第四章系统的瞬态响应与误差分析

第四章系统的瞬态响应与误差分析
第四章系统的瞬态响应与误差分析

第四章系统的瞬态响应与误差分析

1. 某系统的传递函数为2

s 5)s (G +=,则该系统的单位脉冲响应函数为( ) A.52e t - B.5t C.52e t

D.5

t

2. 二阶欠阻尼系统的上升时间t r 定义为( )

A.单位阶跃响应达到稳态值所需的时间

B.单位阶跃响应从稳态值的10%上升到90%所需的时间

C.单位阶跃响应从零第一次上升到稳态值时所需的时间

D.单位阶跃响应达到其稳态值的50%所需的时间

3. 系统类型λ、开环增益K 对系统稳态误差的影响为( ) A.系统型次λ越高,开环增益K 越大,系统稳态误差越小 B.系统型次λ越低,开环增益K 越大,系统稳态误差越小 C.系统型次λ越高,开环增益K 越小,系统稳态误差越小 D.系统型次λ越低,开环增益K 越小,系统稳态误差越小

4. 一系统的传递函数为G s K T s ()=+1

,则该系统时间响应的快

速性( ) A.与K 有关 B.与K 和T 有关 C.与T 有关

D.与输入信号大小有关

5. 一闭环系统的开环传递函数为G s s s s s ()()

()()

=+++83232,则

该系统为( )

A.0型系统,开环增益为8

B.I 型系统,开环增益为8

C.I 型系统,开环增益为4

D.0型系统,开环增益为4

6. 瞬态响应的性能指标是根据哪一种输入信号作用下的瞬态响应定义的( ) A.单位脉冲函数 B.单位阶跃函数 C.单位正弦函数 D.单位斜坡函数

7.二阶系统的传递函数为G s K s s ()=

++221

2

,当K 增大时,

其( )

A.无阻尼自然频率ωn 增大,阻尼比ξ增大

B.无阻尼自然频率ωn 增大,阻尼比ξ减小

C.无阻尼自然频率ωn 减小,阻尼比ξ减小

D.无阻尼自然频率ωn 减小,阻尼比ξ增大 8.二阶系统的传递函数为G(s)=34100

2

s s ++,其无阻尼固有频率ωn 是( ) A. 10 B. 5

C. 2.5

D. 25

9.一阶系统K Ts

1+的单位脉冲响应曲线在t=0处的斜率为( )

A.

K T

B. KT

C.

-K T 2

D.

K T

2

10.某系统的传递函数G(s)=K

T s +1

,则其单位阶跃响应函数为

( ) A.

1T e

Kt T

-/ B.

K T

e

t T

-/ C. K(1-e -t/T ) D. (1-e -Kt/T )

11.图示系统称为( )型系统。 A. 0 B. Ⅰ C. Ⅱ D. Ⅲ

12.二阶系

统的阻尼比ζ,等于( ) A.系统的粘性阻尼系数

B.临界阻尼系数与系统粘性阻尼系数之比

C.系统粘性阻尼系数与临界阻尼系数之比

D.系统粘性阻尼系数的倒数

13.单位反馈控制系统的开环传递函数为G(s)=

45s s ()

+,则系统

在r(t)=2t 输入作用下,其稳态误差为( ) A. 104

B. 54

C.

45

D. 0

14.二阶系统的传递函数为G(s)=

1

22

2s s n n

++ζωω

,在0<ζ<

22

时,其无阻尼固有频率ωn 与谐振频率ωr 的关系为

( ) A. ωn <ωr B. ωn =ωr

C. ωn >ωr

D. 两者无关

15.二阶系统的传递函数为4)

0.5)(s (s 10++,则系统增益为( )

A.10

B.0.5

C.4

D.5 16.若系统的单位脉冲响应为e -2t +2e -t ,则系统的传递函数为:( ) A.

1

s 22

s 1++

+

B.1

s 2s

32

++ C.

s

2e

2

s 1-+ D.

s

e

1

s 1-+

17.下列信号中,哪个用来定义二阶系统的瞬态响应指标( )

A.单位阶跃

B.单位脉冲

C.单位斜坡

D.单位正弦

18.系统如图,其稳态误差定义为( ) A.e ss =0

s lim →SG(S) B.e ss =∞

→s lim te(t)

C.e ss=∞

→t lim e(t) D.e ss =0

t lim →e(t)

19.控制系统中( )

A.系统型次越高,增益K 越大,系统稳定误差越大

B.系统型次越高,增益K 越大,系统稳定误差越小

C.系统阶次越高,增益K 越大,系统稳定误差越小

D.系统阶次越高,稳态误差越大 20.二阶振荡环节G(s)=

2n

n 2

2

n

s 2s

ω+

ζω+ω的幅频特性( )

A.ζ越大,谐振峰越高

B.ζ越小,谐振峰越高

C.ωn 越小,谐振峰越高

D.ωn 越大,谐振峰越高 21.二阶系统的传递函数G(s)=72

s 2s 2152

++,其阻尼比ζ是

( )。 A.

12

1 B.

2

1 C.

2 D.

2

61

22.一阶系统

s

413

+的单位脉冲响应曲线在t=0处的值为

( )。

A.

4

3 B. 12 C. -16

3 D.

16

3

23.某系统的传递函数G(s)=1

s 83

+,则其单位脉冲响应函数为

( )。 A.

8

1e -t/8

B.

8

3e -t/8 C. 3(1-e -t/8) D. (1-e -t/8

)

24.图示系统称为( )型系统。 A. 0 B. Ⅰ C. Ⅱ D. Ⅲ

25.若保持二阶系统的ζ不变,提高ωn ,则可以( )。 A. 减少上升时间和峰值时间 B. 提高上升时间和峰值时间

C. 提高上升时间和调整时间

D. 减少超调量 26.二阶系统的调整时间长,则说明( )。

A. 系统响应快

B. 系统响应慢

C. 无阻尼固有频率大

D. 系统的精度差 27.系统的静态位置误差系数k p 定义为( )。

A. ∞→s Lim G(s)H(s)

B. 0s Lim →G(s)H(s)

C. 0s Lim →sG(s)H(s)

D. ∞

→s Lim s 2

G(s)H(s)

28.一阶系统的传递函数为5s 415+,则系统的增益K 和时间常数T 依次为( )。

A. 3.75,1.25

B. 3,0.8

C. 0.8,3

D. 1.25,3.75 29.二阶系统的谐振峰值M r =_______,谐振频率ωr =_______。 30.传递函数通过________与________之间信息的传递关系,来描述系统本身的动态特征。

31.系统在外加激励作用下,其________随________变化的函数关系称为系统的时间响应。

32.瞬态响应是系统受到外加作用激励后,从 状态到

状态的响应过程33.I 型系统G s K

s s ()()

=+2在单位阶跃输入下,

稳态误差为 ,在单位加速度输入下,稳态误差为 。 34.系统的稳态误差与系统开环传递函数的增益、_______和_______有关。

35.二阶系统在阶跃信号作用下,其调整时间t s 与阻尼比、_______

和_______有关。

36.系统传递函数只与_______有关,与______无关。 37.二阶系统的传递函数为

1

1

2

s s ++,试在左图中标出系统的特征

根在S 平面上的位置,在右图中标出单位阶跃曲线。

38.(7分)系统如图所示,r t t ()[]=1为单位阶跃函数,试求:

(1). 系统的阻尼比ξ和无阻尼自然频率ωn

(2). 动态性能指标:超调量M p 和调节时间t s ()δ=5

39.时域动态性能指标有哪些?它们反映系统哪些方面的性能?

40.(4分)已知系统的传递函数为243

2

s s ++,求系统的脉冲响应表

达式。

41.(4分)已知单位反馈系统的开环传递函数为K s s ()71+,试问该系统为几型系统?系统的单位阶跃响应稳态值为多少?

42.(4分)已知二阶欠阻尼系统的单位阶跃响应如下,如果将阻尼比ζ增大(但不超过1),请用文字和图形定性说明其单位阶跃

响应的变化。

43.(4分)已知各系统的零点(o)、极点(x)分布分别如图所示,请

问各个系统是否有非主导极点,若有请在图上标出。

44.(6分)某系统如图

试求该系统的峰值时间、最大超调量(单位阶跃输入)

45.已知系统的脉冲响应为 g(t)=3e -2t +7e -6t ,t ≥0, 求系统的传递函数。

46.已知系统

如果希望系统的阻尼比ζ=0.707,K 0应取何值?

霍尔效应实验报告98010

霍尔效应与应用设计 摘要:随着半导体物理学的迅速发展,霍尔系数和电导率的测量已成为研究半导体材料的主要方法之一。本文主要通过实验测量半导体材料的霍尔系数和电导率可以判断材料的导电类型、载流子浓度、载流子迁移率等主要参数。 关键词:霍尔系数,电导率,载流子浓度。 一.引言 【实验背景】 置于磁场中的载流体,如果电流方向与磁场垂直,则在垂直于电流和磁场的方向会产生一附加的横向电场,称为霍尔效应。 如今,霍尔效应不但是测定半导体材料电学参数的主要手段,而且随着电子技术的发展,利用该效应制成的霍尔器件,由于结构简单、频率响应宽(高达10GHz )、寿命长、可靠性高等优点,已广泛用于非电量测量、自动控制和信息处理等方面。 【实验目的】 1. 通过实验掌握霍尔效应基本原理,了解霍尔元件的基本结构; 2. 学会测量半导体材料的霍尔系数、电导率、迁移率等参数的实验方法和技术; 3. 学会用“对称测量法”消除副效应所产生的系统误差的实验方法。 4. 学习利用霍尔效应测量磁感应强度B 及磁场分布。 二、实验内容与数据处理 【实验原理】 一、霍尔效应原理 霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场的方向上产生正负电荷的聚积,从而形成附加的横向电场。如图1所示。当载流子所受的横电场力与洛仑兹力相等时,样品两侧电荷的积累就达到平衡,故有 B e eE H v = 其中E H 称为霍尔电场,v 是载流子在电流方向上的平均漂移速度。设试样的宽度为b , ? a

厚度为d ,载流子浓度为n ,则 bd ne t lbde n t q I S v =??=??= d B I R d B I ne b E V S H S H H =?= ?=1 比例系数R H =1/ne 称为霍尔系数。 1. 由R H 的符号(或霍尔电压的正负)判断样品的导电类型。 2. 由R H 求载流子浓度n ,即 e R n H ?= 1 (4) 3. 结合电导率的测量,求载流子的迁移率μ。 电导率σ与载流子浓度n 以及迁移率μ之间有如下关系 μσne = (5) 即σμ?=H R ,测出σ值即可求μ。 电导率σ可以通过在零磁场下,测量B 、C 电极间的电位差为V BC ,由下式求得σ。 S L V I BC BC s ?= σ(6) 二、实验中的副效应及其消除方法: 在产生霍尔效应的同时,因伴随着多种副效应,以致实验测得的霍尔电极A 、A′之间的电压为V H 与各副效应电压的叠加值,因此必须设法消除。 (1)不等势电压降V 0 如图2所示,由于测量霍尔电压的A 、A′两电极不可能绝对对称地焊在霍尔片的两侧,位置不在一个理想的等势面上,Vo 可以通过改变Is 的方向予以消除。 (2)爱廷豪森效应—热电效应引起的附加电压V E 构成电流的载流子速度不同,又因速度大的载流子的能量大,所以速度大的粒子聚集的一侧温度高于另一侧。电极和半导体之间形成温差电偶,这一温差产生温差电动势V E ,如果采用交流电,则由于交流变化快使得爱延好森效应来不及建立,可以减小测量误差。 (3)能斯托效应—热磁效应直接引起的附加电压V N

第1章 数学建模与误差分析

第1章数学建模与误差分析 1.1 数学与科学计算 数学是科学之母,科学技术离不开数学,它通过建立数学模型与数学产生紧密联系,数学又以各种形式应用于科学技术各领域。数学擅长处理各种复杂的依赖关系,精细刻画量的变化以及可能性的评估。它可以帮助人们探讨原因、量化过程、控制风险、优化管理、合理预测。近几十年来由于计算机及科学技术的快速发展,求解各种数学问题的数值方法即计算数学也越来越多地应用于科学技术各领域,相关交叉学科分支纷纷兴起,如计算力学、计算物理、计算化学、计算生物、计算经济学等。 科学计算是指利用计算机来完成科学研究和工程技术中提出的数学问题的计算,是一种使用计算机解释和预测实验中难以验证的、复杂现象的方法。科学计算是伴随着电子计算机的出现而迅速发展并获得广泛应用的新兴交叉学科,是数学及计算机应用于高科技领域的必不可少的纽带和工具。科学计算涉及数学的各分支,研究它们适合于计算机编程的数值计算方法是计算数学的任务,它是各种计算性学科的联系纽带和共性基础,兼有基础性和应用性的数学学科。它面向的是数学问题本身而不是具体的物理模型,但它又是各计算学科共同的基础。 随着计算机技术的飞速发展,科学计算在工程技术中发挥着愈来愈大的作用,已成为继科学实验和理论研究之后科学研究的第三种方法。在实际应用中所建立的数学模型其完备形式往往不能方便地求出精确解,于是只能转化为简化模型,如将复杂的非线性模型忽略一些因素而简化为线性模型,但这样做往往不能满足精度要求。因此,目前使用数值方法来直接求解较少简化的模型,可以得到满足精度要求的结果,使科学计算发挥更大作用。了解和掌握科学计算的基本方法、数学建模方法已成为科技人才必需的技能。因此,科学计算与数学建模的基本知识和方法是工程技术人才必备的数学素质。 1.2 数学建模及其重要意义 数学,作为一门研究现实世界数量关系和空间形式的科学,在它产生和发展的历史长河中,一直是和人们生活的实际需要密切相关。用数学方法解决工程实际和科学技术中的具体问题时,首先必须将具体问题抽象为数学问题,即建立起能描述并等价代替该实际问题的数学模型,然后将建立起的数学模型,利用数学理论和计算技术进行推演、论证和计算,得到欲求解问题的解析解或数值解,最后用求得的解析解和数值解来解决实际问题。本章主要介绍数学建模基本过程和求解数学问题数值方法的误差传播分析。 1.2.1 数学建模的过程 数学建模过程就是从现实对象到数学模型,再从数学模型回到现实对象的循环,一般通过表述、求解、解释、验证几个阶段完成。数学建模过程如图1.2.1所示,数学模型求解方法可分为解析法和数值方法,如图1.2.2所示。 表述是将现实问题“翻译”成抽象的数学问题,属于归纳。数学模型的求解方法则属于演绎。归纳是依据个别现象推出一般规律;演绎是按照普遍原理考察特定对象,导出结论。演绎利用严格的逻辑推理,对解释现象做出科学预见,具有重要意义,但是它要以归纳的结论作为公理化形式的前提,只有在这个前提下

磁场的测定(霍尔效应法)汇总

霍尔效应及其应用实验 (FB510A型霍尔效应组合实验仪)(亥姆霍兹线圈、螺线管线圈) 实 验 讲 义 长春禹衡时代光电科技有限公司

实验一 霍尔效应及其应用 置于磁场中的载流体,如果电流方向与磁场垂直,则在垂直于电流和磁场的方向会产生一附加的横向电场,这个现象是霍普金斯大学研究生霍尔于1879年发现的,后被称为霍尔效应。如今霍尔效应不但是测定半导体材料电学参数的主要手段,而且利用该效应制成的霍尔器件已广泛用于非电量的电测量、自动控制和信息处理等方面。在工业生产要求自动检测和控制的今天,作为敏感元件之一的霍尔器件,将有更广泛的应用前景。掌握这一富有实用性的实验,对日后的工作将有益处。 【实验目的】 1.了解霍尔效应实验原理以及有关霍尔器件对材料要求的知识。 2.学习用“对称测量法”消除副效应的影响,测量试样的S H I ~V 和M H I ~V 曲线。 3.确定试样的导电类型。 【实验原理】 1.霍尔效应: 霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场方向上产生正负电荷的聚积,从而形成附加的横向电场,即霍尔电场H E 。如图1所示的半导体试样,若在X 方向通以电流S I ,在Z 方向加磁场B ,则在Y 方向即试样A A '- 电极两侧就开始聚集异号电荷而产生相应的附加电场。电场的指向取决于试样的导电类型。对图1(a )所示的N 型试样,霍尔电场逆Y 方向,(b )的P 型试样则沿Y 方向。即有 ) (P 0)Y (E )(N 0)Y (E H H 型型?>?< 显然,霍尔电场H E 是阻止载流子继续向侧面偏移,当载流子所受的横向电场力H E e ?

分析化学中的误差及其数据处理

分析化学中的误差 定量分析的目的是准确测定试样中组分的含量,因此分析结果必须具有一定的准确度。在定量分析中,由于受分析方法、测量仪器、所用试剂和分析工作者主观条件等多种因素的限制,使得分析结果与真实值不完全一致。即使采用最可靠的分析方法,使用最精密的仪器,由技术很熟练的分析人员进行测定,也不可能得到绝对准确的结果。同一个人在相同条件下对同一种试样进行多次测定,所得结果也不会完全相同。这表明,在分析过程中,误差是客观存在,不可避免的。因此,我们应该了解分析过程中误差产生的原因及其出现的规律,以便采取相应的措施减小误差,以提高分析结果的准确度。 2.6.1 误差与准确度 分析结果的准确度(accuracy )是指分析结果与真实值的接近程度,分析结果与真实值之间差别越小,则分析结果的准确度越高。准确度的大小用误差(error )来衡量,误差是指测定结果与真值(true value )之间的差值。误差又可分为绝对误差(absolute error )和相对误差(relative error )。绝对误差(E )表示测定值(x )与真实值(x T )之差,即 E =x - x T (2-13) 相对误差(E r )表示误差在真实值中所占的百分率,即 %100T r ?= x E E (2-14) 例如,分析天平称量两物体的质量分别为 g 和 g ,假设两物体的真实值各为 g 和 g ,则两者的绝对误差分别为: E 1= g E 2= g 两者的相对误差分别为: E r1=%1006381 .10001.0?-= % E r2=%1001638 .00001.0?-= % 由此可见,绝对误差相等,相对误差并不一定相等。在上例中,同样的绝对误差,称量物体越重,其相对误差越小。因此,用相对误差来表示测定结果的准确度更为确切。 绝对误差和相对误差都有正负值。正值表示分析结果偏高,负值表示分析结果偏低。 定量分析误差产生的原因 误差按其性质可以分为系统误差(systematic error )和随机误差(random error )两

大学物理实验报告霍尔效应

大学物理实验报告霍尔效应 一、实验名称:霍尔效应原理及其应用二、实验目的:1、了解霍尔效应产生原理;2、测量霍尔元件的、曲线,了解霍尔电压与霍尔元件工作电流、直螺线管的励磁电流间的关系;3、学习用霍尔元件测量磁感应强度的原理和方法,测量长直螺旋管轴向磁感应强度及分布;4、学习用对称交换测量法(异号法)消除负效应产生的系统误差。 三、仪器用具:YX-04 型霍尔效应实验仪(仪器资产编号)四、实验原理:1、霍尔效应现象及物理解释霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直于电流和磁场的方向上产生正负电荷的聚积,从而形成附加的横向电场。对于图1 所示。半导体样品,若在x 方向通以电流,在z 方向加磁场,则在y 方向即样品A、A′电极两侧就开始聚积异号电荷而产生相应的电场,电场的指向取决于样品的导电类型。显然,当载流子所受的横向电场力时电荷不断聚积,电场不断加强,直到样品两侧电荷的积累就达到平衡,即样品A、A′间形成了稳定的电势差(霍尔电压)。设为霍尔电场,是载流子在电流方向上的平均漂移速度;样品的宽度为,厚度为,载流子浓度为,则有:(1-1) 因为,,又根据,则(1-2)其中称为霍尔系数,是反映材料霍尔效应强弱的重要参数。只要测出、以及知道和,可按下式计算:(1-3)(1-4)为霍尔元件灵敏度。 根据RH 可进一步确定以下参数。(1)由的符号(霍尔电压的正负)判断样品的导电类型。判别的方法是按图1 所示的和的方向(即测量中的+,+),若测得的 <0(即A′的电位低于A 的电位),则样品属N 型,反之为P 型。(2)由求载流子浓度,即。应该指出,这个关系式是假定所有载流子都具有相同的漂移速度得到的。严格一点,考虑载流子的速度统计分布,需引入的修正因子(可参阅黄昆、谢希德著《半导体物理学》)。(3)结合电导率的测量,求载流子的迁移率。电导率与载流子浓度以及迁移率之间有如下关系:(1-5)2、霍尔效应中的副效应及其消除方法上述推导是从理想情况出发的,实际情况要复杂得多。产生上述霍尔效应的同时还伴随产生四种副效应,使的测量产生系统误差,如图 2 所示。 (1)厄廷好森效应引起的电势差。由于电子实际上并非以同一速度v 沿y 轴负向运动,速度大的电子回转半径大,能较快地到达接点3 的侧面,从而导致3 侧面较4 侧面集中较多能量高的电子,结果3、4 侧面出现温差,产生温差电动势。 可以证明。的正负与和的方向有关。(2)能斯特效应引起的电势差。焊点1、2 间接触电阻可能不同,通电发热程度不同,故1、2 两点间温度可能不同,于是引起热扩散电流。与霍尔效应类似,该热扩散电流也会在 3、4 点间形成电势差。 若只考虑接触电阻的差异,则的方向仅与磁场的方向有关。(3)里纪-勒杜克效应产生的电势差。上述热扩散电流的载流子由于速度不同,根据厄廷好森效应同样的理由,又会在3、4 点间形成温差电动势。的正负仅与的方向有关,而与的方向无关。(4)不等电势效应引起的电势差。由于制造上的困难及材料的不均匀性,3、4 两点实际上不可能在同一等势面上,只要有电流沿x 方向流过,即使没有磁场,3、4 两点间也会出现电势差。的正负只与电流的方向有关,而与的方向无关。综上所述,在确定的磁场和电流下,实际测出的电压是霍尔

霍尔效应实验报告

南昌大学物理实验报告 课程名称:普通物理实验(2) 实验名称:霍尔效应 学院:专业班级: 学生姓名:学号: 实验地点:座位号: 实验时间:

一、 实验目的: 1、了解霍尔效应法测磁感应强度S I 的原理和方法; 2、学会用霍尔元件测量通电螺线管轴向磁场分布的基本方法; 二、 实验仪器: 霍尔元件测螺线管轴向磁场装置、多量程电流表2只、电势差计、滑动变阻 器、双路直流稳压电源、双刀双掷开关、连接导线15根。 三、 实验原理: 1、霍尔效应 霍尔效应本质上是运动的带电粒子在磁场中受洛仑磁力作用而引起的偏转。 当带电粒子(电子或空穴)被约束在固体材料中,这种偏转导致在垂直电流和磁场方向上产生正负电荷的聚积,从而形成附加的横加电场,即霍尔电场H E . 如果H E <0,则说明载流子为电子,则为n 型试样;如果H E >0,则说明载流子为空穴,即为p 型试样。 显然霍尔电场H E 是阻止载流子继续向侧面偏移,当载流子所受的横向电场

力e H E 与洛仑磁力B v e 相等,样品两侧电荷的积累就达到动态平衡,故有: e H E =-B v e 其中E H 为霍尔电场,v 是载流子在电流方向上的平均速度。若试样的宽度为b ,厚度为d ,载流子浓度为n ,则 bd v ne I = 由上面两式可得: d B I R d B I ne b E V S H S H H == =1 (3) 即霍尔电压H V (上下两端之间的电压)与B I S 乘积成正比与试样厚度d 成反比。比列系数ne R H 1 = 称为霍尔系数,它是反应材料霍尔效应强弱的重要参量。只要测出H V 以及知道S I 、B 和d 可按下式计算H R : 410?= B I d V R S H H 2、霍尔系数H R 与其他参量间的关系 根据H R 可进一步确定以下参量: (1)由H R 的符号(或霍尔电压的正负)判断样品的导电类型。判别方法是电压为负,H R 为负,样品属于n 型;反之则为p 型。 (2)由H R 求载流子浓度n.即e R n H 1 = 这个关系式是假定所有载流子都具有相同的漂移速度得到的。 (3)结合电导率的测量,求载流子的迁移率μ与载流子浓度n 以及迁移率μ之间有如下关系 μσne = 即μ=σH R ,测出σ值即可求μ。 3、霍尔效应与材料性能的关系

第四章系统的瞬态响应及误差分析 - 教学目的.

【教学目的】 ※熟悉系统时间响应、性能指标的概念及求法 ※了解稳态误差的相关知识 【教学重点】 ※时间响应的基本概念 ※二阶系统的阶跃响应及欠阻尼状态下的性能指标及参数的求取 ※误差及稳态误差的概念 ※位置误差、速度误差和加速度误差的计算 【教学难点】 ※二阶系统的时间响应 ※干扰作用下的系统误差的计算 【教学方法及手段】 采用板书讲授的方式,将二阶系统在不同阻尼下的时间响应进行对比讲解,并将各种阻尼状态下的极点分布进行比较,画在一个复平面上,通过绘制响应曲线来表明各性能指标在图上的位置,帮助学生对概念的理解。 【学时分配】 8课时 【教学内容】 对于一个实际的系统,在建立数学模型之后,就可以采用不同的方法来分析和研究系统的动态性能。本章的时域分析就是其中一种重要的方法。 时域分析法是直接求解系统的微分方程,即利用拉氏变换和拉氏反变换求解,然后根据响应的表达式及其描述曲线来分析系统的性能。这种方法结果直观,应用范围广。 本章主要介绍系统的时间响应及其组成,并对一阶、二阶系统的典型时间响应进行分析,最后介绍系统的误差与稳态误差的概念。

3-1 时间响应 时间响应的概念 系统在外加作用激励下,其输出量随时间变化的函数关系,称之为系统的时间响应。通过对时间响应的分析可揭示系统本身的动态特性。 任一系统的时间响应都是由瞬态响应和稳态响应两个部分组成。 瞬态响应:系统受到外加作用激励后,从初始状态到最终状态的响应过程。 稳态响应:时间趋于无穷大时,系统的输出状态。 瞬态响应反映了系统动态性能。 稳态响应偏离系统希望值的程度可用来衡量系统的精确程度。 3-2 一阶系统的时间响应 1、一阶系统的数学模型 用一阶微分方程描述的控制系统称为一阶系统。 a 图示的RC 电路,其微分方程为 i(t)+ r(t) + (a ) 电路图 R C )(t r U dt du RC c c =+ )()()(t r t C t C T =+? 其中C(t)为电路输出电压,r(t)为电路输入电压,T=RC 为时间常数。 (b )方块图

第一章 误差分析与误差的传播习题及解答

第一章 误差分析与误差的传播 一、判断题: 1.舍入误差是模型准确值与用数值方法求得的准确值产生的误差。 ( ?) 2. 用1-2 2 x 近似表示cos x 产生舍入误差。 (? ) 3. 任给实数a 及向量x ,则||||||||x x a a =。 (?) 二、填空题: 1.设* 2.40315x =是真值 2.40194x =的近似值,则* x 有(3)位有效数字。 2. * x 的相对误差的 1 2 倍。 3. 为了使计算 3 2)1(6)1(41310-- -+-+ =x x x y 的乘除法次数尽量地少,应将该表达式改写 为 ,为了减少舍入误差,应将表达式 1999 2001-改写为 。 (1 1 ,))64(3(10-= -++=x t t t t y , 199920012+;) 4. 7 22 , 141.3,142.3分别作为π的近似值有 , , 位有效数字。(4 ,3 ,3;) 5. π的近似值3.1428是准确到 近似值。答: 2 10- 6. 取 3.142x =作为 3.141592654x =┅的近似值,则x 有 位有效数字.答:4 7. 近似值* 0.231x =关于真值229.0=x 有( 2 )位有效数字; *x 的相对误差的( 3 1)倍; 9. 计算方法主要研究( )误差和( )误差;(截断,舍入) 10.近似数x*=0.0310,有( )位有数数字。解:3位 11. 按四舍五入原则数 2.7182818与8.000033具有五位有效数字的近似值分别为 和 。( 2.7183 和 8.0000) 12. 、,则A 的谱半径 = ,A 的= ( ) 11.计算取,利用( )式计算误差最小。

用霍尔效应测量螺线管磁场实验报告(空)解读

华 南 师 范 大 学 学院 普通物理 实验报告 年级 专业 实验日期 2011 年 月 姓名 教师评定 实验题目 用霍尔效应测量螺线管磁场 用霍尔传感器测量通电螺线管内励磁电流与输出霍尔电压之间关系,证明霍尔电势差与螺线管内磁感应强度成正比;用通电长直通电螺线管轴线上磁感应强度的理论计算值作为标准值来校准或测定霍尔传感器的灵敏度,熟悉霍尔传感器的特性和应用;用该霍尔传感器测量通电螺线管内的磁感应强度与螺线管轴线位置刻度之间的关系,作磁感应强度与位置刻线的关系图,学会用霍尔元件测量磁感应强度的方法。 一、实验目的 1.了解霍尔效应现象,掌握其测量磁场的原理。 2.学会用霍尔效应测量长直通电螺线管轴向磁场分布的方法。 二、实验原理 图1所示的是长直螺线管的磁力线分布,有图可知,其内腔中部磁力线是平行于轴线的直线系,渐近两端口时,这些直线变为从两端口离散的曲线,说明其内部的磁场在很大一个范围内是近似均匀的,仅在靠近两端口处磁感应强度才显著下降,呈现明显的不均匀性。根据电磁学毕奥-萨伐尔)Savat Biot (-定律,通电长直螺线管线上中心点的磁感应强度为: 2 2 M D L I N B +??μ= 中心 (1) 理论计算可得,长直螺线管轴线上两个端面上的磁感应强度为内腔中部磁感应强度的1/2: 22M D L I N 21B 21B +??μ? ==中心端面 (2) 式中,μ为磁介质的磁导率,真空中的磁导率μ0=4π×10-7(T·m/A),N 为螺线管的总匝数,I M 为螺线管的励磁电流,L 为螺线管的长度,D 为螺线管的平均直径。 附加电势差的消除 应该说明,在产生霍尔效应的同时,因伴随着多种副效应(见附录),以致实验测得的电压并不等于真实的V H 值,而是包含着各种副效应引起的附加电压,因此必须设法消除。根据副效应产生的机理可知,采用电流和磁场换向的对称测量法,基本上能够把副效应的影响从测量的结果中消除,具体的做法是Is 和B (即l M )的大小不变,并在设定电流和磁场的正、反方向后,依次测量由下列四组不同方向的Is 和B 组合的A 、A′两点之间的电压V 1、 V 2、

分析化学中的误差及其数据处理

2.6 分析化学中的误差 定量分析的目的是准确测定试样中组分的含量,因此分析结果必须具有一定的准确度。在定量分析中,由于受分析方法、测量仪器、所用试剂和分析工作者主观条件等多种因素的限制,使得分析结果与真实值不完全一致。即使采用最可靠的分析方法,使用最精密的仪器,由技术很熟练的分析人员进行测定,也不可能得到绝对准确的结果。同一个人在相同条件下对同一种试样进行多次测定,所得结果也不会完全相同。这表明,在分析过程中,误差是客观存在,不可避免的。因此,我们应该了解分析过程中误差产生的原因及其出现的规律,以便采取相应的措施减小误差,以提高分析结果的准确度。 2.6.1 误差与准确度 分析结果的准确度(accuracy )是指分析结果与真实值的接近程度,分析结果与真实值之间差别越小,则分析结果的准确度越高。准确度的大小用误差(error )来衡量,误差是指测定结果与真值(true value )之间的差值。误差又可分为绝对误差(absolute error )和相对误差(relative error )。绝对误差(E )表示测定值(x )与真实值(x T )之差,即 E =x - x T (2-13) 相对误差(E r )表示误差在真实值中所占的百分率,即 %100T r ?= x E E (2-14) 例如,分析天平称量两物体的质量分别为1.6380 g 和0.1637 g ,假设两物体的真实值各为1.6381 g 和0.1638 g ,则两者的绝对误差分别为: E 1=1.6380-1.638= -0.0001 g E 2=0.1637-0.1638= -0.0001 g 两者的相对误差分别为: E r1=%1006381.10001.0?-= -0.006% E r2= %1001638 .00001.0?-= -0.06% 由此可见,绝对误差相等,相对误差并不一定相等。在上例中,同样的绝对误差,称量物体越重,其相对误差越小。因此,用相对误差来表示测定结果的准确度更为确切。 绝对误差和相对误差都有正负值。正值表示分析结果偏高,负值表示分析结果偏低。 2.6.2 定量分析误差产生的原因 误差按其性质可以分为系统误差(systematic error )和随机误差(random error )两大类。也有人将操作过失造成的结果与真值间的差异叫做“过失误差”。其实,过失是错误,是实验

三阶系统的瞬态响应及稳定性分析

实验四 三阶系统的瞬态响应及稳定性分析 一、实验目的 (1)熟悉三阶系统的模拟电路图。 (2)由实验证明开环增益K 对三阶系统的动态性能及稳定性的影响。 (3)研究时间常数T 对三阶系统稳定性的影响。 二、实验所需挂件及附件 图8-16 三阶系统原理框图 图8-17 三阶系统模拟电路 图8-16为三阶系统的方框图,它的模拟电路如图8-17所示,对应的闭环传递函数为: 该系统的特征方程为: T 1T 2T 3S3+T 3(T 1+T 2)S2+T 3S+K=0 其中K=R 2/R 1,T 1=R 3C 1,T 2=R 4C 2,T 3=R 5C 3。 若令T 1=0.2S ,T 2=0.1S ,T 3=0.5S ,则上式改写为 用劳斯稳定判据,求得该系统的临界稳定增益K=7.5。这表示K>7.5时,系统为不稳定;K<7.5时,系统才能稳定运行;K=7.5时,系统作等幅振荡。 除了开环增益K 对系统的动态性能和稳定性有影响外,系统中任何一个时间常数的变化对系统的稳定性都有影响,对此说明如下: 令系统的剪切频率为 ω c ,则在该频率时的开环频率特性的相位为: ?(ωc )= - 90? - tg -1T 1ωc – tg -1T 2ωc 相位裕量γ=180?+?(ωc )=90?- tg -1T 1ωc- tg -1T 2ωc K )S T )(S T (S T K )S (U )S (U i o +1+1+=2130=100+50S +15S +S 2 3Κ

由上式可见,时间常数T 1和T 2的增大都会使γ减小。 四、思考题 (1)为使系统能稳定地工作,开环增益应适当取小还是取大? (2)系统中的小惯性环节和大惯性环节哪个对系统稳定性的影响大,为什么? (3)试解释在三阶系统的实验中,输出为什么会出现削顶的等幅振荡? (4)为什么图8-13和图8-16所示的二阶系统与三阶系统对阶跃输入信号的稳态误差都为零? (5)为什么在二阶系统和三阶系统的模拟电路中所用的运算放大器都为奇数? 五、实验方法 图8-16所示的三阶系统开环传递函数为: (1)按K=10,T 1=0.2S, T 2=0.05S, T 3=0.5S 的要求,调整图8-17中的相应参数。 (2)用慢扫描示波器观察并记录三阶系统单位阶跃响应曲线。 (3)令T 1=0.2S , T 2=0.1S , T 3=0.5S ,用示波器观察并记录K 分别为5、7.5和10三种 情况下的单位阶跃响应曲线。 (4)令K=10,T 1=0.2S ,T 3=0.5S ,用示波器观察并记录T 2分别为0.1S 和0.5S 时的单位 阶跃响应曲线。 六实验报告 (1)作出K=5、7.5和10三种情况下的单位阶跃响应波形图,据此分析K 的变化对系统动态性能和稳定性的影响。 (2)作出K=10,T1=0.2S ,T3=0.5S ,T 2分别为0.1S 和0.5S 时的单位阶跃响应波形图, 并分析时间常数T 2的变化对系统稳定性的影响。 (3)写出本实验的心得与体会。 ) 1)(1()(213++=S T S T S T K S G

霍尔效应及其应用实验报告

霍尔效应及其应用实验报告 一、实验名称: 霍尔效应原理及其应用 二、实验目的: 1、了解霍尔效应产生原理; 2、测量霍尔元件的 H s V I -、H m V I -曲线,了解霍尔电压H V 与霍尔元件工作电流s I 、直螺线管的励磁电流m I 间的关系; 3、学习用霍尔元件测量磁感应强度的原理和方法,测量长直螺旋管轴向磁感应强度B 及分布; 4、学习用对称交换测量法(异号法)消除负效应产生的系统误差。 三、仪器用具:YX-04型霍尔效应实验仪(仪器资产编号) 四、实验原理: 1、霍尔效应现象及物理解释 霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力B f 作用而引起的偏转。当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直于电流和磁场的方向上产生正负电荷的聚积,从而形成附加的横向电场。对于图1所示。 半导体样品,若在x方向通以电流s I ,在z方向加磁场B ,则在y方向即样品A、A′电极两侧就开始聚积异号电荷而产生相应的电场H E ,电场的指向取决于样品的导电类型。显然,

当载流子所受的横向电场力E B f f <时电荷不断聚积,电场不断加强,直到E B f f =样品两侧电 荷的积累就达到平衡,即样品A、A′间形成了稳定的电势差(霍尔电压) H V 。 设H E 为霍尔电场,v 是载流子在电流方向上的平均漂移速度;样品的宽度为b ,厚度为d ,载流子浓度为n ,则有: s I nevbd = (1-1) 因为E H f eE =,B f evB =,又根据E B f f =,则 1s s H H H I B I B V E b R ne d d =?=?= (1-2) 其中1/()H R ne =称为霍尔系数,是反映材料霍尔效应强弱的重要参数。只要测出H V 、B 以及知道s I 和d ,可按下式计算 3(/)H R m c : H H s V d R I B = (1-3) B I U K S H H /= (1—4) H K 为霍尔元件灵敏度。根据RH 可进一步确定以下参数。 (1)由H V 的符号(霍尔电压的正负)判断样品的导电类型。判别的方法是按图1所示的s I 和B 的方向(即测量中的+s I ,+B ),若测得的H V <0(即A′的电位低于A的电位),则样品属N型,反之为P型。 (2)由H V 求载流子浓度n ,即1/()H n K ed =。应该指出,这个关系式是假定所有载流子都具有相同的漂移速度得到的。严格一点,考虑载流子的速度统计分布,需引入3/8π的修正因子(可参阅黄昆、谢希德著《半导体物理学》)。

霍尔效应实验报告.doc

实验报告 姓名:学号:系别:座号: 实验题目 :通过霍尔效应测量磁场 实验目的 :通过实验测量半导体材料的霍尔系数和电导率可以判断材料的 导电类型、载流子浓度、载流子迁移率等主要参数实验内容 : 已知参数: b=4.0mm, d=0.5mm,l B 'C =3.0mm. 设 B KI M,其中K=6200GS/A; 1. 保持I M =0.450A 不变,测绘V H I S曲线 测量当 I M正(反)向时,I S正向和反向时 V H的值,如下表 调节控制电流I S/mA I S B 正向V H/mV 正 B 反向V H/mV 向 I S B 反向V H/mV 反 B 反向V H/mV 向 绝对值平均值 V H/mV 做出 V H I S曲线如下

v V m / b V 16 Linear fit of date v 14 12 10 8 6 4 2 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 Linear Regression for Data1_V: Y=A+B*X Parameter Value Error ----------------------------- -------------- A B Is/mA 由 origin 得 V H 3.564( ) I S 由 R V H d 108 (cm 3 / C ) 和 B KI M 得 H I S B V H d 10 8 3.564 0.05 10 8 6.39 10 3 3 / C ) R H I S KI M 6200 0.450 (cm 2. 保持 I S 不变,测绘 V H I M 曲线 = 测量当 I S 正( 反) 向时, I M 正向和反向时 V H 的值 , 如下表 调节励磁电流 I M /A I S B 正向 V H /mV 正 B 反向 V H /mV I S B 反向 V H /mV 反 B 反向 V H /mV 绝对值平均值 V H /mV 做出 V H I M 曲线如下

霍尔效应实验报告[共8篇]

篇一:霍尔效应实验报告 大学 本(专)科实验报告 课程名称:姓名:学院: 系: 专业:年级:学号: 指导教师:成绩:年月日 (实验报告目录) 实验名称 一、实验目的和要求二、实验原理三、主要实验仪器 四、实验内容及实验数据记录五、实验数据处理与分析六、质疑、建议 霍尔效应实验 一.实验目的和要求: 1、了解霍尔效应原理及测量霍尔元件有关参数. 2、测绘霍尔元件的vh?is,vh?im曲线了解霍尔电势差vh与霍尔元件控制(工作)电流is、励磁电流im之间的关系。 3、学习利用霍尔效应测量磁感应强度b及磁场分布。 4、判断霍尔元件载流子的类型,并计算其浓度和迁移率。 5、学习用“对称交换测量法”消除负效应产生的系统误差。 二.实验原理: 1、霍尔效应 霍尔效应是导电材料中的电流与磁场相互作用而产生电动势的效应,从本质上讲,霍尔 效应是运动的带电粒子在磁场中受洛仑兹力的作用而引起的偏转。当带电粒子(电子或空穴) 被约束在固体材料中,这种偏转就导致在垂直电流和磁场的方向上产生正负电荷在不同侧的 聚积,从而形成附加的横向电场。 如右图(1)所示,磁场b位于z的正向,与之垂直的半导体薄片上沿x正向通以电流 is(称为控制电流或工作电流),假设载流子为电子(n型 半导体材料),它沿着与电流is相反的x负向运动。 由于洛伦兹力fl的作用,电子即向图中虚线箭头所指的位于y轴负方向的b侧偏转,并 使b侧形成电子积累,而相对的a侧形成正电荷积累。与此同时运动的电子还受到由于两种 积累的异种电荷形成的反向电场力fe的作用。随着电荷积累量的增加,fe增大,当两力大 小相等(方向相反)时,fl=-fe,则电子积累便达到动态平衡。这时在a、b两端面之间建立 的电场称为霍尔电场eh,相应的电势差称为霍尔电压vh。 设电子按均一速度向图示的x负方向运动,在磁场b作用下,所受洛伦兹力为 fl=-eb 式中e为电子电量,为电子漂移平均速度,b为磁感应强度。 同时,电场作用于电子的力为 fe??eeh??evh/l 式中eh为霍尔电场强度,vh为 霍尔电压,l为霍尔元件宽度 当达到动态平衡时,fl??fe ?vh/l (1) 设霍尔元件宽度为l,厚度为d,载流子浓度为n,则霍尔元件的控制(工作)电流为 is?ne (2)由(1),(2)两式可得 vh?ehl? ib1isb ?rhs (3) nedd

第1章 误差分析

第1章误差分析 利用计算机进行数值计算几乎全都是近似计算:计算机所能表示的数的个数是有限的,我们需要用到的数的个数是无限的,所以在绝大多数情况下,计算机不可能进行绝对精确的计算。 定义:设x *为某个量的真值,x为x *的近似值,称x *- x为近似值x的误差,通常记为e(x),以表明它是与x有关的量。 与误差作斗争是时计算方法研究的永恒的主体,由于时间和经验的关系,我们仅对这方面的只是做一个最基本的介绍。1.1 误差的来源 误差的来源是多方面的,但主要来源为:描述误差,观测误差,截断误差和舍入误差。 1描述误差 为了便于数学分析和数值计算,人们对实际问题的数学描述通常只反映出主要因素之间的数量关系,而忽略次要因素的作用,由此产生的误差称为描述误差。对实际问题进行数学描述通常称为是建立数学模型,所以描述误差也称为是模型误差。 2观测误差 描述实际问题或实际系统的数学模型中的某些参数往往是通过实验观测得到的。由试验得到的数据与实际数据之间的误差称为观测误差。 比如我们用仪表测量电压、电流、压力、温度时,指针通常会落在两个刻度之间,读数的最后一位只能是估计值,从而也产生了观测误差。 3.舍入误差 几乎所有的计算工具,当然也包括电子计算机,都只能用一定数位的小数来近似地表示数位较多或无限的小数,由此产生的误差

称为舍入误差。 4.截断误差 假如真值x*为近似值系列{x n}的极限,由于计算机只能执行有限步的计算过程,所以我们只能选取某个x N作为x*的近似值,由此产生的误差称为截断误差。 我们可以通过函数的泰勒展式来理解截断误差:设f(x)可以在x=x0处展开为泰勒级数,记f N(x)为前N+1项的和,R N(x)为余项,如果用f N(x)近似表示f(x),则R N(x)就是截断误差。 提示:在我们的课程中,重点是考虑尽可能减小截断误差,尽可能消除舍入误差的副作用。 1.2 误差基本概念 1.绝对误差与相对误差 定义:设x*为某个量的真值,x为x*的近似值,我们称|x*- x|为近似值x的绝对误差;称|x *- x|/|x*|为近似值x的相对误差。 注释:我们在实际进行误差分析时,所讨论的误差几乎全都是绝对误差,所以在口语中,我们也把绝对误差简称为误差。 提示:在实际应用中,我们通常是用|x *- x|/|x|来表示x的相对误差,这样会使得有关的计算和理论分析更简单一些。 2 误差限的概念 由于在绝大多数情况下我们无法确定出真值x*,所以近似值x 的误差、相对误差、以及绝对误差也都是无法确定的,但是我们总有办法估计出它们的范围。这就是误差限的概念。 定义设x为真值x* 的近似值: 若e>0满足条件|x*-x|≤e,则称e为x的绝对误差限(或误差限);若e r>0满足条件|x*-x|/|x|≤e r,则称e r为x的相对误差限. 提示:由绝对误差限和相对误差限的定义可知,它们满足关系

大学霍尔效应实验报告

大学霍尔效应实验报告 篇一:大学物理实验报告系列之霍尔效应 大学物理实验报告 ) 篇二:霍尔效应实验报告 大学 本(专)科实验报告 课程名称:姓名:学院: 系: 专业:年级:学号: 指导教师:成绩:年月日 (实验报告目录) 实验名称 一、实验目的和要求二、实验原理三、主要实验仪器 四、实验内容及实验数据记录五、实验数据处理与分析六、质疑、建议 霍尔效应实验 一.实验目的和要求: 1、了解霍尔效应原理及测量霍尔元件有关参数. 2、测绘霍尔元件的VH?Is,VH?IM曲线了解霍尔电势差VH与霍尔元件控制(工作)电流Is、励磁电流IM之间的关

系。 3、学习利用霍尔效应测量磁感应强度B及磁场分布。 4、判断霍尔元件载流子的类型,并计算其浓度和迁移率。 5、学习用“对称交换测量法”消除负效应产生的系统误差。 二.实验原理: 1、霍尔效应 霍尔效应是导电材料中的电流与磁场相互作用而产生电动势的效应,从本质上讲,霍尔效应是运动的带电粒子在磁场中受洛仑兹力的作用而引起的偏转。当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场的方向上产生正负电荷在不同侧的聚积,从而形成附加的横向电场。 如右图(1)所示,磁场B位于Z的正向,与之垂直的半导体薄片上沿X正向通以电流Is(称为控制电流或工作电流),假设载流子为电子(N型 半导体材料),它沿着与电流Is相反的X负向运动。 由于洛伦兹力fL的作用,电子即向图中虚线箭头所指的位于y轴负方向的B侧偏转,并使B侧形成电子积累,而相对的A侧形成正电荷积累。与此同时运动的电子还受到由于两种积累的异种电荷形成的反向电场力fE的作用。随着电荷积累量的增加,fE增大,当两力大小相等(方向相反)时,fL=-fE,则电子积累便达到动态平衡。这时在A、B两

第3章分析化学中的误差与数据处理(精)

第三章 分析化学中的误差与数据处理 一、选择题: 1.下列论述中错误的是 ( ) A .方法误差属于系统误差 B .系统误差具有单向性 C .系统误差又称可测误差 D .系统误差呈正态分布 2.下列论述中不正确的是 ( ) A .偶然误差具有随机性 B .偶然误差服从正态分布 C .偶然误差具有单向性 D .偶然误差是由不确定的因素引起的 3.下列情况中引起偶然误差的是 ( ) A .读取滴定管读数时,最后一位数字估计不准 B .使用腐蚀的砝码进行称量 C .标定EDTA 溶液时,所用金属锌不纯 D .所用试剂中含有被测组分 4.分析天平的称样误差约为0.0002克,如使测量时相对误差达到0.1%,试样至少应该称 A: 0.1000克以上 B: 0.1000克以下 C: 0.2克以上 D: 0.2克以下 5.分析实验中由于试剂不纯而引起的误差叫 ( ) A: 系统误差 B: 过失误差 C: 偶然误差 D: 方法误差 6.定量分析工作要求测定结果的误差 ( ) A .没有要求 B .等于零 C .在充许误差范围内 D .略大于充许误差 7.可减小偶然误差的方法是 ( ) A .进行仪器校正 B .作对照试验 C .作空白试验 D .增加平行测定次数 8.从精密度就可以判断分析结果可靠的前提是( ) A .偶然误差小 B .系统误差小 C .平均偏差小 D .标准偏差小 9.下列结果应以几位有效数字报出 ( ) A .5 B .4 C . 3 D .2 10.用失去部分结晶水的Na 2B 4O 7·10H 2O 标定HCl 溶液的浓度时,测得的HCl 浓度与实际浓度相比将 ( ) A .偏高 B .偏低 C .一致 D .无法确定 11.pH 4.230 有几位有效数字 ( ) A 、4 B 、 3 C 、 2 D 、 1 12.某人以差示光度法测定某药物中主成分含量时,称取此药物0.0250g ,最后计算其主成分含量为98.25%,此结果是否正确;若不正确,正确值应为( ) A 、正确 B 、不正确,98.0% C 、不正确,98% D 、不正确,98.2% 13.下列情况中,使分析结果产生负误差的是( ) 1000) 80.1800.25(1010.0-?

数值分析第一章实验 误差分析

1. 计算1 1 n x n I e x e dx -=? (n=0,1,2,……)并估计误差。 由分部积分可得计算n I 的递推公式 1111 01,1,2,e 1.n n x I nI n I e dx e ---=-=???==-???……. (1) 若计算出0I ,代入(1)式,可逐次求出 1 2,,I I … 的值。要 算出0I 就要先算出1e -,若用泰勒多项式展开部分和 21 (1)(1)1(1),2!! k e k ---≈+-+++ … 并取k=7,用4位小数计算,则得10.3679e -≈,截断误差 14711 |0.3679|108!4 R e --=-≤

从表1中看到8I 出现负值,这与一切0n I >相矛盾。实际上,由积分估值得 111110001011 (im )(max)11 x n n n x x e e m e x dx I e x dx n n ---≤≤≤≤=<<=++?? (2) 因此,当n 较大时,用n I 近似n I 显然是不正确的。这里计算公式与每步计算都是正确的,那么是什么原因合计算结果出现错误呢?主要就 是初值0I 有误差000E I I =- ,由此引起以后各步计算的误差n n n E I I =- 满足关系 1,1,2,n n E nE n -=-=…. 由此容易推得 0(1)!n n E n E =-, 这说明0I 有误差0E ,则n I 就是0E 的n!倍误差。例如,n=8,若 4 01||102 E -= ?,则80||8!||2E E =?>。这就说明8I 完全不能近似8I 了。它表明计算公式(A )是数值不稳定的。 我们现在换一种计算方案。由(2)式取n=9,得 1911010 e I -<<, 我们粗略取1 *9911()0.068421010 e I I -≈+==,然后将公式(1)倒过来算,即 由*9I 算出*8I ,*7I ,…,* 0I ,公式为 * 9** 10.0684()1(1),98n n I B I I n n -?=? =?=-=?? , ,…,1; 计算结果见表1的*n I 列。我们发现* 0I 与0I 的误差不超过410-。记

相关文档
最新文档