较扁平,颜色较浅,密生纤毛,腹面近体后1/3处有口。#为什么说涡虫的身体呈两侧对称体型?虫体的背、腹面功能有何分化? 2. 运动:观察涡虫在载玻片上滑行运动,用镊子头挡在涡虫行进方向的前方,涡虫如何行进?#涡虫的运动有方向性吗?涡虫的运动方式与其两侧对称体型有何相关性?有何进步意义? 3. 涡虫对刺激的反应:注意观察涡虫应答刺激的运动方式。用解剖针轻触虫体的前端、后端和其他部位,观察虫体不同部位对刺激的反应。#说明什么? 涡虫的趋性: a.盐度影响:在载玻片上涡虫滑行前方的水中放一小粒盐,观察涡虫有何反应? b. 酸度影响:用滴管吸取一条涡虫,连水滴于载玻片上。用另一滴管取0.04%醋酸滴一滴在涡虫水滴旁,两液滴间由液桥连通。观察涡虫的运动,用pH试纸检测涡虫水滴和醋酸pH值。#涡虫对酸的趋性如何? c.光照的影响:将数条涡虫放入盛水的培养皿中,分布均匀,再用黑纸(或黑塑料)将培养皿的一半遮住,将培养皿置光下片刻后,观察涡虫的趋光反应。#在涡虫生活的水环

我对生物材料的认识和看法

我对生物材料的认识和看法 生物材料,也称为生物医学材料,是以医疗为目的,用于与组织接触以形成功能的无生命的材料,具有天然器官组织的功能或天然器官部分的功能,是生物医学科学中的最新分支学科。 生物材料的开发和利用可以追溯到3500年前,古埃及人开始利用棉纤维,马鬃作缝合线缝合伤口;印第安人则使用木片修补损伤的颅骨;2500年前,中国和埃及的墓葬中就发现了假牙,假鼻和假耳;1588年人们用黄金板修复额骨;1775年就有用金属固定体内骨折的记载;1851年发明了天然橡胶的硫化方法,有人采用硬胶木制作了人工牙托的腭骨。总体来讲,生物材料的发展可以分为3个阶段: ①无害阶段。这一阶段主要采用对人体组织化学惰性的无害材料。目前惰性生物材料主要品种有金属材料,如不锈钢、钛基合金等;非金属材料,如氧化铝、氧化硅、铝酸钙等陶瓷;有机高分子材料,如聚乙烯、聚甲基丙烯酸甲酯、碳纤维等;复合材料,如纤维增强聚合物材料、金属-陶瓷复合材料。 ②有益阶段。这一阶段表现在生物材料的生物化,重点为对惰性生物材料所制成的人工器官和医疗器械在使用过程中与组织或血液产生的界面反应和惰性生物材料的生物化-即在不破坏原有材料性能的基础上,通过表面改性设计使材料在长期使用过程中与细胞亲和性好,不产生炎症、凝血、畸变、甚至癌变等反应的研究。 ③真正的生物材料阶段。这一阶段主要是组织工程支架材料,特点是:无毒,具有良好的生物相容性和组织相容性;可降解吸收,在组织形成过程中材料降解并被吸收;可加工性,尤其是能形成三维结构并有较大的孔隙率,以便进行营养物质传输、气体交换、废物排泄;使细胞按一定形状生长,良好材料-细胞界面,利于细胞黏附、增殖、激活细胞特异基因表达等。 到目前为止,被详细研究过的生物材料已有一千多种 ,医学临床上广泛使用的也有几十种 ,涉及到材料学的各个领域。目前生物医用材料研究的重点是在保证安全性的前提下寻找组织相容性更好、可降解、耐腐蚀、持久、多用途的生物医用材料,具体体现在以下几个方面: ①提高生物医用材料的组织相容性。途径主要有两种,一是使用天然高分子材料;二是在材料表面固定有生理功能的物质。 ②生物医用材料的可降解化。通常应用生物相容性的可降解聚合物去诱导周围组织的生长或

相关文档
最新文档