向量公式汇总

向量公式汇总
向量公式汇总

向量公式汇总

平面向量

1、向量的加法

向量的加法满足平行四边形法则和三角形法则。

AB+BC=AC。

a+b=(x+x',y+y')。

a+0=0+a=a。

向量加法的运算律:

交换律:a+b=b+a;

结合律:(a+b)+c=a+(b+c)。

2、向量的减法

如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量为0 AB-AC=CB. 即“共同起点,指向被减”

a=(x,y) b=(x',y') 则a-b=(x-x',y-y').

3、数乘向量

实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣?∣a∣。

当λ>0时,λa与a同方向;

当λ<0时,λa与a反方向;

当λ=0时,λa=0,方向任意。

当a=0时,对于任意实数λ,都有λa=0。

注:按定义知,如果λa=0,那么λ=0或a=0。

实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩。

当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍;

当∣λ∣<1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上缩短为原来的∣λ∣倍。

数与向量的乘法满足下面的运算律

结合律:(λa)?b=λ(a?b)=(a?λb)。

向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa.

数对于向量的分配律(第二分配律):λ(a+b)=λa+λb.

数乘向量的消去律:①如果实数λ≠0且λa=λb,那么a=b。②如果a≠0且λa=μa,那么λ=μ。

4、向量的的数量积

定义:已知两个非零向量a,b。作OA=a,OB=b,则角AOB称作向量a和向量b 的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π

定义:两个向量的数量积(内积、点积)是一个数量,记作a?b。若a、b不共线,则a?b=|a|?|b|?cos〈a,b〉;若a、b共线,则a?b=+-∣a∣∣b∣。

向量的数量积的坐标表示:a?b=x?x'+y?y'。

向量的数量积的运算律

a?b=b?a(交换律);

(λa)?b=λ(a?b)(关于数乘法的结合律);

(a+b)?c=a?c+b?c(分配律);

向量的数量积的性质

a?a=|a|的平方。

a⊥b 〈=〉a?b=0。

|a?b|≤|a|?|b|。

向量的数量积与实数运算的主要不同点

1、向量的数量积不满足结合律,即:(a?b)?c≠a?(b?c);例如:(a?b)^2≠a^2?b^2。

2、向量的数量积不满足消去律,即:由a?b=a?c (a≠0),推不出b=c。

3、|a?b|≠|a|?|b|

4、由|a|=|b| ,推不出a=b或a=-b。

5、向量的向量积

定义:两个向量a和b的向量积(外积、叉积)是一个向量,记作a×b。若a、b不共线,则a×b的模是:∣a×b∣=|a|?|b|?sin〈a,b〉;a×b的方向是:垂直于a和b,且a、b和a×b按这个次序构成右手系。若a、b共线,则a×b=0。向量的向量积性质:

∣a×b∣是以a和b为边的平行四边形面积。

a×a=0。

a‖b〈=〉a×b=0。

向量的向量积运算律

a×b=-b×a;

(λa)×b=λ(a×b)=a×(λb);

(a+b)×c=a×c+b×c.

注:向量没有除法,“向量AB/向量CD”是没有意义的。

向量的三角形不等式

1、∣∣a∣-∣b∣∣≤∣a+b∣≤∣a∣+∣b∣;

①当且仅当a、b反向时,左边取等号;

②当且仅当a、b同向时,右边取等号。

2、∣∣a∣-∣b∣∣≤∣a-b∣≤∣a∣+∣b∣。

① 当且仅当a 、b 同向时,左边取等号;

② 当且仅当a 、b 反向时,右边取等号。

6.定比分点

定比分点公式(向量P1P=λ?向量PP2)

设P1、P2是直线上的两点,P 是l 上不同于P1、P2的任意一点。则存在一个实数 λ,使 向量P1P=λ?向量PP2,λ叫做点P 分有向线段P1P2所成的比。 若P1(x1,y1),P2(x2,y2),P(x,y),则有

OP=(OP1+λOP2)(1+λ);(定比分点向量公式)

x=(x1+λx2)/(1+λ),

y=(y1+λy2)/(1+λ)。(定比分点坐标公式)

我们把上面的式子叫做有向线段P1P2的定比分点公式

三点共线定理

若OC=λOA +μOB ,且λ+μ=1 ,则A 、B 、C 三点共线

三角形重心判断式

在△ABC 中,若GA +GB +GC=O,则G 为△ABC 的重心

[编辑本段]向量共线的重要条件

若b≠0,则a//b 的重要条件是存在唯一实数λ,使a=λb 。

a//b 的重要条件是 xy'-x'y=0。

零向量0平行于任何向量。

[编辑本段]向量垂直的充要条件

a ⊥

b 的充要条件是 a?b=0。

a ⊥

b 的充要条件是 xx'+yy'=0。

零向量0垂直于任何向量.

空间向量 令a =(a 1,a 2,a 3),),,(321b b b b =,则

),,(332211b a b a b a b a ±±±=+

))(,,(321R a a a a ∈=λλλλλ

332211b a b a b a b a ++=?

共线向量:共线向量亦称平行向量,指空间向量的有向线段所在直线互相平行或重合. a ∥)(,,332211R b a b a b a b ∈===?λλλλ3

32211b a b a b a ==? 如果三个向量....c b a ,,不共面...:那么对空间任一向量P ,存在一个唯一的有序实数组x 、y 、z ,使c z b y a x p ++=.

推论:设O 、A 、B 、C 是不共面的四点,则对空间任一点P , 都存在唯一的有序实数组x 、y 、z 使 OC z OB y OA x OP ++=(这里隐含x+y+z≠1).

向量垂直 0332211=++?⊥b a b a b a b a 。

空间两个向量的夹角公式

232221232221332211||||,cos b b b a a a b a b a b a b a b a b a ++?++++=??>=<

(a =123(,,)a a a ,b =123(,,)b b b )。

空间两点的距离公式:

212212212)()()(z z y y x x d -+-+-=.

利用法向量求点到面的距离:

如图,设n 是平面α的法向量,AB 是平面α的一条射线,其中α∈A ,则点B 到平面α的距离为|||

|n n AB ?.

.异面直线间的距离

||||

CD n d n ?=(12,l l 是两异面直线,其公垂向量为n ,C D 、分别是12,l l 上任一点,d 为12,l l 间的距离).

B 到平面α的距离

||||

AB n d n ?=(n 为平面α的法向量,AB 是经过面α的一条斜线,A α∈). 直线AB 与平面所成角

sin ||||

AB m arc AB m β?=(m 为平面α的法向量). 利用法向量求二面角的平面角: cos ||||m n arc m n θ?=或cos ||||m n arc m n π?-(m ,n 为平面α,β的法向量)

空间向量及几何公式

空间向量及几何公式-CAL-FENGHAI.-(YICAI)-Company One1

空间向量及几何公式 118.共面向量定理 向量p 与两个不共线的向量a 、b 共面的?存在实数对,x y ,使p ax by =+. 推论 空间一点P 位于平面MAB 内的?存在有序实数对,x y ,使MP xMA yMB =+, 或对空间任一定点O ,有序实数对,x y ,使OP OM xMA yMB =++. 119.对空间任一点O 和不共线的三点A 、B 、C ,满足 OP xOA yOB zOC =++(x y z k ++=),则当1k =时,对于空间任一点O ,总有P 、A 、B 、C 四点共面;当1k ≠时,若O ∈平面ABC ,则P 、A 、B 、C 四点共面;若O ?平面ABC ,则P 、A 、B 、C 四点不共面. C A B 、、、 D 四点共面?AD 与AB 、AC 共面?AD x AB y AC =+? (1)OD x y OA xOB yOC =--++(O ?平面ABC ). 120.空间向量基本定理 如果三个向量a 、b 、c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组x ,y ,z ,使p =xa +yb +zc . 推论 设O 、A 、B 、C 是不共面的四点,则对空间任一点P ,都存在唯一的三个有序实数x ,y ,z ,使OP xOA yOB zOC =++. 121.射影公式 已知向量AB =a 和轴l ,e 是l 上与l 同方向的单位向量.作A 点在l 上的射影'A ,作B 点在l 上的射影'B ,则 ''||cos A B AB =〈a ,e 〉=a ·e 122.向量的直角坐标运算 设a =123(,,)a a a ,b =123(,,)b b b 则 (1)a +b =112233(,,)a b a b a b +++; (2)a -b =112233(,,)a b a b a b ---; (3)λa =123(,,)a a a λλλ (λ∈R); (4)a ·b =112233a b a b a b ++; 123.设A 111(,,)x y z ,B 222(,,)x y z ,则 AB OB OA =-= 212121(,,)x x y y z z ---. 124.空间的线线平行或垂直 设111(,,)a x y z =,222(,,)b x y z =,则 a b ?(0)a b b λ=≠?12121 2x x y y z z λλλ=??=??=?; a b ⊥?0a b ?=?1212120x x y y z z ++=. 125.夹角公式 设a =123(,,)a a a ,b =123(,,)b b b ,则

平面向量的所有公式

平面向量的所有公式 设a=(x,y),b=(x',y')。 1、向量的加法 向量的加法满足平行四边形法则和三角形法则。 AB+BC=AC。 a+b=(x+x',y+y')。 a+0=0+a=a。 向量加法的运算xx: 交换律: a+b=b+a; 结合律: (a+b)+c=a+(b+c)。 2、向量的减法 如果a、b是互为相反的向量,那么a=-b,b=-a,a+b= 0." 0的反向量为0 AB-AC= C B.即“共同起点,指向被减” a=(x,y) b=(x',y')则a-b=(x-x',y-y'). 3、数乘向量 实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣?∣a∣。

当λ>0时,λa与a同方向; 当λ<0时,λa与a反方向; 当λ=0时,λa=0,方向任意。 当a=0时,对于任意实数λ,都有λa= 0。" 注: 按定义知,如果λa=0,那么λ=0或a= 0。" 实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩。 当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍; 当∣λ∣<1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上缩短为原来的∣λ∣倍。 数与向量的乘法满足下面的运算xx 结合律: (λa)?b=λ(a?b)=(a?λb)。 向量对于数的分配律(第一分配律): (λ+μ)a=λa+μa. 数对于向量的分配律(第二分配律): λ(a+b)=λa+λb. 数乘向量的消去律:

①如果实数λ≠0且λa=λb,那么a=b。②如果a≠0且λa=μa,那么λ=μ。 4、向量的的数量积 定义: 已知两个非零向量a,b。作OA=a,OB=b,则角AOB称作向量a和向量b的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π 定义: 两个向量的数量积(内积、点积)是一个数量,记作a?b。若a、b不共线,则a?b=|a|?|b|?cos〈a,b〉;若a、b共线,则a?b=+-∣a∣∣b∣。 向量的数量积的坐标表示: a?b=x?x'+y?y'。 向量的数量积的运算xx a?b=b?a(交换律); (λa)?b=λ(a?b)(关于数乘法的结合律); (a+b)?c=a?c+b?c(分配律); 向量的数量积的性质 a?a=|a|的平方。 a⊥b〈=〉a?b= 0。" |a?b|≤|a|?|b|。 向量的数量积与实数运算的主要不同点 1、向量的数量积不满足结合律,即:

空间向量知识点归纳总结归纳

空间向量知识点归纳总结 知识要点。 1.空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。 注:(1)向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量。 (2)空间的两个向量可用同一平面内的两条有向线段来表示。 2.空间向量的运算。 定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。 OB OA AB a b =+=+u u u r u u u r u u u r v r ;BA OA OB a b =-=-u u u r u u u r u u u r r r ;()OP a R λλ=∈u u u r r 运算律:⑴加法交换律:a b b a ? ??ρ+=+ ⑵加法结合律:)()(c b a c b a ? ???ρ?++=++ ⑶数乘分配律:b a b a ? ???λλλ+=+)( 3.共线向量。 (1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫 做共线向量或平行向量,a ρ平行于b ρ,记作b a ρ ?//。 当我们说向量a ρ、b ρ共线(或a ρ//b ρ)时,表示a ρ、b ρ 的有向线段所在的直线可能是同一直线,也可能是平行直线。 (2)共线向量定理:空间任意两个向量a ρ、b ρ(b ρ≠0ρ),a ρ//b ρ 存在实数λ,使a ρ =λb ρ。 4.共面向量 (1)定义:一般地,能平移到同一平面内的向量叫做共面向量。 说明:空间任意的两向量都是共面的。 (2)共面向量定理:如果两个向量,a b r r 不共线,p r 与向量,a b r r 共面的条件是存在 实数,x y 使p xa yb =+r r r 。 5.空间向量基本定理:如果三个向量,,a b c r r r 不共面,那么对空间任一向量p r ,存在 一个唯一的有序实数组,,x y z ,使p xa yb zc =++r r r r 。 若三向量,,a b c r r r 不共面,我们把{,,}a b c r r r 叫做空间的一个基底,,,a b c r r r 叫做基向量,空间任意三个不共面的向量都可以构成空间的一个基底。 推论:设,,,O A B C 是不共面的四点,则对空间任一点P ,都存在唯一的三个有序 实数,,x y z ,使OP xOA yOB zOC =++u u u r u u u r u u u r u u u r 。 6.空间向量的直角坐标系: (1)空间直角坐标系中的坐标: 在空间直角坐标系O xyz -中,对空间任一点A ,存在唯一的有序实数组(,,)x y z ,使++=,有序实数组(,,)x y z 叫作向量A 在空间直角坐标系O xyz -中的坐标,记作(,,)A x y z ,x 叫横坐标,y 叫纵坐标,z 叫竖坐标。 (2)若空间的一个基底的三个基向量互相垂直,且长为1,这个基底叫单位正交基底,用{,,}i j k r r r 表示。 (3)空间向量的直角坐标运算律: ①若123(,,)a a a a =r ,123(,,)b b b b =r ,则112233(,,)a b a b a b a b +=+++r r ,

高中数学必背公式——立体几何与空间向量

高中数学必背公式——立体几何与空间向量 知识点复习: 1.空间几何体的三视图“长对正、高平齐、宽相等”的规律。 2.在计算空间几何体体积时注意割补法的应用。 3.空间平行与垂直关系的关系的证明要注意转化: 线线平行 线面平行 面面平行,线线垂直 线面垂直 面面垂直。 4.求角:(1)异面直线所成的角: 可平移至同一平面;也可利用空间向量:cos |cos ,|a b θ=<>= 1212122 222 2 2 1 1 1 222 |||||| a b a b x y z x y z ?= ?++?++(其中θ(090θ<≤)为异面直线a b ,所成角,,a b 分别表示异面直线a b ,的方向向量)。 (2)直线与平面所成的角: 在斜线上找到任意一点,过该点向平面作垂线,找到斜线在该平面上的射影,则斜线和射影所成的角便是直线与平面所成的角;也可利用空间向量,直线AB 与平面所成角sin |||| AB m AB m β?= (m 为平面α的法向量). (3)二面角: 方法一:常见的方法有三垂线定理法和垂面法; 方法二:向量法:二面角l αβ--的平面角cos |||| m n arc m n θ?=或cos ||||m n arc m n π?- (m ,n 为平面α,β 的法向量). 5. 求空间距离: (1)点与点的距离、点到直线的距离,一般用三垂线定理“定性”; (2)两条异面直线的距离:|| || AB n d n ?= (n 同时垂直于两直线,A 、B 分别在两直线上); (3)求点面距: || || AB n d n ?= (n 为平面α的法向量,AB 是经过面α的一条斜线,A α∈); (3)线面距、面面距都转化为点面距。 题型一:空间几何体的三视图、体积与表面积 例1:已知一个几何体是由上下两部分构成的组合体,

向量的坐标表示及其运算

资源信息表

(2)向量的坐标表示及其运算(2) 一、教学内容分析 向量是研究数学的工具,是学习数形结合思想方法的直观而又生动的内容.向量的坐标以及向量运算的坐标形式,则从“数、式”的角度对向量以及向量的运算作了精确的、定量的描述.本节课是向量的坐标及其运算的第二课时,一方面把“形”与“数、式”结合起来思考,以“数”入微,借“形”思考,体会并感悟数形结合的思维方式;另一方面通过例5的演绎推理教学,体会代数证明的严谨性,也为定比分点(三点共线)的教学提供基础. 二、教学目标设计 1.理解并掌握两个非零向量平行的充要条件,巩固加深充

要条件的证明方式; 2.会用平行的充要条件解决点共线问题; 3、定比分点坐标公式. 三、教学重点及难点 课本例5的演绎证明; 分类思想,数形结合思想在解决问题时的运用; 特殊——一般——特殊的探究问题意识. 五、教学过程设计: 复习向量平行的概念: 提问:(1)升么是平行向量方向相同或相反的向量叫做平行向

量。 (2)实数与向量相乘有何几何意义 (3)由此对任意两个向量,a b ,我们可以用怎样的数量关系来刻画平行对任意两个向量,a b ,若存在一个常数λ,使得 a b λ=?成立,则两向量a 与向量b 平行 (4)思考:如果向量,a b 用坐标表示为) ,(),,(2211y x y x ==能否用向量的坐标来刻画这个数量关系12 12 x x y y λλ=??=? 思考:如果向量,a b 用坐标表示为),(),,(2211y x y x ==,则 2 121y y x x =是b a //的( )条件. A 、充要 B 、必要不充分 C 、充分不必要 D 、既不充分也不必要 由此,通过改进引出 课本例5 若,a b 是两个非零向量,且1122(,),(,)a x y b x y ==, 则//a b 的充要条件是1221x y x y =. 分析:代数证明的方法与技巧,严密、严谨. 证明:分两步证明, (Ⅰ)先证必要性://a b 1221x y x y ?= 非零向量//a b ?存在非零实数λ,使得a b λ=,即

向量运算法则知识讲解

(1)实数与向量的运算法则:设λ、μ为实数,则有: 1)结合律:a a )()(λμμλ=。 2)分配律:a a μλμλ+=+)(,b a b a λλλ+=+)(。 (2)向量的数量积运算法则: 1)a b b a ??=。 2))()()(b a b a b a b a λλλλ===???。 3)c b c a c b a ???+=+)(。 (3)平面向量的基本定理。 21,e e 是同一平面内的两个不共线向量,则对于这一平面内的任何一向量a ,有且仅有一对实数21,λλ,满足2211e e a λλ+=。 (4)a 与b 的数量积的计算公式及几何意义:θcos ||||b a b a =?,数量积b a ?等于a 的 长度||a 与b 在a 的方向上的投影θcos ||b 的乘积。 (5)平面向量的运算法则。 1)设a =11(,)x y ,b =22(,)x y ,则a +b =1212(,)x x y y ++。 2)设a =11(,)x y ,b =22(,)x y ,则a -b =1212(,)x x y y --。 3)设点A 11(,)x y ,B 22(,)x y ,则2121(,)AB OB OA x x y y =-=--u u u r u u u r u u u r 。 4)设a =(,),x y λ∈R ,则a λ=(,)x y λλ。 5)设a =11(,)x y ,b =22(,)x y ,则a ? b =1212()x x y y +。 (6)两向量的夹角公式: cos θ(a =11(,)x y ,b =22(,)x y )。 (7)平面两点间的距离公式: ,A B d =||AB u u u r (A 11(,)x y ,B 22(,)x y )。 (8)向量的平行与垂直:设a =11(,)x y ,b =22(,)x y ,且b ≠0,则有: 1)a ||b ?b =λa 12210x y x y ?-=。 2)a ⊥b (a ≠0)? a ·b =012120x x y y ?+=。 (9)线段的定比分公式: 设111(,)P x y ,222(,)P x y ,(,)P x y 是线段12 P P 的分点,λ是实数,且12P P PP λ=u u u r u u u r ,则

最新空间向量知识点归纳总结(经典)

精品文档 空间向量与立体几何知识点归纳总结 一.知识要点。 1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。 注:(1)向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量。 (2)向量具有平移不变性 2. 空间向量的运算。 定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。 OB OA AB a b =+=+u u u r u u u r u u u r v r ;BA OA OB a b =-=-u u u r u u u r u u u r r r ;()OP a R λλ=∈u u u r r 运算律:⑴加法交换律:a b b a ???ρ+=+ ⑵加法结合律:)()(c b a c b a ? ???ρ?++=++ ⑶数乘分配律:b a b a ? ???λλλ+=+)( 运算法则:三角形法则、平行四边形法则、平行六面体法则 3. 共线向量。 (1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共 线向量或平行向量,a ρ 平行于b ρ,记作b a ρ?//。 (2)共线向量定理:空间任意两个向量a ρ、b ρ (b ρ≠0ρ),a ρ//b ρ存在实数λ,使a ρ =λb ρ。 (3)三点共线:A 、B 、C 三点共线<=>AC AB λ= <=>)1(=++=y x OB y OA x OC 其中 (4)与 a 共线的单位向量为a a ± 4. 共面向量 (1)定义:一般地,能平移到同一平面内的向量叫做共面向量。 说明:空间任意的两向量都是共面的。 (2)共面向量定理:如果两个向量,a b r r 不共线,p r 与向量,a b r r 共面的条件是存在实数 ,x y 使p xa yb =+r r r 。 (3)四点共面:若A 、B 、C 、P 四点共面<=>AC y AB x AP += <=>)1(=++++=z y x OC z OB y OA x OP 其中

常用的一些矢量运算公式

常用的一些矢量运算公式 1.三重标量积 如a ,b 和c 是三个矢量,组合 ()a b c ??叫做他们的三重标量积。三重标量积等于这三 个矢量为棱边所作的平行六面体体积。在直角坐标系中,设坐标轴向的三个单位矢量标记为 (),,i j k ,令三个矢量的分量记为()()1 2 3 1 2 3 ,,,,,a a a a b b b b 及()1 2 3 ,,c c c c 则有 ()() 123 123 1 2 3123 123 123 c c c i jk a b c a a a c i c j c k a a a b b b b b b ??=?++= 因此,三重标量积必有如下关系式: ()()()a b c b c a c a b ??=??=??即有循环法则成立,这就是说不改变三重标量积中三个矢量顺序的组合,其结果相等。 2.三重矢量积 如a ,b 和c 是三个矢量,组合 ( ) a b c ??叫做他们的三重标量积,因有 ()()()a b c a c b c b a ??=-??=?? 故有中心法则成立,这就是说只有改变中间矢量时,三重标量积符号才改变。三重标量积有一个重要的性质(证略):() ()()a b c a b c a c b ??=-?+? (1-209) 将矢量作重新排列又有:()()() a b c b a c b a c ?=??+? (1-210) 3.算子( a ? ) ? 是哈密顿算子,它是一个矢量算子。( a ? )则是一个标量算子,将它作用于标量φ ,即 ()a φ?是φ在a 方向的变化速率的a 倍。如以无穷小的位置矢量 d r 代替以上矢量a ,则 ()dr φ ?是φ在位移方向 d r 的变化率的 d r 倍,即 d φ 。 () ()d dr dr φφφ=?=? 若将 () dr ?作用于矢量v ,则 ()dr v ?就是v 再位移方向 d r 变化率的 d r 倍,既为速度矢量 的全微分() dv d r v =? 应 用 三 重 矢 量 积 公 式 ( 1-209 ) ()()() 00()()()() a b a b a b b a a b b a a b ???=???+???=??-??-??+??

向量公式汇总

向量公式汇总Newly compiled on November 23, 2020

向量公式汇总 平面向量 1、向量的加法 向量的加法满足平行四边形法则和三角形法则。 AB+BC=AC。 a+b=(x+x',y+y')。 a+0=0+a=a。 向量加法的运算律: 交换律:a+b=b+a; 结合律:(a+b)+c=a+(b+c)。 2、向量的减法 如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量为0 AB-AC=CB. 即“共同起点,指向被减” a=(x,y) b=(x',y') 则 a-b=(x-x',y-y'). 3、数乘向量 实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣∣a∣。 当λ>0时,λa与a同方向; 当λ<0时,λa与a反方向; 当λ=0时,λa=0,方向任意。 当a=0时,对于任意实数λ,都有λa=0。 注:按定义知,如果λa=0,那么λ=0或a=0。

实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩。 当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍; 当∣λ∣<1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上缩短为原来的∣λ∣倍。 数与向量的乘法满足下面的运算律 结合律:(λa)b=λ(ab)=(aλb)。 向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa. 数对于向量的分配律(第二分配律):λ(a+b)=λa+λb. 数乘向量的消去律:①如果实数λ≠0且λa=λb,那么a=b。②如果a≠0且λa=μa,那么λ=μ。 4、向量的的数量积 定义:已知两个非零向量a,b。作OA=a,OB=b,则角AOB称作向量a和向量b的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π 定义:两个向量的数量积(内积、点积)是一个数量,记作ab。若a、b不共线,则ab=|a||b|cos〈a,b〉;若a、b共线,则ab=+-∣a∣∣b∣。 向量的数量积的坐标表示:ab=xx'+yy'。 向量的数量积的运算律 ab=ba(交换律); (λa)b=λ(ab)(关于数乘法的结合律); (a+b)c=ac+bc(分配律);

最新数学空间向量公式大全

精品文档空间向量知识点 空间向量的有关概念和公式 运算a?b?(x?x,y?y,z?z)a?b?(x?x,y?y,z?z),,则

211222211121 ??????R)a?b?|a||b|cos?z)(a,b??xx?yy?a?(,xzy,z,,211212111 定比?PPPP P,λ,即设点分有向线段=所成的比为λ21点分 ???zz??x?yxy公式??122121?1?R且xz?y??(),,????1?11? zyz?x?xy?122211?x?zy?,中点公式:,222zz?y?yz?yx?x?x?122133123?y??zx三角形重心公式:,,333 模)zy,z?,AB?(x?xy?)A(x,y,z)B(xzy,,,,则112221212112222||AB)z?)(y?yz?(x?x)(? =

21112222222a||a|a||a|z?x?ya)zx,y,(a;= ;; === 平行 ?????R(,a?)b?a?b,a?bba//,313212 xyz111==)(或 xyz222垂直a?0,b?0a?b?xx?yy?zz?0.)(322131夹角xx?yy?zza?b312321 =?cos = |a||b|222222x?y?zx?y?z211212 ●建立空间直角坐标系常用方法:1、底面是正方形,常以底面两条邻边为轴,轴;2、底面是菱形,常以底面两条对角线为轴,轴;3、yy xx底面是等腰三角形,常以底边及底边上的高为轴,轴;4、底面为平x y行四边形,常以一条边为轴,并作一条与这一条边垂直的直线作为x y轴。 精品文档. 精品文档 空间向量的应用(1)

向量公式大全20131

向量公式大全 『ps.加粗字母表示向量』1.向量加法 AB+BC=AC a+b=(x+x',y+y') a+0=0+a=a 运算律: 交换律:a+b=b+a 结合律:(a+b)+c=a+(b+c) 2.向量减法 AB-AC=CB 即“共同起点,指向被减” 如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量为0 a=(x,y) b=(x',y') 则a-b=(x-x',y-y'). 3.数乘向量

实数λ和向量a的乘积是一个向量,记作λa,且∣λa ∣=∣λ∣?∣a∣ 当λ>0时,λa与a同方向 当λ<0时,λa与a反方向 当λ=0时,λa=0,方向任意 当a=0时,对于任意实数λ,都有λa=0 『ps.按定义知,如果λa=0,那么λ=0或a=0』 实数λ 向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩 当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍 当∣λ∣<1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上缩短为原来的∣λ∣倍 数乘运算律: 结合律:(λa)?b=λ(a?b)=(a?λb) 向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa. 数对于向量的分配律(第二分配律):λ(a+b)=λa+λb. 数乘向量的消去律:①如果实数λ≠0且λa=λb,那

么a=b②如果a≠0且λa=μa,那么λ=μ 4.向量的数量积 定义:已知两个非零向量a,b作OA=a,OB=b,则∠AOB称作a和b的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π 两个向量的数量积(内积、点积)是一个数量,记作a?b若a、b不共线,则a?b=|a|?|b|?c os〈a,b〉若a、b共线,则a?b=+-∣a∣∣b∣ 向量的数量积的坐标表示:a?b=x?x'+y?y' 向量数量积运算律 a?b=b?a(交换律) (λa)?b=λ(a?b)(关于数乘法的结合律) (a+b)?c=a?c+b?c(分配律) 向量的数量积的性质 a?a=|a|2 a⊥b〈=〉a?b=0 |a?b|≤|a|?|b|

高中数学用空间向量解立体几何问题方法归纳

用空间向量解立体几何题型与方法 平行垂直问题基础知识 直线l 的方向向量为a =(a 1,b 1,c 1).平面α,β的法向量u =(a 3,b 3,c 3),v =(a 4, b 4, c 4) (1)线面平行:l ∥α?a ⊥u ?a ·u =0?a 1a 3+b 1b 3+c 1c 3=0 (2)线面垂直:l ⊥α?a ∥u ?a =k u ?a 1=ka 3,b 1=kb 3,c 1=kc 3 (3)面面平行:α∥β?u ∥v ?u =k v ?a 3=ka 4,b 3=kb 4,c 3=kc 4 (4)面面垂直:α⊥β?u ⊥v ?u ·v =0?a 3a 4+b 3b 4+c 3c 4=0 例1、如图所示,在底面是矩形的四棱锥P -ABCD 中,PA ⊥底面ABCD ,E ,F 分别是PC , PD 的中点,PA =AB =1,BC =2. (1)求证:EF ∥平面PAB ; (2)求证:平面PAD ⊥平面PDC . [证明] 以A 为原点,AB ,AD ,AP 所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标 系如图所示,则A (0,0,0),B (1,0,0),C (1,2,0),D (0,2,0),P (0,0,1),所以E ? ???? 12,1,12, F ? ????0,1,12,EF =? ?? ??-12,0,0,PB =(1,0,-1),PD =(0,2,-1),AP =(0,0,1), AD =(0,2,0),DC =(1,0,0),AB =(1,0,0). (1)因为EF =-12 AB ,所以EF ∥AB ,即EF ∥AB . 又AB ?平面PAB ,EF ?平面PAB ,所以EF ∥平面PAB . (2)因为AP ·DC =(0,0,1)·(1,0,0)=0,AD ·DC =(0,2,0)·(1,0,0)=0, 所以AP ⊥DC ,AD ⊥DC ,即AP ⊥DC ,AD ⊥DC . 又AP ∩AD =A ,AP ?平面PAD ,AD ?平面PAD ,所以DC ⊥平面PAD .因为DC ?平面

空间向量坐标公式

7、空间向量与立体几何 1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。 注:(1同向等长的有向线段表示同一或相等的向量。 (2)向量具有平移不变性 2. 空间向量的运算。 定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下 运算律: ⑴加法交换律:a b b a +=+ ⑵加法结合律:)()(c b a c b a ++=++ ⑶数乘分配律:b a b a λλλ+=+)( 3. 共线向量。 (1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量 也叫做共线向量或平行向量,a 平行于b ,记作b a //。 (2)共线向量定理:空间任意两个向量a 、b (b ≠0 ),a b a b 空间向量的 直角坐标系: (1)空间直角坐标系中的坐标: 在空间直角坐标系O xyz -中,对空间任一点A ,存在唯一的有序实数组(,,)x y z ,使++=,有序实数组(,,)x y z 叫作向量A 在空间直角坐标系O xyz -中的坐标,记作(,,)A x y z ,x 叫横坐标,y 叫纵坐标,z 叫竖坐标。 (2)空间向量的直角坐标运算律: ①若123(,,)a a a a =,123(,,)b b b b = 则 112233(,,)a b a b a b a b +=+++, 123(,,)()a a a a R λλλλλ=∈, 112233a b a b a b a b ?=++,

112233//,,()a b a b a b a b R λλλλ?===∈, 1122330a b a b a b a b ⊥?++=。 ②若111(,,)A x y z ,222(,,)B x y z 则212121(,,)AB x x y y z z =---。 一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标。 ③定比分点公式:若111(,,)A x y z ,222(,,)B x y z ,λ=,则点P 坐标为)1,1,1(212121λ λλλλλ++++++z z y y x x ④),,(),,,(,,,333222111z y x C z y x B )z y ,A(x ABC 中?,三角形重心P 坐标为)2 ,2,3(321321321z z z y y y x x x P ++++++ (3)模长公式:若123(,,)a a a a =,123(,,)b b b b =, 则21||a a a a =?=+,21||b b b b =?=+(4)夹角公式:21cos ||||a b a b a b a ??==?+ (5)两点间的距离公式:若111(,,)A x y z ,222(,,)B x y z , 则2||(AB AB ==, 或,A B d = 7、点面距离h 求点()00,P x y 到平面α的距离: 在平面α上去一点(),Q x y ,得向量PQ ;; 计算平面α的法向量n ;.h =

向量长度计算公式及中点公式讲解学习

精品文档 课 题:6.3平面向量的坐标运算--向量长度的计算公式和线段中点的坐标公式 教学目的:(1)理解平面向量长度的计算公式; (2)掌握线段中点的坐标公式; 教学重点:线段中点的坐标公式 教学难点:公式的理解及应用. 授课类型:新授课 课时安排:1课时 教学过程: 一、复习引入: 平面向量的坐标运算:若),(11y x a =?,),(22y x b =ρ ,则 b a ?ρ+),(2121y y x x ++=,b a ρρ-),(2121y y x x --=,),(y x a λλλ=ρ 若),(11y x A ,),(22y x B ,则2121(,)AB x x y y =--u u u r . 二、讲解新课: 1.平面向量长度的计算公式的推导: 如图,已知12(,)a xe ye x y =+=r r v ,则 11xe x e x =?=r r , 1212ye y e y =?=r r , 由勾股定理得,22 22a x y x y = +=+v , 上式即为根据向量a v 的坐标,求向量a 的长度的计算公式,简称向量长度的计算公式. 如果已知11(,)A x y ,),(22y x B ,则有向量22112121(,)(,)(,)AB OB OA x y x y x x y y =-=-=--u u u r u u u r u u u r 所以,222121()()AB x x y y =-+-u u u r . 上式即为根据向量AB u u u r 的坐标,求向量AB u u u r 的长度的计算公式,也称为向量长度的计算 公式,又称为两点间的距离公式. 2.线段中点的坐标公式的推导: 方法一:设线段AB 的两个端点),(11y x A ,),(22y x B ,线段AB 的中点(,)C x y ,则

空间向量及其运算

§8.5 空间向量及其运算 1. 空间向量的概念 (1)定义:空间中既有大小又有方向的量叫作空间向量. (2)向量的夹角:过空间任意一点O 作向量a ,b 的相等向量OA →和OB → ,则∠AOB 叫作向量a ,b 的夹角,记作〈a ,b 〉,0≤〈a ,b 〉≤π. 2. 共线向量定理和空间向量基本定理 (1)共线向量定理 对空间任意两个向量a ,b (b ≠0),a ∥b 的充要条件是存在实数λ,使得a =λb . (2)空间向量基本定理 如果向量e 1,e 2,e 3是空间三个不共面的向量,a 是空间任一向量,那么存在唯一一组实数λ1,λ2,λ3使得a =λ1e 1+λ2e 2+λ3e 3,其中e 1,e 2,e 3叫作空间的一个基底. 3. 空间向量的数量积及运算律 (1)定义 空间两个向量a 和b 的数量积是一个数,等于|a ||b |cos 〈a ,b 〉,记作a ·b . (2)空间向量数量积的运算律 ①结合律:(λa )·b =λ(a·b ); ②交换律:a·b =b·a ; ③分配律:a·(b +c )=a·b +a·c . 4. 空间向量的坐标表示及应用 (1)数量积的坐标运算 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3), 则a·b =a 1b 1+a 2b 2+a 3b 3. (2)共线与垂直的坐标表示 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3), 则a ∥b ?a =λb ?a 1=λb 1,a 2=λb 2,a 3=λb 3 (λ∈R ), a ⊥b ?a·b =0?a 1b 1+a 2b 2+a 3b 3=0(a ,b 均为非零向量). (3)模、夹角公式 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3), 则|a |=a·a =a 21+a 22+a 23,

平面向量公式

平面向量公式 1.向量三要素:起点,方向,长度 2.向量的长度=向量的模 3.零向量:? ??方向任意长度为 .20.1 4.相等向量:?? ?长度相等 方向相同 .2.1 5.向量的表示:AB ()始点指向终点 6.向量的线性加减运算法则: ()()???? ?=-=+终点指向始点 始点指向终点, CB AC AB AC BC AB ,21 7.实数与向量的积: ()()a a λμμλ=.1 ()a a a μλμλ+=+.2 ()b a b a λλλ+=+.3 4.()y x a λλλ,=? 5.a b b a ?=? 6.()()b a b a ??=?λλ 7.()c b c a c b a ?+?=?+ 注;()()c b a c b a ≠? 8.定理:向量b 与非零向量a 共线的充要条件是有且只有一个实数 λ,使得: a b λ= 9.平面向量基本定理:如果e 1 ,e 2是同一平面内的两个不共线向量,那么对于这一平面 : e e a 2211λλ+= 10.坐标的运算: ()1?? ? ? ?+ =y x a ?y x a 22 +=

()2已知;A ()y x 11+,B () y x 22+?() ( )() ?? ???+=--=--y y x x y y x x AB AB 1212.2,.12 2 1212 ()3已知;()y x a 11,= ,()y x b 22,= () ()?? ???+?=?±±=±?和它们对应坐标的乘积的两个向量的数量积等于y y x x y y x x b a b a 21212 121.2,.1 ()4已知;()y x a 11,=//()y x b 22,=01 2 2 1 =?-?y x y x (横纵交错乘积之差为0) ()5已知;已知;()y x a 11,=⊥ ()y x b 2 2 ,= 02 1 2 1 =?+??y y x x (对应坐标乘积之和为0) 10.数量积b a ?等于a 的长度a 与b 在a 的方向上的投影θcos ?b 的乘积: θcos ??=?b a b a ()的夹角与为b a θ 变形?b a b a ?= θcos 11.线段的定比分点: 设()x x p 211, ,()y x p 222, ,P ()y x ,是不同于直线p 2 1,上 的任意两点;即有: p p p p 21λ=?? ? ???外在点内 在点p p p p p p 212 100λλ (其中p 为定比分点;λ为定比。) (1).线段的定比分点“定比”λ=p p p p 2 1 (终点 分点分点 始点→→)

高中数学必背公式——立体几何与空间向量

1 立体几何与空间向量 求角: (1)异面直线所成的角: 可平移至同一平面;也可利用空间向量:cos |cos ,|a b θ=<>r r =|| |||| a b a b ?= ?r r r r (其中θ(090θ<≤o o )为异面直线a b ,所成角,,a b r r 分别表示异面直线a b ,的方向向量)。 (2)直线与平面所成的角: 在斜线上找到任意一点,过该点向平面作垂线,找到斜线在该平面上的射影,则斜线和射影所成的角便是直线与平面所成的角;也可利用空间向量,直线AB 与平面所成角 sin |||| AB m AB m β?= (m 为平面α的法向量). (3)二面角: 方法一:常见的方法有三垂线定理法和垂面法; 方法二:向量法:夹角公式 设a =123(,,)a a a ,b =123(,,)b b b ,则 cos 〈a ,b 〉 . 推论 2222222 112233123123()()()a b a b a b a a a b b b ++≤++++,此即三维柯西不等式. (m ,n 为平面α,β 的法向量). 求空间距离: (1)点与点的距离、点到直线的距离,一般用三垂线定理“定性”; (2)两条异面直线的距离:|||| AB n d n ?= (n 同时垂直于两直线,A 、B 分别在两直线上); (3)求点面距: ||||AB n d n ?= (n 为平面α的法向量,AB 是经过面α的一条斜线,A α∈); (3)线面距、面面距都转化为点面距。 △空间一点P 位于平面MAB 内的充要条件是存在有序实数对x.y,使 MP=xMA+yMB {MP MA MB 都表示向量} 或对空间任一定点O ,有OP=OM+xMA+yMB {OP,OM,MA,MB 表示向量}

平面向量的运算法则

平面向量运算法则 (1)实数与向量的运算法则:设λ、μ为实数,则有: 1)结合律:a a )()(λμμλ=。 2)分配律:a a μλμλ+=+)(,b a b a λλλ+=+)(。 (2)向量的数量积运算法则: 1)a b b a ??=。 2))()()(b a b a b a b a λλλλ===???。 3)c b c a c b a ???+=+)(。 (3)平面向量的基本定理。 21,e e 是同一平面内的两个不共线向量,则对于这一平面内的任何一向量a ,有且仅有一对实数21,λλ,满足2211e e a λλ+=。 (4)a 与b 的数量积的计算公式及几何意义:θcos ||||b a b a =?,数量积b a ?等于a 的长度||a 与b 在a 的方向上的投影θcos ||b 的乘积。 (5)平面向量的运算法则。 1)设a =11(,)x y ,b =22(,)x y ,则a +b =1212(,)x x y y ++。 2)设a =11(,)x y ,b =22(,)x y ,则a -b =1212(,)x x y y --。 3)设点A 11(,)x y ,B 22(,)x y ,则2121(,)AB OB OA x x y y =-=--。 4)设a =(,),x y λ∈R ,则a λ=(,)x y λλ。 5)设a =11(,)x y ,b =22(,)x y ,则a ?b =1212()x x y y +。 (6)两向量的夹角公式: cos θ=(a =11(,)x y ,b =22(,)x y )。 (7)平面两点间的距离公式:

空间向量坐标公式

空间向量坐标公式 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

7、空间向量与立体几何 1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。 注:(1)向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量。 (2)向量具有平移不变性 2. 空间向量的运算。 定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下 运算律: ⑴加法交换律:a b b a +=+ ⑵加法结合律:)()(c b a c b a ++=++ ⑶数乘分配律:b a b a λλλ+=+)( 3. 共线向量。 (1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做 共线向量或平行向量,a 平行于b ,记作 b a //。 (2)共线向量定理:空间任意两个向量a 、b (b ≠0 ),a b a b 空间向量的直角坐 标系: (1)空间直角坐标系中的坐标: 在空间直角坐标系O xyz -中,对空间任一点A ,存在唯一的有序实数组(,,)x y z ,使zk yi xi OA ++=,有序实数组(,,)x y z 叫作向量A 在空间直角坐标系O xyz -中的坐标,记作(,,)A x y z ,x 叫横坐标,y 叫纵坐标,z 叫竖坐标。 (2)空间向量的直角坐标运算律: ①若123(,,)a a a a =,123(,,)b b b b = 则 112233(,,)a b a b a b a b +=+++, 123(,,)()a a a a R λλλλλ=∈, 112233a b a b a b a b ?=++, 112233//,,()a b a b a b a b R λλλλ?===∈,

空间向量及几何公式

空间向量及几何公式 118.共面向量定理 向量p 与两个不共线的向量a 、b 共面的?存在实数对,x y ,使p ax by =+. 推论 空间一点P 位于平面MAB 内的?存在有序实数对,x y ,使MP xMA yMB =+, 或对空间任一定点O ,有序实数对,x y ,使OP OM xMA yMB =++. 119.对空间任一点O 和不共线的三点A 、B 、C ,满足OP xOA yOB zOC =++(x y z k ++=),则当1k =时,对于空间任一点O ,总有P 、A 、B 、C 四点共面;当1k ≠时,若O ∈平面ABC ,则P 、A 、B 、C 四点共面;若O ?平面ABC ,则P 、A 、B 、C 四点不共面. C A B 、、、 D 四点共面?AD 与AB 、AC 共面?AD x AB y AC =+? (1)OD x y OA xOB yOC =--++(O ?平面ABC ). 120.空间向量基本定理 如果三个向量a 、b 、c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组x ,y ,z ,使p =xa +yb +zc . 推论 设O 、A 、B 、C 是不共面的四点,则对空间任一点P ,都存在唯一的三个有序实数x ,y ,z ,使OP xOA yOB zOC =++. 121.射影公式 已知向量AB =a 和轴l ,e 是l 上与l 同方向的单位向量.作A 点在l 上的射影' A ,作 B 点在l 上的射影'B ,则 ''||cos A B AB =〈a ,e 〉=a ·e 122.向量的直角坐标运算 设a =123(,,)a a a ,b =123(,,)b b b 则 (1)a +b =112233(,,)a b a b a b +++; (2)a -b =112233(,,)a b a b a b ---; (3)λa =123(,,)a a a λλλ (λ∈R); (4)a ·b =112233a b a b a b ++;

相关文档
最新文档