LED打金线工艺参数规范

LED打金线工艺参数规范
LED打金线工艺参数规范

焊线工艺规范

1 范围 (2)

2 工艺 (2)

3 焊接工艺参数范围 (3)

4 工艺调试程序 (5)

5 工艺制具的选用 (6)

6 注意事项 (8)

1 范围

1.1 主题内容

本规范确定了压焊的工艺能力、工艺要求 .工艺参数、工艺调试程序、工艺制具的选用及注意事项。

1.2 适用范围

1.2.1 ASM-Eagle60. k&s1488机型。

1.2.2 适用于目前在线加工的所有产品。

2 工艺

2.1 工艺能力

2.1.1 接垫最小尺寸:45μm×45μm

2.1.2 最小接垫节距(相邻两接垫中心间距离):≥60μm

2.1.3 最低线弧高度:≥6 mil

2.1.4 最大线弧长度:≤7mm

2.1.5 最高线弧高度:16mil

2.1.6 直径:Eagle60:Ф18—75um , K&S1488: Ф18—50um

2.2 工艺要求

2.2.1 键合位置

2.2.1.1 键合面积不能有1/4以上在芯片压点之外,或触及其他金属体和没有钝化层的划片方

格。

2.2.1.2 在同一焊点上进行第二次键合,重叠面积不能大于前键合面积的1/3。

2.2.1.3 引线键合后与相邻的焊点或芯片压点相距不能小于引线直径的1倍。

2.2.2 焊点状态

2.2.2.1 键合面积的宽度不能小于引线直径的1倍或大于引线直径的3倍。

2.2.2.2 焊点的长度:键合面积的长度不能小于引线直径的1倍或大于引线直径的4倍。

2.2.2.3 不能因缺尾而造成键合面积减少1/4,丝尾的总长不能超出引线直径的2倍。

2.2.2.4 键合的痕迹不能小于键合面积的2/3,且不能有虚焊和脱焊。

2.2.3 弧度

2.2.

3.1 引线不能有任何超过引线直径1/4的刻痕、损伤、死弯等。

2.2.

3.2 引线不能有任何不自然拱形弯曲,且拱丝高度不小于引线直径的6倍,弯屏后拱丝最

高点与屏蔽罩的距离不应小于2倍引线直径。

2.2.

3.3 不能使引线下塌在芯片边缘上或其距离小于引线直径的1倍。

2.2.

3.4 引线松动而造成相邻两引线间距小于引线直径的1倍或穿过其他引线和压点。

2.2.

3.5 焊点与引线之间不能有大于30o的夹角。

2.2.4 芯片外观

2.2.4.1 不能因键合而造成芯片的裂纹、伤痕和铜线短路。

2.2.4.2 芯片表面不能有因键合而造成的金属熔渣、断丝和其他不能排除的污染物。

2.2.4.3 芯片压点上不能缺丝、重焊或未按照打线图的规定造成错误键合。

2.2.5 键合强度

2.2.5.1 对于25um线径拉力应大于5g,23um线径大于4g,30um铜线大于7g

注: 当作破坏性试验时,断点不应发生在焊点上。

2.2.5.2 对于25um线径,要求铜球剪切力大于25g.

2.2.6 框架不能有明显的变形,管脚.基岛镀层表面应致密光滑,色泽均匀呈银白色,不允许

有沾污.水迹.斑点.异物.发花.起皮.起泡等缺陷.

3. 焊接工艺参数

3.1 关键工艺参数范围

3.1.1 ASM-Eagle60焊线机

预热温度(Preheat Temperature):220℃-230℃。

焊区温度(Bond Site Temperature):230℃-240℃。

EFO Parameters

K&S1488焊线机

预热温度(Preheat Temperature):220℃-230℃

焊区温度(Bond Site Temperature)230℃-250℃

注:Wire Size根据铜线标称线径设置

4 工艺调试程序:

4.1 工艺调试员基本职责

4.1.1 工艺调试员职责

4.1.1.1 以“品质”和“UPH”为工作重点。

4.1.1.2 从工艺方面着手逐步消除影响品质和UPH的因素。

4.1.1.3 进行过程监控。

4.1.1.4 协助主管工作。

4.1.1.5 监控当班期间工艺参数的适应性并作适当调整。

4.1.1.6 监控当班期间劈刀状况并更换。

4.1.1.7 夹具更换,调试和维护。

4.1.1.8 填写相关记录。

4.2 工艺监控程序:

4.2.1 监控人:工艺调试员,工艺工程师。

4.2.2 监控项目及参数

4.2.2.1 第一点时间(T1)。

4.2.2.2 第一点功率(P1)。

4.2.2.3 第一点压力(F1)。

4.2.2.4 第一点功率输出方式。

4.2.2.5 第二点时间(T2)。

4.2.2.6 第二点功率(P2)。

4.2.2.7 第二点压力(F2)。

4.2.2.8 第二点功率输出方式。

4.2.2.9 弧高。

4.2.2.10 反弧。

4.2.2.11 弧度因素。

4.2.2.12 烧球尺寸(BS)。

4.2.2.13 线径尺寸(WS)。

4.2.2.14 预热时间(HT1)。

4.2.2.15 加热时间(HT2)。

4.2.2.16 预热温度。

4.2.2.17 焊区温度。

4.2.2.18 劈刀打线总数。

4.2.2.19 规定的首件检验项目。

4.2.3 监控时机:

4.2.3.1 更换型号后。

4.2.3.2 设备重新调试.维修后。

4.2.3.3 交接班后。

4.2.3.4 换劈刀.铜丝后。

4.2.3.5 新材料、新工艺投入生产后。

4.2.4 工艺调试员作业依据

4.2.4.1 《压焊作业指导书》。

4.2.4.2 《ASM焊线机使用手册》。

4.2.4.3 本文件中的相关条款。

5. 工艺制具的选用

5.1 劈刀选用指导

劈刀的选用应综合铜线线径、铝垫尺寸、铝垫间距、相邻弧高等因素来考虑。

5.1.1 根据线径,选用劈刀孔径(H)

估算公式为孔径(H)=铜丝线径+经验值(0.5~0.8mil)

应用范例:

5.1.1.1 采用Φ23-Φ25μm线径产品,选用孔径(H)为30μm劈刀

如:UTS-30IE-CM-1/16-XL或UTS-30HE-CM-1/16-XL。

K&S:CU-N8-1224-R35。

5.1.1.2 采用Φ38-Φ42μm铜丝的产品,选用孔径为46-56μm的劈刀

如:UTS-46JI-CM-1/16-XL或UTS-56LJ-CM-1/16-XL.

5.1.2 根据铝垫尺寸选用内倒角直径(CD)大小

估算公式为内倒角直径(CD)=铝垫尺寸-经验值(0.8~0.9mil)

5.1.3 根据铝垫间距选用劈刀头部直径(T)的大小

估算公式

头部直径(T)=2×铝垫间距- 平均金球直径

5.1.3.1 铝垫间距>110μm产品可灵活选用UTS或CU“打头”的劈刀。

5.1.4 根据相邻弧高和相邻间距选用劈刀头部形状

5.1.4.1 如果相邻间距≤120μm产品,一般选用CU“打头”劈刀。

5.1.4.2 如果相邻间距>120μm产品,一般选用UTS “打头”劈刀。

5.2 附录 (SPT)

1.TIP Stype 劈刀头部类型11.Main Taper Angle(MTA)

外端面锥度(外端面夹角)

2.Face Angle 头部端面角10.Tool Length 劈刀长度

3.Chamfer Angle 内倒角角度9. Tool Diameter 劈刀外圆直径

4.Hole Size 内孔直径8. Finish 表面处理状况

5.Tip Diameter 劈刀头部直径7. Materiai 材料

6.Chamfer Diameter倒角直径

1.ip Stype:SBN – Fine Pitch with to deg Slinline Bottleneck(for T≤μm).

[细间距,瓶颈端面角为100(T<165μm)]

UT –Standard capillary with Face Angle for non-Fine Pitch application.

[普通型劈刀不适于细间距焊接使用]

CSA–Standard capillary with a 00 Face Angle for nin-Fine Pitch

application.

[普通型劈刀,头部端面角为00,FA=00不适于细间距焊接使用]

2.Face Angle:Z-00 F-40 S-80 E-110 [FA--头部端面角]

3. Chamfer Angle:Standard-900(no need to specify) [内倒角角度:标准为900 ]

4.Hole Size

5.Tip Diameter

6.Chamfer Diameter

25 μm (.0010") W=70 μm (.0028") A=35 μm (.0014")

28 μm (.0011") Y=75 μm (.0030") B=41 μm (.0016")

30 μm (.0012") Z=80 μm (.0032") C=46 μm (.0018")

33 μm (.0013") A=90 μm (.0035") D=51 μm (.0020")

35 μm (.0014") B=100 μm (.0039") E=58 μm (.0023")

38 μm (.0015") C=110 μm (.0043") F=64 μm (.0025")

41 μm (.0016") D=120 μm (.0047") G=68 μm (.0027")

43 μm (.0017") E=130 μm (.0051") H=74 μm (.0029")

46 μm (.0018") F=140 μm (.0055") I=78 μm (.0031")

51 μm (.0020") G=150 μm (.0059") J=86 μm (.0034")

56 μm (.0022") H=165 μm (.0065") K=92 μm (.0036")

64 μm (.0025") I=180 μm (.0071") L=100 μm (.0039")

68 μm (.0027") J=200 μm (.0079) M=114 μm (.0045")

75 μm (.0030") K=225 μm (.0089") N=127 μm (.0050")

5.4 压焊夹具选用:

5.4.1 压焊夹具选用依据

5.4.1.1 各机型夹具配置。

5.4.1.2 封装规格。

5.4.1.3 框架载体尺寸。

5.4.1.4 框架载体凹深。

5.4.2 压焊夹具选用要求

5.4.2.1 框架上机后,所有焊接区不能有松动现象。

5.4.2.2 框架上机后要有足够的焊接空间。

5.4.2.3 要与机器工作台相匹配。

6 .注意事项:

6.1 劈刀更换

6.1.1 进入劈刀更换状态

6.1.2 旋转手轮使压焊头移至窗口最左侧前端附近(便于使用扭力计)。

6.1.3 把新劈刀从换能器下孔穿入,换能器下端刚好与劈刀规顶端相接触(或劈刀限位位置)。

6.1.4 轻轻地用劈刀规(或镊子)托住劈刀,然后用钮力计锁紧螺丝。

6.1.5 进入USG校正程序,检查R-Out(或Z-Ohm)值是否符合下列值:

6.1.5.1 ASM- Eagle60:Z-Ohm为5-24范围内。K&S1488:R-out为13-30 范围内。

6.1.5.2 如上述值超出范围,应更换劈刀螺丝后再试,如还超出范围,通知技术人员维修。6.1.5.3 更换换能器紧固螺丝需非常小心,应特别注意紧固螺丝的定位面方向。

6.1.5.4 避免或减小拆卸时的敲打行为,预防或消除对换能器造成的潜在损坏隐患。

6.2 换夹具后,应及时用点温计校正温度。

6.3 下一班交接班时,应如实相告本班未处理的机台及其存在问题。

6.4 环境监控:

相对湿度在30%~60%,正常工作;超过此范围,停产。

6.5 不要碰触轨道上的预加热板,引线框架及压板(200℃以上),以免烫伤!

6.6 确认打火杆表面干净,以免在烧球时产生不正常的高压放电影响球形大小。

6.7 必须戴上防静电手套以避免直接接触引线框架,铜丝以及劈刀。

6.8 压焊时严禁用手或金属件接触打火杆,以免电击;严禁在工作台上堆放杂物或将手放

在升降机,压焊头,工作台等运动部件上,以免引起设备故障或造成人身事故。

压铸工艺参数的设定和调节

压铸工艺参数的设定和调节 压铸生产中机器工艺参数的设定和调节直接影响产品的质量。一个参数可能造成产品的多个缺陷,而同一产品的同一缺陷有可能与多个参数有关,要求在试压铸生产中要仔细分析工艺参数的变化对铸件成形的影响。压铸生产厂家通常由专人设定和调节机器参数。 一、卧式冷室压铸机主要工艺参数的设定和调节 下面以力劲机械厂有限公司生产的DCC280 卧式冷室压铸机为例,说明压铸生产中主要工艺参数的设定。 1. 主要工艺参数的设定 (1)射料时间:射料时间大小与铸件壁厚成正比,对于铸件质量较大、压射一速速度较慢且所需时间较长时,射料时间可适当加大,一般在2s 以上。射料二速冲头运动的时间等于填充时间。 (2)开型(模)时间:开型(模)时间一般在2s 以上。压铸件较厚比较薄的开型(模)时间较之要长,结构复杂的型(模)具比结构简单的型(模)具开型(模)时间较之要长。调节开始时可以略为长一点时间,然后再缩短,注意机器工作程序为先开型(模)后再开安全门,以防止未完全冷却的铸件喷溅伤人。 (3)顶出延时时间:在保证产品充分凝固成型且不粘模的前提下,尽量减短顶出延时时间,一般在0.5s以上。 (4)顶回延时时间:在保证能顺利地取出铸件的前提下尽量减短顶回延时时间,一般在0.5s 以上。 (5)储能时间:一般在2s 左右,在设定时操作机器作自动循环运动,观察储能时间结束时,压力是否能达到设定值,在能达到设定压力值的前提下尽量减短储能时间。 (6)顶针次数:根据型(模)具要求来设定顶针次数。 (7)压力参数设定在保证机器能正常工作,铸件产品质量能合乎要求的前提下,尽量减小工作压力。 选择、设定压射比压时应考虑如下因素: 1)压铸件结构特性决定压力参数的设定。 ①壁厚:薄壁件,压射比压可选高些;厚壁件,增压比压可选高些。 ②铸件几何形状复杂程度:形状复杂件,选择高的比压;形状简单件,比压低些。 ③工艺合理性:工艺合理性好,比压低些。

焊接工艺参数

手工电弧焊的焊接工艺参数选择 选择合适的焊接工艺参数,对提高焊接质量和提高生产效率是十分重要. 焊接工艺参数(焊接规范)是指焊接时,为保证焊接质量而选定的诸多物理量. 1、焊接电源种类和极性的选择 焊接电源种类:交流、直流 极性选择:正接、反接 正接:焊件接电源正极,焊条接电源负极的接线方法。 反接:焊件接电源负极,焊条接电源正极的接线方法。 极性选择原则:碱性焊条常采用直流反接,否则,电弧燃烧不稳定, 飞溅严重,噪声大,酸性焊条使用直流电源时通常采用直流正接。 2、焊条直径 可根据焊件厚度进行选择。一般厚度越大,选用的焊条直径越粗,焊条直径与焊件的关系见下表: 焊件厚度(mm) 2 3 4-5 6-12 >13 焊条直径(mm) 2 3.2 3.2-4 4-5 4-6 3、焊接电流的选择 选择焊接电流时,要考虑的因素很多,如:焊条直径、药皮类型、工件厚度、接头类型、焊接位置、焊道层次等。但主要由焊条直径、焊接位置、焊道层次来决定。 (1)焊条直径焊条直径越粗,焊接电流越大。下表供参考 焊条直径(mm) 1.6 2.0 2.5 3.2 4.0 5.0 6.0 焊接电流(A)

25-45 40-65 50-80 100-130 160-210 260-270 260-300 (2)焊接位置平焊位置时,可选择偏大一些焊接电流。横、立、仰焊位置时,焊接电流应比平焊位置小10~20%。角焊电流比平焊电流稍大一些。 (3)焊道层次 打底及单面焊双面成型,使用的电流要小一些。 碱性焊条选用的焊接电流比酸性焊条小10%左右。不锈钢焊条比碳钢焊条选用的焊接电流小左右等。 总之,电流过大过小都易产生焊接缺陷。电流过大时,焊条易发红,使药皮变质,而且易造成咬边、弧坑等到缺陷,同时还会使焊缝过热,促使晶粒粗大。 (4)电弧电压 电弧电压主要决定于弧长。电弧长,则电弧电压高;反之,则低。 在焊接过程中,一般希望弧长始终保持一致,而且尽可能用短弧焊接。所谓短弧是指弧长焊条直径的0.5~1.0倍,超过这个限度即为长弧。 (5)焊接速度 在保证焊缝所要求尺寸和质量的前提下,由操作者灵活掌握。速度过慢,热影响区加宽,晶粒粗大,变形也大;速度过快,易造成未焊透,未熔合,焊缝成型不良好等缺陷。 (6)速度以及电压与焊工的运条习惯有关不用强制要求,但是根据经验公式,可知当电流小于600A时,电压取20+0.04I。当电流大于600A时电压取44V。 参考资料:https://www.360docs.net/doc/944074826.html,/jl 16 回答者: trilsen 焊接工艺参数的选择 手工电弧焊的焊接工艺参数主要有焊条直径、焊接电流、电弧电压、焊接层数、电源种类及极性等。 1.焊条直径 焊条直径的选择主要取决于焊件厚度、接头形式、焊缝位置和焊接层次等因素。在一般情况下,可根据表6-4按焊件厚度选择焊条直径,并倾向于选择较大直径的焊条。另外,在平焊时,直径可大一些;立焊时,所用焊条直径不超过5mm;横焊和仰焊时,所用直径不超过4mm;开坡口多层焊接时,为了防止产生未焊透的缺陷,第一层焊缝宜采用直径为3.2mm 的焊条。

PCB板焊接工艺通用标准

PCB板焊接工艺(通用标准) 1.PCB板焊接的工艺流程 1.1P CB板焊接工艺流程介绍 PCB板焊接过程中需手工插件、手工焊接、修理和检验。 1.2P CB板焊接的工艺流程 按清单归类元器件—插件—焊接—剪脚—检查—修整。 2.PCB板焊接的工艺要求 2.1元器件加工处理的工艺要求 2.1.1元器件在插装之前,必须对元器件的可焊接性进行处理,若可 焊性差的要先对元器件引脚镀锡。 2.1.2元器件引脚整形后,其引脚间距要求与PCB板对应的焊盘孔间 距一致。 2.1.3元器件引脚加工的形状应有利于元器件焊接时的散热和焊接后 的机械强度。 2.2元器件在PCB板插装的工艺要求 2.2.1元器件在PCB板插装的顺序是先低后高,先小后大,先轻后重, 先易后难,先一般元器件后特殊元器件,且上道工序安装后不 能影响下道工序的安装。 2.2.2元器件插装后,其标志应向着易于认读的方向,并尽可能从左 到右的顺序读出。 2.2.3有极性的元器件极性应严格按照图纸上的要求安装,不能错装。 2.2.4元器件在PCB板上的插装应分布均匀,排列整齐美观,不允许

斜排、立体交叉和重叠排列;不允许一边高,一边低;也不允 许引脚一边长,一边短。 2.3P CB板焊点的工艺要求 2.3.1焊点的机械强度要足够 2.3.2焊接可靠,保证导电性能 2.3.3焊点表面要光滑、清洁 3.PCB板焊接过程的静电防护 3.1静电防护原理 3.1.1对可能产生静电的地方要防止静电积累,采取措施使之控制在 安全范围内。 3.1.2对已经存在的静电积累应迅速消除掉,即时释放。 3.2静电防护方法 3.2.1泄漏与接地。对可能产生或已经产生静电的部位进行接地,提 供静电释放通道。采用埋地线的方法建立“独立”地线。 3.2.2非导体带静电的消除:用离子风机产生正、负离子,可以中和 静电源的静电。 4.电子元器件的插装 电子元器件插装要求做到整齐、美观、稳固。同时应方便焊接和有利于元器件焊接时的散热。 4.1元器件分类 按电路图或清单将电阻、电容、二极管、三极管,变压器,插排线、座,导线,紧固件等归类。

LED显示屏可视距离的计算方法和LED显示屏关键技术指标

LED显示屏可视距离的计算方法: RGB颜色混合距离三色混合成为单一颜色的距离: LED全彩屏视距=像素点间距(mm)×500/1000 最小的观看距离能显示平滑图像的距离:LED显示屏可视距离=像素点间距(mm) ×1000/1000 最合适的观看距离观看者能看到高度清晰画面的距离:LED显示屏最佳视距=像素点间距(mm) ×3000/1000 最远的观看距离:LED显示屏最远视距=屏幕高度(米)×30(倍) LED显示屏关键技术指标 像素失控率像素失控率是指显示屏的最小成像单元(像素)工作不正常(失控)所占的比例。而像素失控有两种模式:一是盲点,也就是瞎点,在需要亮的时候它不亮,称之为瞎点;二是常亮点,在需要不亮的时候它反而一直在亮着,称之为常亮点。一般地,像素的组成有2R1G1B(2颗红灯、1颗绿灯和1颗蓝灯,下述同理)、1R1G1B、2R1G、3R6G 等等,而失控一般不会是同一个像素里的红、绿、蓝灯同时全部失控,但只要其中一颗灯失控,我们即认为此像素失控。为简单起见,我们按LED显示屏的各基色(即红、绿、蓝)分别进行失控像素的统计和计算,取其中的最大值作为显示屏的像素失控率。失控的像素数占全屏像素总数之比,我们称之为“整屏像素失控率”。另外,为避免失控像素集中于某一个区域,我们提出“区域像素失控率”,也就是在100×100像素区域内,失控的像素数与区域像素总数(即10000)之比。此指标对《LED显示屏通用规范》SJ/T11141-2003中“失控的像素是呈离散分布”要求进行了量化,方便直观。目前国内的LED显示屏在出厂前均会进行老化(烤机),对失控像素的LED灯都会维修更换,“整屏像素失控率” 控制在1/104之内、“区域像素失控率”控制在3/104之内是没问题的,甚至有的个别厂家的企业标准要求出厂前不允许出现失控像素,但这势必会增加生产厂家的制造维修成本和延长出货时间。在不同的应用场合下,像素失控率的实际要求可以有较大的差别,一般来说,LED显示屏用于视频播放,指标要求控制在1/104之内是可以接受,也是可以达到的;若用于简单的字符信息发布,指标要求控制在12/104之内是合理的灰度等级灰度也就是所谓的色阶或灰阶,是指亮度的明暗程度。对于数字化的显示技术而言,灰度是显示色彩数的决定因素。一般而言灰度越高,显示的色彩越丰富,画面也越细腻,更易表现丰富的细节。灰度等级主要取决于系统的A/D转换位数。当然系统的视频处理芯片、存储器以及传输系统都要提供相应位数的支持才行。目前国内LED显示屏主要采用8位处理系统,也即256(28)级灰度。简单理解就是从黑到白共有256种亮度变化。采用RGB三原色即可构成256×256×256=16777216种颜色。即通常所说的16兆色。国际品牌显示屏

印刷机工艺参数的调节与影响

印刷机工艺参数的调节与影响1.刮刀的夹角 刮刀的夹角H11A3SD影响到刮刀对焊锡膏垂直方向力的大小,夹角越小,其垂直方向的分力Fy越大,通过改变刮刀角度可以改变所产生的压力。刮刀角度如果大于80。,则焊锡膏只能保特原状前 进而不滚动,此时Fy几乎没有垂直方向的分力,焊锡膏便不入印刷模板窗开口。刮刀角度的最佳设定应在45。~60。范围内进行,此时焊锡膏具有良好的滚动性。 2.刮刀的速度 刮刀速度变快时,焊锡膏所受的力会变大。考虑到焊锡膏压入窗口的实际情况,即焊锡膏压入的时间反而变短,如果刮速度过快,焊锡膏不能滚动而仅在印刷模板上滑动。因为锡膏流进窗口需要时间,这一点在印刷细间距QFP图形时能明显感觉到,当刮刀沿QFP -侧 运行时垂直于刮刀的焊盘上焊锡膏图形比另一侧要饱满,故有的印刷机具有刮刀旋转45。的功能,以保证细间距QFP印刷时圆面焊锡膏量均匀。最大的印刷速度应保证FQFP焊盘焊锡膏印刷纵横方向均匀、饱满,通常当刮刀速度控制在20~40mm/s时,板刷效果较好。 3.刮刀的压力 焊锡膏在滚动时,会对刮刀装置有垂直平衡,通常施加一个正压力,即通常所说的印刷压力,印刷压力不足时会引起焊锡膏刮不干净,如果印压过大时又会导致模板背后的渗漏,故一般把刮刀的压力设定在5~12N/25mm之间。理想的刮刀速度与压力应该以正好把焊锡

膏从钢板表面刮干净为准。 4.刮刀宽度 如果刮刀相对于PCB过宽,那么就需要更大的压力、更多的焊锡膏参与其工作,因而会造成锡膏的浪费。一般刮刀的宽度为PCB长度(印刷方向)加上50mm左右为最佳,并要保证刮刀头落在金属模板上。 5.印刷间隙 通常保持PCB与模板零距离(早期也要求控制在0~0.5mm但有FQFP时应为零距离),部分印刷机器还要求PCB平面稍高于模板的平面,调节后模板的金属模板微微被向上撑起,但此撑起的高度不应过大,否则会引起模板损坏,从刮刀运行动作上看,刮刀在模板运行自如,既要求刮刀所到之处焊锡膏全部刮走,不留多余的锡膏,同时刮刀不应在模板留下划痕。 6.分离速度 锡膏印刷后,钢板离开PCB 的瞵时速度是关系到印刷质量 的参数,其调节能力也是体现 印刷机质量好坏的参数,在精 密印刷中尤为重要。早期印刷 机的恒速分离,先进的印刷机其钢板离开锡膏图形时有一个微小的停留过程,以保证获取最佳的印刷图形,如图9.31所示.

电弧焊焊接工艺参数

3) 考虑焊接层次通常焊接打底焊道时,为保证背面焊道的质量,使用的焊接电流较小;焊接填充焊道时,为提高效率,保证熔合好,使用较大的电流:焊接盖面焊道时,防止咬边和保证焊道成形美观,使用的电流稍小些。 焊接电流—一般可根据焊条直径进行初步选择,焊接电流初步选定后,要经过试焊,检查焊缝成形和缺陷,才可确定。对于有力学性能要求的如锅炉、压力容器等重要结构,要经过焊接工艺评定合格以后,才能最后确定焊接电流等工艺参数。 1.4.3 电弧电压 当焊接电流调好以后,焊机的外特性曲线就决定了。实际上电弧电压主要是由电弧长度来决定的。电弧长,电弧电压高,反之则低。焊接过程中,电弧不宜过长,否则会出现电弧燃烧不稳定、飞溅大、熔深浅及产生咬边、气孔等缺陷:若电弧太短,容易粘焊条。一般情况下,电弧长度等于焊条直径的0.5~1倍为好,相应的电弧电压为16—25V。碱性焊条的电弧长度不超过焊条的直径,为焊条直径的一半较好,尽可能地选择短弧焊;酸性焊条的电弧长度应等于焊条直径。 1.4.4 焊接速度 焊条电弧焊的焊接速度是指焊接过程中焊条沿焊接方向移动的速度,即单位时间内完成的焊缝长度。焊接速度过快会造成焊缝变窄,严重凸凹不平,容易产生咬边及焊缝波形变尖;焊接速度过慢会使焊缝变宽,余高增加,功效降低。焊接速度还直接决定着热输入量的大小,一般根据钢材的淬硬倾向来选择。 1.4.5 焊缝层数 厚板的焊接,一般要开坡口并采用多层焊或多层多道焊。多层焊和多层多道焊接头的显微组织较细,热影响区较窄。前一条焊道对后一条焊道起预热作用,而后一条焊道对前一条焊道起热处理作用。因此,接头的延性和韧性都比较好。特别是对于易淬火钢,后焊道对前焊道的回火作用,可改善接头组织和性能。 对于低合金高强钢等钢种,焊缝层数对接头性能有明显影响。焊缝层数少,每层焊缝厚度太大时,由于晶粒粗化,将导致焊接接头的延性和韧性下降。 1.4.6 热输入 熔焊时,由焊接能源输入给单位长度焊缝上的热量称为热输入。其计算公式如下: Q=NLU/u 式中 Q——单位长度焊缝的热输入(J/cm) I——焊接电流(A) ; U——电弧电压(V) ; u——焊接速度(cm/s) n——热效率系数,焊条电弧焊为0.7~0.8。 热输入对低碳钢焊接接头性能的影响不大,因此,对于低碳钢焊条电弧焊—一般不规定热输入。对于低合金钢和不锈钢等钢种,热输入太大时,接头性能可能降低:热输入太小时,有的钢种焊接时可能产生裂纹。因此,焊接工艺规定热输入。焊接电流和热输入规定之后,焊条电弧焊的电弧电压和焊接速度就间接地大致确定了。 一般要通过试验来确定既可不产生焊接裂纹、又能保证接头性能合格的热输入范围。允许的热输入范围越大,越便于焊接操作。 1.4.7 预热温度 预热是焊接开始前对被焊工件的全部或局部进行适当加热的工艺措施。预热可以减小接头焊后冷却速度,避免产生淬硬组织,减小焊接应力及变形。它是防止产生裂纹的有效措施。对于刚性不大的低碳钢和

LED显示屏技术参数

LED显示屏技术参数、性能指标及相关要求报价人资格要求: (1)必须符合《中华人民共和国政府采购法》中规定的条件; (2)具有独立法人资格及与本次采购相应的经营范围; (3)必须为报价产品的生产企业 (4)非南京注册的投标人,须有经南京市工商部门注册的售后服务机构; (5)需提供ISO9001认证(含显示屏生产)证书。 (6)需提供室内单色显示屏中国国家强制性产品认证证书即CCC证书。 (7)需提供用于出厂检验的仪器设备清单。 (8)若提供的是英文证书,应同时提供中文翻译件及翻译件的公证书。 一、设备描述及用途说明 室内电子显示屏,用于文字、图像显示,便于操作和通讯。 二、技术要求及参数 1、软硬件的技术要求符合国家及行业标准(电子部《SJ/T11141-2003》); 2、颜色种类:单红色显示; 3、象素点间:4.75mm; 4、象素点直径:3.7 mm; 5、控制方式:异步控制; 6 7、发光均匀:无抖动闪烁现象 8、画面更新:120帧/秒; 9、整屏结构平整,平整度小于1mm; 10、信号传输距离≤100m(超五类网线传输),距离≥100m要用光纤传输; 11、垂直视角:≥1600; 12、水平视角:≥1600; 13、亮度:≥150 cd/㎡; 14、屏体边框:采用优质亚光不锈钢材料,内部整体钢结构,框宽:50mm 15、使用环境:室内 16、管芯:台湾光磊 三、售后服务要求 1、报价人应承诺对报价产品提供贰年以上的免费保修,在免费维护维修期外以最优惠的价格提供终身维修改造服务,服务水准与免费维护维修期内相同; 2、报价人须保证向使用方提供技术支持,在接到使用方服务请求的半小时之内给予电话回复,如需要可在接到服务请求12小时内到达现场,进行现场维护; 3、报价人须承诺为使用方工作人员进行必要的现场免费技术培训,保证使用方人员能独立使用该设备,完成日常操作和相关维护。 四、验收及培训

印刷机工艺参数调整方法

印刷机工艺参数调整方法 The Standardization Office was revised on the afternoon of December 13, 2020

印刷机工艺参数调整方法 印刷的工作原理 ? 丝网印刷原理:控制流体的运动。 ? 印刷前,丝网上的浆料因粘度较大不会自行流动而漏过丝网。 ? 印刷时,刮刀把浆料压入网孔,在刮板及丝网的作用下,浆料受到切应力而粘度迅速下降,并滚动运动,在滚动压力的作用下流过 网孔,从而与硅片接触,在丝网回弹过程中附着到硅片上。 印刷相关参数的作用 ? 印刷压力:用于在印刷时提供给刮刀垂直力,以保证在印刷过程中能把浆料刮干净 ? 印刷间距:保证网板与硅片之间有一定的距离,保证在印刷后网板的回弹。 ? 印刷速度:印刷速度决定了整线的产量,但也不能过快。因为浆料在印刷时会滚动运动并产生两种力,一个反作用力和一个朝网板&朝刮刀的上下力,速度越大,力越大;从而浆料刮到硅片的量也会加大。 网板张力 ? 网板的张力对印刷的质量有很大的影响(如刮不干净浆料,碎片) ? 网板的张力在新的时候最大,随着印刷次数的增加,网板张力程线性下降 ? 随着网板张力的下降,在不改变其它印刷参数的情况下,最明显的就是刮不干净浆料。在加大压力后能把浆料收干净,但因为网板张力减小,加大的印刷压力就可能全部加到硅片上,从而导致碎片或隐裂。 印刷过程中碎片产生的原因 ? 硅片在印刷的过程中受到压力过大,从而造成碎片(试想如果没外加压力,硅片在印刷台面是不会碎的) ? 网板张力改变时,未改变间距,只加大压力,硅片可能因为承受压力过大而碎片 ? 前段刮刀胶条不平,造成硅片背极不平,在印刷栅线时碎片 ? 台面不平(或不干净),清理网版与台面上的杂物,更换台面纸.

手工电弧焊的工艺参数

手工电弧焊的工艺参数 2006-12-15 15:56 选择合适的焊接工艺参数,对提高焊接质量和提高生产效率是十分重要. 焊接工艺参数(焊接规范)是指焊接时,为保证焊接质量而选定的诸多物理量. 1、焊接电源种类和极性的选择 焊接电源种类:交流、直流 极性选择:正接、反接 正接:焊件接电源正极,焊条接电源负极的接线方法。 反接:焊件接电源负极,焊条接电源正极的接线方法。 极性选择原则:碱性焊条常采用直流反接,否则,电弧燃烧不稳定, 飞溅严重,噪声大,酸性焊条使用直流电源时通常采用直流正接。 2、焊条直径 可根据焊件厚度进行选择。一般厚度越大,选用的焊条直径越粗,焊条直径与焊件的关系见下表:焊件厚度(mm)234-56-12>13 焊条直径(mm)2 3.2 3.2-44-5 4-6 3、焊接电流的选择 选择焊接电流时,要考虑的因素很多,如:焊条直径、药皮类型、工件厚度、接头类型、焊接位置、焊道层次等。但主要由焊条直径、焊接位置、焊道层次来决定。 (1)焊条直径焊条直径越粗,焊接电流越大。下表供参考 焊条直径(mm) 1.6 2.0 2.5 3.2 4.0 5.0 6.0焊接电流(a)25-4540-6550-80100-130160-210260-270260-300 (2)焊接位置平焊位置时,可选择偏大一些焊接电流。横、立、仰焊位置时,焊接电流应比平焊位置小10~20%。角焊电流比平焊电流稍大一些。 (3)焊道层次 打底及单面焊双面成型,使用的电流要小一些。 碱性焊条选用的焊接电流比酸性焊条小10%左右。不锈钢焊条比碳钢焊条选用的焊接电流小%20左右等。总之,电流过大过小都易产生焊接缺陷。电流过大时,焊条易发红,使药皮变质,而且易造成咬边、弧坑等到缺陷,同时还会使焊缝过热,促使晶粒粗大。 (4)电弧电压 电弧电压主要决定于弧长。电弧长,则电弧电压高;反之,则低。 在焊接过程中,一般希望弧长始终保持一致,而且尽可能用短弧焊接。所谓短弧是指弧长焊条直径的 0.5~1.0倍,超过这个限度即为长弧。 (5)焊接速度 在保证焊缝所要求尺寸和质量的前提下,由操作者灵活掌握。速度过慢,热影响区加宽,晶粒粗大,变形也大;速度过快,易造成未焊透,未熔合,焊缝成型不良好等缺陷。

手工焊接工艺规范

手工焊接工艺规范 1、目的 规范在制品加工中手工焊接操作,保证产品质量。 2、适用范围 生产车间需进行手工焊接的工序及补焊等操作。 3、手工焊接使用的工具及要求 3.1焊锡丝的选择: 直径为0.8mm或1.0mm的焊锡丝,用于电子或电类焊接; 直径为0.6mm或0.7mm的焊锡丝,用于超小型电子元件焊接。 3.2烙铁的选用及要求: 3.2.1电烙铁的功率选用原则: 1)焊接集成电路、晶体管及其它受热易损件的元器件时,考虑选用20W内热式电烙铁。 2)焊接较粗导线及同轴电缆时,考虑选用50W内热式电烙铁。 3)焊接较大元器件时,如金属底盘接地焊片,应选100W 以上的电烙铁。 3.2.2电烙铁铁温度及焊接时间控制要求: 1)有铅恒温烙铁温度一般控制在280~360℃之间,缺省设置为330±10℃,焊接时间小于3秒。 焊接时烙铁头同时接触在焊盘和元件引脚上,加热后送锡丝焊接。部分元件的特殊焊接要 求: SMD器件:焊接时烙铁头温度为:320±10℃;焊接时间:每个焊点1~3秒。 拆除元件时烙铁头温度:310~350℃(注:根据CHIP件尺寸不同请使用不同的 烙铁嘴。) DIP器件:焊接时烙铁头温度为:330±5℃;焊接时间:2~3秒 注:当焊接大功率(TO-220、TO-247、TO-264等封装)或焊点与大铜箔相连, 上述温度无法焊接时,烙铁温度可升高至360℃,当焊接敏感怕热零件(LED、 CCD、传感器等)温度控制在260~300℃。 2)无铅制程 无铅恒温烙铁温度一般控制在340~380℃之间,缺省设置为360±10℃,焊接时间小于3秒,要求烙铁的回温每秒钟就可将所失的温度拉回至设定温度。 3.2.3电烙铁使用注意事项: 1)电烙铁不宜长时间通电而不使用,这样容易使烙铁芯加速氧化而烧断,缩短其寿命,同时 也会使烙铁头因长时间加热而氧化,甚至被“ 烧死” 不再“ 吃锡” 。 2)手工焊接使用的电烙铁需带防静电接地线,焊接时接地线必须可靠接地,防静电恒温电烙 铁插头的接地端必须可靠接交流电源保护地。电烙铁绝缘电阻应大于10MΩ,电源线绝缘 层不得有破损。 3)将万用表打在电阻档,表笔分别接触烙铁头部和电源插头接地端,接地电阻值稳定显示值 应小于3Ω;否则接地不良。 4)烙铁头不得有氧化、烧蚀、变形等缺陷。烙铁不使用时上锡保护,长时间不用必须关闭电 源防止空烧,下班后必须拔掉电源。

印刷机工艺参数调整方法(精)

印刷机工艺参数调整方法 印刷的工作原理 ? 丝网印刷原理:控制流体的运动。 ? 印刷前,丝网上的浆料因粘度较大不会自行流动而漏过丝网。 ? 印刷时, 刮刀把浆料压入网孔, 在刮板及丝网的作用下, 浆料受到切应力而粘度迅速下降,并滚动运动,在滚动压力的作用下流过 网孔,从而与硅片接触,在丝网回弹过程中附着到硅片上。 印刷相关参数的作用 ? 印刷压力:用于在印刷时提供给刮刀垂直力, 以保证在印刷过程中能把浆料刮干净 ? 印刷间距:保证网板与硅片之间有一定的距离,保证在印刷后网板的回弹。 ? 印刷速度:印刷速度决定了整线的产量, 但也不能过快。因为浆料在印刷时会滚动运动并产生两种力, 一个反作用力和一个朝网板&朝刮刀的上下力, 速度越大,力越大;从而浆料刮到硅片的量也会加大。 网板张力 ? 网板的张力对印刷的质量有很大的影响(如刮不干净浆料,碎片 ? 网板的张力在新的时候最大,随着印刷次数的增加,网板张力程线性下降 ? 随着网板张力的下降, 在不改变其它印刷参数的情况下, 最明显的就是刮不干净浆料。在加大压力后能把浆料收干净, 但因为网板张力减小, 加大的印刷压力就可能全部加到硅片上,从而导致碎片或隐裂。 印刷过程中碎片产生的原因

? 硅片在印刷的过程中受到压力过大, 从而造成碎片 (试想如果没外加压力, 硅片在印刷台面是不会碎的 ? 网板张力改变时, 未改变间距, 只加大压力, 硅片可能因为承受压力过大而碎片 ? 前段刮刀胶条不平,造成硅片背极不平,在印刷栅线时碎片 ? 台面不平(或不干净 , 清理网版与台面上的杂物 , 更换台面纸 . 印刷参数 ? Pressure (印刷压力 Snap-Off (印刷间距 Printing Speed (印刷速度 Down-Stop Position (印刷时刮刀下降高度 参数相互关系 ? 压力与间距:压力越大时,间距也大;因为压力大时,刮刀与网板接触的地方凸出来也多,间距小的话,硅片承受的压力加大,碎片的概率会加大。两个参数当中的一个改变 , 另外一个不改 , 就可能加大硅片碎的可能性或影响印刷质量 ? 印刷速度影响到产能 , 同时也影响到印刷到硅片浆料的多少 参数的调整 ? 先把印刷速度改小,以方便在调试时能很好的观察(如印刷速度为 50mm/s。 ? 先设定印刷间距:印刷间距以浆料能很好的印刷到硅片为宜,无粘片和虚印。(推荐为:1500+300um ? 在间距定下后, 设定印刷压力。压力由小到大慢慢加, 加到在印刷时浆料能收干净为宜。

焊接工艺参数

焊接工艺参数 集团标准化小组:[VVOPPT-JOPP28-JPPTL98-LOPPNN]

焊接工艺指导书 电弧焊工艺 1 接口 焊条电弧焊的接头主要有对接接头、T形接头、角接接头和搭接接头四种。 1.1 对接接头 对接接头是最常见的一种接头形式,按照坡口形式的不同,可分为I形对接接头(不开坡口)、V形坡口接头、U形坡口接头、X形坡口接头和双U形坡口接头等。一般厚度在6mm以下,采用不开坡口而留一定间隙的双面焊;中等厚度及大厚度构件的对接焊,为了保证焊透,必须开坡口。V形坡口便于加工,但焊后构件容易发生变形;X形坡口由于焊缝截面对称,焊后工件的变形及内应力比V形坡口小,在相同板厚条件下,X形坡口比V形坡口要减少1/2填充金属量。U形及双U形坡口,焊缝填充金属量更少,焊后变形也很小,但这种坡口加工困难,一般用于重要结构。 1.2 T形接头 根据焊件厚度和承载情况,T形接头可分为不开坡口,单边V形坡口和K形坡口等几种形式。T形接头焊缝大多数情况只能承受较小剪切应力或仅作为非承载焊缝,因此厚度在30mm以下可以不开坡口。对于要求载荷的T形接头,为了保证焊透,应根据工件厚度、接头强度及焊后变形的要求来确定所开坡口形式。 1.3 角接接头 根据坡口形式不同,角接接头分为不开坡口、V形坡口、K形坡口及卷边等几种形式。通常厚度在2mm以下角接接头,可采用卷边型式;厚度在2~8mm以下角接接头,往往不开坡口;大厚度而又必须焊透的角接接头及重要构件角接头,则应开坡口,坡口形式同样要根据工件厚度、结构形式及承载情况而定。 1.4 搭接接头 搭接接头对装配要求不高,也易于装配,但接头承载能力低,一般用在不重要的结构中。搭接接头分为不开坡口搭接和塞焊两种型式。不开坡口搭接一般用于厚度在12mm 以下的钢板,搭接部分长度为3~5δ(δ为板厚) 2 焊条电弧焊工艺参数选择 2.1 焊条直径 焊条直径可根据焊件厚度、接头型式、焊缝位置、焊道层次等因素进行选择。焊件厚度越大,可选用的焊条直径越大;T形接头比对接接头的焊条直径大,而立焊、仰焊及横焊比平焊时所选用焊条直径应小些,一般立焊焊条最大直径不超过5mm,横焊、仰焊不超过4mm;多层焊的第一层焊缝选用细焊条。焊条直径与厚度的关系见表4 2.2 焊接电流是焊条电弧焊中最重要的一个工艺参数,它的大小直接影响焊接质量及焊缝成形。当焊接电流过大时,焊缝厚度和余高增加,焊缝宽度减少,且有可能造成咬边、烧穿等缺陷;当焊接电流过小时,焊缝窄而高,熔池浅,熔合不良,会产生未焊透、夹渣等缺陷。选择焊接电流大小时,要考虑焊条类型、焊条直径、焊件厚度以及接头型式、

LED显示屏技术参数及选型指南

LED显示屏技术参数及选型指南 企业简况:山东新视野公司专业生产LED大屏幕电子显示屏、高画质网络视频会议、可视电话、保安监控远程传输和控制产品。LED电子显示屏十余年研发经验,室内外规格品种齐全,性能先进,质量稳定可靠。本公司承做的本市第一块点阵式股票显示屏已出厂运行十余年年,至今仍正常服役,深得用户好评! 本公司系列LED产品介绍:室内外单色、双基色图文屏、全彩屏,条屏、混合式证券屏、利率屏、大型电子钟、万年历、安全日、倒计时屏、无线短信车载屏气象屏、GPRS 插卡式全彩广告屏和停车场剩余车位显示屏等。 户内、户外LED显示屏技术参数及选型指南: 安装在室内的显示屏选用户内发光管芯,光线柔和、密度高清晰度好价格低;安装在室外的显示屏,由于室外亮度是室内亮度的几百倍,应选用户外超高亮度发光管芯,并做金属箱体防雨结构;用于室外亮度环境但无须考虑防雨时一般选择半户外结构,可适当降低造价。 控制方式的选择: 对于小于6-8万像素的小屏和单色屏,主要以显示文字和简单图形表格为主,建议采用脱机显示方式,优点是显示内容由电脑通过一根网线可随时编辑修改传输几十甚至几百屏显示内容保存在大屏控制卡内,开机就可自动显示,无须打开电脑因此使用方便;对于大于8万像素的双基色屏或三基色全彩屏,通常采用与计算机显示器同步的显示方式,优点是色彩丰富,除显示文字外还可显示图像动画和视频节目,缺点是必须打开电脑显示屏才能工作,且电脑只能专用。具体采用哪种控制方式可由用户自己选择。 点密度的选择: 显示屏点密度是指每平方米多少个可按控制要求独立发光的象素点,密度高的屏象素点直径小,单位面积的价格高,适宜近处观看;密度低的点直径大,单位面积造价低,适合大面积远处观看,因此应根据实际情况合理选择,兼顾价格和实际使用效果。 每平米可显示的字数: 汉字显示字库的最小点阵为16X16点阵,每个字256点阵,因此16点阵的汉字要占显示屏256个发光象素点,常用户内Φ5.0显示屏每平米共16384象素共可显示64个汉字或128个英文字符,若用常用的室外点间距P16mm的3906

压铸机工艺参数的设定和调节方法(转载)

第四节工艺参数的设定和调节技能 压铸生产中机器工艺参数的设定和调节直接影响产品的质量。一个参数可能造成产品的多个缺陷,而同一产品的同一缺陷有可能与多个参数有关,要求在试压铸生产中要仔细分析工艺参数的变化对铸件成形的影响。压铸生产厂家通常由专人设定和调节机器参数。下面以力劲机械厂有限公司生产的DCC280卧式冷室压铸机为例,说明压铸生产中主要工艺参数的设定和调节技能。 一、主要工艺参数的设定技能 DCC280卧式冷室压铸机设定的内容及方法如下: (1)射料时间:射料时间大小与铸件壁厚成正比,对于铸件质量较大、压射一速速度较慢且所需时间较长时,射料时间可适当加大,一般在2S以上。射料二速冲头运动的时间等于填充时间。 (2)开型(模)时间:开型(模)时间一般在2S以上。压铸件较厚比较薄的开型(模)时间较之要长,结构复杂的型(模)具比结构简单的型(模)具开型(模)时间较之要长。调节开始时可以略为长一点时间,然后再缩短,注意机器工作程序为先开型(模)后再开安全门,以防止未完全冷却的铸件喷溅伤人。 (3)顶出延时时间:在保证产品充分凝固成型且不粘模的前提下,尽量减短顶出延时时间,一般在0.5S以上。 (4)顶回延时时间:在保证能顺利地取出铸件的前提下尽量减短顶回延时时间,一般在0.5S以上。 (5)储能时间:一般在2S左右,在设定时操作机器作自动循环运动,观察储能时间结束时,压力是否能达到设定值,在能达到设定压力值的前提下尽量减短储能时间。 (6)顶针次数:根据型(模)具要求来设定顶针次数。 (7)压力参数设定 在保证机器能正常工作,铸件产品质量能合乎要求的前提下,尽量减小工作压力。选择、设定压射比压时应考虑如下因素: 1)压铸件结构特性决定压力参数的设定。 ①壁厚:薄壁件,压射比压可选高些;厚壁件,增压比压可选高些。 ②铸件几何形状复杂程度:形状复杂件,选择高的比压;形状简单件,比压低些。 ③工艺合理性:工艺合理性好,比压低些。 2)压铸合金的特性决定压力参数的设定 ①结晶温度范围:结晶温度范围大,选择高比压;结晶温度范围小,比压低些。 ②流动性:流动性好,选择较低压射比压;流动性差,压射比压高些。 ③密度:密度大,压射比压、增压比压均应大;密度小,压射比压、增压比压均选小些。 ④比强度:要求比强度大,增压比压高些。 3)浇注系统决定压力参数的设定 ①浇道阻力:浇道阻力大,主要是由于浇道长、转向多,在同样截面积下、内浇口厚度小产生的,增压比压应选择大些。 ②浇道散热速度:散热速度快,压射比压高些;散热速度慢,压射比压低些。 4)排溢系统决定压力参数的设置 ①排气道分布:排气道分布合理,压射比压、增压比压均选高些。 ②排气道截面积:排气道截面积足够大,压射比压选高些。 5)内浇口速度 要求速度高,压射比压选高些。 (⑥温度 合金与压铸型(模):温差大,压射比压高些;温差小,压射比压低些。 8)压射速度的设定

焊接工艺参数的选择

手工电弧焊的焊接工艺参数主要有焊条直径、焊接电流、电弧电压、焊接层数、电源种类及极性等。 1.焊条直径 焊条直径的选择主要取决于焊件厚度、接头形式、焊缝位置和焊接层次等因素。在一般情况下,可根据表6-4按焊件厚度选择焊条直径,并倾向于选择较大直径的焊条。另外,在平焊时,直径可大一些;立焊时,所用焊条直径不超过5mm;横焊和仰焊时,所用直径不超过4mm;开坡口多层焊接时,为了防止产生未焊透的缺陷,第一层焊缝宜采用直径为的焊条。 表6-4焊条直径与焊件厚度的关 系 mm 2.焊接电流 焊接电流的过大或过小都会影响焊接质量,所以其选择应根据焊条的类型、直径、焊件的厚度、接头形式、焊缝空间位置等因素来考虑,其中焊条直径和焊缝空间位置最为关键。在一般钢结构的焊接中,焊接电流大小与焊条直径关系可用以下经验公式进行试选: I=10d2 (6-1)式中 I——焊接电流(A); d——焊条直径(mm)。 另外,立焊时,电流应比平焊时小15%~20%;横焊和仰焊时,电流应比平焊电流小10%~15%。

3.电弧电压 根据电源特性,由焊接电流决定相应的电弧电压。此外,电弧电压还与电弧长有关。电弧长则电弧电压高,电弧短则电弧电压低。一般要求电弧长小于或等于焊条直径,即短弧焊。在使用酸性焊条焊接时,为了预热部位或降低熔池温度,有时也将电弧稍微拉长进行焊接,即所谓的长弧焊。 4.焊接层数 焊接层数应视焊件的厚度而定。除薄板外,一般都采用多层焊。焊接层数过少,每层焊缝的厚度过大,对焊缝金属的塑性有不利的影响。施工中每层焊缝的厚度不应大于4~ 5mm。 5.电源种类及极性 直流电源由于电弧稳定,飞溅小,焊接质量好,一般用在重要的焊接结构或厚板大刚度结构上。其他情况下,应首先考虑交流电焊机。 根据焊条的形式和焊接特点的不同,利用电弧中的阳极温度比阴极高的特点,选用不同的极性来焊接各种不同的构件。用碱性焊条或焊接薄板时,采用直流反接(工件接负极);而用酸性焊条时,通常采用正接(工件接正极)。

焊线工艺参数规范

焊线工艺规范 1 范围 (2) 2 工艺 (2) 3 焊接工艺参数范围 (3) 4 工艺调试程序 (5) 5 工艺制具的选用 (6) 6 注意事项 (8)

1 范围 1.1 主题内容 本规范确定了压焊的工艺能力、工艺要求 .工艺参数、工艺调试程序、工艺制具的选用及注意事项。 1.2 适用范围 1.2.1 ASM-Eagle60. k&s1488机型。 1.2.2 适用于目前在线加工的所有产品。 2 工艺 2.1 工艺能力 2.1.1 接垫最小尺寸:45μm×45μm 2.1.2 最小接垫节距(相邻两接垫中心间距离):≥60μm 2.1.3 最低线弧高度:≥6 mil 2.1.4 最大线弧长度:≤7mm 2.1.5 最高线弧高度:16mil 2.1.6 直径:Eagle60:Ф18—75um , K&S1488: Ф18—50um 2.2 工艺要求 2.2.1 键合位置 2.2.1.1 键合面积不能有1/4以上在芯片压点之外,或触及其他金属体和没有钝化层的划片方 格。 2.2.1.2 在同一焊点上进行第二次键合,重叠面积不能大于前键合面积的1/3。 2.2.1.3 引线键合后与相邻的焊点或芯片压点相距不能小于引线直径的1倍。 2.2.2 焊点状态 2.2.2.1 键合面积的宽度不能小于引线直径的1倍或大于引线直径的3倍。 2.2.2.2 焊点的长度:键合面积的长度不能小于引线直径的1倍或大于引线直径的4倍。 2.2.2.3 不能因缺尾而造成键合面积减少1/4,丝尾的总长不能超出引线直径的2倍。 2.2.2.4 键合的痕迹不能小于键合面积的2/3,且不能有虚焊和脱焊。 2.2.3 弧度 2.2. 3.1 引线不能有任何超过引线直径1/4的刻痕、损伤、死弯等。 2.2. 3.2 引线不能有任何不自然拱形弯曲,且拱丝高度不小于引线直径的6倍,弯屏后拱丝最 高点与屏蔽罩的距离不应小于2倍引线直径。 2.2. 3.3 不能使引线下塌在芯片边缘上或其距离小于引线直径的1倍。 2.2. 3.4 引线松动而造成相邻两引线间距小于引线直径的1倍或穿过其他引线和压点。 2.2. 3.5 焊点与引线之间不能有大于30o的夹角。

焊接工艺参数设定流程

5#闪光焊机工艺参数调整流程图 夹紧长度设定 第一步:将调节开关置于设置档上 第二步:缓慢调节夹紧长度(名义链 径)旋钮,当显示屏显示规定值即可 第三步:扳动向前开关,将其打到 向前位置 第四步:缓慢调节最终长度旋钮, 当显示屏显示规定值即可 闪光长度设定 第一步:扳动返回开关,将其打到 返回位置 第二步:将调节档置于闪光长度档 第三步:扳动向前开关,将其置于 向前位置,并调整零位 第四步:缓慢调节闪光长度旋钮,调 到规定(0.188*名义链径)值即可 第五步:扳动返回开关,将其置于 返回位置 第六步:将调节档置于设置档位 上,参数调整完毕

参数控制面板图片说明 顶锻电流周波 数调节旋钮 焊接等分时间 调节旋钮 冷却时间调节 旋钮 参数显示屏 参数调节档位 旋钮 向前及返回开关 零位调节旋钮 滑动速度已设置 好,无须调节 闪光长度调 节旋钮 夹紧长度调 节旋钮 最终长度调 节旋钮 需设置 需设置 需设置 需设置 均衡时间显示灯 极限电流电位调节器

当焊接变压器电压档发生变动时,极限电流就要作相应的调整,以保证产品的焊接质量 具体调节方法如下: 1. 将焊接与加热转换档转到加热档位上。 2. 选择一已编好的冷环。 3. 将环一侧置于电极上,踏下夹紧开关 4. 用手顺时针及逆时针转动极限电流电位调器,同时观察均衡时间指示灯,不断来回转动电位器时,此灯应不断闪烁 5. 待环背温度达到编环温度时,约700左右,此时应停止加热,同时按下焊接停止开关 6. 观察极限电流电位调节器上的刻度,在此基础上加上此数值的20%作为修正值,并修正电位器读数,同时将电位器刻度调整到修正后刻度即可。 焊接与加热转换档 焊接与拉环转换档 焊接启动开关 焊接停止开关 电极夹紧与复位转换档 应急按钮

焊接工艺规范标准

! 焊缝质量标准 保证项目 焊接材料应符合设计要求和有关标准的规定,应检查质量证明书及烘焙记录。Ⅰ、Ⅱ级焊缝必须经探伤检验,并应符合设计要求和施工及验收规范的规定,检查焊缝探伤报告。 焊缝表面Ⅰ、Ⅱ级焊缝不得有裂纹、焊瘤、烧穿、弧坑等缺陷。Ⅱ级焊缝不得有 表面气孔、夹渣、弧坑、裂纹、电弧擦伤等缺陷,且Ⅰ级焊缝不得有咬边、未焊满等缺陷。 基本项目 焊缝外观:焊缝外形均匀,焊道与焊道、焊道与基本金属之间过渡平滑,焊渣和 飞溅物清除干净。 表面气孔:Ⅰ、Ⅱ级焊缝不允许;Ⅲ级焊缝每50mm 长度焊缝内允许直径≤;且≤3mm 气孔2 个;气孔间距≤6 倍孔径。 咬边:Ⅰ级焊缝不允许。 Ⅱ级焊缝:咬边深度≤,且≤,连续长度≤100mm,且两侧咬边总长≤10%焊缝长度。 Ⅲ级焊缝:咬边深度≤,且≤lmm。 注:t 为连接处较薄的板厚。 允许偏差项目,见表5-1。 5 成品保护 焊后不准撞砸接头,不准往刚焊完的钢材上浇水。低温下应采取缓冷措施。 不准随意在焊缝外母材上引弧。 各种构件校正好之后方可施焊,并不得随意移动垫铁和卡具,以防造成构件尺寸偏差。隐蔽部位的焊缝必须办理完隐蔽验收手续后,方可进行下道隐蔽工序。低温焊接不准立即清渣,应等焊缝降温后进行。 6 应注意的质量问题 尺寸超出允许偏差:对焊缝长宽、宽度、厚度不足,中心线偏移,弯折等偏差,应严格控制焊接部位的相对位置尺寸,合格后方准焊接,焊接时精心操作。 焊缝裂纹:为防止裂纹产生,应选择适合的焊接工艺参数和施焊程序,避免用大电流,不要突然熄火,焊缝接头应搭10~15mm,焊接中不允许搬动、敲击焊件。 表面气孔:焊条按规定的温度和时间进行烘焙,焊接区域必须清理干净,焊接过程 中选择适当的焊接电流,降低焊接速度,使熔池中的气体完全逸出。

电弧焊焊接工艺参数

焊接工艺参数 1.4 焊接工艺参数 焊接工艺参数是指焊接时,为保证焊接质量而选定的诸物理量 ( 例如:焊接电流、电弧电压、焊接速度、热输入等 ) 的总称。焊条电弧焊的焊接工艺参数主要包括焊条直径、焊接电流、电弧电压、焊接速度和预热温度等。 1.4.1 焊条直径 焊条直径是根据焊件厚度、焊接位置、接头形式、焊接层数等进行选择的。 厚度较大的焊件,搭接和 T 形接头的焊缝应选用直径较大的焊条。对于小坡口焊件,为了保证底层的熔透,宜采用较细直径的焊条,如打底焊时一般选用Φ2.5m m 或Φ3.2mm 焊条。不同的焊接位置,选用的焊条直径也不同,通常平焊时选用较粗的Φ~mm 的焊条,立焊和仰焊时选用Φ~mm 的焊条;横焊时选用Φ~mm 的焊条。对于特殊钢材,需要小工艺参数焊接时可选用小直径焊条。 根据工件厚度选择时,可参考表3-20。对于重要结构应根据规定的焊接电流范围 ( 根据热输入确定 )参照表3—21焊接电流与焊条直径的关系来决定焊条直径。 1.4.2 焊接电流 焊接电流是焊条电弧焊的主要工艺参数,焊工在操作过程中需要调节的只有焊接电流,而焊接速度和电弧电压都是由焊工控制的。焊接电流的选择直接影响着焊接质量和劳动生产率。 焊接电流越大,熔深越大,焊条熔化快,焊接效率也高,但是焊接电流太大时,飞溅和烟雾大,焊条尾部易发红,部分涂层要失效或崩落,而且容易产生咬边、焊瘤、烧穿等缺陷,增大焊件变形,还会使接头热影响区晶粒粗大,焊接接头的韧性降低;焊接电流太小,则引弧困难,焊条容易粘连在工件上,电弧不稳定,易产生未焊透、未熔合、气孔和夹渣等缺陷,且生产率低。 因此,选择焊接电流时,应根据焊条类型、焊条直径、焊件厚度、接头形式、焊缝位置及焊接层数来综合考虑。首先应保证焊接质量,其次应尽量采用较大的电流,以提高生产效率。板厚较的,T 形接头和搭接头,在施焊环境温度低时,由于导热较快,所以焊接电流要大一些。但主要考虑焊条直径、焊接位置和焊道层次等因素。 1) 考虑焊条直径焊条直径越粗,熔化焊条所需的热量越大,必须增大焊接电流,每种焊条都有一个最合适电流范围,表3-21是常用的各种直径焊条合适的焊接电流参考值。 当使用碳钢焊条焊接时,还可以根据选定的焊条直径,用下面的经验公式计算焊接电流: I=dK 式中:I 一一焊接电流 (A) : d——焊条直径 (mm) : K——经验系数 (A/cra) ,见表 3-20。 表 3-20 焊接电流经验系数与焊条直径的关系 [9] 焊条直径 d24

相关文档
最新文档