-附件3 外文文献原文-数控高速机床

-附件3 外文文献原文-数控高速机床
-附件3 外文文献原文-数控高速机床

附件3:外文文献原文

Digital Control of Industrial Servo Drives for Machine Tools 此文选自:Industrial Servo Drives - State of the Art 作者:Kennel, Ralph

Key Words

Adjustable speed drives, Brushless drives, Drives, Industrial Applications, Machine tool drives Motion control, Servo drives, Variable speed drives

Abstract

After completing the development of industrial servo drives with complete digital control further improvements are to be expected in the field of smooth operation, EMC and safe operation. This paper shows the state of the art concerning these issues and indicates the directions of further developments.

Servo Drives in Industry

Recently new generations of servo drive with completely digital control have been introduced to market by several manufacturers. This shows, that the commutation from analogue to digital drive control is now completed even in industrial products with high production quantities.

The features of these drives commonly are:

1. No drifts and no offsets in speed and position.

2. Field oriented control for asynchronous machines as well as for synchronous machines (it is not necessary any more to differ between feed drives and spindle drives; identical inverter hardwires and control schemes are used in both cases ).

3. Simple start-up optimization of the drive control by reading some information from the electrical machine connected to the inverter on-site (examples: giving the motor type as an input to the drive control, reading a chip card with motor information, reading an -electronic name plate" which is integrated in the motor itself ).

4. High resolution optical encoders for simultaneous sensing of position and speed provide resolutions of several million positions per revolution.

5. Intelligent start-up and installation tools (detailed text messages via digital interface for

diagnostics and service purposes; use of sophisticated service equipment-e. g. PCs-giving access to all parameters and data of the servo drives and assisting the costumer's optimizations and adjustments; e.g.).

6. Power supply with reduced line harmonics (viewing the mains as an electrical machine with very special characteristics enables the use of the same field oriented control as on the inverter's drive side; the current control provides very low harmonics in the mains).

7. Voltage control in the DC link (providing a voltage tolerance of about 1 % leads to a better design of the electrical machines, as it is not necessary to consider big tolerances in the operation point; narrow tolerances and a high DC link voltage lead to better drive efficiencies and better use of field weakening ranges of asynchronous machines).

The characteristics mentioned above have introduced servo drives with digital control to many industrial applications within and outside the machine tool industry in spite of slightly increased prizes in comparison with analogue controls.

The following remarks deal with drive features becoming more important than in the past when using servo drives with digital control.

Smooth Operation

Smooth operation of a servo drive has become more difficult when replacing servo drives with analogue control by digital control. As the cycle time of the control has to become shorter and shorter to provide improvements in drive behavior, the resolution of an encoder used in the drive also must increase more and more. Otherwise in many control cycles there will be only few or even no information from the encoder during low speeds. Fig 1 shows the comparison between a modern optical encoder and a well-known resolve concerning angle accuracy. The deviation of the position error is a measure for the ability of smooth operation at very low speeds.

Fig. 1 position error (angle error) of a resolve and a modern optical encoder.

To operate a servo drive with the speed of a clock's hour-hand- which is not unusual an encoder resolution of several million positions per revolution is necessary to guarantee really smooth operation.

Of course, it is nearly impossible to design encoders like this. Today's compromise is to use optical encoders with rather high line numbers (e.g. 5000) with sinusoidal output signals and to

interpolate the signals in the drive's electronics by an additional factor (e. g. 256).

In spite of the fact that this is still far away from a standard (not brushless!) tachogenerator`s speed resolution, the smooth operation behavior of servo drives with digital control has improved significantly. One of the reasons for that is the use of servo motors with sinusoidal quantities instead of so-called BLDC (brushless DC) Motors and EC-(electronically commutated) motors.

Fig. 2, Fig. 3 and Fig. 4 compare the smooth operation of servo drives with a brushless tacho generator, with a resolve and with an optical encoder.

Fig. 2 speed behavior of a servo drive with brushless tachogenerator

Fig. 3 speed behavior of a servo drive with resolve

Fig. 4 speed behavior of a servo drive with high resolution optical encoder

Even with a low resolution resolve there is an improvement of about factor 2 compared with a brushless tachogenerator. The commutation of the tachogenerator produces significant speed deviations which cannot be compensated by the drive control, because the tachogenerator is a component of the feedback loop. The use of more or less sinusoidal signals produces a better speed behavior without better physical conditions within the sensor. An optical encoder improves the smooth operation at least by factor 8-10 in comparison to brushless tachogenerators, which are commonly used with analogue drive control.

Synchronized Control

To control synchronous and asynchronous machines the servo drive uses the same control structure (e g. field oriented control). Depending on the type of servo motor connected to the inverter the microcomputer activates some software subroutines. Any hardware or software change is not necessary. This concept supports a modular design of servo drive systems. Any drive system can be composed of inverter modules (different powers), servo motors (different types and powers), control modules (different interfaces and different encoders) and power supplies (different powers) according to the special needs of the application.

The cycle times of modern drive controls are:

1、<250 s for position comb.

2、<40 s for speed control.

3、<40 s for current control.

Within each drive, cycle/switching/recovery times of inverter, control, interface, and encoder microcomputer services have to be perfectly combined to achieve same or better performance as it is known by servo drives with analogue control. It is necessary to synchronize internally all parts talon, part in the drive control. Fig. 5 and 6 show the difference in the drive currents between servo drives with digital control without and with internal synchronization.

In Fig. 8 the parameters of the digital current controller have been increased by more than factor 3, which would lead to a completely unstable operation of the control without synchronization. Synchronization reduces current harmonics (and torque ripples) and additionally enables to increase the controller parameters for less control deviation.

Today's servo drives provide 24 bit or 32 bit control processors and internal cycle synchronization to improve the drive's behavior and to avoid any drawback like additional torque or current ripple.

Applying several servo drives as a whole system for multidimensional motion control the i the additional challenge to synchronize not only the components within each drive, but also the drives taking part in the coordinated motion with each other. This is only possible by using a special synchronization interface or what is more sophisticated by using a digital interface with integrated synchronization procedure (e. g. SERCOS interface ).

EMC

The development of -digital" servo drives meant integrating microcomputers into inverter modules. This is possible today without internal negative interferences between power stage and microcomputer. Using identical inverter structures and inverter controls on both the drive side and the linseed it is possible to reduce interferences on the mains as well. The mains can be view as a big synchronous machine and therefore be controlled by a drive controller. Using a 3 phase (or field oriented) current control the line currents can be forced to any demanded shape (e. g. sinusoidal). All ideas, which have been developed in the past to reduce the ripple currents in inverter supplied electrical machines, can be used for line currents as well. The result is a significant reduction of harmonics in the line currents. The 5 harmonic can be easily reduced by a factor of 810. Controlled inverters in the power supply are the best way to meet the newest demands and requirements of the EMC directive and the standards related to it.

Safe Operation

A significant reduction of encoder costs has introduced multi-turn absolute encoders to standard industrial applications. This has opened the way to provide servo drives with integrated –safe operation teaching), features. This allows to operate the machine even with opened doors (e. g. during because the drive guarantees a safe speed limit or standstill even when producing torque. Each drive has its own processor control using field oriented control the processor has all information’s to define the drive's position and/or speed. For safety functions the processor can do that based on information from the electrical machine only and without considering any information from the encoder (speed/position sensor). The servo motor itself is used as a speed/position sensor by the microprocessor (for control purposes accuracy etc. - of course, the encoder's information is used by the processor as well). When using processor independent encoder hardware to define the drive's position and/or speed, a second (redundant) channel comes into being which can be used for safe operation of the servo drive. Both channels the encoder hardware as well as the microcomputer compare the real speeds/positions with each other. In the case of a difference both channels switch off the drive this type of emergency action is performed in two independent channels: the encoder hardware blocks the drive's inverter and the microcomputer switches off the main switch of the drive system. This procedure provides sufficient safety even when staff is operating directly at the machine tool.

To avoid any danger during standard operation (which is not a safe operation condition) it is advantageous to integrate the locking mechanism of the machinery into the drive's equipment. The drive only releases the door to be opened when safe operation condition is required and reached or the power of the drive system is switched off completely. Without closing the door the safe operation condition cannot be left by the drive. All information necessary is provided in more than one channel to meet the safety standards. Similar influence is provided by connecting the machine tool's emergency switch off as a double channel signal to the servo drive. When there is a separate power supply with microcomputer control in a multi-axis servo drive system, it is not too difficult to deal with emergency and safety supervision and switch off in a double way?in the power supply's control equipment and in each drive's control equipment. The information exchange between the different microcomputers takes place by active and dynamic signals indicating each interruption at once to each controller.

In spite of using only one encoder per drive the whole system is completely redundant

concerning speed/position supervision, power switch off and door and emergency switch off interface. Therefore the system was certified by a Swiss safety agency as a safety related component. This means that using this system a manufacturer of machine tools or similar safety critical machinery has much less problems than in the past.

Conclusion

The resolution of the encoders can be view as the narrow-gap in servo drives with digital control. Nevertheless today's servo drives fulfill nearly all requirements in the market? therefore the increase of resolution in encoder concepts or the development of control algorithms being satisfied with low encoder resolutions is not a very big issue in industry's research. With respect to many applications their effort is concentrated more to develop drives without or with very simple encoders and sufficient drive behavior .Whenever a further increase of drive performance will be necessary, encoder technology will be one of the first issues to be dealt with.

After reaching a rather high standard in servo drive performance, issues like EMC behavior and torque ripple get out of the background. Many new directives, laws and standards force especially inverter and drive engineers to increase their efforts. Reducing the drives` torque ripples it is not sufficient any more to design a proper magnetic circuit of the electrical machine-control synchronization to the inverter’s switching and the encoder characteristic gets more and more important.

Besides that the industries requirements for servo drives manufacturers include additional features like safe operation or door management. In the next future servo drives will compete by offering more or less of these additional not necessarily drive typical-features.

ASP外文翻译原文

https://www.360docs.net/doc/689763411.html, https://www.360docs.net/doc/689763411.html, 是一个统一的 Web 开发模型,它包括您使用尽可能少的代码生成企业级 Web 应用程序所必需的各种服务。https://www.360docs.net/doc/689763411.html, 作为 .NET Framework 的一部分提供。当您编写 https://www.360docs.net/doc/689763411.html, 应用程序的代码时,可以访问 .NET Framework 中的类。您可以使用与公共语言运行库 (CLR) 兼容的任何语言来编写应用程序的代码,这些语言包括 Microsoft Visual Basic、C#、JScript .NET 和 J#。使用这些语言,可以开发利用公共语言运行库、类型安全、继承等方面的优点的https://www.360docs.net/doc/689763411.html, 应用程序。 https://www.360docs.net/doc/689763411.html, 包括: ?页和控件框架 ?https://www.360docs.net/doc/689763411.html, 编译器 ?安全基础结构 ?状态管理功能 ?应用程序配置 ?运行状况监视和性能功能 ?调试支持 ?XML Web services 框架 ?可扩展的宿主环境和应用程序生命周期管理 ?可扩展的设计器环境 https://www.360docs.net/doc/689763411.html, 页和控件框架是一种编程框架,它在 Web 服务器上运行,可以动态地生成和呈现 https://www.360docs.net/doc/689763411.html, 网页。可以从任何浏览器或客户端设备请求 https://www.360docs.net/doc/689763411.html, 网页,https://www.360docs.net/doc/689763411.html, 会向请求浏览器呈现标记(例如 HTML)。通常,您可以对多个浏览器使用相同的页,因为 https://www.360docs.net/doc/689763411.html, 会为发出请求的浏览器呈现适当的标记。但是,您可以针对诸如 Microsoft Internet Explorer 6 的特定浏览器设计https://www.360docs.net/doc/689763411.html, 网页,并利用该浏览器的功能。https://www.360docs.net/doc/689763411.html, 支持基于 Web 的设备(如移动电话、手持型计算机和个人数字助理 (PDA))的移动控件。

毕业设计外文翻译原文.

Optimum blank design of an automobile sub-frame Jong-Yop Kim a ,Naksoo Kim a,*,Man-Sung Huh b a Department of Mechanical Engineering,Sogang University,Shinsu-dong 1,Mapo-ku,Seoul 121-742,South Korea b Hwa-shin Corporation,Young-chun,Kyung-buk,770-140,South Korea Received 17July 1998 Abstract A roll-back method is proposed to predict the optimum initial blank shape in the sheet metal forming process.The method takes the difference between the ?nal deformed shape and the target contour shape into account.Based on the method,a computer program composed of a blank design module,an FE-analysis program and a mesh generation module is developed.The roll-back method is applied to the drawing of a square cup with the ˉange of uniform size around its periphery,to con?rm its validity.Good agreement is recognized between the numerical results and the published results for initial blank shape and thickness strain distribution.The optimum blank shapes for two parts of an automobile sub-frame are designed.Both the thickness distribution and the level of punch load are improved with the designed blank.Also,the method is applied to design the weld line in a tailor-welded blank.It is concluded that the roll-back method is an effective and convenient method for an optimum blank shape design.#2000Elsevier Science S.A.All rights reserved. Keywords:Blank design;Sheet metal forming;Finite element method;Roll-back method

数控加工外文翻译

数控加工中心技术发展趋势及对策 原文来源:Zhao Chang-ming Liu Wang-ju (CNC Machining Process and equipment, 2002,China) 一、摘要 Equip the engineering level, level of determining the whole national economy of the modernized degree and modernized degree of industry, numerical control technology is it develop new developing new high-tech industry and most advanced industry to equip (such as information technology and his industry, biotechnology and his industry, aviation, spaceflight, etc. national defense industry) last technology and getting more basic most equipment. Numerical control technology is the technology controlled to mechanical movement and working course with digital information, integrated products of electromechanics that the numerical control equipment is the new technology represented by numerical control technology forms to the manufacture industry of the tradition and infiltration of the new developing manufacturing industry, Keywords:Numerical ControlTechnology, E quipment,industry 二、译文 数控技术和装备发展趋势及对策 装备工业的技术水平和现代化程度决定着整个国民经济的水平和现代化程度,数控技术及装备是发展新兴高新技术产业和尖端工业(如信息技术及其产业、生物技术及其产业、航空、航天等国防工业产业)的使能技术和最基本的装备。马克思曾经说过“各种经济时代的区别,不在于生产什么,而在于怎样生产,用什么劳动资料生产”。制造技术和装备就是人类生产活动的最基本的生产资料,而数控技术又是当今先进制造技术和装备最为核心的技术。当今世界各国制造业广泛采用数控技术,以提高制造能力和水平,提高对动态多变市场的适应能力和竞争能力。此外,世界上各工业发达国家还将数控技术及数控装备列为国家的战

中英文文献翻译-加工中心数控技术

加工中心数控技术 出处:数控加工中心的分类以及各自特点 出版社:化学工业出版社; 第1版 (2009年3月16日) 作者:徐衡、段晓旭 加工中心是典型的集高技术于一体的机械加工设备,它的发展代表了一个国家设计制造的水平也大大提高了劳动生产率,降低了劳动成本,改善了工人的工作环境,降低了工人的劳动强度。本文经过对不同运动方案和各部件的设计方案的定性分析比较确定该教立式加工中心的进给传动方案为:采用固定床身,电主轴通过安装座安装在床身导轨的滑座上,床身导轨采用滚动导轨,可以实现Y 方向的进给运动。由X-Y双向精密数控工作台带动工件完成X,Y两个方向的进给运动;X,Y,Z三个方向的进给运动均滚珠丝杠,并由交流伺服电机驱动。导轨、滚珠丝杠有相应的润滑、防护等装置。 加工中心(英文缩写为CNC 全称为Computerized Numerical Control):是带有刀库和自动换刀装置的一种高度自动化的多功能数控机床。在中国香港,台湾及广东一代也有很多人叫它电脑锣。 工件在加工中心上经一次装夹后,数字控制系统能控制机床按不同工序,自动选择和更换刀具,自动改变机床主轴转速、进给量和刀具相对工件的运动轨迹及其他辅助机能,依次完成工件几个面上多工序的加工。并且有多种换刀或选刀功能,从而使生产效率大大提高。 加工中心数控机床是一种装有计算机数字控制系统的机床,数控系统能够处理加工程序,控制机床完成各种动作。与普通机床相比,数控机床能够完成平面曲线和空间曲面的加工,加工精度和生产效率都比较高,因而应用日益广泛。 数控机床的组成 一般来说,数控机床由机械部分、数字控制计算机、伺服系统、PC控制部分、液压气压传动系统、冷却润滑和排泄装置组成。数控机床是由程序控制的,零件的编程工作是数控机床加工的重要组成部分。伺服系统是数控机床的驱动部分,计算机输出的控制命令是通过伺服系统产生坐标移动的。普通的立式加工中心有三个伺服电机,分别驱动纵向工作台、横向工作台、主轴箱沿X向、Y向、Z向运动。X、Y、Z是互相垂直的坐标轴,因而当机床三坐标联动时可以加工空

毕业设计外文翻译附原文

外文翻译 专业机械设计制造及其自动化学生姓名刘链柱 班级机制111 学号1110101102 指导教师葛友华

外文资料名称: Design and performance evaluation of vacuum cleaners using cyclone technology 外文资料出处:Korean J. Chem. Eng., 23(6), (用外文写) 925-930 (2006) 附件: 1.外文资料翻译译文 2.外文原文

应用旋风技术真空吸尘器的设计和性能介绍 吉尔泰金,洪城铱昌,宰瑾李, 刘链柱译 摘要:旋风型分离器技术用于真空吸尘器 - 轴向进流旋风和切向进气道流旋风有效地收集粉尘和降低压力降已被实验研究。优化设计等因素作为集尘效率,压降,并切成尺寸被粒度对应于分级收集的50%的效率进行了研究。颗粒切成大小降低入口面积,体直径,减小涡取景器直径的旋风。切向入口的双流量气旋具有良好的性能考虑的350毫米汞柱的低压降和为1.5μm的质量中位直径在1米3的流量的截止尺寸。一使用切向入口的双流量旋风吸尘器示出了势是一种有效的方法,用于收集在家庭中产生的粉尘。 摘要及关键词:吸尘器; 粉尘; 旋风分离器 引言 我们这个时代的很大一部分都花在了房子,工作场所,或其他建筑,因此,室内空间应该是既舒适情绪和卫生。但室内空气中含有超过室外空气因气密性的二次污染物,毒物,食品气味。这是通过使用产生在建筑中的新材料和设备。真空吸尘器为代表的家电去除有害物质从地板到地毯所用的商用真空吸尘器房子由纸过滤,预过滤器和排气过滤器通过洁净的空气排放到大气中。虽然真空吸尘器是方便在使用中,吸入压力下降说唱空转成比例地清洗的时间,以及纸过滤器也应定期更换,由于压力下降,气味和细菌通过纸过滤器内的残留粉尘。 图1示出了大气气溶胶的粒度分布通常是双峰形,在粗颗粒(>2.0微米)模式为主要的外部来源,如风吹尘,海盐喷雾,火山,从工厂直接排放和车辆废气排放,以及那些在细颗粒模式包括燃烧或光化学反应。表1显示模式,典型的大气航空的直径和质量浓度溶胶被许多研究者测量。精细模式在0.18?0.36 在5.7到25微米尺寸范围微米尺寸范围。质量浓度为2?205微克,可直接在大气气溶胶和 3.85至36.3μg/m3柴油气溶胶。

中国的对外贸易外文翻译及原文

外文翻译 原文 Foreign T rade o f China Material Source:W anfang Database Author:Hitomi Iizaka 1.Introduction On December11,2001,China officially joined the World T rade Organization(WTO)and be c a me its143rd member.China’s presence in the worl d economy will continue to grow and deepen.The foreign trade sector plays an important andmultifaceted role in China’s economic development.At the same time, China’s expanded role in the world economy is beneficial t o all its trading partners. Regions that trade with China benefit from cheaper and mor e varieties of imported consumer goods,raw materials and intermediate products.China is also a large and growing export market.While the entry of any major trading nation in the global trading system can create a process of adjustment,the o u t c o me is fundamentally a win-win situation.In this p aper we would like t o provide a survey of the various institutions,laws and characteristics of China’s trade.Among some of the findings, we can highlight thefollowing: ?In2001,total trade to gross domestic pr oduct(GDP)ratio in China is44% ?In2001,47%of Chinese trade is processed trade1 ?In2001,51%of Chinese trade is conduct ed by foreign firms in China2 ?In2001,36%of Chinese exports originate from Gu an gdon g province ?In2001,39%of China’s exports go through Hong Kong to be re-exported elsewhere 2.Evolution of China’s Trade Regime Equally remarkable are the changes in the commodity composition of China’s exports and imports.Table2a shows China’s annu al export volumes of primary goods and manufactured goods over time.In1980,primary goods accounted for 50.3%of China’s exports and manufactured goods accounted for49.7%.Although the share of primary good declines slightly during the first half of1980’s,it remains at50.6%in1985.Since then,exports of manufactured goods have grown at a much

数控技术 外文翻译 外文文献 英文文献

外文翻译 NUMERICAL CONTROL Numerical control(N/C)is a form of programmable automation in which the processing equipment is controlled by means of numbers,letters,and other symbols.The numbers,letters,and symbols are coded in an appropriate format to define a program of instructions for a particular work part or job.When the job changes,the program of instructions is changed.The capability to change the program is what makes N/C suitable for low-and medium-volume production.It is much easier to write programs th an to make major alterations of the processing equipment. There are two basic types of numerically controlled machine tools:point—to—point and continuous—path(also called contouring).Point—to—point machines use unsynchronized motors,with the result that the position of the machining head Can be assured only upon completion of a movement,or while only one motor is running.Machines of this type are principally used for straight—line cuts or for drilling or boring. The N/C system consists of the following comp onents:data input,the tape reader with the control unit,feedback devices,and the metal—cutting machine tool or other type of N/C equipment.Data input,also called “man—to—control link”,may be provided to the machine tool manually,or entirely by automatic means.Manual methods when used as the sole source of input data are restricted to a relatively small number of inputs.Examples of manually operated devices are keyboard dials,pushbuttons,switches,or thumbwheel selectors.These are located on a console near t he machine.Dials ale analog devices usually connected to a syn-chro-type resolver or potentiometer.In most cases,pushbuttons,switches,and other similar types of selectors aye digital input devices.Manual input requires that the operator set the controls fo r each operation.It is a slow and tedious

机械类数控车床外文翻译外文文献英文文献车床.doc

Lathes Lathes are machine tools designed primarily to do turning, facing and boring, Very little turning is done on other types of machine tools, and none can do it with equal facility. Because lathes also can do drilling and reaming, their versatility permits several operations to be done with a single setup of the work piece. Consequently, more lathes of various types are used in manufacturing than any other machine tool. The essential components of a lathe are the bed, headstock assembly, tailstock assembly, and the leads crew and feed rod. The bed is the backbone of a lathe. It usually is made of well normalized or aged gray or nodular cast iron and provides s heavy, rigid frame on which all the other basic components are mounted. Two sets of parallel, longitudinal ways, inner and outer, are contained on the bed, usually on the upper side. Some makers use an inverted V-shape for all four ways, whereas others utilize one inverted V and one flat way in one or both sets, They are precision-machined to assure accuracy of alignment. On most modern lathes the way are surface-hardened to resist wear and abrasion, but precaution should be taken in operating a lathe to assure that the ways are not damaged. Any inaccuracy in them usually means that the accuracy of the entire lathe is destroyed. The headstock is mounted in a foxed position on the inner ways, usually at the left end of the bed. It provides a powered means of rotating the word at various speeds . Essentially, it consists of a hollow spindle, mounted in accurate bearings, and a set of transmission gears-similar to a truck transmission—through which the spindle can be rotated at a number of speeds. Most lathes provide from 8 to 18 speeds, usually in a geometric ratio, and on modern lathes all the speeds can be obtained merely by moving from two to four levers. An increasing trend is to provide a continuously variable speed range through electrical or mechanical drives. Because the accuracy of a lathe is greatly dependent on the spindle, it is of heavy construction and mounted in heavy bearings, usually preloaded tapered roller or ball types. The spindle has a hole extending through its length, through which long bar stock can be fed. The size of maximum size of bar stock that can be machined when the material must be fed through spindle. The tailsticd assembly consists, essentially, of three parts. A lower casting fits on the inner ways of the bed and can slide longitudinally thereon, with a means for clamping the entire assembly in any desired location, An upper casting fits on the lower one and can be moved transversely upon it, on some type of keyed ways, to permit aligning the assembly is the tailstock quill. This is a hollow steel cylinder, usually about 51 to 76mm(2to 3 inches) in diameter, that can be moved several inches longitudinally in and out of the upper casting by means of a hand wheel and screw. The size of a lathe is designated by two dimensions. The first is known as the swing. This is the maximum diameter of work that can be rotated on a lathe. It is approximately twice the distance between the line connecting the lathe centers and the nearest point on the ways, The second size dimension is the maximum distance between centers. The swing thus indicates the maximum work piece diameter that can be turned in the lathe, while the distance between centers indicates the maximum length of work piece that can be mounted between centers. Engine lathes are the type most frequently used in manufacturing. They are heavy-duty machine tools with all the components described previously and have power drive for all tool movements except on the compound rest. They commonly range in size from 305 to 610 mm(12 to 24 inches)swing and from 610 to 1219 mm(24 to 48 inches) center distances, but swings up to 1270 mm(50 inches) and center distances up

毕业设计(论文)外文资料翻译〔含原文〕

南京理工大学 毕业设计(论文)外文资料翻译 教学点:南京信息职业技术学院 专业:电子信息工程 姓名:陈洁 学号: 014910253034 外文出处:《 Pci System Architecture 》 (用外文写) 附件: 1.外文资料翻译译文;2.外文原文。 指导教师评语: 该生外文翻译没有基本的语法错误,用词准确,没 有重要误译,忠实原文;译文通顺,条理清楚,数量与 质量上达到了本科水平。 签名: 年月日 注:请将该封面与附件装订成册。

附件1:外文资料翻译译文 64位PCI扩展 1.64位数据传送和64位寻址:独立的能力 PCI规范给出了允许64位总线主设备与64位目标实现64位数据传送的机理。在传送的开始,如果回应目标是一个64位或32位设备,64位总线设备会自动识别。如果它是64位设备,达到8个字节(一个4字)可以在每个数据段中传送。假定是一串0等待状态数据段。在33MHz总线速率上可以每秒264兆字节获取(8字节/传送*33百万传送字/秒),在66MHz总线上可以528M字节/秒获取。如果回应目标是32位设备,总线主设备会自动识别并且在下部4位数据通道上(AD[31::00])引导,所以数据指向或来自目标。 规范也定义了64位存储器寻址功能。此功能只用于寻址驻留在4GB地址边界以上的存储器目标。32位和64位总线主设备都可以实现64位寻址。此外,对64位寻址反映的存储器目标(驻留在4GB地址边界上)可以看作32位或64位目标来实现。 注意64位寻址和64位数据传送功能是两种特性,各自独立并且严格区分开来是非常重要的。一个设备可以支持一种、另一种、都支持或都不支持。 2.64位扩展信号 为了支持64位数据传送功能,PCI总线另有39个引脚。 ●REQ64#被64位总线主设备有效表明它想执行64位数据传送操作。REQ64#与FRAME#信号具有相同的时序和间隔。REQ64#信号必须由系统主板上的上拉电阻来支持。当32位总线主设备进行传送时,REQ64#不能又漂移。 ●ACK64#被目标有效以回应被主设备有效的REQ64#(如果目标支持64位数据传送),ACK64#与DEVSEL#具有相同的时序和间隔(但是直到REQ64#被主设备有效,ACK64#才可被有效)。像REQ64#一样,ACK64#信号线也必须由系统主板上的上拉电阻来支持。当32位设备是传送目标时,ACK64#不能漂移。 ●AD[64::32]包含上部4位地址/数据通道。 ●C/BE#[7::4]包含高4位命令/字节使能信号。 ●PAR64是为上部4个AD通道和上部4位C/BE信号线提供偶校验的奇偶校验位。 以下是几小结详细讨论64位数据传送和寻址功能。 3.在32位插入式连接器上的64位卡

英文翻译与英文原文.陈--

翻译文献:INVESTIGATION ON DYNAMIC PERFORMANCE OF SLIDE UNIT IN MODULAR MACHINE TOOL (对组合机床滑台动态性能的调查报告) 文献作者:Peter Dransfield, 出处:Peter Dransfield, Hydraulic Control System-Design and Analysis of TheirDynamics, Springer-Verlag, 1981 翻译页数:p139—144 英文译文: 对组合机床滑台动态性能的调查报告 【摘要】这一张纸处理调查利用有束缚力的曲线图和状态空间分析法对组合机床滑台的滑动影响和运动平稳性问题进行分析与研究,从而建立了滑台的液压驱动系统一自调背压调速系统的动态数学模型。通过计算机数字仿真系统,分析了滑台产生滑动影响和运动不平稳的原因及主要影响因素。从那些中可以得出那样的结论,如果能合理地设计液压缸和自调背压调压阀的结构尺寸. 本文中所使用的符号如下: s1-流源,即调速阀出口流量; S el—滑台滑动摩擦力 R一滑台等效粘性摩擦系数: I1—滑台与油缸的质量 12—自调背压阀阀心质量 C1、c2—油缸无杆腔及有杆腔的液容; C2—自调背压阀弹簧柔度; R1, R2自调背压阀阻尼孔液阻, R9—自调背压阀阀口液阻 S e2—自调背压阀弹簧的初始预紧力; I4, I5—管路的等效液感 C5、C6—管路的等效液容: R5, R7-管路的等效液阻; V3, V4—油缸无杆腔及有杆腔内容积; P3, P4—油缸无杆腔及有杆腔的压力 F—滑台承受负载, V—滑台运动速度。本文采用功率键合图和状态空间分折法建立系统的运动数学模型,滑台的动态特性可以能得到显著改善。

污水处理外文翻译(带原文)

提高塔式复合人工湿地处理农村生活污水的 脱氮效率1 摘要: 努力保护水源,尤其是在乡镇地区的饮用水源,是中国污水处理当前面临的主要问题。氮元素在水体富营养化和对水生物的潜在毒害方面的重要作用,目前废水脱氮已成为首要关注的焦点。人工湿地作为一种小型的,处理费用较低的方法被用于处理乡镇生活污水。比起活性炭在脱氮方面显示出的广阔前景,人工湿地系统由于溶解氧的缺乏而在脱氮方面存在一定的制约。为了提高脱氮效率,一种新型三阶段塔式混合湿地结构----人工湿地(thcw)应运而生。它的第一部分和第三部分是水平流矩形湿地结构,第二部分分三层,呈圆形,呈紊流状态。塔式结构中水流由顶层进入第二层及底层,形成瀑布溢流,因此水中溶解氧浓度增加,从而提高了硝化反应效率,反硝化效率也由于有另外的有机物的加入而得到了改善,增加反硝化速率的另一个原因是直接通过旁路进入第二部分的废水中带入的足量有机物。常绿植物池柏(Taxodium ascendens),经济作物蔺草(Schoenoplectus trigueter),野茭白(Zizania aquatica),有装饰性的多花植物睡莲(Nymphaea tetragona),香蒲(Typha angustifolia)被种植在湿地中。该系统对总悬浮物、化学需氧量、氨氮、总氮和总磷的去除率分别为89%、85%、83%、83% 和64%。高水力负荷和低水力负荷(16 cm/d 和32 cm/d)对于塔式复合人工湿地结构的性能没有显著的影响。通过硝化活性和硝化速率的测定,发现硝化和反硝化是湿地脱氮的主要机理。塔式复合人工湿地结构同样具有观赏的价值。 关键词: 人工湿地;硝化作用;反硝化作用;生活污水;脱氮;硝化细菌;反硝化细菌 1. 前言 对于提高水源水质的广泛需求,尤其是提高饮用水水源水质的需求是目前废水深度处理的技术发展指向。在中国的乡镇地区,生活污水是直接排入湖泊、河流、土壤、海洋等水源中。这些缺乏处理的污水排放对于很多水库、湖泊不能达到水质标准是有责任的。许多位于中国的乡镇地区的社区缺乏足够的生活污水处理设备。由于山区地形、人口分散、经济基础差等原因,废水的收集和处理是很成问题的。由于资源短缺,经济欠发达地区所采取的废水处理技术必须低价高效,并且要便于施用,能量输入及维护费用较低,而且要保证出水能达标。建造在城市中基于活性污泥床的废水集中处理厂,对于小乡镇缺乏经济适用性,主要是由于污水收集结构的建造费用高。 1Ecological Engineering,Fen xia ,Ying Li。

数控激光加工的技术水平以及应用外文文献翻译、中英文翻译

英文文献 Numerical control laser processing technology and application Pick to: as the main symbol of science and Technology development in the 20th century and the modern information society one of the pillars of optoelectronic Technology, Laser Technology, Laser Technology) and the development of Laser industry attaches great importance to by the advanced countries in the world. Numerical control and integrated the Laser and the optical system of the computer numerical control technology, advanced and high precision and automation of the workpiece positioning, the combination of formation, development and production of machining center has become a Laser machining, Laser Processing) is an important trend of development. Key words: CNC; Laser machining, Laser Processing); Level; application Before: laser is regarded as one of the most important scientific discoveries of the twentieth century, as soon as it was caused the great attention of materials scientists. In November 1971, gm pioneered the use of a 250 w CO2 laser to improve wear resistance materials using laser radiation test and research, and in 1974 successfully completed automobile redirector shell

工程造价外文翻译(有出处)

预测高速公路建设项目最终的预算和时间 摘要 目的——本文的目的是开发模型来预测公路建设项目施工阶段最后的预算和持续的时间。 设计——测算收集告诉公路建设项目,在发展预测模型之前找出影响项目最终的预算和时间,研究内容是基于人工神经网络(ANN)的原理。与预测结果提出的方法进行比较,其精度从当前方法基于挣值。 结果——根据影响因素最后提出了预算和时间,基于人工神经网络的应用原理方法获得的预测结果比当前基于挣值法得到的结果更准确和稳定。 研究局限性/意义——因素影响最终的预算和时间可能不同,如果应用于其他国家,由于该项目数据收集的都是泰国的预测模型,因此,必须重新考虑更好的结果。 实际意义——这项研究为用于高速公路建设项目经理来预测项目最终的预算和时间提供了一个有用的工具,可为结果提供早期预算和进度延误的警告。 创意/价值——用ANN模型来预测最后的预算和时间的高速公路建设项目,开发利用项目数据反映出持续的和季节性周期数据, 在施工阶段可以提供更好的预测结果。 关键词:神经网、建筑业、预测、道路、泰国 文章类型:案例研究 前言 一个建设工程项普遍的目的是为了在时间和在预算内满足既定的质量要求和其他规格。为了实现这个目标,大量的工作在施工过程的管理必须提供且不能没有计划地做成本控制系统。一个控制系统定期收集实际成本和进度数据,然后对比与计划的时间表来衡量工作进展是否提前或落后时间表和强调潜在的问题(泰克兹,1993)。成本和时间是两个关键参数,在建设项目管理和相关参数的研究中扮演着重要的角色,不断提供适当的方法和

工具,使施工经理有效处理一个项目,以实现其在前期建设和在施工阶段的目标。在施工阶段,一个常见的问题要求各方参与一个项目,尤其是一个所有者,最终项目的预算到底是多少?或什么时候该项目能被完成? 在跟踪和控制一个建设项目时,预测项目的性能是非常必要的。目前已经提出了几种方法,如基于挣值技术、模糊逻辑、社会判断理论和神经网络。将挣值法视为一个确定的方法,其一般假设,无论是性能效率可达至报告日期保持不变,或整个项目其余部分将计划超出申报日期(克里斯坦森,1992;弗莱明和坎普曼,2000 ;阿萨班尼,1999;维卡尔等人,2000)。然而,挣值法的基本概念在研究确定潜在的进度延误、成本和进度的差异成本超支的地区。吉布利(1985)利用平均每个成本帐户执行工作的实际成本,也称作单位收入的成本,其标准差来预测项目完工成本。各成本帐户每月的进度是一个平均平稳过程标准偏差,显示预测模型的可靠性,然而,接受的单位成本收益在每个报告期在变化。埃尔丁和休斯(1992)和阿萨班尼(1999)利用分解组成成本的结构来提高预测精度。迪克曼和Al-Tabtabai(1992)基于社会判断理论提出了一个方法,该方法在预测未来的基础上的一组线索,源于人的判断而不是从纯粹的数学算法。有经验的项目经理要求基于社会判断理论方法的使用得到满意的结果。Moselhi等人(2006)应用“模糊逻辑”来预测潜在的成本超支和对建设工程项目的进度延迟。该方法的结果在评估特定时间状态的项目和评价该项目的利润效率有作用。这有助于工程人员所完成的项目时间限制和监控项目预算。Kaastra和博伊德(1996)开发的“人工神经网络”,此网络作为一种有效的预测工具,可以利用过去“模式识别”工作和显示各种影响因素的关系,然后预测未来的发展趋势。罗威等人(2006)开发的成本回归模型能在项目的早期阶段估计建筑成本。总共有41个潜在的独立变量被确定,但只有四个变量:总建筑面积,持续时间,机械设备,和打桩,是线性成本的关键驱动因素,因为它们出现在所有的模型中。模型提出了进一步的洞察了施工成本和预测变量的各种关系。从模型得到的估计结果可以提供早期阶段的造价咨询(威廉姆斯(2003))——最终竞标利用回归模型预测的建设项目成本。 人工神经网络已被广泛用在不同的施工功能中,如估价、计划和产能预测。神经网络建设是Moselhi等人(1991)指出,由Hegazy(1998)开发了一个模型,该模型考虑了项目的外在特征,估计加拿大的公路建设成本: ·项目类型 ·项目范围

相关文档
最新文档