雷达系统仿真matlab代码

雷达系统仿真matlab代码
雷达系统仿真matlab代码

%

======================================================================= ====================%

% 该程序完成16个脉冲信号的【脉压、动目标显示/动目标检测(MTI/MTD)】

%

======================================================================= ====================%

% 程序中根据每个学生学号的末尾三位(依次为XYZ)来决定仿真参数,034

% 目标距离为[3000 8025 9000+(Y*10+Z)*200 8025],4个目标

% 目标速度为[50 0 (Y*10+X+Z)*6 100]

%

======================================================================= ====================%

close all; %关闭所有图形

clear all; %清除所有变量

clc;

%

======================================================================= ============%

% 雷达参数 % %

======================================================================= ============%

C=3.0e8; %光速(m/s)

RF=3.140e9/2; %雷达射频 1.57GHz

Lambda=C/RF;%雷达工作波长

PulseNumber=16; %回波脉冲数

BandWidth=2.0e6; %发射信号带宽带宽B=1/τ,τ是脉冲宽度

TimeWidth=42.0e-6; %发射信号时宽

PRT=240e-6; % 雷达发射脉冲重复周期(s),240us对应1/2*240*300=36000米最大无模糊距离

PRF=1/PRT;

Fs=2.0e6; %采样频率

NoisePower=-12;%(dB);%噪声功率(目标为0dB)

% ---------------------------------------------------------------% SampleNumber=fix(Fs*PRT);%计算一个脉冲周期的采样点数480;

TotalNumber=SampleNumber*PulseNumber;%总的采样点数480*16=;

BlindNumber=fix(Fs*TimeWidth);%计算一个脉冲周期的盲区-遮挡样点数;

%====================================================================== =============%

% 目标参数 % %====================================================================== =============%

TargetNumber=4;%目标个数

SigPower(1:TargetNumber)=[1 1 1 0.25];%目标功率,无量纲

TargetDistance(1:TargetNumber)=[3000 8025 15800 8025];%目标距离,单位m 距离参数为[3000 8025 9000+(Y*10+Z)*200 8025]

DelayNumber(1:TargetNumber)=fix(Fs*2*TargetDistance(1:TargetNumber)/C); % 把目标距离换算成采样点(距离门) fix函数向0靠拢取整

TargetVelocity(1:TargetNumber)=[50 0 204 100];%目标径向速度单位m/s 速度参数为[50 0 (Y*10+X+Z)*6 100]

TargetFd(1:TargetNumber)=2*TargetVelocity(1:TargetNumber)/Lambda; %计算目标多卜勒频移2v/λ

%====================================================================== ==============%

% 产生线性调频信

号 %

%====================================================================== ==============%

number=fix(Fs*TimeWidth);%回波的采样点数=脉压系数长度=暂态点数目+1

if rem(number,2)~=0 %rem求余

number=number+1;

end%把number变为偶数

for i=-fix(number/2):fix(number/2)-1

Chirp(i+fix(number/2)+1)=exp(j*(pi*(BandWidth/TimeWidth)*(i/Fs)^2));%ex p(j*fi)*,产生复数矩阵Chirp

end

coeff=conj(fliplr(Chirp));%把Chirp矩阵翻转并把复数共轭,产生脉压系数

figure(1);%脉压系数的实部

plot(real(Chirp));axis([0 90 -1.5 1.5]);title('脉压系数实部');

%-------------------------产生目标回波串-----------------------------------------------------------------------------------------%

%-------------------------产生前3个目标的回波串-------%

SignalAll=zeros(1,TotalNumber);%所有脉冲的信号,先填0

for k=1:TargetNumber-1 % 依次产生各个目标

SignalTemp=zeros(1,SampleNumber);% 一个PRT

SignalTemp(DelayNumber(k)+1:DelayNumber(k)+number)=sqrt(SigPower(k))*Ch irp;%一个脉冲的1个目标(未加多普勒速度)

(DelayNumber(k)+1):(DelayNumber(k)+number)

Signal=zeros(1,TotalNumber);

for i=1:PulseNumber % 16个回波脉冲

Signal((i-1)*SampleNumber+1:i*SampleNumber)=SignalTemp; %每个目标把16个SignalTemp排在一起

end

FreqMove=exp(j*2*pi*TargetFd(k)*(0:TotalNumber-1)/Fs);%目标的多普勒速度*时间=目标的多普勒相移

Signal=Signal.*FreqMove;%加上多普勒速度后的16个脉冲1个目标

SignalAll=SignalAll+Signal;%加上多普勒速度后的16个脉冲4个目标

end

% %-------------------------产生第4个目标的回波串-------%

fi=pi/3;

SignalTemp=zeros(1,SampleNumber);% 一个脉冲

SignalTemp(DelayNumber(4)+1:DelayNumber(4)+number)=sqrt(SigPower(4))*ex p(j*fi)*Chirp;%一个脉冲的1个目标(未加多普勒速度)

Signal=zeros(1,TotalNumber);

for i=1:PulseNumber

Signal((i-1)*SampleNumber+1:i*SampleNumber)=SignalTemp;

end

FreqMove=exp(j*2*pi*TargetFd(4)*(0:TotalNumber-1)/Fs);%目标的多普勒速度*时间=目标的多普勒相移

Signal=Signal.*FreqMove;

SignalAll=SignalAll+Signal;

figure(2);

subplot(2,1,1);plot(real(SignalAll),'r-');title('目标信号的实部');grid on;zoom on;

subplot(2,1,2);plot(imag(SignalAll));title('目标信号的虚部');grid on;zoom on;

%====================================================================== ==============%

% 产生系统噪声信

号 %

%====================================================================== ==============%

SystemNoise=normrnd(0,10^(NoisePower/10),1,TotalNumber)+j*normrnd(0,10^ (NoisePower/10),1,TotalNumber);

%均值为0,标准差为10^(NoisePower/10)的噪声

%====================================================================== ==============%

% 总的回波信

号 %

%====================================================================== ==============%

Echo=SignalAll+SystemNoise;% +SeaClutter+TerraClutter,加噪声之后的回波

for i=1:PulseNumber %在接收机闭锁期,接收的回波为0

Echo((i-1)*SampleNumber+1:(i-1)*SampleNumber+number)=0; %发射时接收为0

end

figure(3);%加噪声之后的总回波信号

subplot(2,1,1);plot(real(Echo),'r-');title('总回波信号的实部,闭锁期为0'); subplot(2,1,2);plot(imag(Echo));title('总回波信号的虚部,闭锁期为0');

%================================时域脉压

=================================%

pc_time0=conv(Echo,coeff);%pc_time0为Echo和coeff的卷积

pc_time1=pc_time0(number:TotalNumber+number-1);%去掉暂态点 number-1个

figure(4);%时域脉压结果的幅度

subplot(2,1,1);plot(abs(pc_time0),'r-');title('时域脉压结果的幅度,有暂态点');%pc_time0的模的曲线

subplot(2,1,2);plot(abs(pc_time1));title('时域脉压结果的幅度,无暂态点

');%pc_time1的模的曲线

% ================================频域脉压

=================================%

Echo_fft=fft(Echo,8192);%理应进行TotalNumber+number-1点FFT,但为了提高运算速度,进行了8192点的FFT

coeff_fft=fft(coeff,8192);

pc_fft=Echo_fft.*coeff_fft;

pc_freq0=ifft(pc_fft);

figure(5);

subplot(2,1,1);plot(abs(pc_freq0(1:TotalNumber+number-1)));title('频域脉

压结果的幅度,有前暂态点');

subplot(2,1,2);plot(abs(pc_time0(1:TotalNumber+number-1)-

pc_freq0(1:TotalNumber+number-1)),'r');title('时域和频域脉压的差别');

pc_freq1=pc_freq0(number:TotalNumber+number-1);%去掉暂态点 number-1个,后填充点若干(8192-number+1-TotalNumber)

% ================按照脉冲号、距离门号重排数据

=================================%

for i=1:PulseNumber

pc(i,1:SampleNumber)=pc_freq1((i-

1)*SampleNumber+1:i*SampleNumber);%每个PRT为一行,每行480个采样点的数据

end

figure(6);

plot(abs(pc(1,:)));title('频域脉压结果的幅度,没有暂态点');

% ================MTI(动目标显示),对消静止目标和低速目标---可抑制杂波

=================================%

for i=1:PulseNumber-1 %滑动对消,少了一个脉冲

mti(i,:)=pc(i+1,:)-pc(i,:);

end

figure(7);

mesh(abs(mti));title('MTI result');

% ================MTD(动目标检测),区分不同速度的目标,有测速作用

=================================%

mtd=zeros(PulseNumber,SampleNumber);

for i=1:SampleNumber

buff(1:PulseNumber)=pc(1:PulseNumber,i);

buff_fft=fft(buff);

mtd(1:PulseNumber,i)=buff_fft(1:PulseNumber);

end

figure(8);mesh(abs(mtd));title('MTD result');

%=======================================虚实矩阵转换

========================================%

coeff_fft_c=zeros(1,2*8192);

for i=1:8192

coeff_fft_c(2*i-1)=real(coeff_fft(i));

coeff_fft_c(2*i)=imag(coeff_fft(i));

end

echo_c=zeros(1,2*TotalNumber);

for i=1:TotalNumber

echo_c(2*i-1)=real(Echo(i));

echo_c(2*i)=imag(Echo(i));

end

%===========================以下是为DSP程序提供回波数据、脉压系数

===============================%

% fo=fopen('F:\my study\Visual_DSP_test\test_1\coeff_fft_c.dat','wt');%频域脉压系数

% for i=1:2*8192

% fprintf(fo,'%f,\r\n',coeff_fft_c(i));

% end

% fclose(fo);

%

% fo=fopen('F:\my study\Visual_DSP_test\test_1\echo_c.dat','wt');%16次回波的

% for i=1:2*TotalNumber

% fprintf(fo,'%f,\r\n',echo_c(i)); % end

% fclose(fo);

最新多普勒雷达系统仿真

多普勒雷达系统仿真

精品好文档,推荐学习交流 摘要 现代通信系统要求通信距离远、通信容量大、传输质量好,作为其关键技术之一的调制解调技术一直是人们研究的一个重要方向。本文以MATLAB为软件平台,充分利用其提供的通信工具箱和信号处理工具箱中的模块,对数字调制解调系统进行Simulink设计仿真,并且进行误差分析。 数字化正交数字化正交调制与解调是通信系统中十分重要的一个环节,针对不同的信道环境选择不同的数字化正交数字化正交调制与解调方式可以有效地提高通信系统中的频带利用率,改善接收信号的误码率。本设计运用Simulink仿真软件对二进制调制解调系统进行模型构建、系统设计、仿真演示、结果显示、误差分析以及综合性能分析,重点对BASK,BFSK,BPSK进行性能比较和误差分析。在实际应用中,视情况选择最佳的调制方式。 本文首先介绍了课题研究的背景,然后介绍系统设计所用的Simulink仿真软件,随后介绍了载波数字调制系统的原理,并根据原理构建仿真模型,进行数字调制系统仿真,最后对设计进行总结,并归纳了Simulink软件使用中需要注意的事项。本文的主要目的是对Simulink的学习和对数字调制解调理论的掌握和深化,为今后在通信领域继续学习和研究打下坚实的基础。 关键字:排通信系统,Simulink仿真,数字化调制解调,BASK,BFSK

精品好文档,推荐学习交流 ABSTRACT TheThe Modern communication systems require communication distance, large communication capacity, good transmission quality, as one of its key technologies modem technology has been an important direction for researchers. In this paper, MATLAB software platform, providing full use of its communications toolbox and signal processing toolbox module, digital modulation and demodulation system Simulink design simulation and error analysis. Modulation and demodulation is a very important part of the communication system, for different channel environment to select different modulation and demodulation system can effectively improve the spectrum efficiency in a communication system, improve the bit error rate of the received signal. This design using Simulink simulation software binary modulation and demodulation system modeling, system design, simulation demo showed that the error analysis and comprehensive performance analysis, focusing on the BASK, BFSK, BPSK performance comparison and error analysis. In practice, as the case may select the best modulation. This paper describes the background of the research, then describes the system design using Simulink simulation software, then introduced the carrier digital modulation system of principles, and build a simulation model based on the principle of digital modulation system simulation, and finally the design summary and induction Simulink software matters that need attention. The main purpose of this paper is to study and Simulink digital modem theory of mastery and deepening for the future to continue learning and research in the field of communication and lay a solid foundation. Key Words: queuing theory, demand management, telecom offices

雷达系统仿真matlab代码.docx

% ====================================================== =====================================% % 该程序完成16个脉冲信号的【脉压、动目标显示/动目标 检测(MTI/MTD)】 % ====================================================== =====================================% % 程序中根据每个学生学号的末尾三位(依次为XYZ)来决定仿真参数,034 % 目标距离为[3000 8025 9000+(Y*10+Z)*200 8025],4个目标 % 目标速度为[50 0 (Y*10+X+Z)*6 100] % ====================================================== =====================================% close all; %关闭所有图形 clear all; %清除所有变量 clc; % ====================================================== =============================% % 雷达参 数 % % ====================================================== =============================% C=3.0e8; %光速(m/s) RF=3.140e9/2; %雷达射频 1.57GHz Lambda=C/RF;%雷达工作波长 PulseNumber=16; %回波脉冲数 BandWidth=2.0e6; %发射信号带宽带宽B=1/τ,τ是脉冲宽度TimeWidth=42.0e-6; %发射信号时宽 PRT=240e-6; % 雷达发射脉冲重复周期(s),240us对应 1/2*240*300=36000米最大无模糊距离 PRF=1/PRT; Fs=2.0e6; %采样频率

14元阵列天线方向图及其MATLAB仿真

14元阵列天线方向图及其MATLAB仿真

阵列天线方向图及其MATLAB 仿真 1设计目的 1.了解阵列天线的波束形成原理写出方向图函数 2.运用MATLAB 仿真阵列天线的方向图曲线 3.变换各参量观察曲线变化并分析参量间的关系 2设计原理 阵列天线:阵列天线是一类由不少于两个天线单元规则或随机排列并通过适当激励获得预定辐射特性的特殊天线。 阵列天线的辐射电磁场是组成该天线阵各单元辐射场的总和—矢量和由于各单元的位置和馈电电流的振幅和相位均可以独立调整,这就使阵列天线具有各种不同的功能,这些功能是单个天线无法实现的。 在本次设计中,讨论的是均匀直线阵天线。均匀直线阵是等间距,各振源电流幅度相等,而相位依次递增或递减的直线阵。均匀直线阵的方向图函数依据方向图乘积定理,等于元因子和阵因子的乘积。 二元阵辐射场: 式中: 类似二元阵的分析,可以得到N 元均匀直线振的辐射场: 令 ,可得到H 平面的归一化方向图函数,即阵因子的方向函数: 式中:ζφθψ+=cos sin kd 均匀直线阵最大值发生在0=ψ 处。由此可以得出 ])[,(212121ζθθθ?θj jkr jkr m e r e r e F E E E E --+=+=12 cos ),(21jkr m e F r E E -=ψ?θθζ φθψ+=cos sin kd ∑-=+-=10)cos sin (),(N i kd ji jkr m e e r F E E ζ?θθ?θ2πθ=)2/sin()2/sin(1)(ψψψN N A =kd m ζ?-=cos

这里有两种情况最为重要。 1.边射阵,即最大辐射方向垂直于阵轴方向,此时 ,在垂直于阵轴的方向上,各元观察点没有波程差,所以各元电流不需要有相位差。 2.端射振,计最大辐射方向在阵轴方向上,此时0=m ?或π,也就是说阵的各元电流沿阵轴方向依次超前或滞后kd 。 3设计过程 本次设计的天线为14元均匀直线阵天线,天线的参数为:d=λ/2,N=14相位滞后的端射振天线。基于MATLAB 可实现天线阵二维方向图和三维方向图的图形分析。 14元端射振天线H 面方向图的源程序为: a=linspace(0,2*pi); b=linspace(0,pi); f=sin((cos(a).*sin(b)-1)*(14/2)*pi)./(sin((cos(a).*sin(b)-1)*pi/2)*14); polar(a,f.*sin(b)); title('14元端射振的H 面方向图 ,d=/2,相位=滞后'); 得到的仿真结果如图所示: 14元端射振天线三维方向图的源程序为: y1=(f.*sin(a))'*cos(b); z1=(f.*sin(a))'*sin(b); x1=(f.*cos(a))'*ones(size(b)); surf(x1,y1,z1); 2 π?±=m

脉冲多普勒雷达测速仿真

任务书 雷达进行PD测速主要是利用了目标回波中携带的多普勒信息,在频域实现目标和杂波的分离,它可以把位于特定距离上、具有特定多普勒频移的目标回波检测出来,而把其他的杂波和干扰滤除。因此要求雷达必须具备很强的抑制杂波的能力,能在较强的杂波背景中分辨出运动目标的回波。 如今,不管是在军用还是民用上,雷达都在发挥着它很早重要的作用,与早期雷达采用距离微分方法测速相比,基于脉冲多普勒理论的雷达测速技术具有实时性好、精度高等优点。特别是现代相控阵技术在雷达领域的应用,实现了波束的无惯性扫描和工作方式的快速切换,更便于应用脉冲多普勒技术进行雷达测速。 本篇课程设计目的在于介绍脉冲多普勒雷达测速的原理,并对这种技术进行介绍和仿真。

摘要 脉冲多普勒(PD)雷达以其卓越的杂波抑制性能受到世人瞩目。现代飞行器性能的改进和导航手段的加强,使其能在低空和超低空飞行,因此防御低空入侵己成重要问题,由此要求机载雷达,包括预警机雷达和机载火控雷达具有下视能力,即要求能在强的地杂波背景中发现微弱的目标信号,所以现代的预警机雷达和机载火控雷达皆采用PD体制。脉冲多普勒雷达包含了连续波雷达和脉冲雷达两方面的优点,它具有较高的速度分辨能力,从而可以更有效地解决抑制极强的地杂波干扰问题;此外,脉冲多普勒雷达能够同时敏感地测定距离和速度信息;能够利用多普勒处理技术实现高分辨率的合成孔径图像;而且亦具有良好的抗消极干扰能力和抗积极干扰能力。 本文介绍了脉冲多普勒雷达测速的原理,信号处理。并用matlab简单的仿真了雷达系统对信号的处理. 关键词:脉冲多普勒雷达恒虚警脉冲压缩线性调频 Abstact Pulse Doppler (PD) radar is famous for it`s outsdanding clutter suppression.Modern aircraft`s function and GPS has been strengthen.now.it makes the aircraft can fly lower and lower.So.nowadays,Defensing.Low altitude invasion has been an important problem.so we require airborne radar. Early warning radar and airborne fire control radar have the ability to look down.That is to say.The radar is be required the ability to find Weak target signal in the strong Groung clutter.So .The modern airborne early warning radar and airborne fire control radar use the PD system.Pulse Doppler (PD) radar concludes two adervantages of Continuous wave radar and impulse radar.It has a higher velocity resolution.thus it can effectively.soveing the problem of strong ground clutter.what`s more.Pulse Dppler (PD) radar can Sensitive text the Distance and speed on the same time.Itcan use Doppler processing technology to realise Synthetic aperture images with high resolution. This article sinply introduced principle of pulse Doppler radar and signal

用matlab 仿真不同天线阵列个天线的相关系数

2.3.1 阵列几何图 天线阵可以是各种排列,下图所示分别为圆阵(UCA)、线阵(ULA)、矩形阵(URA)排列方式与空间来波方向关系图,为简化整列分析,假设阵元间不考虑耦合,L 为天线数目,天线间距相等且均为d ,为入射在阵列上的水平波达角,为垂直波达角。 图2- 1 阵列排列方式与空间来波方向的关系 1) 圆阵排列方式的天线响应矢量为: 011cos() cos() cos() cos() (,)[,,...,,...,]l L j j j j T U C A a e e e e ξ?ψξ?ψξ?ψξ?ψ θ?-----= 公 式2- 1 其中2/,0,1,...,1l l L l L ψπ==-为第l 天线阵元的方位角,sin(),w w k r k ξθ=为波 数 2) 线阵排列方式的天线响应矢量为: cos sin (1)cos sin (,)[1,,...,]w w jk d jk d L T U LA a e e ?θ ?θ θ?-= 公式2- 2 3) 矩形阵列方式的天线响应矢量为: (1)()[(1)] (1)[(1)(1)](,)(()())[1,,...,,,,... ,...,,...,] T jv j p v ju j u v u URA N p j u p v j N u j N u p v T a vec a u a v e e e e e e e θ?-++---+-== 公式2- 3 ,N P 分别为x ,y 方向的天线数目,这里设x y d d =, (1)()[1,,...,]ju j N u T N a u e e -=; cos sin w x u k d ?θ=; (1)()[1,,...,]jv j p v T p a v e e -=;

雷达信号matlab仿真

雷达信号matlab仿真

雷达系统分析大作 作 者: 陈雪娣 学号:0410420727 1. 最大不模糊距离: ,max 1252u r C R km f == 距离分辨率: 1502m c R m B ?= = 2. 天线有效面积: 22 0.07164e G A m λπ == 半功率波束宽度: 3 6.44o db G θπ == 3. 模糊函数的一般表示式为 () ()()2 2* 2 ;? ∞ ∞ -+= dt e t s t s f d f j d πττχ 对于线性调频信号 ()21 j t p p t s t ct e T T πμ??= ? ??? 则有: ()()2 21 ;Re Re p j t T j t d p p p t t f ct ct e e dt T T T πμπμτ χτ∞+-∞????+= ? ? ? ????? ? () ()()sin 1;11d p p d p d p p f T T f T f T T τπμττχττπμτ????+- ? ? ? ???????=- ? ?????+- ? ? ? ? 分别令0,0==d f τ可得()()2 2 0;,;0τχχd f ()() sin 0;d p d d p f T f f T πχπ=

()sin 1 ;01 1p p p p p T T T T T τπμττχττπμτ?? ??- ? ? ? ???????=- ? ?????- ? ?? ? 程序代码见附录1的T_3.m, 仿真结果如下:

4. 程序代码见附录1的T_4.m, 仿真结果如下:

哈工大雷达系统仿真实验报告

雷达系统仿真 实验报告 姓名:黄晓明 学号: 班级:1305203 指导教师:谢俊好 院系:电信学院

实验一杂波和色噪声的产生—高斯谱相关对数正态随机序列的产生 1、实验目的 给定功率谱(相关函数)和概率分布,通过计算机产生该随机过程,并估计该过程的实际功率谱和概率分布以验证产生方法的有效性。 2、实验原理 1)高斯白噪声的产生 2 2 2 (x) f(x) μ σ - - = 、 2 2 2 (z) x F(x)dz μ σ - - =? 均值:μ为位置参数、方差:2 σ、均方差:σ为比例参数。 若给定01 X~N(,) ',则2 X X~N(,) μσμσ ' =+。 MATLAB中对应函数normrnd(mu,sigma,m,n),调用基本函数01 randn(m,n)~N(,)产生标准正态分布。 标准正态分布的产生方法有舍选抽样法、推广的舍选抽样法、变换法、极法、查表法等,其中变换法的优点是精度高,极法运算速度较变换法快10~30%,查表法速度快。 (1)反变换法、反函数有理逼近法 令0.5, t r x =-= () 2 012 23 123 0,1 1 a a x a x X signt x N b x b x b x ++ ?? =- ? +++ ?? 式中 2.515517 a=, 1 0.802833 a=, 2 0.010328 a=, 1 1.432788 b=, 2 0.189269 b=,3 0.001308 b=。用这一方法进行抽样,误差小于10-4。 (2)叠加法 根据中心极限定理有:先产生I组相互独立的01 [,]上均匀分布随机数,令 1 I i i Y r = =∑,则当N较大时212 Y~N(I,I)。一般可取12 I=,则601 Y~N(,) - (3)变换对法(Box-Muller method)

MATLAB仿真天线阵代码

天线阵代码 一、 clc clear all f=3e9; N1=4;N2=8;N3=12; a=pi/2; %馈电相位差 i=1; %天线电流值 lambda=(3e8)/f; %lambda=c/f 波长 d=lambda/2; beta=2.*pi/lambda; W=-2*pi:0.001:2*pi; y1=sin((N1.*W./2))./(N1.*(sin(W./2))); %归一化阵因子 y1=abs(y1); r1=max(y1); y2=sin((N2.*W./2))./(N2.*(sin(W./2))); %归一化阵因子 y2=abs(y2); r2=max(y2); y3=sin((N3.*W./2))./(N3.*(sin(W./2))); %归一化阵因子 y3=abs(y3); r3=max(y3); %归一化阵因子绘图程序, figure(1) subplot(311);plot(W,y1) ; grid on; %绘出N=4等幅等矩阵列的归一化阵因子 xlabel('f=3GHz,N=4,d=1/2波长,a=π/2') subplot(312);plot(W,y2) ; grid on; %绘出N=8等幅等矩阵列的归一化阵因子 xlabel('f=3GHz,N=8,d=1/2波长,a=π/2') subplot(313);plot(W,y3) ; grid on; %绘出N=12等幅等矩阵列的归一化阵因子 xlabel('f=3GHz,N=12,d=1/2波长,a=π/2') %--------------------- %只有参数N改变的天线方向图 t=0:0.01:2*pi; W=a+(beta.*d.*cos(t)); z1=(N1/2).*(W);

相控阵雷达系统的仿真_王桃桃

计算机与现代化 2014年第2期 JISUANJI YU XIANDAIHUA 总第222期 文章编号:1006- 2475(2014)02-0209-04收稿日期:2013-09-29作者简介:王桃桃(1989-),女,江苏沭阳人, 南京航空航天大学自动化学院硕士研究生,研究方向:雷达系统仿真;万晓冬(1960-),女,江苏南京人, 副研究员,硕士生导师,研究方向:分布式仿真技术,实时分布式数据库技术,嵌入式软件测试技术;何杰(1988- ),男,安徽铜陵人,硕士研究生,研究方向:机载红外弱小目标检测,三维视景仿真。相控阵雷达系统的仿真 王桃桃,万晓冬,何 杰 (南京航空航天大学自动化学院,江苏南京210016) 摘要:雷达的数字仿真及雷达仿真库的建立已经成为近年来雷达领域研究的热点。本文主要进行相控阵雷达系统的仿真研究。首先根据相控阵雷达的组成和原理,建立相控阵雷达的仿真模型与数学模型。然后选择Simulink 作为仿真平台,对相控阵雷达系统进行仿真与研究。仿真的模块主要有天线模块、信号环境模块、信号处理模块以及GUI 人机交互界面模块。最终在Simulink 库中生成自己的雷达子库,形成相控阵雷达系统,为后续相控阵雷达的研究奠定基础。关键词:雷达;相控阵;信号处理中图分类号:TP391.9 文献标识码:A doi :10.3969/j.issn.1006-2475.2014.02.047 Simulation of Phased Array Radar Systems WANG Tao-tao ,WAN Xiao-dong ,HE Jie (College of Automation Engineering ,Nanjing University of Aeronautics and Astronautics ,Nanjing 210016,China )Abstract :The digital simulation of radar and the establishment of radar simulation libraries has become research hot spot in radar field in recent years.This paper mainly focuses on phased array radar system simulation.According to the composition and prin-ciple of phased array radar ,it establishes the simulation model and mathematical model of phased array radar.Then ,the paper does simulation and research on phased array radar system by choosing Simulink as the simulation platform.The simulation mod-ule mainly includes the antenna module ,the signal environment module ,the signal processing module and GUI man-machine in-terface module.Eventually it generates radar sub-libraries and forms phased array radar system ,which lay the foundation for fol-low-up phased array radar study. Key words :radar ;phased array ;signal processing 0引言 计算机仿真技术应用于雷达源于20世纪70年代,国内雷达仿真起步较晚,仿真主要是基于SPW 、Matlab 、Simulink 、ADS 、HLA 等平台,其中Simulink 是一种在国内外得到广泛应用的计算机仿真工具,它支持线性系统和非线性系统,连续和离散事件系统,或者是两者的混合系统以及多采样率系统。ADS (Ad-vanced Design System )软件可以实现高频与低频、时域与频域、噪声、射频电路、数字信号处理电路的仿真等。SPW (Signal Processing Workspace )是用于信号处理系统设计的强有力的软件包,在雷达领域有着广泛的应用。HLA (High Level Architecture )提供了基于分布交互环境下仿真系统创建的通用技术支撑框架, 可用来快速地建造一个分布仿真系统。比较4种仿 真平台,SPW 比较昂贵,只能在Unix 操作系统下使用,HLA 通信协议复杂,不同版本的RTI 可能有无法通信的问题。Simulink 应用于雷达仿真比ADS 广泛并易于推广,所以本文采用Simulink 作为仿真平台。 为了进行后期雷达与红外的数据融合,首先需要建立雷达模块以产生雷达数据源,本文根据相控阵雷达的工作原理,采用数字仿真的方法,仿真雷达模块。首先提出相控阵雷达的仿真结构图以及给出各个模块的数学模型,然后根据数学模型,利用Simulink 仿真平台,仿真实现雷达的各组成模块,从而构建一个完整的雷达系统。同时,也可以通过使用S 函数将各个模块封装,然后建成自己的雷达仿真库,从而可以形成不同类型的雷达系统,便于更好地进行雷达系统

MATLAB仿真天线阵代码

天线阵代码 .pudn./downloads164/sourcecode/math/detail750575.htm l 一、 clc clear all f=3e9; N1=4;N2=8;N3=12; a=pi/2; %馈电相位差 i=1; %天线电流值 lambda=(3e8)/f; %lambda=c/f 波长 d=lambda/2; beta=2.*pi/lambda; W=-2*pi:0.001:2*pi; y1=sin((N1.*W./2))./(N1.*(sin(W./2))); %归一化阵因子 y1=abs(y1); r1=max(y1); y2=sin((N2.*W./2))./(N2.*(sin(W./2))); %归一化阵因子 y2=abs(y2); r2=max(y2); y3=sin((N3.*W./2))./(N3.*(sin(W./2))); %归一化阵因子 y3=abs(y3);

r3=max(y3); %归一化阵因子绘图程序, figure(1) subplot(311);plot(W,y1) ; grid on; %绘出N=4等幅等矩阵列的归一化阵因子 xlabel('f=3GHz,N=4,d=1/2波长,a=π/2') subplot(312);plot(W,y2) ; grid on; %绘出N=8等幅等矩阵列的归一化阵因子 xlabel('f=3GHz,N=8,d=1/2波长,a=π/2') subplot(313);plot(W,y3) ; grid on; %绘出N=12等幅等矩阵列的归一化阵因子 xlabel('f=3GHz,N=12,d=1/2波长,a=π/2') %--------------------- %只有参数N改变的天线方向图 t=0:0.01:2*pi; W=a+(beta.*d.*cos(t)); z1=(N1/2).*(W); z2=(1/2).*(W); W1=sin(z1)./(N1.*sin(z2)); %非归一化的阵因子K1 K1=abs(W1); %---------------------- W=a+(beta.*d.*cos(t));

基于Simulink的脉冲多普勒雷达系统建模仿真

基于Simulink的脉冲多普勒雷达系统建模仿真 胡海莽1,杨万海 (西安电子科技大学电子工程学院,陕西 西安 710071) 摘要:利用计算机仿真技术的可控制性,可重复性,无破坏性,安全性,经济性等特点与优势对雷达电子对抗装备及其技术与战术运用等进行仿真与效能评估,是当前和未来雷达与电子对抗领域研究中的一种重要手段。本文的工作是建立一个基于Simulink的雷达系统仿真库,因为MATLAB的使用广泛性,因此基于其上的雷达系统仿真库较易推广。该雷达系统仿真库不仅可以协助设计雷达系统而且可以帮助学生学习雷达系统。 关键词:雷达;建模;仿真 Modeling and Simulation of PD Radar System Based on Simulink HU Hai-Mang, YANG Wan-Hai (Xidian Univ, Xi’an 710071, China) Abstract: The modeling and simulation of radar systems with system simulation tools make it possible to complete scheme reasoning and performance evaluation efficiently. This paper constructs some radar function blocks and models and simulates a pulse Doppler radar system based on Simulink5.0.The software is perfectly applied in the study of algorithms in radar signal processing and displays the system’s performance. Keywords: radar; modeling; simulation; Simulink; 1 引言 在雷达信号处理系统中系统级仿真占有极其重要的地位,经过系统级仿真能够保证产品在最高层次上的设计正确性。因为外场模拟真实战场复杂电磁环境是非常困难的,同时也耗资巨大。外场试验的次数有限,难以全面反映雷达系统在各种复杂环境下的性能,外场测试和设计修改使得试验周期长,并造成巨大浪费。 以往的工作多是基于EDA平台如SPW和SystemView,这些软件专业性很强,而且价格较贵,因此基于这些平台的雷达系统仿真库也较难推广。本文的工作是建立一个基于Simulink的雷达系统仿真库,因为MATLAB的广泛性使用,因此基于其上的雷达系统仿真库较易推广。该雷达系统仿真库不仅可以协助设计雷达系统而且可以帮助学生学习雷达系统。 Simulink是一种开放性的,用来模拟线性或非线性的以及连续或离散的或者两者混合的动态系统的强有力的系统级仿真工具。它是MATLAB的一个附加组件,用来提供一个系统级的建模与动态仿真工作平台。Simulink是用模块组合的方法来使用户能够快速、准确地创建动态系统的计算机模型的。另外,Simulink还提供一套图形动画的处理方法,使用户可以方便地观察到仿真的整个过程。 Simulink5.0在软硬件的接口方面有了长足的进步,Simulink已经可以很方便地进行实时的信号控制和处理、信息通信以及DSP的处理。仿真程序经过编译可以直接下载到DSP等硬件设备中去,使得从系统级仿真到硬件实现可以一气呵成。 本文的仿真基于MATLAB6.5及其所带的Simulink5.0。 2 脉冲多普勒雷达系统仿真 脉冲多普勒(PD)雷达是在动目标显示雷达基础上发展起来的一种新型雷达体制。这种雷达具 作者简介:胡海莽(1977-),男,江苏省淮安市人,现为西安电子科技大学电路与系统学科硕士研究生,研究方向为信息处理,系统仿真。

matlab仿真天线辐射图

微波技术与天线作业 电工1001,lvypf(12) 1、二元阵天线辐射图matlab实现 1)matlab程序: theta = 0 : .01*pi : 2*pi; %确定θ的范围 phi = 0 : .01*pi : 2*pi; %确定φ的范围 f = input('Input f(Ghz)='); %输入频率f c = 3*10^8; %常量c lambda = c / (f*10^9); %求波长λ k = (2*pi) / lambda; %求系数k d = input('Input d(m)='); %输入距离d zeta = input('Input ζ='); %输入方向系数ζ E_theta=abs(cos((pi/2)*cos(theta))/sin(theta))*abs(cos((k*d*sin(theta)+zeta)/2)); %二元阵的E面方向图函数 H_phi=abs(cos((k*d*cos(phi)+zeta)/2)); %二元阵的H面方向图函数 subplot(2,2,1); polar(theta,E_theta); title('F_E_θ') subplot(2,2,2); polar(phi,H_phi); title('F_H_φ'); subplot(2,2,3); plot(theta,E_theta); title('F_E_θ'); grid xlim([0,2*pi]) subplot(2,2,4); plot(phi,H_phi); grid xlim([0,2*pi]) title('F_H_φ');

2)测试数据生成的图形: a)f=2.4Ghz,d=lambda/2,ζ=0 图1,f=2.4Ghz,d=lambda/2,ζ=0 b)f=2.4Ghz,d=lambda/2,ζ=pi 图2,f=2.4Ghz,d=lambda/2,ζ=pi

雷达系统建模与仿真报告

设计报告一 十种随机数的产生 一 概述. 概论论是在已知随机变量的情况下,研究随机变量的统计特性及其参量,而随机变量的仿真正好与此相反,是在已知随机变量的统计特性及其参数的情况下研究如何在计算机上产生服从给定统计特性和参数随机变量。 下面对雷达中常用的模型进行建模: ● 均匀分布 ● 高斯分布 ● 指数分布 ● 广义指数分布 ● 瑞利分布 ● 广义瑞利分布 ● Swerling 分布 ● t 分布 ● 对数一正态分布 ● 韦布尔分布 二 随机分布模型的产生思想及建立. 产生随机数最常用的是在(0,1)区间内均匀分布的随机数,其他分布的随机数可利用均匀分布随机数来产生。 2.1 均匀分布 1>(0,1)区间的均匀分布: 用混合同余法产生 (0,1)之间均匀分布的随机数,伪随机数通常是利用递推公式产生的,所用的混和同余法的递推公式为: 1 n x =n x +C (Mod m )

其中,C是非负整数。通过适当选取参数C可以改善随机数的统计性质。一般取作小于M的任意奇数正整数,最好使其与模M互素。其他参数的选择 (1) 的选取与计算机的字长有关。 (2) x(1)一般取为奇数。 用Matlab来实现,编程语言用Matlab语言,可以用 hist 函数画出产生随机数的直方图(即统计理论概率分布的一个样本的概率密度函数),直观地看出产生随机数的有效程度。其产生程序如下: c=3;lamade=4*200+1; x(1)=11; M=2^36; for i=2:1:10000; x(i)=mod(lamade*x(i-1)+c,M); end; x=x./M; hist(x,10); mean(x) var(x) 运行结果如下: 均值 = 0.4948 方差 = 0.0840 2> (a,b)区间的均匀分布: 利用已产生的(0,1)均匀分布随机数的基础上采用变换法直接产生(a,b)

手把手教你天线设计——用MATLAB仿真天线方向图

手把手教你天线设计—— 用MATLAB仿真天线方向图 吴正琳 天线是一种变换器,它把传输线上传播的导行波,变换成在无界媒介(通常是自由空间)中传播的电磁波,或者进行相反的变换。在无线电设备中用来发射或接收电磁波的部件。无线电通信、广播、电视、雷达、导航、电子对抗、遥感、射电天文等工程系统,凡是利用电磁波来传递信息的,都依靠天线来进行工作。此外,在用电磁波传送能量方面,非信号的能量辐射也需要天线。一般天线都具有可逆性,即同一副天线既可用作发射天线,也可用作接收天线。同一天线作为发射或接收的基本特性参数是相同的。这就是天线的互易定理。天线的基本单元就是单元天线。 1、单元天线 对称振子是一种经典的、迄今为止使用最广泛的天线,单个半波对称振子可简单地单独立地使用或用作为抛物面天线的馈源,也可采用多个半波对称振子组成天线阵。两臂长度相等的振子叫做对称振子。每臂长度为四分之一波长、全长为二分之一波长的振子,称半波对称振子。 对称振子是一种经典的、迄今为止使用最广泛的天线,单个半波对称振子可简单地单独立地使用或用作为抛物面天线的馈源,也可采用多个半波对称振子组成天线阵。两臂长度相等的振子叫做对称振子。每臂长度为四分之一波长、全长为二分之一波长的振子,称半波对称振子。

1.1用MATLAB画半波振子天线方向图 主要是说明一下以下几点: 1、在Matlab中的极坐标画图的方法: polar(theta,rho,LineSpec); theta:极坐标坐标系0-2*pi rho:满足极坐标的方程 LineSpec:画出线的颜色 2、在方向图的过程中如果rho不用abs(f),在polar中只能画出正值。也就是说这时的方向图只剩下一半。 3、半波振子天线方向图归一化方程: Matlab程序: clear all lam=1000;%波长 k=2*pi./lam;

雷达系统仿真实验一

2011 年春季学期研究生课程考核 考核科目:雷达系统仿真(实验一)学生所在院(系):电子与信息工程学院 学生所在学科:信息与通信工程 学生姓名:吴上上 学号:10S005123 学生类别:强军计划 考核结果阅卷人

点迹航迹管理仿真实验 一、实验目的 1. 实践仿真实验过程; 模拟数据 MC 仿真实现 结果分析 2. 理解MC 仿真思想; 3. 掌握仿真实验分析方法。 二、仿真实验模型 1、蒙特卡洛仿真方法 Monte Carlo 仿真方法是通过大量的计算机模拟来检验系统的动态特性并归纳出统计结果的一种随机分析方法。用数学方法模拟真实物力环境,并验证系统的可靠性与可行性。 主要包括随机数的产生、Monte Carlo 仿真设计以及结果解释等。 Monte Carlo 仿真设计的基本原则是,在比较两种方法的性能时,应尽可能的保证相同的实验条件,即保证相同的仿真序列和相同的随机量测误差。 另外还应保证试验的可重复性,以使感兴趣或异常的结果能够被详细检查出来而不需要重复整个仿真试验。可通过将仿真数据及结果打印或写盘来实现。 2、运动模型 在二维平面内当目标在空中作匀速运动时,通常包括匀速直线运动和匀速转向运动或两者交替,设采样间隔为T ,目标检测概率1D P =,且无虚警存在,在直角坐标系下作匀速运动的目标离散运动模型和观测模型 (假定在采样时刻k )为: ()()()1k k GV k +=+X ΦX (1) ()()()()k H k k W k =+Z X (2) (1)匀速直线运动模型 当目标作匀速直线运动时,有: ()() () ()()()()22100/2001000,0010/200010T x y x k x k y k y k T T T G T T T u k V k u k =???? ???? ???? ????==???????? ?????? =?? ?? X Φ (3) 其中()x u k 和()y u k 分别为相互独立的零均值方差为2 x u σ和2 y u σ的高斯白噪声。 ()()()v 1000,v 0010x y k H W k k ???? ==???????? (4)

雷达信号matlab仿真剖析

雷达系统分析大作 1. 最大不模糊距离: ,max 1252u r C R km f == 距离分辨率: 1502m c R m B ?= = 2. 天线有效面积: 22 0.07164e G A m λπ == 半功率波束宽度: 3 6.4o db θ== 3. 模糊函数的一般表示式为 () ()()2 2* 2 ;? ∞ ∞ -+= dt e t s t s f d f j d πττχ 对于线性调频信号 ( )21 Re j t p t s t ct e T πμ??= ? ??? 则有: ()()2 21 ;Re Re p j t T j t d p p p t t f ct ct e e dt T T T πμπμτ χτ∞+-∞????+= ? ? ? ????? ? () ()()sin 1;11d p p d p d p p f T T f T f T T τπμττχττπμτ????+- ? ? ? ???????=- ? ?????+- ? ? ? ? 分别令0,0==d f τ可得()()2 2 0;,;0τχχd f ()() sin 0;d p d d p f T f f T πχπ=

( )sin 1;011p p p p p T T T T T τπμττχττπμτ?? ??- ? ? ? ???????=- ? ?????- ? ?? ? 程序代码见附录1的T_3.m, 仿真结果如下:

4. 程序代码见附录1的T_4.m, 仿真结果如下:

通过比较得知,加窗后的主副瓣比变大,副瓣降低到40db以下,但主瓣的宽度却增加了,约为未加窗时的1.5倍,主瓣也有一定的损失。 5.由雷达方程 22 134 (4) t PG Te SNR KT LFR λσ π = 计算可得1196.5540log SNR R =- db 作图输出结果如下,程序代码见附录1的T_5.m

相关文档
最新文档