模态分析作业综述

模态分析作业综述
模态分析作业综述

信号分析与参数识别

考核作业

姓名:

学号:

流水号:

专业:机械制造及其自动化

成绩:

完成日期:

浅析模态分析及在机械故障诊断中的应用摘要:模态分析技术已经广泛应用于工业生产和研究领域,系统参数识别与故障诊断已经成为重要的技术[1]。本文主要介绍了模态分析的定义、类型、国内外发展现状以及在故障诊断应用中的基本方法与技术,最后简要阐述了模态分析在机械工程中的问题及对未来展望。

关键词:模态分析定义现状基本方法问题发展趋势

Abstract:Modal analysis technology has been widely applied in the field of industrial production and research, system parameter identification and fault diagnosis has become an important technique[1].This paper mainly introduces the modal analysis of the definition, types, development status at home and abroad as well as basic methods and techniques in the application of the fault diagnosis , finally briefly describes the problems of the modal analysis in mechanical engineering and the prospect in the future.

Key words: Modal analysis Definition Type Basic methods Problems Prospect 1.引言

模态分析是研究结构动力特性一种近代方法,是系统辨别方法在工程振动领域中的应用。如果通过模态分析方法搞清楚了结构物在某一易受影响的频率范围内各阶主要模态的特性,就可能预言结构在此频段内在外部或内部各种振源作用下实际振动响应。它是机械故障诊断中的重要分析手段。

而在现代,随着科学技术的发展,工程机械设备不断向着大型化、高速化、连续化和自动化的方向发展。设备的功能越来越多,性能越来越高,组成和结构也越来越复杂,在现代化工业生产中所产生的作用和影响越来越大。然而,机械设备在运行过程中发生任何故障或失效不仅会造成重大的经济损失,甚至可能造成人员伤亡。因此,在工程运作中,我们需要利用模态分析及时对设备进行故障诊断以保证工作中的安全性和可靠性。

2.模态分析概述

模态是机械结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。这些模态参数可以由计算或试验分析取得,这样一个计算或试验分

析过程称为模态分析。简单地说,模态分析是一种分析方法,是根据结构的固有特性,包括频率、阻尼和模态振型,这些动力学属性去描述结构的过程。严格从数学意义上定义是指将线性定常系统振动微分方程组中的物理坐标变换为模态坐标,对方程解耦使之成为一组以模态坐标及模态参数描述的独立方程,以便求出系统的模态参数。坐标变换的变换矩阵为模态矩阵,其每列为模态振型。因此,模态变换是将方程从物理空间通过模态变换方程变换到模态空间的过程;是将一组复杂的、耦合的物理方程变换成一组单自由度系统的、解的方程的过程。

1)经典定义

将线性定常系统振动微分方程组中的物理坐标变换为模态坐标,使方程组解耦,成为一组以模态坐标及模态参数描述的独立方程,以便求出系统的模态参数。坐标变换的变换矩阵为模态矩阵,其每列为模态振型[2]。

2)类型

到目前为止,模态分析方法主要分三类:经验模态分析EMA、工作模态分析OMA 和有限元分析FEA[3]。

(1)经验模态分析(Experimental Modal Analysis,EMA),也称为传统模态分析或经典模态分析,这一方法创造性地提出了本征模函数(1MF)的概念,从而赋予了瞬时频率合理的定义、物理意义和求法,初步建立了以瞬时频率为表征信号交变的基本量,以本征模函数为基函数的新时频分析方法体系[4]。具体是指通过输入装置对结构进行激励,在激励的同时测量结构的响应的一种测试分析方法。输入装置主要有力锤和激振器,因此,实验模态分析又分为力锤激励EMA 技术和激振器激励EMA技术。

(2)工作模态分析(Operational Modal Analysis,OMA)亦常称为环境激励下的模态分析,只有输出或激励未知条件下的模态分析,是近年来模态分析领域发展活跃、新理论新技术的应用层出不穷的一个研究方向,被视为对传统试验模态分析方法的创新和扩展。工作模态分析是指在结构运行过程中,只采集结构响应信号即可进行结构模态参数识别的方法[5]。

(3)有限元分析FEA属结构动力学正削题,随着计算机技术的快速发展得到了极大的提高,但受无法准确描述复杂边界条件、结构物理参数和部件连接状态等不确定性因素的限制,难以达到很高的精度。

3)模态分析的最终目标

识别出系统的模态参数,为结构系统的振动特性分析、振动故障诊断和预报以及结构动力特性的优化设计提供依据。

4)模态分析技术的应用可归结为以下几个方面:

①评价现有结构系统的动态特性;

②在新产品设计中进行结构动态特性的预估和优化设计;

③诊断及预报结构系统的故障;

④控制结构的辐射噪声;

⑤识别结构系统的载荷。

3.以工作模态分析为例介绍国内外现状

传统的实验模态分析与参数辨识技术是基于频率响应函数的测量而展开的,它要求对实际结构施加一组可控、可观的激励,同时测取其响应,通过输入输出数据辨识动力学特性。然而,现代结构遇到的困难是,研究对象或者无法施加人工激励,如在轨飞行器等;或者人工激励代价昂贵或有破坏性,如桥梁,高耸结构、海洋平台等;或者结构在工作状态下自身承受的环境激励不可测控,如机翼颤振、桥梁风振、机床切削颤振以及地震等情形[6]。针对传统的实验模态分析方法的局限性,发展仅基于响应数据的工作模态分析技术就显得尤其重要。采用工作模态分析技术可以避免对输入信息的采集,这样也就解决了传统分析方法中很多状况下输入不可测的问题。

工作模态分析的优点是:仅需测试振动响应数据,由于这些数据直接来源于结构实际所经受的振动工作环境,因而识别结果更符合实际情况和边界条件,无需对输入激励进行测试,节省了测试费用。利用实时响应数据进行模态参数识别,其结果能够直接应用于结构的在线健康监测和损伤诊断。

3.1国外现状

20世纪90年代以来,美国Sandia国家实验室结合时域模态辨识方法,提出了NExT 技术,利用结构在环境激励下响应的相关函数进行工作模态识别[7]。通过研究理想白噪声激励下结构的输出间的相关函数,可以证明,相关函数可以表征为一系列衰减的正(余)弦函数的线性叠加。在相关函数中,每个衰减的正弦函数都对应于某阶结构模态,具有相同的有阻尼固有频率和对应的阻尼系数。

可以运用某种时域参数辨识方法,把这些相关函数当作自由振动响应来进行参数估计,从中识别出结构的模态频率、模态阻尼和模态振型。

形成上述技术思路后,美国Sandia国家实验室已经将此分析成果成功运用于航天涡轮机、地面载重、高速公路大桥和濒海建筑的工况信号测量和结构分析中。应用表明,工作模态分析测试手段,对于结构故障诊断和特性监视都有很大的应用前景。后来的时频分析为工作模态参数识别提供了一种新的途径,它克服了单纯的时域与频域分析法的不足,适用于平稳和非平稳激励信号[8]。

3.2国内现状

我国对模态分析技术的研究起步较晚,到70年代后期,模态分析概念才逐步被我国科学界所了解。此后,经过二十多年的急起直追,直到目前模态分析技术已广泛应用到工程领域中,取得不少成就。例如,模态分析与参数识别技术曾被成功用于解决航空发动机的严重振动故障,取得重大经济及社会效益;远东第一高塔的上海东方明珠电视塔的振动模态实验,为高塔的抗风抗震安全性设计提供了技术依据。此外,还有一些重要的研究机构,如南京航空航天大学振动工程研究所一直从事着模态分析的研究工作,从传统的模态分析到工作模态分析,也包括只利用响应数据进行系统模态参数识别方法的研究,并且发表了多篇关于环境激励下工作模态参数识别的文章。另外中国振动协会和上海交通大学振动、冲击、噪声国家重点实验室以及哈尔滨工业大学等也致力于研究工作模态参数识别方法[9]。

4.工作模态分析在机械故障诊断中的应用

工作模态分析方法应用于机械故障诊断中,主要是由于机械设备在长时间的运行,设备的部件不可避免的磨损,成为整个机械设备的薄弱之处,不易察觉,成为生产过程中的隐患,该模态分析方法可以在不必停机的情况下,对设备状态进行监测,找出设备零构件的缺陷,提高系统故障的早期发现能力,避免设备在故障状态下运行[15]。

4.1诊断中参数识别基本方法与技术

自20世纪70年代以来,人们提出了多种环境激励下的模态参数识别方法。按识别信号域不同可分为:时域识别方法、频域识别方法和时频域识别方法;按激励信号分为:平稳随机激励和非平稳随机激励;按信号的测取方法分为:单输

入多输出和多输入多输出;按识别方法特性分为:时间序列法、随机减量法、NExT 法、随机子空间法、模态函数分解法、峰值拾取法、频域分解法及联合时频方法[10]。以下对时域识别方法、频域识别方法和时频域识别方法进行简单描述。4.1.1频域法

频域法是在测量频响函数基础上,再按参数辨识方法辨识出模态参数。分析路线图:

其常用的方法如下;

1)分量分析法将频响函数分成实部风量和虚部分量进行分析。

特点:①简单方便,当模态密度不高时,有一定的精度。在测试时,当信号分析仪有实虚频图分析能力时,直接可读取模态参数。

②峰值有误差时,直接影响辨识精度。由于它利用的信息少,因此识别的精度有限。

③模态密集时,用半功率带宽确定模态阻尼,误差较大;剩余模态不能用复常数表示,辨识精度受影响。

2)导纳圆辨识方法一种比较直观的方法,对单自由度系统或模态耦合不是很紧密的多自由度系统,这种方法能取得比较满意的结果。

特点:①不仅利用频响函数峰值信息;同时利用固有频率附近很多点的信息,即使没有峰值信息也可求出固有频率。

②此法任建立在主模态基础之上,模态密集时误差较大;

③精度受图解精度限制;

3)正交多项式曲线拟合一种现行优化方法。

基本思想:计算机方法—构造多项式传递函数—测得L个频率点的频响函数—构造理论值和测量频率点值的误差—使误差值最小且求得多项式的系数—得到拟合的频响函数

其优点是借助所有测量数据,这比从单个测量的曲线拟合能得到更精确的频率和阻尼的估计。

4.1.2时域法

时域法是一种从时域响应数据中直接识别模态参数的方法。分析路线图:

其常用方法:

1)最小二乘复指数法最小二乘复指数法是基于最小二乘估计理论以及脉冲响应函数与极点和留数之间的复指数关系。

解题步骤:①根据实测所得的输入、输出信号计算传递函数,并对它进行逆变换,求得脉冲响应,按照预定的采样方式进行采样,可得到脉冲响应函数的数据矩阵,或脉冲相应的自相关矩阵。

②求解方程得到自回归系数。

③求得系统的模态频率和模态阻尼比。

④求出留数的实部与虚部并归一化,得到振型系数矩阵。

2)时间序列分析法[11] 一种利用参数模型对有序的随机数据的方法。用时序模型进行参数辨识时,无能量泄漏,分辨率高。

求解思想:实测响应信号—平稳随机信号—相关函数矩阵—自回归系数矩阵—模型特征根—系数特征值—模态频率及阻尼比——(满足条件则结束,不满足条件则返回调整计算)。

4.1.3时频域法

时频域法指在时域识别复特征值,再回到频域中识别振型。它能够捕捉由设备故障引起的短时瞬变,从而更加准确有效地对故障进行诊断。

4.2诊断过程

利用无故障设备的数学模型连同无故障的振动试验数据作为探测有损结构的振动信息,与故障设备的振动响应进行比较,从而判断设备故障的位置和程度。众所周知,设备结构一旦出现故障或损伤,结构参数随之发生改变,从而导致系统的频率响应函数和模态参数(频率和振型等)的改变,所以,模态参数的改变可以视为设备发生早期故障的标志[12]。

识别过程:首先,对被测设备进行在线实验并进行数据采集;其次,依据所采集的实验数据进行动态响应测量与模态参数识;再次,找到系统的各阶模态以及各阶振动频率;然后依据测得的模态及振动频率对被测设备故障前后进行

模态比较并进行模态分析;最后通过比较以确定故障位置和程度。这就是利用模态参数识别的方法进行故障诊断监测的基本思路[13]。

5.未来展望

近年来,随着工程应用领域的不断拓展,模态参数识别已成为一个具有广阔前景的研究课题,受到了国内外广泛重视,具有很强的实际意义和工程应用价值。虽然对于模态分析方法已有大量的研究结果,但由于实际问题的复杂性,仍然存在一些问题需进一步研究,这主要表现在[5]:

(1)对于旋转机械而言,能够采集到的信号主要以转子工频信号为主,微弱的模态响应信号被完全淹没在强大的工频信号中,如何从强大的工频信号中提取微弱的模态响应信号。

(2)由于在实际的应用中所测到的响应信号中存在着大量的噪声信号,如何有效地剔除噪声模态。对于旋转机械还有可能存在着谐波干扰,如何消除谐波干扰。

(3)现有的运行模态分析方法大多都是以白噪声激励为前提的,如何提高目前识别方法的鲁棒性。

(4)由于结构在工作地过程中模态参数是变化的,如何有效识别时变的模态参数。

(5)如何处理非线性模态的正交性、解耦性、稳定性、模态的分叉、渗透等问题是当前研究的重点。

由于在工作模态分析的过程中得到的自然激励响应信号成分复杂是典型的非平稳信号,在未来的研究中、应充分利用现代信号处理技术,通过多种方法优势互补,寻找新的高精度混合识别方法,在解决现有问题的基础上进一步地提高识别精度和可靠性。因此,模态分析的方法在故障诊断和状态监测的应用还有很长的路要走。而随着科学技术日新月异和制造自动化技术不断普及,机械设备在生产中的广泛应用已是必然趋势,因此模态分析日后在故障诊断和状态监测中发挥的作用将会更加突出。

参考文献

[1]方剑青,矫桂琼.基于模态分析的特定结构状态监测方法.振动工程学报.2004.

[2] Zhi-Fang Fu, Jimin He. Modal Analysis. Butterworth-Heinemann. 2001.

[3]王彤,张令弥.运行模态分析的频域空间域分解法及其应用.航空学报.2006.

[4]刘彬,刘利晖,黄震.经验模态分析的理论研究. 第五届全国信息获取与处理学术会议.2007.

[5]陈东弟,向家伟.运行模态分析方法综述.桂林电子科技大学学报.2010.

[6]宋汉文,华宏星,傅志方.工况模态分析理论的概念、应用和发展.振动工程学报.2004.

[7] James G H Ⅲ,Carne T G. The natural excitation technique (Next) for modal parameter

extraction from Operating Structures. The International Journal of Analytical and Expermental Modal Analysis. 1995.

[8]梁君,赵登峰.模态分析方法综述.现代制造工程.2006.

[9]梁君,赵登峰.工作模态分析理论研究现状与发展.电子机械工程.2006.

[10] Peeters B, De Roeck G. Stochastic System Identification for Operational Modal Analysis: A

Review [J]. Journal of Dynamic Systems, Measurement, and Control. 2001.

[11]张景绘.动力学系统建模.北京:国防工业出版社,2000.

[12]Ibrabim S.R. Modal identification techniques assessment and comparison. proc of 3rd

IMAC.1985.

[13] 张生. 基于振动信号处理及模态分析的机械故障诊断技术研究. 燕山大学.2009.

结构模态分析方法

模态分析技术的发展现状综述 摘要:本文首先系统的介绍了模态分析的定义,并以模态分析技术的理论为基础,查阅了大量的文献和资料后,介绍了三种模态分析技术在各领域的应用,以及国内外对于结构模态分析技术研究的发展现状,分析并总结三种模态分析技术的特点与发展前景。 关键词:模态分析技术发展现状 Modality Analysis Technology Development Present Situation Summary Abstract:This article first systematic introduction the definition of modality analysis,and based on modal analysis theory,after has consulted the massive literature and the material.Introduced application about three kind of modality analysis technology in various domains. At home and abroad, the structural modal analysis technology research and development status quo.Analyzes and summarizes three kind of modality analysis technology characteristic and the prospects for development. Key words:Modality analysis Technology Development status 0 引言 模态分析是研究结构动力特性一种近代方法,是系统辨别方法在工程振动领域中的应用。模态是机械结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。这些模态参数可以由计算或试验分析取得,这样一个计算或试验分析过程称为模态分析。模态分析的过程如果是由有限元计算的方法完成的,则称为计算模态分析;如果是通过试验将采集的系统输入与输出信号经过参数识别来获得模态参数的,称为试验模态分析。通常,模态分析都是指试验模态分析。振动模态是弹性结构的固有的、整体的特性。如果通过模态分析方法搞清楚了结构物在某一易受影响的频率范围内各阶主要模态的特性,就可能预言结构在此频段内在外部或内部各种振源作用下实际振动响应。因此,模态分析是结构动态设计及设备故障诊断的重要方法。 1 数值模态分析的发展现状 数值模态分析主要采用有限元法,它是将弹性结构离散化为有限数量的具体质量、弹性特性单元后,在计算机上作数学运算的理论计算方法。它的优点是可以在结构设计之初,根据有限元分析结果,便预知产品的动态性能,可以在产品试制出来之前预估振动、噪声的强度和其他动态问题,并可改变结构形状以消除或抑制这些问题。只要能够正确显示出包含边界条件在内的机械振动模型,就可以通过计算机改变机械尺寸的形状细节。有限元法的不足是计算繁杂,耗资费时。这种方法,除要求计算者有熟练的技巧与经验外,有些参数(如阻尼、结合面特征等)目前尚无法定值,并且利用有限元法计算得到的结果,只能是一个近似值。 正因如此,大多数数学模拟的结构,在试制阶段常应做全尺寸样机的动态试验,以验证计算的可靠程度并补充理论计算的不足,特别对一些重要的或涉及人身安全的结构,就更是如此。 70 年代以来,由于数字计算机的广泛应用、数字信号处理技术以及系统辨识方法的发展 , 使结构模态试验技术和模态参数辨识方法有了较大进展,所获得的数据将促进产品性能的改进、更新[1] 。在硬件上,国外许多厂家研制成功各种类型的以FFT和

机械结构实验模态分析实验报告书

《机械结构实验模态分析》实验报告 开课实验室:汽车结构实验室 2019年月日 学院 姓名 成绩 课程 名称 机械结构实验模态分析 实验项目 名 称 机械结构实验模态分析 指导教师 教师评语 教师签名: 年 月 日 机械结构实验模态分析实验报告 一、实验目的和意义 模态分析技术是近年来在国内外得到迅速发展的一门新兴科学技术,广泛应用于航空、航天、机械制造、建筑、汽车等许多领域,在识别系统的动力学参数、动态优化设计、设备故障诊断等许多方面发挥了日益重要的作用。 本实验采用CCDS-1模态分析微机系统,对图1所示的框架结构进行分析。通过该实验达到如下目的: 212019 1817 16 1514 13121110 987 6 5 4 3 222120 20 202090 9090 90 90909090113 113 113 113 113 113 115 115 115 115 图1 框架结构图 详细了解CCDAS-1模态分析微机系统,并熟练掌握使用本系统的全过程,包括 了解测量点和激振点的选择。 了解模态分析实验采用的仪器,实验的连接、安装和调整。 1、 激励振时各测点力信号和响应信号的测量及利用这些测量信号求取传递函数,并分析影响传递 函数精度的因素。 2、 SSDAS-1系统由各测点识别出系统的模态参数的步骤。 3、 动画显示。 4、 灵敏度分析及含义。 通过CCDAS-1模态分析的全部过程及有关学习,能祥述实验模态的一般步骤。 通过实验和分析,大大提高综合分析能力和动手能力。

CCDAS-1系统模态分析的优缺点讨论并提出改进实验的意见。 二、测试及数据处理框图 加速度传感器 力传感器 脉冲锤 四个点由橡胶绳悬挂 1724 打印机 IBM PC 微型计算机 含AD板 CCMAS-1模态分析软件 双通道低 通滤波器 电荷放大器 电荷放大器 图2 测量及数据处理系统框图 三、实验模态分析的基本原理 对于一个机构系统,其动态特性可用系统的固有频率、阻尼和振型来描述,与模态质量和模态刚度一起通称为机械系统的模态参数。模态参数既可以用有限元的方法对结构进行简化得到,也可以通过激振实验对采集的振动数据进行处理识别得到。通过实验数据求取模态参数的方法就是实验模态分析。只要保证测试仪器的精度、实验条件和数据分析处理的精度就能获得高质量的模态参数。 一个线性系统,若在某一点j 施加激振力j F ,系统各点的振动响应为i X 1,2,...,i n =,系统任意两点的传递函数ij h 之间的关系可用矩阵表示如下: 11112122122212()... 0()...()...()...0n n j n n n nn x h h h x h h h F x h h h ωωωω?????? ???????????? =??? ??????????????? ??????M M M O M (1-1) 可记为:{}{}[]X H F = []H 称为传递函数矩阵。其中的任意元素ij h 可以通过激振实验得到 () () i ij j X h F ωω= ()i X ω,()j F ω分别表示响应i X 与激振力j F 的傅立叶变换。 测量方法是给系统施加一有限带宽频率的激振力(冲击也是一有限带宽激振力),同时测量系统的响应,将力和响应信号进行滤波,A/D 转换并离散采样,进行双通道FFT 变换,计算出激振力j F 与响应i X 之间的传递函数ij h 。 对测量的传递函数进行曲线拟和得到模态参数,一个多自由度系统曲线拟和传递函数的解析式为:* * 1 ()[]n ijk ijk ij k k k r r h S S P S P == - --∑ (1-3)

DHMA实验模态分析系统的概述

DHMA实验模态分析系统的概述 江苏东华测试技术有限公司推出的“DHMA实验模态分析系统”, 从激励信号、传感器、适调器、数据采集和分析软件到实验报告的生成,构成了完整的进行实验模态分析的硬件和软件条件。专业的技术培训,保证了用户可靠、准确、合理的使用本系统。 DHMA实验模态分析系统汇集了公司多年来硬件、软件研发经验,和广大用户对实验模态分析系统的改进意见,参考国内外实验模态分析领域专家学者的研究成果和指导意见,功能强大,特点鲜明:采用内嵌专业知识的软件模式,即使是非专业的用户也可以成功地进行模态实验;内嵌的工作流程保证符合质量标准的重复实验过程;强大的模态参数提取技术保证了高质量、不受操作者经验多寡的影响,即使对模态高度密集或阻尼很大的结构也游刃有余。 汽车白车身现场图片

汽车白车身一阶振型 针对不同实验对象的特点,本公司提供了三种具体的解决方案,满足了大多数用户的需求: 方案一:不测力法(环境激励)实验模态分析系统 不测力法实验模态分析(OMA)可用于对桥梁及大型建筑、运行状态的机械设备或不易实现人工激励的结构进行结构特性的动态实验。仅利用实测的时域响应数据,通过一定的系统建模和曲线拟合的方法识别结构的模态参数。桥梁及大型建筑、运行状态下的机械设备等不易实现人工激励的结构均可采用不测力法来进行实验模态分析。

方案二:锤击激励法实验模态分析系统 DHMA实验模态分析系统可以提供用户完整的锤击激励法实验模态分析完整的解决方案,是对被测结构用带力传感器的力锤施加一个已知的输入力,测量结构各点的响应,利用软件的频响函数分析模块计算得到各点频响函数数据。利用频响函数,通过一定的模态参数识别方法得到结构的模态参数。锤击激励法实验模态分析可分为单点激励法和单点拾振法。

模态分析实验报告

篇一:模态分析实验报告 模态分析实验报告 姓名:学号:任课教师:实验时间:指导老师:实验地点: 实验1传递函数的测量 一、实验内容 用锤击激振法测量传递函数。 二、实验目的 1) 掌握锤击激振法测量传递函数的方法; 2) 测量激励力和加速度响应的时间记录曲线、力的自功率谱和传递函数; 3) 分析传递函数的各种显示形式(实部、虚部、幅值、对数、相位)及相干函 数; 4) 比较原点传递函数和跨点传递函数的特征; 5) 考察激励点和响应点互换对传递函数的影响; 6) 比较不同材料的力锤锤帽对激励信号的影响; 三、实验仪器和测试系统 1、实验仪器 主要用到的实验仪器有:冲击力锤、加速度传感器,lms lms-scadas ⅲ测试系统,具体型号和参数见表1-1。 仪器名称 型号 序列号 3164 灵敏度 2.25 mv/n 100 mv/g 备注比利时 丹麦 b&k 数据采集和分析系统 lms-scadas ⅲ 2302-10 力锤 加速度传感器 表1-1 实验仪器 2 、测试系统 利用试验测量的激励信号(力锤激励信号)和响应的时间历程信号,运用数字 信号处理技术获得频率响应函数(frequency response function, frf),得到系统的非参数模型。然后利用参数识别方法得到系统的模态参数。测试系统主要完成力锤激励信号及各点响应信号时间历程的同步采集,完成数字信号的处理和参数的识别。 测量分析系统的框图如图1-1所示。测量系统由振动加速度传感器、力锤和比利时lms公司scadas采集前端及modal impact测量分析软件组成。力锤及加速度传感器通过信号线与scadas采集前端相连,振动传感器及力锤为icp型传感器,需要scadas采集前端对其供电。scadas采集相应的信号和进行信号处理(如抗混滤波,a/d转换等),所测信号通过电缆与电脑完成数据通讯。图1-1 测试分析系统框图 四、实验数据采集 1、振动测试实验台架 实验测量的是一段轴,在轴上安装了3个加速度传感器,如图1-2所示,轴由四根弹簧悬挂起来,使得整个测试统的频率很低,基本上不会影响到最终的测试结果。整个测试系统如下图所示:a1 a 测点2测点3测点4 图1-2 测试系统图

环境振动下模态参数识别方法综述.

环境振动下模态参数识别方法综述 摘要:模态分析是研究结构动力特性的一种近代方法,是系统识别方法在工程振动领域中的应用。环境振动是一种天然的激励方式,环境振动下结构模态参数识别就是直接利用自然环境激励,仅根据系统的响应进行模态参数识别的方法。与传统模态识别方法相比,具有显著的优点。本文主要是做了环境振动下模态识别方法的一个综述报告。 关键词:环境振动模态识别综述 Abstract: The modal analysis is the study of structural dynamic characteristics of a modern method that is vibration system identification methods in engineering applications in the field. Ambient vibration is a natural way of incentives, under ambient vibration modal parameter identification is the direct use of the natural environment, incentives, based only on the response of the system for modal parameter identification method. With the traditional modal identification methods, has significant advantages. This paper is a summary report of the environmental vibration modal identification method. Keywords: Ambient vibration ;modal parameters ;Review 随着我国交通运输事业的发展,各种形式的大、中型桥梁不断涌现,由于大型桥梁结构具有结构尺大、造型复杂、不易人工激励、容易受到环境影响、自振频率较低等特点,传统模态参数识别技术在应用上的局限性越来越突出。传统的振动试验采用重振动器或落锤激励桥梁,需要投入大量人力和试验设备,激励成本增高,难度大,而且对于桥梁这样的大型复杂结构,激励(输入)往往很难测得,也不适合长期监测的实验模态分析。 环境振动是指振幅很小的环境地面运动。系由天然的和(或)人为的原因所造成,例如风、海浪、交通干扰或机械振动等,受激结构的振幅较小,但响应涵盖频率丰富。系统或者结构的模态参数包括:模态频率、模态阻尼、模态振型等。模态参数识别是系统识别的一部分,通过模态参数的识别可以了解系统或结构的动力学特性,这些动力特性可以作为结构有限元模型修正、故障诊断、结构实时监测的评定标准和基础。环境振动下的模态参数识别就是利用自然环境激励,根据结构的动

机械模态分析作业

机械模态分析 作业:如图1所示是一个单自由系统附件一个减振器形成的的两自由振动系统,已知m 1=105kg ,m 2=7kg ,k 1=10000N/m ,k 2=410N/m ,c 2=1.15N ·m-1·s ,F 1(t)=F 1e j ωt 。求:(简化为粘性比例阻尼进行实模态分析) 1. 物理坐标下的振动微分方程; 2. 频响函数矩阵; 3. 频响函数的模态展式矩阵; 4. 脉冲相应函数; 5. 画出H 11(ω)的幅频特性曲线,相频特性曲线,实频特性曲线, 虚频特性曲线,Nyquist 图,Bode 图; 6. 固有频率,阻尼固有频率; 7. 画出振型图; 8. 模态坐标系下的振动微分方程; 9. 模态参数:复模态质量,复模态刚度,复模态阻尼。 10.按实模态系统,给出灵敏度分析。 11.集全班同学的数据(必要的话再补做不同m 2,k 2,c 2参数下的数据,画出x1的最大振幅与m 2,k 2,c 2,的变化曲线,从而分析出减振器的最佳参数。 解: 1.振动微分方程 对质量m 1、m 2绘分离体图(如图1-1),用牛二定律列分离体在铅垂方向的力平衡方程得 1221221111122122122 ()()()()F c x x k x x k x m x c x x k x x m x ???? ? ? ?? +-+--=----= (1.1) 将(1.1)整理可得: 112 2112 21122 22 2222000m x c c x k k k x F m c c k k x x x ???????? ?? -+-?????????? ????++=??????????????--?? ? ??????????? (1.2) 且m 1=105、m 2=7、k 1=10000、k 2=410、c 2=1.15,代入(1.2)得: ?? ????=????????????+???? ? ???????????+??????????????????????0 410 410-410- 104101.15 1.15- 1.15- 15.17 0 0 1051212121F x x x x x x (1.3) 可以得出此二自由度系统振动微分方程为:()M x C x Kx f t ?? ? ++= 其中M=???? ??7 0 0 105;C=?????? 1.15 1.15- 1.15- 15.1;K=??? ???410 410- 410 - 10410;f(t)= ?? ? ???0 1F 图1-1、系统的分离体图 2.频响函数矩阵 由书P25(1.4-58)公式可知,此二自由度系统频响函数矩阵为一2×2 方阵,其表达式为: 图1 两自由度振动系统

振动测试理论和方法综述

振动测试理论和方法综述 摘要:振动是工程技术和日常生活中常见的物理现象。在长期的科学研究和工程实践中,已逐步形成了一门较完整的振动工程学科,可供进行理论计算和分析。随着现代工业和现代科学技术的发展,对各种仪器设备提出了低振级和低噪声的要求,以及对主要生产过程或重要设备进行监测、诊断,对工作环境进行控制等等。这些都离不开振动的测量。振动测试技术在工业生产中起着十分重要的作用,为此设计和制造高效的振动测试系统便成为测试技术的重要内容。本文概述了振动测试的发展历程,总结和分析了振动测试系统的基本组成和应用理论,列举了几种机械振动测试系统的类型。最后分析了振动测试系统的几个发展趋势。 关键词:振动测试;振动测试系统;测试技术;激振测试系统 1.引言 振动问题广泛存在于生活和生产当中。建筑物、机器等在内界或者外界的激励下就会产生振动。而机械振动常常会破坏机械的正常工作,甚至会降低机械的使用寿命并对机器造成不可逆的损坏。多数的机械振动是有害的。因而对振动的研究不仅有利于改善人们的生活环境和生活水平,也有助于提高机械设备的使用寿命,提高人们的生产效率。正因如此振动测试在生产和科研等多方面都有着十分重要的地位[1]。为了控制振动,将振动给人们带来的危害降至最低,就需要我们了解振动的特性和规律,对振动进行测试和研究。振动测试应运而生。 振动测试有着较为长久的发展历史,是与人类社会的发展有着紧密的联系。随着计算机技术和相关高科技技术的问世和发展,振动测试系统也有了飞跃性的发展。振动测试系统从最早的简单机械设备的应用到如今的先进的计算机技术和设备的应用。从刚开始的检测人员的耳朵来进行测量、判断和计算出大概的故障点的原始方法到现在的计算机控制、存储、处理数据的处理[2],无不体现出振动测试系统的长足发展和飞跃式的进步。与此同时,振动测试在理论方面也有了长足的发展,1656 年惠更斯首次提出物理摆的理论并且创造出了单摆机械钟到现今的自动控制原理和计算机的日趋完善,人们对机械振动分析的研究已日趋成熟。而伴随着振动测试系统的进步和日臻成熟,其在国民的日常生活和生产中所扮演的角色也愈发的重要。 2.振动测试与分析系统(TDM)的发展

ansys模态分析步骤

模态分析步骤 第1步:载入模型 Plot>Volumes 第2步:指定分析标题并设置分析范畴 1 设置标题等Utility Menu>File>Change Title Utility Menu>File> Change Jobname Utility Menu>File>Change Directory 2 选取菜单途径 Main Menu>Preference ,单击 Structure,单击OK 第3步:定义单元类型 Main Menu>Preprocessor>Element Type>Add/Edit/Delete,出现Element Types对话框,单击Add出现Library of Element Types 对话框,选择Structural Solid,再右滚动栏选择Brick 20node 95,然后单击OK,单击Element Types对话框中的Close按钮就完成这项设置了。 第4步:指定材料性能 选取菜单途径Main Menu>Preprocessor>Material Props>Material Models。出现Define Material Model Behavior对话框,在右侧Structural>Linear>Elastic>Isotropic,指定材料的弹性模量和泊松系数,Structural>Density指定材料的密度,完成后退出即可。 第5步:划分网格 选取菜单途径Main Menu>Preprocessor>Meshing>MeshTool,出

现MeshTool对话框,一般采用只能划分网格,点击SmartSize,下面可选择网格的相对大小(太小的计算比较复杂,不一定能产生好的效果,一般做两三组进行比较),保留其他选项,单击Mesh出现Mesh Volumes对话框,其他保持不变单击Pick All,完成网格划分。 第6步:进入求解器并指定分析类型和选项 选取菜单途径Main Menu>Solution>Analysis Type>New Analysis,将出现New Analysis对话框,选择Modal单击 OK。 选取Main Menu>Solution> Analysis Type>Analysis Options,将出现Modal Analysis 对话框,选中Subspace模态提取法,在 Number of modes to extract处输入相应的值(一般为5或10,如果想要看更多的可以选择相应的数字),单击OK,出现Subspace Model Analysis对话框,选择频率的起始值,其他保持不变,单击OK。 第7步:施加边界条件. 选取Main Menu>Solution>Define loads>Apply>Structural>Displacement,出现ApplyU,ROT on KPS对话框,选择在点、线或面上施加位移约束,单击OK会打开约束种类对话框,选择(All DOF,UX,UY,UZ)相应的约束,单击apply或OK即可。第8步:指定要扩展的模态数。选取菜单途径Main Menu>Solution>Load Step Opts>ExpansionPass>Expand Modes,出现Expand Modes对话框,在number of modes to expand 处输入第6步相应的数字,单击 OK即可。(当选取Main Menu>Solution> Analysis Type>Analysis Options,将出现Modal Analysis 对话框,选中Subspace模态提取法,在 Number of modes to extract处输入相应

试验模态分析的两种方法

试验模态分析的两种方法 模态分析是研究结构动力特性一种近代方法,是系统辨别方法在工程振动领域中的应用。模态是机械结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。这些模态参数可以由计算或试验分析取得,这样一个计算或试验分析过程称为模态分析。通过试验将采集的系统输入与输出信号经过参数识别获得模态参数,称为试验模态分析。通常,模态分析都是指试验模态分析。振动模态是弹性结构的固有的、整体的特性。如果通过模态分析方法搞清楚了结构物在某一易受影响的频率范围内各阶主要模态的特性,就可能预言结构在此频段内在外部或内部各种振源作用下实际振动响应。因此,模态分析是结构动态设计及设备的故障诊断的重要方法。模态分析最终目标在是识别出系统的模态参数,为结构系统的振动特性分析、振动故障诊断和预报以及结构动力特性的优化设计提供依据。 试验模态分析主要有以下两种方法,OROS模态分析软件MODEL 2 完全具备了这两种常用的模态方 法。 锤击法模态测试 用于满足锤击法结构模态试验,以简明、直观的方法测量和处理输入力和响应数据,并显示结果。提供两种锤击方法:固定敲击点移动响应点和固定响应点移动敲击点。用力锤来激励结构,同时进行加速度和力信号的采集和处理,实时得到结构的传递函数矩阵。能够方便地设置测量参数,如触发量级、测量带宽和加窗类型,同时对最优的设置提供建议指导。 激振器法模态测试 主要是通过分析仪输出信号源来控制激振器,激励被测试件,输出信号有先进扫频正弦,随机噪声,正弦,调频脉冲等信号。支持单点激励(SIMO)与多点同时激励法(MIMO)。 1)几何建模 结构线架模型生成,节点数和部件数没有限制,测量点DOF自动加到通道标示;建立几何模型,以3维方式显示测量和分析结果。结构模型可以作为单个部件的装配,及采用不同的坐标系(直角、圆柱、球体坐标系),要求除点的定义外,还可定义线和面,真实的显示试验结构。结构线架模型生成,节点数和部件数没有限制,测量点自由度自动加到通道标示。

机床实验模态分析综述

机床的模态分析方法综述 甄真 (北京信息科技大学机电工程学院,北京100192) 摘要:模态分析是研究机械结构动力特性的一种近代方法,是结构动态设计及设备的故障诊断的重要方法。机床在工作时,由于要承受各种变载荷而产生振动,其精度和寿命会受到影响。因此有必要对机床进行模态分析,了解其动态特性,以便进一步分析和改进。本文概述了模态分析的概念、研究意义及发展历史,介绍了机床模态分析的研究现状, 从理论方法与试验方法两方面指出了其关键技术以及研究发展方向。 关键词:模态分析;动态特性;机床;理论方法;实验方法 Summary of the model analysis method of machine tool ZHEN Zhen (Beijing Information Science & Technology University, Mechanical and Electrical Engineering College, Beijing, 100192) Abstract:Modal analysis is a modern method to study the dynamic characteristics of mechanical structure. It’s an important method in structure dynamic design and fault diagnosis of equipment.Its accuracy and lifetime will be affected due to withstand all kinds of variable load and vibration when the machine tool works.So it is necessary to make modal analysis and to understand the dynamic characteristics for machine tool in order to further analyze and improve. This paper summarizes the concept, significance and history of modal analysis and introduces the research status of model analysis of machine tool. It also points out the key technology and research direction in this field from two aspects of theoretical method and experimental method. Key words:model analysis; dynamic characteristics; machine tool; theoretical method; experimental method 0 引言 模态是指机械结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。模态分析是一种研究机械结构动力的方法,是系统辨别方法在工程振动领域中的应用。振动模态是弹性结构的固有的、整体的特性。如果通过模态分析法搞清楚了结构物在某一个易受影响的频率范围内各阶主要模态的特性,就可预言结构在此频段内在外部或内部各种振源作用下实际响应。因此,模态分析是结构动态设计及设备的故障诊断的重要方法[1]。 模态分析将构件的复杂振动分解为许多简单而独立的振动,并用一系列模态参数来表征的过程。根据线性叠加原理,一个构件的复杂振动是由无数阶模态叠加的结果。在这些模态中。模态分析最终目标是识别出系统的模态参数,为结构系统的振动特性分析、振动故障诊断和预报以及结构动力特性的优化设计提供依据。模态分析主要分为3类方法:一是,基于计算机仿真的有限元分析法;二是,基于输入(激励)输出(响应)模态试验的试验模态分析法;三是,基于仅有输出(响应)模态试验的运行模态分析法。有限元分析属结构动力学正问题,但受无法准确描述复杂边界条件、结构物理参数和部件连接状态等不确定性因素的限制难以达到很高的精度。第二、三类方法属结构动力学反问题,基于真实结构的模态试验。因而能得到更准确

模态分析意义

模态分析意义模态分析是研究结构动力特性一种近代方法,是系统辨别方法在工程振动领域中的应用。模态是机械结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。这些模态参数可以由计算或试验分析取得,这样一个计算或试验分析过程称为模态分析。这个分析过程如果是由有限元计算的方法取得的,则称为计算模态分析;如果通过试验将采集的系统输入与输出信号经过参数识别获得模态参数,称为试验模态分析。通常,模态分析都是指试验模态分析。振动模态是弹性结构的固有的、整体的特性。如果通过模态分析方法搞清楚了结构物在某一易受影响的频率范围内各阶主要模态的特性,就可能预言结构在此频段内在外部或内部各种振源作用下实际振动响应。因此,模态分析是结构动态设计及设备的故障诊断的重要方法。机器、建筑物、航天航空飞行器、船舶、汽车等的实际振动千姿百态、瞬息变化。模态分析提供了研究各种实际结构振动的一条有效途径。首先,将结构物在静止状态下进行人为激振,通过测量激振力与胯动响应并进行双通道快速傅里叶变换(FFT)分析,得到任意两点之间的机械导纳函数(传递函数)。用模态分析理论通过对试验导纳函数的曲线拟合,识别出结构物的模态参数,从而建立起结构物的模态模型。根据模态叠加原理,在已知各种载荷时间历程的情况下,就可以预言结构物的实际振动的响应历程或响应谱。近十多年来,由于计算机技术、

FFT 分析仪、高速数据采集系统以及振动传感器、激励器等技术的发展,试验模态分析得到了很快的发展,受到了机械、电力、建筑、水利、航空、航天等许多产业部门的高度重视。已有多种档次、各种原理的模态分析硬件与软件问世。在各种各样的模态分析方法中,大致均可分为四个基本过程:(1)动态数据的采集及频响函数或脉冲响应函数分析1)激励方法。试验模态分析是人为地对结构物施加一定动态激励,采集各点的振动响应信号及激振力信号,根据力及响应信号,用各种参数识别方法获取模态参数。激励方法不同,相应识别方法也不同。目前主要由单输入单输出(SISO)、单输入多输出(SIMO)多输入多输出(MIMO)三种方法。以输入力的信号特征还可分为正弦慢扫描、正弦快扫描、稳态随机(包括白噪声、宽带噪声或伪随机)、瞬态激励(包括随机脉冲激励)等。2)数据采集。SISO 方法要求同时高速采集输入与输出两个点的信号,用不断移动激励点位置或响应点位置的办法取得振形数据。SIMO 及MIMO 的方法则要求大量通道数据的高速并行采集,因此要求大量的振动测量传感器或激振器,试验成本较高。3)时域或频域信号处理。例如谱分析、传递函数估计、脉冲响应测量以及滤波、相关分析等。(2)建立结构数学模型根据已知条件,建立一种描述结构状态及特性的模型,作为计算及识别参数依据。目前一般假定系统为线性的。由于采用的识别方法不同,也分为频域建模和时

各种模态分析方法总结及比较

各种模态分析方法总结与比较 一、模态分析 模态分析是计算或试验分析固有频率、阻尼比和模态振型这些模态参数的过程。 模态分析的理论经典定义:将线性定常系统振动微分方程组中的物理坐标变换为模态坐标,使方程组解耦,成为一组以模态坐标及模态参数描述的独立方程,以便求出系统的模态参数。坐标变换的变换矩阵为模态矩阵,其每列为模态振型。 模态分析是研究结构动力特性一种近代方法,是系统辨别方法在工程振动领域中的应用。模态是机械结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。这些模态参数可以由计算或试验分析取得,这样一个计算或试验分析过程称为模态分析。这个分析过程如果是由有限元计算的方法取得的,则称为计算模记分析;如果通过试验将采集的系统输入与输出信号经过参数识别获得模态参数,称为试验模态分析。通常,模态分析都是指试验模态分析。振动模态是弹性结构的固有的、整体的特性。如果通过模态分析方法搞清楚了结构物在某一易受影响的频率范围内各阶主要模态的特性,就可能预言结构在此频段内在外部或内部各种振源作用下实际振动响应。因此,模态分析是结构动态设计及设备的故障诊断的重要方法。 模态分析最终目标是在识别出系统的模态参数,为结构系统的振动特性分析、振动故障诊断和预报以及结构动力特性的优化设计提供依据。二、各模态分析方法的总结

(一)单自由度法 一般来说,一个系统的动态响应是它的若干阶模态振型的叠加。但是如果假定在给定的频带内只有一个模态是重要的,那么该模态的参数可以单独确定。以这个假定为根据的模态参数识别方法叫做单自由度(SDOF)法n1。在给定的频带范围内,结构的动态特性的时域表达表示近似为: ()[]}{}{T R R t r Q e t h r ψψλ= 2-1 而频域表示则近似为: ()[]}}{ {()[]2ωλωψψωLR UR j Q j h r t r r r -+-= 2-2 单自由度系统是一种很快速的方法,几乎不需要什么计算时间和计算机内存。 这种单自由度的假定只有当系统的各阶模态能够很好解耦时才是正确的。然而实际情况通常并不是这样的,所以就需要用包含若干模态的模型对测得的数据进行近似,同时识别这些参数的模态,就是所谓的多自由度(MDOF)法。 单自由度算法运算速度很快,几乎不需要什么计算和计算机内存,因此在当前小型二通道或四通道傅立叶分析仪中,都把这种方法做成内置选项。然而随着计算机的发展,内存不断扩大,计算速度越来越快,在大多数实际应用中,单自由度方法已经让位给更加复杂的多自由度方法。 1、峰值检测 峰值检测是一种单自由度方法,它是频域中的模态模型为根据对系统极点进行局部估计(固有频率和阻尼)。峰值检测方法基于这样的事实:在固有频率附近,频响函数通过自己的极值,此时其实部为零(同相部分最

汽车车身模态分析研究综述

汽车车身模态分析研究综述 北京信息科技大学研1202班姓名:曹国栋学号:2012020045 摘要:车身是汽车的关键总成。它的构造决定了整车的力学特性,对白车身进行模态分析不仅能考察车身结构的整体刚度特性,而且可以指导人们对车身结构进行优化以及响应分析。因此,研究车身模态分析具有重要的意义。本文综述了近几年国内外在车身模态分析领域内的研究,总结了研究理论和试验方法,并进行归纳。最后,对未来的研究工作提出了一些展望。 关键词:车身;模态分析;有限元模态;试验模态;结构优化 0 前言 随着计算机技术的发展和仿真技术、有限元分析技术的提高,计算机辅助设计和分析技术几乎涵盖了涉及汽车性能的所有方面,如刚度、强度、疲劳寿命、振动噪声、运动与动力性分析、碰撞仿真和乘员保护、空气动力学特性等,各种计算机辅助设计软件为汽车设计提供了一个工具平台,极大地方便了汽车的设计。 车辆在行驶过程中,车身结构在各种振动源的激励下会产生振动,如发动机运转、路面不平以及高速行驶时风力引起的振动等。如果这些振源的激励频率接近于车身整体或局部的固有频率,便会发生共振现象,产生剧烈振动和噪声,甚至造成结构破坏。为提高汽车的安全性、舒适性和可靠性,就必须对车身结构的固有频率进行分析,通过结构设计避开各种振源的激励频率。 车身结构模态分析是新车型开发中有限元法应用的主要领域之一,是新产品开发中结构分析的主要内容。尤其是车身结构的低阶弹性模态,它不仅反映了汽车车身的整体刚度性能,而且是控制汽车常规振动的关键指标,应作为汽车新产品开发的强制性考核内容。有限元模态分析和试验模态分析方法是辨识汽车结构动态性能的一种有效的手段,在汽车车身动态性能研究中得到了广泛应用。采用有限元方法对白车身进行模态分析,识别出车身结构的模态参数,并通过模态试验验证了有限元模型的正确性,为改型设计提供参考依据,是汽车开发设计与优化的一般流程。 因此,研究车身结构模态分析,进行车身轻量化设计和优化,对于提高国产轿车的自开发与科技创新能力,具有重要的理论意义和工程实用价值。 1 车身模态分析的一般理论 1.1 模态分析基本理论 模态分析的经典定义即以模态矩阵作为变换矩阵,将线性定常系统振动微分方程组中的物理坐标进行坐标转换变到模态坐标上,从而使系统在原来坐标下的耦合方程变成一组互相独立的二阶常微分方程进而成为一组以模态坐标及模态参数描述的独立方程[1]。 在实际的结构动力分析中,一般将连续结构离散化为一个具有n个有限自由

机械结构的模态分析方法研究综述

机械模态分析与实验 学院:机电工程学院 专业:机械制造及其自动化 姓名:马阳 班级:研1302 学号:2013020049

机械结构的模态分析方法研究综述 马阳 摘 要:模态分析是研究机械结构动力特性的一种近代方法,是指通过计算或实验获得机构的固有频率、阻尼比和模态振型等模态参数的过程,是结构动态设计及设备的故障诊断的重要方法。本文对模态分析的基本概念、研究目的、分类、分析方法、发展历程、发展现状和展望一一作了阐述。 关键词:模态分析;模态参数;模态识别;非线性模态 0 引言 模态是指机械结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。模态分析是一种研究机械结构动力的方法,是系统辨别方法在工程振动领域中的应用[1]。振动模态是弹性结构的固有的、整体的特性。如果通过模态分析法搞清楚了结构物在某一个易受影响的频率范围内各阶主要模态的特性,就可预言结构在此频段内在外部或内部各种振源作用下实际响应。因此,模态析是结构动态设计及设备的故障诊断的重要方法[2]。 1 模态分析概述 1.1 模态分析定义 模态分析的经典定义是:将线性定常系统振动微分方程组中的物理坐标变换为模态坐标,使方程组解耦,成为一组以模态坐标及模态参数描述的独立方程,以便求出系统的模态参数。坐标变换的变换矩阵为模态矩阵,其每列为模态振型[3]。 模态分析将构件的复杂振动分解为许多简单而独立的振动,并用一系列模态参数来表征的过程。根据线性叠加原理,一个构件的复杂振动是由无数阶模态叠加的结果。在这些模态中。模态分析最终目标是识别出系统的模态参数,为结构系统的振动特性分析、振动故障诊 断和预报以及结构动力特性的优化设计提供依据。 1.2 模态分析基础 1.2.1 无阻尼的情况 实际的机械结构在计算的过程中常常会被简化成多自由度系统。该系统为线性时不变系统。多自由度振动系统可以写成如下的耦合方程形式,可以用矩阵来表示如下: 上式中X 为系统每个自由度的位移向量,对应着系统的各个自由度,M 为系统的质量矩阵,C 为系统的阻尼阵,K 为系统的刚度矩阵,F(t)为系统所受的外力。 为了求解方便,首先考虑没有阻尼的特殊情况(C=0)。 []{()}{()}{()}M X t K X t f t ??+= (1) 设,st X e s jw ψ== 为了求解上式,考虑外力为0时的自由振动齐次解。得到特征方程: 2[][]0Det w M K -+= 由特征方程可以求得特征值(固有频率),与固有频率一一对应可以求得满足式(1)等于0的{}{}{}12,,n ψψψ值,即为求得的特征向量。振动模态之间有正交性,可以证明: ()M X C X KX F t ???++=

模态分析实验报告

模态分析实验报告 姓名: 学号: 任课教师: 实验时间: 指导老师: 实验地点:

实验1 传递函数的测量 一、实验内容 用锤击激振法测量传递函数。 二、实验目的 1)掌握锤击激振法测量传递函数的方法; 2)测量激励力和加速度响应的时间记录曲线、力的自功率谱和传递函数; 3)分析传递函数的各种显示形式(实部、虚部、幅值、对数、相位)及相干函 数; 4)比较原点传递函数和跨点传递函数的特征; 5)考察激励点和响应点互换对传递函数的影响; 6)比较不同材料的力锤锤帽对激励信号的影响; 三、实验仪器和测试系统 1、实验仪器 主要用到的实验仪器有:冲击力锤、加速度传感器,LMS LMS-SCADAS Ⅲ测试系统,具体型号和参数见表1-1。 仪器名称型号序列号灵敏度备注 数据采集和分析系统LMS-SCADAS Ⅲ比利时力锤2302-10 3164 2.25 mV/N 加速度传感器100 mV/g 丹麦B&K 表1-1 实验仪器 2 、测试系统 利用试验测量的激励信号(力锤激励信号)和响应的时间历程信号,运用数字信号处理技术获得频率响应函数(Frequency Response Function, FRF),得到系统的非参数模型。然后利用参数识别方法得到系统的模态参数。测试系统主要完成力锤激励信号及各点响应信号时间历程的同步采集,完成数字信号的处理和参数的识别。 测量分析系统的框图如图1-1所示。测量系统由振动加速度传感器、力锤和比利时LMS公司SCADAS采集前端及Modal Impact测量分析软件组成。力锤及加速度传感器通过信号线与SCADAS采集前端相连,振动传感器及力锤为ICP

模态分析在工程中的应用概述

模态分析在工程中的应用概述 学号:XXXXXX 姓名:XXX 模态分析是研究结构动力特性的一种近代方法,是系统辨别方法在工程振动领域中的应用。模态是机械结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。这些模态参数可以由计算或试验分析取得,这样一个计算或试验分析过程称为模态分析。这个分析过程如果是由有限元计算的方法取得的,则称为计算模态分析(FEA);如果通过试验将采集的系统输入与输出信号经过参数识别获得模态参数,称为实验模态分析(EMA)。通常,模态分析都是指实验模态分析。振动模态是弹性结构的固有的、整体的特性。如果通过模态分析方法搞清楚了结构物在某一个易受影响的频率范围内各阶主要模态的特性,就可能预言结构在此频段内在外部或内部各种振源作用下实际振动响应。因此,模态分析是结构动态设计及设备的故障诊断的重要方法。 模态分析所寻求的最终目标在于改变机械结构系统由经验与类比和静态设计为动态、优化设计方法;在于借助试验与理论分析相结合的方法,对已有结构系统进行识别、分析和评价,从中找出结构系统在动态性能上所存在的问题,确保工程结构能安全可靠及有效地工作;在于根据现场测试的数据来这段及预报振动故障和进行噪声控制。通过这些方法为老产品的改进和新产品的设计提供可靠的依据。[1] 模态分析是一项综合性技术,可以应用于各个工程部门及各种工程结构。机器、建筑物、航天航空飞行器、船舶、汽车等的实际振动千姿百态、瞬息万变。模态分析提供了研究各种实际结构振动的一条有效途径。首先,将结构物在静止状态下进行人为激振,通过测量激振力与响应并进行双通道快速Fourier 变换(FFT)分析,得到任意两点之间的机械导纳函数(传递函数)。用模态分析理论通过对实验导纳函数的曲线拟合,识别出结构物体的模态参数,从而建立起结构物体的模态模型。根据模态叠加原理,在已知各种载荷时间历程的情况下,就可以预言结构物体的实际振动的响应历程或响应谱。[2] 模态分析技术的应用可以归纳为以下几个方面:评价现有结构系统的动态特性,在新产品设计中进行结构动态特性的预估及优化设计,诊断及预报机构系统的故障,控制结构的辐射噪声,识别结构系统的载荷。[1] 下面对近几年国内模态分析在工程中各个方面的应用分别进行概述。 1.评价现有结构系统的动态特性 在处理结构的振动问题时,必须对其动态特性有全面的了解,而其动态特性

相关文档
最新文档