(完整word版)基本初等函数(整理)

(完整word版)基本初等函数(整理)
(完整word版)基本初等函数(整理)

1.1 初等函数图象及性质

1.1.1 幂函数

1函数(μ是常数)叫做幂函数。

2幂函数的定义域,要看μ是什么数而定。

但不论μ取什么值,幂函数在(0,+ ∞ )内总有定义。

3最常见的幂函数图象如下图所示:[如图]

4

2

-551015

-2

-4

-6

4①α>0时,图像都过(0,0)、(1,1

注意α>1与0<α<1的图像与性质的区别.

②α<0时,图像都过(1,1)点,在区间(0

上无限接近y轴,向右无限接近x轴.

③当x>1时,指数大的图像在上方.

1.1.2 指数函数与对数函数

1.指数函数

1函数 (a 是常数且a>0,a ≠ 1)叫做指数函数,它的定义域是区间(-∞ ,+∞ )。

2因为对于任何实数值x ,总有,又,所以指数函数的图形,总在x 轴的上方,

且通过点(0,1)。

若a>1,指数函数是单调增加的。若0

是单调减少的。

a >1

0<a <1

图 象

性 质

(1)定义域:R (2)值域:(0,+∞) (3)过点(0,1) (4)在R 上增函数

(4)在R 上减函数

有理指数幂的意义、幂的运算法则:

①m

n

m n

a a a

+?=;②()m n mn

a a

=;③()n n n

ab a b =(这时m,n 是有理数)

分数指数幂:n

m

n m

n n

n m n

m n

n

a

a a

a

a a a a 1

,1,,1====

-

-。

2.对数函数

由此可知,今后常用关系式,如:

指数函数的反函数,记作(a是常数且a>0,≠ a1),叫做对数函数。它的定义域是区间(0,+∞ )。

对数函数的图形与指数函数的图形关于直线y = x对称(图1-22)。

的图形总在y轴上方,且通过点(1,0)。

若a>1,对数函数是单调增加的,在开区间(0,1)内函数值为负,而在区间(1,+∞ )内函数值为正。

若0

对数函数的图象和性质

a>1 0

图象

3

2.5

2

1.5

1

0.5

-0.5

-1

-1.5

-2

-2.5

-112345678

1

1

3

2.5

2

1.5

1

0.5

-0.5

-1

-1.5

-2

-2.5

-112345678

1

1

性质定义域:(0,+∞)

值域:R

过点(1,0),即当x=1时,y=0

x∈(0,1)时y<0

x∈(1,+∞)时y>0

x∈(0,1)时y>0

x∈(1,+∞)时y<0 在(0,+∞)上是增函数在(0,+∞)上是减函数

重要公式:

⑴负数与零没有对数; ⑵log a 1=0,log a a =1

⑶对数恒等式N a

N

a =log

(4) log a a b =b 运算法则

若a >0,a ≠1,M >0,N >0,则 (1)log a (MN )=log a M +log a N ;

(2)log a M

N =log a M -log a N ;

(3)1

log log ;log log n

n a a a a M n M M M n

==

对数换底公式:

log a N =log m N

log m a (a >0,a ≠1,m >0 ,m ≠1,N >0)

1.1.3 三角函数与反三角函数 1.三角函数

,奇函数、有界函数、周期函数 ;

,偶函数、有界函数、周期函数 ;

的一切实数,奇函数、

周期函数

的一切实数,奇函数、

周期函数

;;

正弦函数和余弦函数都是以2π为周期的周期函数,它们的定义域都是区间(-∞ ,+∞ ),值域都是必区间[-1,1]。

正弦函数是奇函数,余弦函数是偶函数。

正切函数和余切函数都是以π为周期的周期函数,它们都是奇函数。[如图]

;。

双曲函数与反双曲函数

双曲正弦:,奇函数,单调增函数;

双曲余弦:,偶函数,时,单调减,时,单调增;

双曲正切:,奇函数,单调增函数。

函数的图形见书P27~P28。

下面公式成立

反双曲正弦

反双曲余弦,

反双曲正切

函数图形的变换

平移

①由的图形,作的图形。图形右移,,图形左移。如:由图形作的图形。由的图形作的图形。

②由的图形作的图形。,图形上移,,图形下移。如:由的图形作的图形。

翻转

①由图形作的图形。(以轴为对称轴翻)如:由的图形作的图形。

②由图形作的图形。(以轴为对称轴翻)如:由的图形作的图形。

迭加与放缩(略)

2021新高考一轮复习专题2.1 函数概念及三要素(解析版)

第一讲 函数的概念及三要素 1.函数与映射 函数 映射 两个集合A ,B 设A ,B 是两个非空数集 设A ,B 是两个非空集合 对应法则f :A →B 如果按某种对应法则f ,使对于集合A 中的每一个元素x ,在集合B 中都有唯一的元素y 和它对应 如果按某种对应法则f ,使对于集合A 中的每一个元素x ,在集合B 中都有唯一的元素 y 与之对应 名称 称y =f (x ),x ∈A 为从集合A 到集合B 的一个函数 称f :A →B 为从集合A 到集合B 的一个映射 记法 函数y =f (x ),x ∈A 映射:f :A →B 2.函数的有关概念 (1)函数的定义域、值域 在函数y =f (x ),x ∈A 中,x 叫做自变量,所有的输入值x 组成的集合A 叫做函数y =f (x )的定义域;对于 A 中的每一个x ,都有一个输出值y 与之对应.我们将所有输出值y 组成的集合称为函数的值域. (2)函数的三要素:定义域、对应法则和值域. (3)函数的表示法 表示函数的常用方法有解析法、图象法和列表法. 3.分段函数 若函数在其定义域的不同子集上,因对应法则不同而分别用几个不同的式子来表示,这种函数称为分段函数. 分段函数的定义域等于各段函数的定义域的并集,其值域等于各段函数的值域的并集,分段函数虽由几个部分组成,但它表示的是一个函数. 考向一 函数、映射的判断 【例1】(1)若函数y =f (x )的定义域为M ={x |-2≤x ≤2},值域为N ={y |0≤y ≤2},则函数y =f (x )的图象可能是( ) 【修炼套路】---为君聊赋《今日诗》,努力请从今日始 【套路秘籍】---千里之行始于足下

高中必修第一册数学《3.2 函数的基本性质》获奖说课教案教学设计

【新教材】3.2.2 奇偶性(人教A 版) 《奇偶性》内容选自人教版A 版第一册第三章第三节第二课时;函数奇偶性是研究函数的一个重要策略,因此奇偶性成为函数的重要性质之一,它的研究也为今后指对函数、幂函数、三角函数的性质等后续内容的深入起着铺垫的作用. 课程目标 1、理解函数的奇偶性及其几何意义; 2、学会运用函数图象理解和研究函数的性质; 3、学会判断函数的奇偶性. 数学学科素养 1.数学抽象:用数学语言表示函数奇偶性; 2.逻辑推理:证明函数奇偶性; 3.数学运算:运用函数奇偶性求参数; 4.数据分析:利用图像求奇偶函数; 5.数学建模:在具体问题情境中,运用数形结合思想,利用奇偶性解决实际问题。 重点:函数奇偶性概念的形成和函数奇偶性的判断; 难点:函数奇偶性概念的探究与理解. 教学方法:以学生为主体,采用诱思探究式教学,精讲多练。 教学工具:多媒体。 一、 情景导入 前面我们用符号语言准确地描述了函数图象在定义域的某个区间上“上升”(或“下降”)的性质.下面继续研究函数的其他性质. 画出并观察函数21()()2||()()= f x x g x x f x x g x x ==-=和、和的图像,你能发现这两个函数图像

()()()()0f x f x f x f x -=?--=()()()()0 f x f x f x f x -=-?+-= 有什么共同特征码? 要求:让学生自由发言,教师不做判断。而是引导学生进一步观察.研探. 二、 预习课本,引入新课 阅读课本82-84页,思考并完成以下问题 1.偶函数、奇函数的概念是什么? 2.奇偶函数各自的特点是? 要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。 三、 新知探究 1.奇函数、偶函数 (1)偶函数(even function ) 一般地,对于函数f(x)的定义域内的任意一个x ,都有f(-x)=f(x),那么f(x)就叫做偶函数. (2)奇函数(odd function ) 一般地,对于函数f(x)的定义域内的任意一个x ,都有f(-x)=f(x),那么f(x)就叫做奇函数. 2、奇偶函数的特点 (1)具有奇偶性的函数的定义域具有对称性,即关于坐标原点对称,如果一个函数的定义域关于坐标原点 不对称,就不具有奇偶性.因此定义域关于原点对称是函数存在奇偶性的一个必要条件。 (2)具有奇偶性的函数的图象具有对称性.偶函数的图象关于轴对称,奇函数的图象关于坐标原点对称;反之,如果一个函数的图象关于轴对称,那么,这个函数是偶函数,如果一个函数的图象关于坐标原点对 称,那么,这个函数是奇函数. (3)由于奇函数和偶函数的对称性质,我们在研究函数时,只要知道一半定义域上的图象和性质,就可以 得到另一半定义域上的图象和性质. (4)偶函数: ,

高中数学必修1函数的基本性质

高中数学必修1函数的基本性质 1.奇偶性 (1)定义:如果对于函数f (x )定义域内的任意x 都有f (-x )=-f (x ),则称f (x )为奇函数;如果对于函数f (x )定义域内的任意x 都有f (-x )=f (x ),则称f (x )为偶函数。 如果函数f (x )不具有上述性质,则f (x )不具有奇偶性.如果函数同时具有上述两条性质,则f (x )既是奇函数,又是偶函数。 注意: ○ 1 函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质; ○ 2 由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x ,则-x 也一定是定义域内的一个自变量(即定义域关于原点对称)。 (2)利用定义判断函数奇偶性的格式步骤: ○ 1 首先确定函数的定义域,并判断其定义域是否关于原点对称; ○ 2 确定f (-x )与f (x )的关系; ○ 3 作出相应结论: 若f (-x ) = f (x ) 或 f (-x )-f (x ) = 0,则f (x )是偶函数; 若f (-x ) =-f (x ) 或 f (-x )+f (x ) = 0,则f (x )是奇函数。 (3)简单性质: ①图象的对称性质:一个函数是奇函数的充要条件是它的图象关于原点对称;一个函数是偶函数的充要条件是它的图象关于y 轴对称; ②设()f x ,()g x 的定义域分别是12,D D ,那么在它们的公共定义域上: 奇+奇=奇,奇?奇=偶,偶+偶=偶,偶?偶=偶,奇?偶=奇 2.单调性 (1)定义:一般地,设函数y =f (x )的定义域为I , 如果对于定义域I 内的某个区间D 内的任意两个自变量x 1,x 2,当x 1f (x 2)),那么就说f (x )在区间D 上是增函数(减函数); 注意: ○ 1 函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质; ○ 2 必须是对于区间D 内的任意两个自变量x 1,x 2;当x 1

函数学生版

函数 1、回顾初中有关函数的概念:在一个变化过程中,有两个变量x 和y ,如果给定了一个x 值,相应地就确定唯一的一个y 值,那么我们称y 是x 的 函数. (1)变量:因变量,自变量 在用图象表示变量之间的关系时,通常用水平方向的数轴上的点自变量,用竖直方向的数轴上的点表示因变量。 (2)一次函数:①若两个变量y ,x 间的关系式可以表示成y kx b =+(b 为常数,k 不等于0)的形式,则称y 是x 的一次函数。②当b =0时,称y 是x 的正比例函数。 (3)一次函数的图象及性质 ①把一个函数的自变量x 与对应的因变量y 的值分别作为点的横坐标与纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象。 ②正比例函数y =k x 的图象是经过原点的一条直线。 ③在一次函数中,当k <0, b 0时,则经1、2、4象限;当k >0, b <0时,则经1、3、4象限;当k >0, b >0时,则经1、2、3象限。 ④当k >0时,y 的值随x 值的增大而增大,当k <0时,y 的值随x 值的增大而减少。 (4)二次函数: ①一般式:22 24()24b ac b y ax bx c a x a a -=++=++(0a ≠),对称轴是,2b x a =- 顶点是 2 4,)24b ac b a a -(-; ②顶点式:2 ()y a x m k =++(0a ≠),对称轴是,x m =-顶点是(),m k -; ③交点式:12()()y a x x x x =--(0a ≠),其中(1,0x ),(2,0x )是抛物线与x 轴的交点

2函数三要素-讲义版

函数的三要素 【知识点】 一、函数的定义域 (1)研究一个函数一定在其定义域内研究,所以求定义域是研究任何函数的前提,要树立定义域优先的原则. (2)函数的定义域常由其实际背景决定,若只给解析式时,定义域就是使此式子有意义的实数x 的集合(区间表示). 常见定义域的求法: 常见定义域求法:对于()x f y =而言: ①整式:实数集R ; ②分式:使分母不等于0的实数的集合; [1 (0)x x ≠] ③0指数幂:底数不等于零; [0 (0)x x ≠] ④偶次根式:使根号内的式子大于或等于0的实数的集合; [2(0)n x x ≥] ⑤对数:真数大于零; [log (0)a x x >] ⑥由几个部分的式子构成:使各部分式子都有意义的实数的集合(即各集合的交集); 实际问题:使实际问题有意义的实数的集合. 二、函数的值域 对于)(x f y =,x A ∈,与x 的值相对应的y 的值叫做函数值,函数值的集合{}A x x f ∈|)(叫做函数)(x f y =的值域. 三、解析式 (1)当已知函数的类型时,可用待定系数法求解; (2)当已知表达式为()[]x g f 时,可考虑配凑法或换元法.若易将含x 的式子配成()x g ,用配凑法;若易换元后求出x ,用换元法; (3)若求抽象函数的解析式,通常采用方程组法; (4)求分段函数的解析式时,要注意符合变量的要求. 课程类型: 1对1课程 ? Mini 课程 ? MVP 课程

【课堂演练】 题型一 函数定义域 例1 求下列函数的定义域: (1)1()2 f x x =- (2)0()32(2)f x x x = +- (3)1 ()1 2f x x x =+- 练1 求下列函数的定义域: (1)83y x x =+- (2)22 111 x x y x --= - (3)()3||f x x =- 练2 函数0()(12)13 g x x x x = --的定义域为 . 例2 函数3()1log (63)f x x x = +-的定义域为( ) A .(,2)-∞ B .(2,)+∞ C .[1,2)- D .[1,2]- 练3 函数()3lg(1)f x x x =-+的定义域为( ) A .[1,3)- B .(1,3)- C .(1,3]- D .[1,3] - 练4 函数1 ()ln(31) = +f x x 的定义域是( ) A .1 (,)3- +∞ B .1 (,0)(0,)3- +∞U C .1 [,)3- +∞ D .[0,) +∞ 题型二 函数值域 ? 一次分式值域 例3 求432+-=x y 在?? ? ???-∈1,32x 上的值域.

函数三要素教案

(一)教学目标 1.知识与技能 (1)了解函数三要素的含义,掌握根据函数的三要素判定两个函数是否为同一个函数的方法. (2)会求简单函数的定义域和函数值. 2.过程与方法 通过示例分析,让学生掌握求函数定义域的基本题型及方法,进一步加深对函数概念的理解.通过求出函数的函数值,加深对应法则的认识. 3.情感、态度与价值观 通过动手实践研究数学问题,提高分析问题,解决问题能力;体会成功地解答数学问题的学习乐趣,培养钻研精神. (二)教学重点与难点 重点:掌握函数定义域的题型及求法. 难点:理解函数由定义域与对应法则确定函数这一基本原则.

二、授课内容: 【知识要点】 ⑴定义域———自变量x 的取值范围 函数三要素 ⑵值 域———函数值的集合 ⑶对应法则——自变量x 到对应函数值y 的对应规则 注意:①核心是对应法则;②值域是由定义域与对应法则所确定了的,故确定一个函数只需确定其定义域、对应法则则即可;③如何判断“两个”函数为同一函数;④函数()12-= x x f 的对应法则f :x (平方再 减1整体再开平方)y 。而在此基础上的函数()1+=x f y ,其自变量为式中的x 而不是1+x ,其对应法则x (加1再取f 运算)y ,即x (加1整体平方再整体减1再整体开方)y ,故此时()1)1(12-+=+x x f 。 【典型例题】 1.函数定义域求法 ⑴已知函数的解析式求定义域时需要注意: ①()x f 是整式,则定义域为R ; ②()x f 是分式,则令分母不为0的值为定义域; ③()x f 是偶次根式,则函数定义域为使被开方式为非负数的自变量集合; ④若()x f 由几个部分式子构成,则定义域是使几个部分式子都有意义的值的集合; ⑤函数[]2 )(x f y =的定义域()x f 0≠; ⑥对数函数()x f y a log =(0>a ,且1≠a )的定义域要求()x f >0; ⑵求函数()[]x g f 的定义域,()x g 相当于()x f 中的x 。 ⑶当函数由实际问题给出时,还应考虑实际意义。 例1:求下列函数的定义域 ①()0 2 )1(4--= x x x f ; ②()1 21 12 2+-+ ++=x x x x x f ; ③()x x f 11111++ = 042 ≥-x 22≤≤-x 解析:①由 ? ∴函数定义域为[)(]2,11,2?- 01≠-x 1≠x 012 ≥++x x (Ⅰ) ② 12 ++x x 的判别式0

函数的三要素学生版

一、函数与映射的基本概念判断 1. 设:f M N →是集合M 到N 的映射,下列说法正确的是 A 、M 中每一个元素在N 中必有象 B 、N 中每一个元素在M 中必有原象 C 、N 中每一个元素在M 中的原象是唯一的 D 、N 是M 中所在元素的象的集合 2. 设集合{1,0,1},{1,2,3,4,5}M N =-=,映射:f M N →满足条件“对任意的x M ∈, ()x f x +是奇数” ,这样的映射f 有____个 3. 设2:x x f →是集合A 到集合B 的映射,若B={1,2},则B A 一定是_____ 4. 若一系列函数的解析式相同,值域相同,但其定义域不同,则称这些函数为“值同函数”,那么解析式为2y x =,值域为{4,1}的“值同函数”共有______个 5. 以下各组函数表示同一函数是________________ (1)f (x )=2x ,g (x )=33x ; (2)f (x )=x x ||,g (x )=? ??<-≥;01,01x x (3)f (x )=x 1+x ,g (x )=x x +2; (4)f (x )=x 2-2x -1,g (t )=t 2-2t -1。 二、函数的定义域 1.求下列函数的定义域 (1)2161x x y -+= ;(2 )34x y x +=- 2.(1) 已知)(x f 的定义域为]30(,,求)2(2x x f +定义域。 (2)若函数()x f 23-的定义域为[]2,1-,求函数()x f 的定义域 (3)已知)1(+x f 的定义域为)32[,-,求 2f x y -的定义域。 3. 求函数()f x = 4. 若函数()f x = 3 442++-mx mx x 的定义域为R ,则实数m 的取值范围是 ( )

《函数的基本性质》培优训练题(教师版)

《函数的基本性质》培优训练题 1.(2016?义乌市模拟)已知a为实数,函数f(x)=x2﹣|x2﹣ax﹣2|在区间(﹣∞,﹣1)和(2,+∞)上单调递增,则a的取值范围为() A.[1,8]B.[3,8]C.[1,3]D.[﹣1,8] 【解答】解:令函数g(x)=x2﹣ax﹣2,由于g(x)的判别式△=a2+8>0,故函数g(x)一定有两个零点, 设为x1和x2,且 x1<x2. ∵函数f(x)=x2﹣|x2﹣ax﹣2|=,故当x∈(﹣∞,x1)、(x2,+∞)时, 函数f(x)的图象是位于同一条直线上的两条射线, 当x∈(x1,x2)时,函数f(x)的图象是抛物线y=2x2﹣ax﹣2下凹的一部分,且各段连在一起. 由于f(x)在区间(﹣∞,﹣1)和(2,+∞)上单调递增,∴a>0且函数g(x)较小的零点x1=≥﹣1,即a+2≥,平方得a2+4a+4≥a2+8,得a≥1,同时由y=2x2﹣ax﹣2的对称轴为x=,若且﹣1≤≤2,可得﹣ 4≤a≤8. 综上可得,1≤a≤8,故实a的取值范围为[1,8],故选:A. 2.(2016?江西校级模拟)已知定义域为R的函数f(x)在(2,+∞)上单调递减,且y=f(x+2)为偶函数,则关 于x的不等式f(2x﹣1)﹣f(x+1)>0的解集为() A.(﹣∞,﹣)∪(2,+∞)B.(﹣,2)C.(﹣∞,)∪(2,+∞)D.(,2) 【解答】解:∵定义域为R的函数f(x)在(2,+∞)上单调递减,且y=f(x+2)为偶函数, ∴y=f(x+2)关于x=0对称,即函数f(x+2)在(0,+∞)上为减函数,由f(2x﹣1)﹣f(x+1)>0得f(2x﹣1)>f(x+1),即f(2x﹣3+2)>f(x﹣1+2),即|2x﹣3|<|x﹣1|,平方整理得3x2﹣10x+8<0, 即<x<2,即不等式的解集为(,2),故选:D 3.(2016?四川模拟)设f(x)满足:①任意x∈R,有f(x)+f(2﹣x)=0;②当x≥1时,f(x)=|x﹣a|﹣1,(a >0),若x∈R,恒有f(x)>f(x﹣m),则m的取值范围是() A.(0,+∞)B.(4,+∞)C.(3,+∞)D.(5,+∞) 【解答】解:∵任意x∈R,有f(x)+f(2﹣x)=0,∴f(2﹣x)=﹣f(x),则函数关于(1,0)点对称, 当x=1时,f(1)+f(2﹣1)=0,即2f(1)=0,则f(1)=0,∵当x≥1时,f(x)=|x﹣a|﹣1,∴f(1)=|1﹣a|﹣1=0, 则|a﹣1|=1,则a﹣1=1或a﹣1=﹣1,则a=2或a=0,∵a>0,∴a=2,即当x≥1时,f(x)=|x﹣2|﹣1

最新函数三要素经典习题(含答案)

函数的三要素练习题 (一)定义域 1 、函数()f x = ) A 、[2,2]- B 、(2,2)- C 、(,2)(2,)-∞-+∞ D 、{2,2}- 2 _ _ _; 定义域为________; [1,1]-; [4,9] 3、若函数(1)f x + (21)f x -的定义域是 ;函数 1(2)f x +的定义域为 。1][,)2 +∞ 4、知函数()f x 的定义域为[]1,1-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取值范围。11m -≤≤ 5、求下列函数的定义域 (1)2|1|)43(43 2-+--=x x x y 解:(1)???-≠≠?≠-+≥-≤?≥--3 102|1|410432x x x x x x x 且或 ∴x ≥4或x ≤-1且x ≠-3,即函数的定义域为 (-∞,-3 )∪(-3,-1)∪[4,+∞] (2)y = {|0}x x ≥ (3)0 1(21)1 11y x x = +-++(二)解析式 1. 设X={x|0≤x ≤2},Y={y|0≤y ≤1},则从X 到Y 可建立映射的对应法则是( ) (A )x y 32= (B )2)2(-=x y (C )24 1x y = (D )1-=x y 2. 设),(y x 在映射f 下的象是)2 ,2(y x y x -+,则)14,6(--在f 下的原象是( ) (A ))4,10(- (B ))7,3(-- (C ))4,6(-- (D ))2 7,23(-- 3. 下列各组函数中表示同一函数的是 (A )x x f =)(与2)()(x x g = (B )||)(x x x f =与?????-=22)(x x x g )0()0(<>x x (C )||)(x x f =与33 )(x x g = (D )1 1)(2--=x x x f 与)1(1)(≠+=t t x g 4. 已知函数y f x =+()1定义域是[]-23,,则y f x =-()21的定义域是( )

函数概念及三要素

函数概念及三要素 1.函数的概念: 设A 、B 是非空的数集,如果按照某个确定的对应关系f ,使对于集合A 中的 任意一个数x ,在集合B 中都有唯一确定的数f(x)和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数(function ). 记作: y=f(x),x ∈A . 其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域(domain );与x 的值相对应的y 值叫做函数值,函数值的集合{f(x)| x ∈A }叫做函数的值域(range ). 2.分段函数:在定义域内不同的区间上有不同的 。注:分段函数是 个函数,而不是多个函数。 3.复合函数:若(),(),(,)y f u u g x x m n ==∈,那么[]()y f g x =称为复合函数,u 称为中间变量,它的取值范围是()g x 的值域。 方法一:函数定义域的求法 关注:分母、根号、指对数底数对数真数、tan 、零次方的底数 例题:)35lg(lg x x y -+= 的定义域为_______ 方法二:求函数解析式的常用方法 1、配凑法 2、待定系数法 3、换元法 4、解方程组法 例1、已知2(1)23f x x x -=--,则()f x = 。

例2、已知2 (31)965f x x x +=-+,则()f x = 。 例3、已知()f x 是一次函数,且(1)(1)23f x f x x +--=+,则()f x = 。 例4、已知()2()32f x f x x +-=-,则()f x = 。 例5、已知()f x 是奇函数,()g x 是偶函数,并且()()1f x g x x +=+,则()g x = 。 方法三:分段函数 分段函数在其定义域的不同子集上,因对应关系不同,而分别用几个不同的式子来表示,这种函数就称之为分段函数.分段函数虽然有几个部分组成,但它表示的是一个函数.近几年高考考察的频率较高. 1.函数 22, 0,()log , 0.x x f x x x ?=?>?≤则1()4f =____;方程1()2f x -=的解是____. 2. 已知函数11,02()ln ,2 x f x x x x ?+<≤?=??>?,如果关于x 的方程()f x k =有两个不同的实根,那么实数k 的取 值范围是( ) (A ) (1,)+∞ (B )3[,)2+∞ (C )32[,)e +∞ (D )[ln 2,)+∞

高一数学教案:函数的基本性质

教学要求:理解增函数、减函数、单调区间、单调性等概念,掌握增(减)函数的证明和判别, 学会运用函数图象理解和研究函数的性质。 教学重点:掌握运用定义或图象进行函数的单调性的证明和判别。 教学难点:理解概念。 教学过程: 一、复习准备: 1.引言:函数是描述事物运动变化规律的数学模型,那么能否发现变化中保持不变的特征呢? 2. 观察下列各个函数的图象,并探讨下列变化规律: ①随x 的增大,y 的值有什么变化? ②能否看出函数的最大、最小值? ③函数图象是否具有某种对称性? 3. 画出函数f(x)= x +2、f(x)= x 2的图像。(小结描点 法的步骤:列表→描点→连线) 二、讲授新课: 1.教学增函数、减函数、单调性、单调区间等概念: ①根据f(x)=3x +2、 f(x)=x 2 (x>0)的图象进行讨论: 随x 的增大,函数值怎样变化? 当x 1>x 2时,f(x 1)与f(x 2)的大小关系怎样? ②.一次函数、二次函数和反比例函数,在什么区间函数有怎样的增大或减小的性质? ③定义增函数:设函数y=f(x)的定义域为I ,如果对于定义域I 内的某个区间D 内的任意两个自变量x 1,x 2,当x 1

函数概念及其三要素

函数概念及其相关概念(2课时) 考点一:由函数的概念判断是否构成函数 函数概念:设A 、B 是非空的数集,如果按照某种确定的关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数f (x )和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数。 例1. 下列从集合A 到集合B 的对应关系中,能确定y 是x 的函数的是( ) ① A={x x ∈Z},B={y y ∈Z},对应法则f :x →y= 3 x ; ② A={x x>0,x ∈R}, B={y y ∈R},对应法则f :x →2 y =3x; ③ A=R,B=R, 对应法则f :x →y=2 x ; 变式1. 下列图像中,是函数图像的是( ) ① ② ③ ④ 变式2. 下列式子能确定y 是x 的函数的有( ) ①2 2 x y +=2 ②111x y -+ -= ③y=21x x -+- A 、0个 B 、1个 C 、2个 D 、3个 变式3. 已知函数y=f (x ),则对于直线x=a (a 为常数),以下说法正确的是( ) A. y=f (x )图像与直线x=a 必有一个交点 B. y=f (x )图像与直线x=a 没有交点 C. y=f (x )图像与直线x=a 最少有一个交点 D. y=f (x )图像与直线x=a 最多有一个交点 考点二:同一函数的判定 函数的三要素:定义域、对应关系、值域。 如果两个函数的定义域相同,并且对应关系完全一致,我们就称这两个函数相等。 例2. 下列哪个函数与y=x 相同( ) A. y=x B. 2 y x = C. () 2 y x = D.y=t 变式1.下列函数中哪个与函数3 2y x =-相同( ) A. 2y x x =- B. 2y x x =-- C. 3 2y x x =-- D. 2 2y x x -= 变式2. 下列各组函数表示相等函数的是( ) O O O O X X X X y y y y

函数的基本性质(教案)

[课题]:第一章集合与函数概念 1.3 函数的基本性质 主备人:高一数学备课组陈伟坚编写时间:2013年9月30日使用班级(21)(22) 计划上课时间:2013-2014学年第一学期第6 周星期一至三(四至六月考)[课标、大纲、考纲内容]: 学生在初中已学过一次函数、二次函数、反比例函数的图象与性质,通过这些基本初等函数引入函数的单调性和最值,学生还是容易接受的,但很多学生的二次函数的性质还不过关,需要加强。学生的阅读理解能力还是较弱,教师需要引导学生对函数的单调性、奇偶性的定义理解透彻。 1、重点:理解函数的单调性、最大(小)值及其几何意义;求函数的单调区间和最值;奇偶性的定义,判定函数的奇偶性的方法;运用函数图象理解和研究函数的性质。 2、难点:运用函数图象理解函数单调性和奇偶性的定义,研究基本函数的单调性和奇偶性。 第1课时 1.3.1 单调性与最大(小)值(1) 【教学目标】 1. 运用已学过的函数特别是二次函数的图象,理解函数的单调性的定义及其几何意义; 2. 学会运用函数图象理解和研究函数的性质; 3. 会用定义证明函数的单调性

【教学重难点】 教学重点: 理解函数的单调性的含义及其几何意义. 教学难点: 用定义证明函数的单调性. 【教学过程】 一、引入课题 1. 观察下列各个函数的图象,并说说它们分别反映了相应函数的哪些变化规律: 2. ○ 2 在区间 ____________ 上,随着x 的增 大,f(x)的值随着 ________ . 2.f(x) = -2x+1 ○1 从左至右图象上升还是下降 ______? ○ 2 在区间 ____________ 上,随着x 的增 大,f(x)的值随着 ________ . 3.f(x) = x 2 ○ 1在区间 ____________ 上,f(x)的值随 着x 的增大而 ________ . ○2 在区间 ____________ 上,f(x)的值随 着x 的增大而 ________ . 二、新课教学 (一)函数单调性定义 1.增函数 一般地,设函数y=f(x)的定义域为I , 如果对于定义域I 内的某个区间D 上的任意两个自变量的值x 1,x 2,当x 1

函数的定义及三要素

函数的定义及三要素 考点一、函数概念的理解 [例1] 下列对应是否为A 到B 的函数: (1)A =R ,B ={x |x >0},f :x →y =|x |; (2)A =Z ,B =Z ,f :x →y =x 2; (3)A =Z ,B =Z ,f :x →y =x ; (4)A =[-1,1],B ={0},f :x →y =0. [例2】下列各图中,可表示函数)(x f y 的图象的只可能是( ) 变式1:在下列从集合A 到集合B 的对应关系中不可以确定y 是x 的函数的是( ①A ={x |x ∈Z },B ={y |y ∈Z },对应法则f :x →y =x 3; ②A ={x |x >0,x ∈R },B ={y |y ∈R },对应法则f :x →y 2=3x ; ③A ={x |x ∈R },B ={y |y ∈R },对应法则f :x →y :x 2+y 2=25; ④A =R ,B =R ,对应法则f :x →y =x 2; ⑤A ={(x ,y )|x ∈R ,y ∈R },B =R ,对应法则f :(x ,y )→S =x +y ; ⑥A ={x |-1≤x ≤1,x ∈R },B ={0},对应法则f :x →y =0. A .①⑤⑥ B .②④⑤⑥ C .②③④ D .①②③⑤ 变式2、如图中,哪些是以x 为自变量的函数的图象,为什么?

考点二、相等函数的判断 [例2] 下列各对函数中,是相等函数的序号是________. ①f(x)=x+1与g(x)=x+x0 ②f(x)=x+2与g(x)=|2x+1| ③f(n)=2n+1(n∈Z)与g(n)=2n-1(n∈Z) ④f(x)=3x+2与g(t)=3t +2 变式:下列各组式子是否表示相等函数?为什么? (1)f(x)=|x|,φ(t)=t2; (2)y=x2,y=(x)2; (3)y=x+1·x-1,y=x2-1; (4)y=1+x·1-x,y=1-x2. 考点三、求函数的定义域 [例3] 求下列函数的定义域: (1)y=2x+3; (2)f(x)= 1 x+1; (3) y=x-1+1-x; (4)y= x+1 x2-1.

函数的三要素

第一章函数 第一讲函数的概念 【知识归纳】 (1) 映射 映射的定义:设A,B是两个非空的集合,如果按某一个确定的对应关系f,使对于集合A中 的任意一个元素x,在集合B中都有惟一确定的元素y与之对应,那么这样的对应(包括集合A,B 以及A到B的对应法则f)叫做集合A到集合B的映射,记作f:A→B.其中与A中的元素a对应的B 中的元素b叫做a的象,a叫做b的原象. 一对一,多对一是映射但一对多显然不是映射 辨析: ①任意性:映射中的两个集合A,B可以是数集、点集或由图形组成的集合等; ②有序性:映射是有方向的,A到B的映射与B到A的映射往往不是同一个映射; ③存在性:映射中集合A的每一个元素在集合B中都有它的象; ④唯一性:映射中集合A的任一元素在集合B中的象是唯一的; ⑤封闭性:映射中集合A的任一元素的象都必须是B中的元素,不要求B中的每一个元素都 有原象,即A中元素的象集是B的子集. 映射三要素:集合A、B以及对应法则f,缺一不可; (2) 映射观点下的函数概念 如果A,B都是非空的数集,那么A到B的映射f:A→B就叫做A到B的函数,记作y=f(x),其中x∈A,y∈B.原象的集合A叫做函数y=f(x)的定义域,象的集合C(C B)叫做函数y=f(x)的值域.函数符号y=f(x)表示“y是x的函数”,有时简记作函数f(x). (3)函数概念: 设A、B是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f (x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数记作:y = f (x),x∈A. 其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f (x) | x∈A}叫做函数的值域. 显然,值域是集合B的子集. (4)函数的表示方法 1.解析式:把常量和表示自变量的字母用一系列运算符号连接起来,得到的式子叫做解析式. 2.列表法:列出表格来表示两个变量之间的对应关系. 3.图象法:用图象表示两个变量之间的对应关系.

函数概念及三要素(答案)

函数的概念、表示法与定义域 一、映射与函数: (1)映射的概念: (2)一一映射: (3)函数的概念: 二、函数的三要素:定义域,值域,对应法则。 相同函数的判断方法:①定义域相同;②对应法则一样 (两点必须同时具备) (1)函数解析式的求法: ①定义法(拼凑): ②换元法: ③待定系数法: ④赋值法: (2)函数定义域的求法: ①) () (x g x f y = ,则g (x )0≠; ②)()(*2N n x f y n ∈=则f (x )0≥; ③0 )]([x f y =,则f (x )0≠; ④如:)(log )(x g y x f =,则 { ()0 0()1()1g x f x f x ><<>或; ⑤含参问题的定义域要分类讨论; ⑥对于实际问题,在求出函数解析式后;必须求出其定义域,此时的定义域要根据实际意义来确定。 (3)函数的表示法:解析法、列表法与图象法。 (4)分段函数:一个函数的定义域分成了若干个子区间,而每个子区间的解析式不同。 三.练习题: 1. 已知集合M ={1,2,3,m },4 2 {4,7,,3}N n n n =+,* ,m n N ∈,映射:31f y x →+是从M 到N 的一个函数,则m n -的值为(B) A .2 B .3 C .4 D .5 2.下列对应关系是集合P 上的函数是有 2 . (1)* ,P Z Q N ==,对应关系:f “对集合P 中的元素取绝对值与集合Q 中的元素相对应”; (2){1,1,2,2},{1,4}P Q =--=,对应关系::f x →2 ,,y x x P y Q =∈∈; (3){P =三角形},{|0}Q x x =>,对应关系:f “对P 中三角形求面积与集合Q 中元素对

函数的三要素典型例题

函数定义域的求法及常见题型 一、函数定义域求法 (一)常规函数 函数解析式确定且已知,求函数定义域。其解法是根据解析式有意义所需条件,列出关于自变量的不等式或不等式组,解此不等式(或组),即得函数定义域。 例1.求函数y = 的定义域。 (二)抽象函数 1.有关概念 定义域:函数y=f(x)的自变量x 的取值范围,可以理解为函数y=f(x)图象向x 轴投影的区间;凡是函数的定义域,永远是指自变量x 的取值范围; 2.四种类型 题型一:已知抽象函数y=f(x)的定义域为[m,n],如何求复合抽象函数y=f(g(x))的定义域? 例题2.已知函数y=f(x)的定义域[0,3],求函数y=f(3+2x)的定义域 强化训练: 1.已知函数y=f(x)的定义域[-1,5],求函数y=f(3x-5)的定义域; 2.已知函数y=f(x)的定义域[1/2,2],求函数y=f(log 2x)的定义域; 3.已知(x)f 的定义域为[-2,2],求2(x 1)f -的定义域。 题型二:已知复合抽象函数y=f(g(x))定义域[m,n],如何求抽象函数y=f(x)的的定义域? 例题4.已知函数y=f(2x-1)的定义域[0,3],求函数y=f(x)的定义域. 强化训练: 1.已知函数y=f(x 2-2x+2)的定义域[0,3],求函数y=f(x)的定义域. 2.已知函数y=f[lg(x+1)]的定义域[0,9],求函数y=f(x)的定义域.

题型三:已知复合抽象函数y=f(g(x))定义域[m,n],如何求复合抽象函数y=f(h(x))定义域的定义域? 例题5.已知函数y=f(2x-1)的定义域[0,3],求函数y=f(3+x)的定义域. 强化训练: 1.已知函数y=f(x+1)的定义域[-2,3],求函数y=f(2x-1)的定义域. 2.已知函数y=f(2x)的定义域[-1,1],求函数y=f(log 2x)的定义域. 3. 已知f(x+1)的定义域为[-1/2,2],求f(x 2)定义域。 题型四:已知f(x)的定义域,求与f(x)相关四则运算型函数的定义域。 例6.已知f(x)的定义域为[-3,5],求φ(x )=f(-x)+f(2x+5)定义域。 强化训练: 1.已知f(x)的定义域为(0,5],求g(x)=f(x+a)f(x-a)定义域,其中-1﹤a ≦0。 二、与函数定义域相关的变形题型 (一)逆向型 即已知所给函数的定义域求解析式中参数的取值范围。特别是对于已知定义域为R ,求参数的范围问题通常是转化为恒成立问题来解决。 例7.已知函数的定义域为R ,求实数m 的取值范围。 例8.已知函数27 (x)43 kx f kx kx += ++的定义域是R ,求实数k 的取值范围。 (二)参数型 对于含参数的函数,求定义域时,必须对分母分类讨论。 例9.已知(x)f 的定义域为[0,1],求函数(x)(x )(x a)F f a f =++-的定义域。

函数的基本性质说课稿

函数的基本性质(第一课时)说课稿 龙岩八中---------郭小峰 一.教材分析: 1.教材地位和作用:人教版《普通高中课程标准实验教科书A》必修一第1.3.1“函数的基本性质”是在学生系统地学习了第一章中的函数概念后对函数的性质展开研究的,其第一课时主要是研究函数的单调性. 函数的单调性是函数的重要性质.从知识的网络结构上看,函数的单调性既是函数概念的延续和拓展,又是后续研究指数函数、对数函数、三角函数的单调性等内容的基础,在研究函数的值域、定义域、最值等性质中有重要应用,在解不等式、证明不等式、数列的性质等数学的其他内容的研究中也有重要的应用.同时函数单调性概念的建立过程中蕴涵诸多数学思想方法,比如数形结合的思想,类比的思想等等.这对于进一步探索、研究函数的其他性质有很强的启发与示范作用. 2.教学重点:形成增(减)函数的形式化定义. 3.教学难点:形成增(减)函数概念的过程中,如何从对图象升降的直观认识过渡到用严谨的数学语言来描述函数增(减)的定义;另外根据定义证明函数的单调性也是本节课的难点. 二. 目标分析: 1.知识与技能使学生理解函数单调性的概念,初步掌握判别函数单调性的方法. 2.过程与方法引导学生通过观察、归纳、抽象、概括,自主建构单调增函数、单调减函数等概念;能运用函数单调性概念解决简单的问题;使学生领会数形结合与类比的数学思想方法,培养学生发现问题、分析问题、解决问题的能力. 3.情感态度与价值观要使学生体验数学的科学价值和应用价值,培养学生善于观察、勇于探索的良好习惯和严谨的科学态度. 三.教法学法: 1.教法与教法分析 教学方法:启发引导---自主探究-- 合作讨论式 在这样的教学方法下, 既有教师的讲授与指导又有学生的独立思考空间,教师真正成为课堂教学的引导者、组织者,是学生学习的合作者,同时来自于生活的朴素而有

相关文档
最新文档